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W A z e propose and analyze a heuristic that uses region partitioning and an aggregation scheme 
for customer attributes (load size, time windows, etc.) to create a finite number of cus- 

tomer types. A math program is solved based on these aggregated customer types to generate 
a feasible solution to the original problem. The problem class we address is quite general and 
defined by a number of general consistency properties. Problems in this class include VRPs with 
general distance norms, capacitated problems, time window VRPs, pick-up and delivery prob- 
lems, combined inventory control and routing problems and arc routing. 

We provide a probabilistic analysis of this heuristic under very general probabilistic assump- 
tions. In particular, we do not require independence between customer locations and their var- 
ious attributes. The heuristic is (a.s.) E-optimal as the number of customers n tends to infinity. 
Further, it runs in O(n log n) time for a fixed relative error, and can be designed to be asymp- 
totically optimal while still running in polynomial time. We characterize the asymptotic average 
value of the heuristic and the optimal solution as the limit of a sequence of linear program 
values. We also provide bounds on the rate of convergence to the asymptotic value and bounds 
on tail probabilities. Finally, we discuss numerical issues involved in implementing our heuristic. 
(Vehicle Routing; Linear Programming; Probabilistic Analysis; Polynomial Time Algorithms; Heuristics) 

Introduction and Overview 
Region partitioning schemes, in which solutions for a 
large service region are generated by combining solu- 
tions formed on smaller subregions, have played a 
prominent role in the probabilistic analysis and design 
of effective algorithms for vehicle routing problems 
(VRPs). The seminal papers of Beardwood et al. (1959) 
and Karp (1977) for the TSP and Steele's (1981) general 
theory of subadditive Euclidean functionals all employ 
variants of region partitioning schemes. For the capac- 
itated VRP, such schemes were used in the pioneering 
work of Haimovich and Rinnooy Kan (1985), and they 
form the foundation for much of the subsequent work 
on VRPs (see Federgruen and Simchi-Levi (1992) for a 

review). For example, the location-based heuristic of 
Bramel and Simchi-Levi (1991) is analyzed by bounding 
its cost by a region partitioning scheme. In Federgruen 
and van Ryzin (to appear in Oper. Res.), we used the 
partitioning analysis in Bramel et al. (1993) together 
with a math-programming-based heuristic for general 
bin packing problems to solve a capacitated VRP with 
time window constraints. 

The appeal of region partitioning schemes lies in their 
ability to approximate the solution structure of certain 
classes of VRPs. Only customers within the same sub- 
region are assigned to a given route. The resulting tour 

structure produces tightly clustered collections of cus- 
tomers connected to the depot by radial arcs, allowing 
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for accurate bounds on the travel cost. The problem is 
then analyzed by letting the grid size tend to zero as the 
number of customers grows. Under certain probabilistic 
assumptions, one can show that with high probability 
the resulting limiting tour structure is asymptotically 
optimal (see Federgruen and Simchi-Levi (1992)). 

However, while such a solution structure is intui- 
tively appealing, its asymptotic optimality only arises 
under the (typical) assumption (see Federgruen and 
Simchi-Levi (1992)) that a customer's location is inde- 
pendent of its other attributes, such as delivery require- 
ments, time windows, etc. As a result, uniformly 
throughout the service region one finds roughly the 
same range of customer types in the same proportions, 
and-at least asymptotically-it makes sense to only 
consider tours that visit customers within a small neigh- 
borhood. 

Nevertheless, there are many classes of problems for 
which region partitioning schemes can perform badly. 
An example illustrates the point: Consider the simple, 
capacitated VRP shown in Figure 1, with vehicles of unit 
capacity. The customers' locations are confined to two 
squares, A and B, with sides of unit length, and sepa- 
rated from each other by a distance of one unit. The 
vertical distance between the depot and the squares is 
given by y. The customers in square A (B) have delivery 
sizes of 0.4 (0.6). Let n customers be independently as- 
signed to sets A and B with equal probability, and then 
to some location in A or B according to a given distri- 
bution. Let NA (NB) denote the number of customers 
assigned to A (B). (NA + NB = n). For a sufficiently small 
grid size, a region partitioning scheme takes only cus- 
tomers within some subregion of A or B. The resulting 
cost of the partitioning solution is thus y(NA/2 + NB) 
+ 0(n) as y -+ oo. On the other hand, if we maximally 
match customers in A with those in B and assign each 
pair a tour, the cost is y[min(NA, NB) + (n - 2 min(NA, 
NB))] + 0(n)]. Dividing by n and letting n -oo we ob- 
tain (a.s.) costs of 3y + 0(1) and 'y + 0(1) for the two 
schemes, implying that for y large the cost of the region 
partitioning scheme exceeds that of the pairing heuristic 
by about 50%. 

As we show in ?5, the reason for the poor perfor- 
mance of the partitioning heuristic in this example is 
that the asymptotic optimal solution is not a collection 
of tightly clustered sets of customers connected to the 

Figure 1 A VRP with Load Size Dependent on Location 
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depot by radial arcs. There are many other VRP appli- 
cations where location dependent customer attributes 
cause region partitioning schemes to fail; for example, 
suppose in Figure 1 that the A (B) customers require 
pick-up (delivery) of a full load. Clearly, it is better to 
combine a delivery to B with a pick-up from A rather 
than to make deliveries and pick-ups using separate 
tours. 

In this paper we propose an alternative class of heu- 
ristics based on aggregation schemes in which custom- 
ers with similar combinations of locations and attribute 
values (e.g. delivery requirements, scheduling con- 
straints, etc.) are aggregated into a single type. These 
aggregation schemes enable us to generate provably 
good heuristics for a wide class of vehicle routing and 
scheduling problems under very general distributions 
of problem instances, including problems with location- 
dependent customer attributes. 
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Like region partitioning schemes, our heuristics may 
be viewed as an approximation method for the classical 
set covering formulation to VRPs, originally due to 
Charnes and Miller (1956) and Balinski and Quandt 
(1964), and subsequently employed in several effective 
algorithms, see e.g. Cullen et al. (1981), Desrochers et 
al. (1981), Ceria et al. (1995) and Cabrara et al. (1995). 
Region partitioning schemes amount to a restriction 
method in which the set of columns (routes) is restricted 
to those visiting customers in the same subregion. Be- 
cause customers are partitioned into subregions, the re- 
stricted problem is decomposable by subregion. Our ag- 
gregation schemes may be viewed as row aggregation 
methods, converting the set covering problem into a 
multi-set covering problem. (See Rogers et al. (1991) for 
a recent survey of aggregation methods in mathematical 
programming.) By avoiding the sometimes rather se- 
vere restrictions imposed by region partitioning 
schemes, we safeguard the quality of the heuristic so- 
lution. Moreover, the recent effective algorithms based 
on the set covering formulation (Desrochers, Desrosiers, 
and Solomon (1992); Ceria, Paolo, and Sassano (1995)) 
all show that the computational effort is primarily de- 
termined by its number of rows; row aggregation 
schemes thus result in a most effective approach to re- 
duce computational complexity while maintaining the 
quality of the resulting solution. 

The approach suggests a powerful class of heuristics 
which can be designed to be both asymptotically opti- 
mal and polynomial (under mild probabilistic assump- 
tions); it also provides a quite complete analysis of the 
solution cost of a wide class of VRPs. As a corollary, we 
extend Bramel and Simchi-Levi (1993) to show that the 
linear programming relaxations of set covering formu- 
lations for VRPs are asymptotically tight. 

In ?1 we specify the class of VRPs that can be addressed 
with our approach and demonstrate its generality. In ?2 
we analyze a version of the problem in which the distri- 
bution of locations and attribute values is discrete. We 
characterize the asymptotic optimal solution value as the 
value of an underlying linear program which depends on 
the joint probability mass function of the locations and 
attribute values; we also derive bounds for the tail of the 
minimum cost value and specify the complete limiting 
distribution of the minimum cost value. In ?3 we address 
continuous location and attribute distributions. Our ap- 

proach here is to approximate the continuous distribution 
by a sequence of progressively finer discretizations of both 
the service region and the attribute space. This allows us 
to employ the integer programming analysis of ?2. More 
specifically, we develop a lower and upper bound VRP 
with discrete sets of customer types. As an effective heu- 
fistic, we propose finding a feasible solution for the upper 
bound problem by solving its LP relaxation and rounding 
the solution up to integer values; the LP relaxation of the 
lower bound problem can be used as a lower bound to 
gauge the heuristic's optimality gap. We show that this 
math programming heuristic is asymptotically optimal as 
long as the number of customer types in the aggregation 
scheme grows sublinearly with n, the number of custom- 
ers; moreover, its complexity is polynomially bounded, 
albeit with a high degree polynomial bound depending 
on M, the maximum number of customers per route, 
which is uniformly bounded by the properties of the class 
of VRPs considered. The fact that the rounded up solution 
of the LP relaxation is close to optimal was identified by 
Bartholdi (1981) for set covering problems arising in cy- 
clical staff scheduling problems. He as well as Hochbaum 
(1982, 1983) develop worst-case bounds for the optimality 
gap of this rounding heuristic. 

In ?4, we continue the theoretical characterization of 
the heuristic's complexity by showing that it can be 
bounded by a polynomial of fixed degree-independent 
of M-when solving the linear program by a column 
generation technique, provided the effort to generate col- 
umns is polynomial in n itself. We illustrate this com- 
plexity characterization for the case of the classical VRP. 
We then discuss how the proposed heuristic could be 
solved in practice making use of recent computational 
results for set covering formulation based heuristics. Fi- 
nally in ?5, we provide computational results for several 
examples, exhibiting the quality of the heuristic as a func- 
tion of the number of customers, the aggregation scheme 
applied and the model parameters. 

1. A General Class of Vehicle 
Routing Problems 

1.1. Problem Definition and Examples 
We define a generalized vehicle routing problem as fol- 
lows: Customers are described by a location x = (x1, x2) 
in [0, 112 and a d-dimensional vector w = (w1, . . ., wd) 
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of attributes. The restriction of x to the unit square is 
without loss of generality, provided the service region 
is bounded. More generally, locations may be in [0, iir 

for r 2 2, e.g. see Examples 5 and 6 below, but to sim- 
plify the exposition we restrict ourselves to the more 
basic planar case. We assume that attribute values are 
bounded, and hence can be shifted and scaled to be in 
[0, 1]. The distance between two locations x, y is given 
by a pseudo-metric d(x, y) which is homogeneous of 
degree one, i.e. i) d(x, y) 2 0, ii) d(x, y) = d(y, x), iii) 
d(ax, ay) = ad(x, y) for all a > 0 and iv) d(x, y) s d(x, 
z) + d(z, y). Examples include the Euclidean and Man- 
hattan (11) distances or any other pseudo-metric which 
approximates travel distance/ time for a given service 
region. 

A tour is an ordered set of customers r = {(Xk, Wk); 1 
? k ? I Jr I }, which starts and ends at a given depot 
location x0 E [0, 1]2. We let lk = d(xk - 1, Xk), k = 1, ... 

1 T1, lITI+1 = d(xITI, xo). A tour may visit the same cus- 
tomer type multiple times. Considering all possible lo- 
cations in [0, 1]2 and attribute vectors in [0, 1]d, let Q 
denote the collection of all ordered sets of customers r 

that can be visited using a single tour (the collection of 
all feasible tours) with the following consistency prop- 
erties: 

P1. Every finite set of customers can be serviced by some 
finite collection of tours in Q. 

P2. If r E Q, then for every (x, w) E r, r - {(x, w)} 
E Q. 

P3. If the possible locations x and attributes w are both 
restricted to a finite set, then the collection of feasible tours 
in Q is finite. 

Property P1 assures the existence of a feasible solu- 
tion for any finite instance. Property P2 says that a fea- 
sible tour remains feasible when a customer is removed. 
In view of P1 and P2, any single customer can be served 
using a dedicated tour. P3 is a boundedness condition. 
One technical difficulty concerning P3 is the possible 
existence of null customers, i.e. those that can be added 
to any feasible tour without violating its feasibility (e.g. 
a customer with zero demand in the classical VRP). P3 
ensures that no such customers exist, since by adding k 
null customers to a feasible tour r for k = 1, 2, . . ., an 
infinite sequence of additional feasible tours arises. That 

is, even though some (or all) attribute values of a cus- 
tomer are zero, there is still an upper bound M on the 
number of such customers that can be served in any 
single tour. This assumption is quite reasonable and 
nonrestrictive in practice. If some attributes take on a 
continuum of values, we need two additional proper- 
ties: 

P4. A tour r E Q remains feasible when an attribute 
value of any of its customers is reduced. 

P5. Suppose the pseudo-metric d(x, y) is replaced by a 
function (not necessarily pseudo-metric or homogeneous) 
d(x, y) satisfying d(x, y) ? d(x, y) V x, y E [0, 112. Then 
any tour r that is feasible under d remains feasible under d. 

Whether or not P4 holds for a given problem can de- 
pend on which variables are used to represent attributes 
(see Example 3 below). It implies that M is a uniform 
upper bound for the number of customers in any fea- 
sible tour. P5 says that a similar property holds for dis- 
tances; namely, if they are reduced, the tours remain 
feasible. 

For some classes of problems, such as the time win- 
dow VRP, feasibility of tours depends on the times trav- 
eled on the various legs of the tour, and a further prop- 
erty, P6 below, is needed. Informally, we require that 
customers have an on-site service time and also that fea- 
sibility depends only on the times at which customers 
are visited (possibly including the return time to the 
depot to include tour length constraints) and not on dis- 
tances traveled. It is convenient to emphasize the service 
time attribute notationally and describe customers by a 
triple (x, s, w) where s is the on-site service time require- 
ment and w is a vector of remaining attributes. As be- 
fore, we assume x E [0, 112 and (s, w) E [0, 1]d. More- 
over, vehicles travel at a fixed velocity v > 0. Formally, 
we require: 

P6. Let s denote an on-site service attribute and T = {(Xk, 

Sk, Wk); 1 ? k 1T I I be a feasible tour in Q. Let rT, denote 
the tour formed by replacing Sk by Sk - h / v for each customer 
k = 1, . . ., I r I in r. Let di, denote a distance metric satisfying 
d, (x, y) ? d(x, y) + h, V x, y E [0, 112. Then for all h > 0, 
,T, is feasible under the distance metric d1,. 

The cost of every tour r E Q is given by a function 
c: Q - R satisfying: 
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P7. c(-r) is uniformly bounded (c(r) ? C V r E Q); 
nondecreasing (component-wise) in Wk, k = 1, 1 I T If; and 
nondecreasing (component-wise) and first order Lipschitz in 
k and Sk (when applicable), k = 1, ..., I I + 1. 

The objective of the generalized VRP is to find a least 
cost collection of feasible tours visiting a given set of 
customers S. Let c*(S) denote the optimal cost. 

For probabilistic analyses, we consider a joint proba- 
bility measure [u on the pair of vectors (x, w) (or triple 
(x, s, w) if applicable), permitting dependence between 
locations and attributes. Without loss of generality [u has 
support on [0, 1]d+2. We shall look at instances that are 
formed by drawing an independent sequence of cus- 
tomers from [u. For our primary results in Theorems 1 
and 4, even independence is not required and we only 
assume that the sequence is stationary. 

When x and w are restricted to finite sets, any set of 
customers S can be represented by a vector z = (zi, . . I 
zI) E Y{ where i = 1, . . ., I indexes the type of object 
(i.e. a particular combination of a discrete location x and 
a discrete attribute vector w) and zi denotes the number 
of customers of type-i contained in the set S. In this case, 
[u is a discrete probability mass function, denoted by ir 
= (1rl, . . ., ,I) 

Examples of VRPs that fall under this general frame- 
work include: 

EXAMPLE 1. CLASSICAL CAPACITATED VRP. Each cus- 
tomer k = 1, . . ., n has a delivery size Vk, and Q is the 
set of all tours for which EkIT Vk < 1, i.e. tours are con- 
strained only by the vehicle capacity, which is identical 
for all vehicles and normalized to one. We assume v 
E [6, 1] for some 6 > 0. Since feasibility does not depend 
on travel time, no on-site service time is required. A 
customer is thus characterized by its location x E [0, 1] 
and a single attribute w = v - 6 E [0, 1]. The cost of a 
tour is c(-r) = XkCT lk, the total distance, where the 
pseudo-metric d(x, y) is the Euclidean or any other met- 
ric. Since v 2 6, the number of customers per tour is 
bounded by 6-1, and its cost by C = 6-1d((O, 0), (1, 1)). 
It is easy to verify that P1-P5 and P7 are satisfied, while 
P6 is not applicable. 

EXAMPLE 2. TIME WINDOW VRP. Each customer has 
a location, scalar load size v, a service time s for load- 
ing/unloading the vehicle, an earliest delivery time e 

and a latest delivery time f. A unit time planning period 
is available during which all on-site service must start 
and end. (Vehicle travel is not necessarily restricted to 
this window.) We define r = 1 - f and the vector of 
attributes w = (v, e, r). A tour is feasible if it visits all 
customers within their specified time windows and the 
unit capacity of the vehicle is not exceeded. That is, 
there exists start times (a schedule) tO, tl, . . ., tk such 
thatfork = 1, . . ., ITI: i) tk 2 tk-1 + Sk-1 + d(Xk-1,Xk)/V, 

ii) tk 2 ek and iii) tk - 1 - Sk - rk, and Ik T Vk ? 1. c(rT) 

can be chosen to minimize the total distance, the num- 
ber of vehicles or some more general cost structure sat- 
isfying Property P5. P4 is satisfied by the definition of 
rk. In this case tour feasibility depends on time; how- 
ever, one easily verifies that P6 holds. The remaining 
properties hold under the conditions of Example 1. We 
note that several versions of this problem have been an- 
alyzed (see Bramel et al. (1991); Bramel and Simchi-Levi 
(1992, 1993) and Federgruen and van Ryzin (1992)) un- 
der the assumption that locations Xk are independent of 
the values (Vk, Sk, ek, rk). A special case of this problem 
is the VRP with a total load size and time constraint. 

EXAMPLE 3. A PICK-UP AND DELIVERY PROBLEM. In 
this class of problems one may have people to transport 
(dial-a-ride systems) or backhaul opportunities; cus- 
tomers may need a delivery, a pick-up or both. See 
Bodin et al. (1983) and Casco et al. (1988) for surveys of 
this problem class. To date, no probabilistic analysis of 
this problem has appeared in the literature. 

As in Example 1, a tour is feasible if its load never 
exceeds the vehicle capacity (of one). A customer is de- 
scribed by a triplet of values (x, v, 0), with x its location, 
v the size of the delivery and v the size of the pick-up. 
A tour r = { (xi, vi , ) . . ., (x1T , V|T|, V|T |1)} is feasible 
if E 1 f)k + ; + 1 Vk < ,1 =0, . ,|T |, i.e., the sum of 
the loads that have been picked up and those yet to be 
delivered must not exceed the capacity of the vehicle. 
The cost function can be chosen as in Examples 1 or 2. 
Again, P1, P2, P4 and P5 are satisfied. P3 and P7 are 
satisfied provided delivery and pick-up load sizes are 
uniformly bounded away from zero. P6 does not apply 
since feasibility is not affected by the distances traveled. 

EXAMPLE 4. AN INVENTORY ROUTING PROBLEM. Here 
the customers represent retailers, which are replenished 
from a central warehouse with unlimited supply of a 
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specific item and with vehicles of unit capacity. Retailer 
k faces continuous demands for the item at a constant 
rate of dk units, and incurs holding costs at a constant 
rate h per unit of product and time. Demands at each 
retailer must be met over an infinite horizon without 
shortages or backlogging. The frequency with which a 
given retailer can be visited is bounded from above by 
f. Various additional constraints may apply to the routes 
used to supply retailers, e.g. a time constraint as in Ex- 
ample 2 or an upper bound on the number of stops (i.e., 
retailers visited) per route. The objective is to find a re- 
plenishment strategy which minimizes infinite horizon 
average costs. 

Most existing approaches to the above class of 
inventory-routing problems (see Anily and Federgruen 
1990, and Bramel and Simchi-Levi 1991) restrict them- 
selves to the class of fixed-partition strategies in which 
the retailers are partitioned into sets such that all retail- 
ers in a set are always replenished together and inde- 
pendently of any retailer outside the set. Chan et al. 
(1993) recently showed that when routes are con- 
strained by the vehicle capacity and frequency con- 
straints only, and when locations and demand rates are 
independent attributes, fixed-partition strategies are in 
fact asymptotically close-to-optimal (see Chan et al., to 
appear in Oper. Res., for details). 

Under a fixed-partition strategy, it is clearly optimal 
to serve every region with constant replenishment in- 
tervals and such that retailers are replenished only 
when their inventories are depleted. Consider a region 
and a corresponding tour r through its retailers and the 

depot. Let D = E"' dk and L = E'Slk + 1171+1 denote 
the total demand rate of the region and the length of the 
tour, respectively. If the region is replenished with in- 
tervals of length T, then DT - 1 (to satisfy the capacity 
constraint) and T 2 f'- (to satisfy the frequency con- 
straint). The cost of the tour r is given by LT-' + hDT/2. 
Minimizing this function over the feasible interval [f', 
D-1] we obtain 

L Lt+ I l if f < f 

c(-T) = 2hLD if f-c D-l, 
LD h h 

LLD + ~lh otherwise. 

Retailers are thus characterized by a location Xk and a 
single attribute value dk. A tour is feasible if and only if 
D = 4I1 I dk ' f. The cost c(T) is bounded and is first 
order Lipschitz in the l quantities provided the demand 
rates dk are uniformly bounded away from zero. The set 
of feasible tours Q is the same as in Example 1 with the 
load size Wk given by dk/f. Alternatively, tours may be 
constrained by a total time constraint in addition to the 
volume constraint, in which case Q is defined as in Ex- 
ample 2. 

Other generalizations include settings where the 
holding cost rate and maximum frequency parameter 
are retailer specific, i.e. each retailer is characterized by 
a location Xk and a triple of attributes Wk = (dk, hk, Vk) 

where Vk f k1, and hk, fk denote, respectively, the hold- 
ing cost rate and maximum delivery frequency at re- 
tailer k. The maximum frequency for a given tour -r is 
then min{fk: 1 < k T I } or equivalently 1 /v where 

VT max{Vk: 1 k T TI). One can verify that in this 
case 

2L 
L/vT+ 2VT hkdk i 4i h < v* 

k=i ~lhkdk c(T)=4 +hk if V* <+ D 1 

LD + 
2oth=1 

1 oterwise. 

Assuming as before that all the attributes dk, hk, Vk are 
bounded away from zero, one easily verifies that Prop- 
erties P1-P5 and P7 hold in this case, while P6 does not 
apply. 

In summary, we have shown that a large class of 
inventory-routing problems of considerably greater 
generality than those discussed in the literature can be 
treated as special cases of our general routing problerm, 
when restricting oneself to the class of fixed partition 
strategies. 

EXAMPLE 5. ARC ROUTING PROBLEMS. In some rout- 
ing problems, there is a need to cover a specific collec- 
tion of arcs in a network. Examples include urban ser- 
vices such as snow removal, garbage collection or postal 
carrier routes. A list of origin-destination pairs {Xk = (yk, 

Zk) k = 1, ..., ni is given with Yk, Zk C [0, 1]2; each of 
these links is to be covered by at least one tour. Each 
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link Xk = (Yk, Zk) can be viewed as a customer residing 
in [0, 1]4. A tour r is described by an ordered set of (not 
necessarily distinct) customers {Xk: k = 1, . . ., n }. In 
some versions of the problem, tours are constrained 
only by a total time constraint, as in Example 2; more 
complex versions would include time windows for 
some or all customers. 

The distance between a pair of customers x1 = (yi, 
z1) and X2 = (Y2, Z2) is given by d(x1, x2) = d(z1, Y2) 
with d a pseudo-metric in R2, i.e. when Y2 * z1, d(x1, 
x2) denotes the cost of dead-heading between z1, the 
tail of x1, and Y2, the head of x2; d(x1, x2) = 0 if and 
only if Y2 = z1. Observe that the distance metric d is a 
pseudo-metric, which is homogeneous of degree one. 
The objective may be to minimize the total dead-head 
distance or minimize the total number of vehicles 
used, etc. 

Each customer has an on-site service time require- 
ment s = d(y, z), where d(y, z) is the time to traverse 
and service the link. Note that in this case customer lo- 
cations and attribute values are highly dependent, as 
the on-site service time is a function of the location value 
x. One can verify that Properties Pl-P7 are satisfied pro- 
vided that for all x, y in an instance, d(x, y) 2 6 > 0 for 
some 6 > 0, i.e. there is a uniform lower bound on the 
arc lengths. 

EXAMPLE 6. MANY-TO-MANY ROUrING PROBLEMS. In 
many routing problems, deliveries must be made from 
a variety of sources to a set of corresponding destina- 
tions, as opposed to the routing problems in Examples 
1-4 in which all deliveries are made from or to a single 
depot. Examples include delivery problems for com- 
mon carriers and railroad freight. 

A list of origin-destination pairs tXk = (yk, Zk): k 
= 1, . . ., n} is given with yk, Zk E [0, 112, and with an 
associated delivery quantity Vk < 1. In the simplest 
version of the problem, tours are only constrained by 
the vehicles' unit capacity. As in Example 5, we con- 
sider each origin-destination pair Xk as a customer 
with Xk E [0, 1]4, k = 1, . . . , n; however, in contrast to 
Example 5, we describe a tour T as a sequence of the 
form I(6,, vi), . . . , ( 1T, v1,1)} with (i E [0, 112 and vi 
E 1-1, 1), such that if vii = 1, (i = yk(i) and if vi = -1, 
i= Zk(i) for some k(i) E 11, . . ., n}. (Though this def- 

inition of a tour is not exactly in the same form as 

specified above, it does satisfy Property P2.) A tour is 
feasible if for all i = 1, II., r (1) (i = Yk(i) implies 

,j = Zk(i) for some j > i, (2) (i = Zk(i) implies (j = Yk(i) 
for some j < i, and (3) IL, V1Wk(?) 1 for all i = 1, 

The distance between any consecutive pair ((i, vi) and 
(ji+1, iv'i+1) is given by k(4i, ji+1) with d(-, ) any of the 
standard metrics in R2. Again, one could have an objec- 
tive of minimizing total distance traveled or the number 
of vehicles used. Under the assumptions of Examples 1 
and 5, Properties Pl-P5 and P7 hold, while P6 does not 
apply. 

We conclude that in all six example models, all re- 
quired properties are satisfied under the minor assump- 
tions made there. 

2. The General VRP with Discrete 
Customer Types 

In the discrete VRP, each location x and attribute vector 
w can take on only a finite number of values. Thus, there 
are a finite number of possible customer types, which 
we index by i, i = 1, . .. , I < +oo. For the discrete case, 
we do not require Properties P4, P5, and P6, and only 
the boundedness in P7 is needed. 

We represent any set of customers S by a vector z 
e ZI where zi denotes the number of type i customers 
in S. By Property P3, if there are only finitely many pos- 
sible vectors w, there are finitely many feasible tours r. 
Let j, j = 1, . . ., J < +oo index these tours and aij and cj 
denote, respectively, the number of type i customers 
served in and the cost of a type j tour. Define the matrix 
A = [ai1], let Ai denote its jth column and define c = (cl, 

cj). Then the general VRP is equivalent to the fol- 
lowing integer program: 

c*(z) = mintcTy: Ay 2 z, y 2 0, y integer}. (1) 

Here yj represents the number of type j tours to be 
driven, j = 1, . . ., J. 

This formulation is closely related to the set cov- 
ering formulation due originally to Charnes and Mil- 
ler (1956) and Balinski and Quandt (1964). Here each 
feasible tour r = 1, . . ., m through a subset of cus- 
tomers is enumerated. Let Y/kr = 1 if customer k be- 
longs to tour r and Ykr = 0 otherwise. Let Cr denote 
the cost of tour r. 
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ni 

csc(S) = min I CrXr (2) 
r=1 

s.t. 

XYkrXr 2 1 k = 1, ..., n, (3) 
r=1 

Xre10,1), r=1, ... ,m. (4) 

Let CSCLP denote the LP-relaxation of csc. Note that prob- 
lem (1) arises from csc by aggregating rows correspond- 
ing to customers of the same type (and variables cor- 
responding with identical columns after this row aggre- 
gation step). Note that the set covering formulation has 
a very large number of constraints and variables. In con- 
trast, program (1) can be solved in O(Jn') time using 
dynamic programming as shown in Federgruen and 
van Ryzin (1992). Though polynomial in n, this ap- 
proach is clearly not practical. An alternative approach 
and one that is more amenable to analysis, is to consider 
the linear programming relaxation of (1), 

cLP(z) = mintcT y: Ay 2 z, y 2 01. (5) 

The next lemma summarizes some useful properties about 
c* and cU'. In this lemma and throughout the paper, I x I 
denotes the 11-norm of the vector x. The proof is straight- 
forward, see Federgruen and van Ryzin (1992). 

LEMMA 1. a) c*(z) and CLP(z) are, component-wise, 

nondecreasing in z. 
b) CLP(Z) is continuous and convex in z. 
C) CLP(arz) = aCLP(Z) for all z 2 0 and a 2 0. 
d) cLP(z) - clzo | cLP(z + zO) c LP(z) + ci zo I and 

c*(z) - -1zoI C c*(z + zo) c c*(z) + j-]zoI (equivalently 

cLP(Zo) - C|Z - Zo 
C 
CLP(Z) 5 CLP(Zo) + Ci z - zo I and 

c*(zo) - c-z - zo I c*(z) C c*(zo) + j-]z - zo )for all 
nonnegative z, zo. 

e) CLP(Z) < c*(z) C 
cLP(Z) + CI, with C defined in P7. 

2.1. Almost Sure Convergence 
Lemma 1 allows us to characterize the asymptotic be- 
havior of c* when instances are drawn according to a 
stationary sequence {(Xk, Wk): k 2 11. Specifically, let ir 
= (irl, ..., 7r1) be the probability measure on the set of 
possible customer types and let sin) = I (Xk, Wk); 1 ? k 
_ n I denote a set formed from the first n objects in the 
stationary sequence I(Xk, Wk): k 2 1); let z(n) be its vector 

representation. Kingman's subadditive ergodic theory 
(1976) establishes the (a.s.) convergence of c*(z ())/n to 
a constant y(1u). The following theorem provides a sim- 
ple proof of this fact and characterizes the constant y(1u): 

THEOREM 1. limn, C*(Z(n))/n = cLP(7r) (a.s.). 

PROOF. First note that for the stochastic sequence 
ZOO, we have by the strong law of large numbers for 

stationary sequences (see Revesz 1968), that z (n)/ n -7r 

(a.s.). Thus, by the continuity of CLP(*), cLP(z(n)/n) 

cLP(7r) (a.s.). By Lemma 1 a) and c), we have cLP(z(n)/ 

n) < (1/n)c*(z(n-)) I c (z(')/n) + CI/n. Taking limits 
proves the result. O 

This proof is constructive, since the upper bound of 
Lemma 1 e) represents the cost of the heuristic obtained 
by solving the linear program (5) for z(n) and rounding 
up each variable in the resulting solution to the closest 
integer. Note that solving this linear program takes 
O log n time on a machine with finite word length, since 
its dimensions (i.e. numbers of rows and columns) are 
fixed. The complexity of this heuristic is therefore O(n 
log n) due to the cost of constructing the vector z`). We 
discuss computational issues in more detail in ?4. 

2.2. Bounds on Tail Probabilities and Asymptotic 
Distribution 

A tail probability result can also be obtained by direct 
analysis of the math program (1). It shows rapid (expo- 
nential) convergence of c*(z(n)) to its asymptotic value. The 
proof is a minor modification of that given in Federgruen 
and van Ryzin (1992) and is therefore omitted. 

THEOREM 2. For every E > 0, a > 0, there exist a con- 
stant nO = no(c, a) such that, 

C(Z n 
cLP(i7r) > E} c 3e -[ I2/25(1+a)] 

for all n no. 

In the discrete case, it is also possible to characterize 
the full asymptotic distribution of c*(z(l)). Let V denote 
the I x I matrix with Vii = ri (l - 7ri) and Vij = - 

for i * j. The following theorem may be viewed as a 
central limit theorem for the value of the VRP. It also 
provides bounds for its mean and variance. See Feder- 
gruen and van Ryzin (1992) for a proof. 

THEOREM 3. Assume the linear program cLP(ir) has a 
unique optimal dual vector X. Then 
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(z01)) - n XT_ 

d} nXTVx 

converges in distribution to a standard normal randomn vari- 
able, i.e. 

lim P (z()) - n cXT x} = JI e-</2d2, (6) 

11 T7 C E[c*(z("))] C nXT7 + o(l) (7) 

awed 

|var[c*(z(0))] - nATVXI = 0(1). (8) 

3. The General VRP with 
Continuous Distributions 

Assume now that the attribute vector w E [0, 11] and 
the location vector x = (xI, x2) take on a continuum of 
values. In this case, we assume the conditional distri- 
butions of w given a specific location x are continuous. 
The case where these conditional distributions are dis- 
crete or where they are given by a mixture of discrete 
and continuous distributions can be handled with mi- 
nor adjustments. 

3d.1 Discretization Schemes 
The idea we use is to discretize the location space [0, 1]2 

and the attribute space [0, 1]d and use this grid to ap- 
proximate locations and attributes. This produces a 
problem with a finite set of customer types which can 
then be analyzed using the results of the previous sec- 
tion. We then analyze a sequence of discretized prob- 
lems formed by letting the grid size tend to zero. 

To discretize attributes we divide, as in Federgruen 
and van Ryzin (1992), each coordinate of the vector w 
into I intervals, each of length h = 1 /I, for I a nonneg- 
ative integer. The aggregation scheme produces (1 + I) 
different attribute vectors, corresponding with the grid 
points 10, 1, . . ., I)' on the attribute space [0, 1]d. 

Let S4 (CA,) be the subcube of all points which are 
transformed into grid point i when their components 
are rounded up (down) to the nearest multiple of h. 
That is, 4i = {w = (w', ..., w) h(Fw'/hl, . ..,w 

hi) <-+ i) and eAi = {w = (w, ..., w): h(Lwl/hl, ... 
Lwd/hi) <- i). We extend this definition to include sub- 
cubes that are not subsets of [0, 11d. Examples of these 
sets for the case d = 2 are shown in Figure 2. 

Figure 2 Examples of the Sets 4i and >A, and the Distance Metrics d(x, 

y), d(x, y) and d(x, y) 

I~~~~~~~~~~ 

d(x,y) 

R~~~~~~~~~~~~~~' 
X,Y) d) d(x,y) 

0 ,.f_ _, _ 

We discretize the locations x using a slightly different 
scheme. Partition each side of the unit square into I = 1 / 
h equal sized intervals forming 12 subsquares of size h 
x h. We associate locations with subsquares rather than 
grid points. Let ISi, i = 1, . . ., (1/h)2} denote the sub- 
squares and consider a customer to be at location i if x 
E Si. We let i, denote the index of the subsquare i con- 
taining x. Define the distance between sets Si and Sj by 
d(Si, Sj) = min{d(x, y): x E Si, y E Sj), and let 11(h, h)II 
denote the diameter of a subsquare. For all i, j E {1, .... 
(1 /h)21 we define two distance functions on this finite 
set of locations: 

d (i, j) = d(Si, Sj) and 

d(i, j) = d(i, j) + 211(h, h)II = d(i, j) + 2hll(1, 1)11, (9) 

where the last equality follows from d( , ) being ho- 
mogeneous of degree one. We also use the notation 
d(x, y) d(ix, iy) and d(x, y) d(i,, iy) when referring 
to distances as a function of the original locations x, y. 
Clearly, d(x, y) ' d(x, y) ' d(x, y) V x, y E [0, 1]2. The 
geometrical relationship between these distance func- 
tions is illustrated in Figure 2. 

This combined discretization of attributes and loca- 
tions produces a finite number of customer types, each 
defined by a particular attribute grid point and a par- 
ticular subregion location, and indexed by i, i = 1, . . ., 
I' where I' = 12(I + W)d = O(1/hd+2). Abusing our no- 
tation somewhat, we use 4j, (eA,) to denote the set of 
vectors w that when rounded up (down) produce the 
attribute grid point of a type i customer, and Si to denote 
the subset of locations corresponding to a type i cus- 
tomer. With this notational convention Si and Sj may 
refer to the same subregion if type i and j customers 
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share a common subregion but have different attribute 
values. Likewise Ai and 4i may refer to the same region 
of the attribute space if i and j have the same attribute 
grid point but different locations. 

3.2. Construction of the Upper and Lower Bound 
Problems 

We define two problems on this discrete set of customer 
types. The first uses the distance metric d (i, j) and the 
second the metric d(i, j). The discretization scheme to- 
gether with a distance function defines a discrete ver- 
sion of the VRP with a finite number of types which, by 
Property P4, has a finite set of feasible tours in Q. Thus 
we obtain two problems of the form 

c*(z) = min cTy c*(z) = min Ty 

s.t. s.t. 

Ay Z, Ay 2 Z, 

yo0, yo0, 

y integer, y integer, (10) 

where A (A) denotes the matrix whose columns corre- 
spond to feasible tours with distance functions d (d) and 
c (c) the corresponding vector of tour costs with dis- 
tance function d (d). cLP(z) and J'`P(W) denote the opti- 
mal values of the linear programming relaxations of 
these two problems. 

Note by Property P5 that the columns of A are a sub- 
set of the columns of A; thus, we can partition A as A 
= [A I B], with B the set of columns which are feasible 
under d but not under d. If tour feasibility does not de- 
pend on distances, as in the classical VRP, A = A (i.e. B 
= 0). By the monotonicity of the cost function in the 
distance traveled, it follows that for each column j in A 
we have ? c Ej. Thus, for all nonnegative integer z, we 
have c*(z) c (z). 

To relate these problems to the original continuous 
problem some more work is needed. Consider a set of 
customers Si') = {(xI, wI), ..., (xn, wJ)} and define for 

i =1, . ,F, Zi I- |(Xk, WO)ES() Xk E Si, Wk 

E Ai|, and z_ = I I(Xk, Wk) : Xk E Si, Wk E _i | 

as the number of type i customers produced by round- 
ing up (down) the attribute vector and discretizing the 
locations. 

LEMMA 2. If Q satisfies P1-P5 and the costfunction c(T) 
satisfies P7, then 

C (Z)C C*(W(l) C.- M21) 

PROOF. By P4 and P5 any tour which is feasible for 
the rounded up attributes and the distance function dis 
also feasible for the original attribute values and origi- 
nal distance function d. Furthermore, by P7 the cost is 
not increased when reducing sizes and distances. Thus 
C*(S(n)) C 7(z`)) and c c c*(S(")) follows by a similar 

argument. D 
For our probabilistic analysis, consider two distinct 

probability measures, 7r and 7r, on the set of I' customer 
types by defining for i = 1, .. ..', Ii = Y(q X S,) = P1w 

E i and x E Si}, and 7ri = ieA,i x Si) = P{w E A, and 

x E Si}. We write ir(h) and -r(h) when we want to make 
the dependence on h explicit. Let SW denote a set 
formed by taking the first n objects of an i.i.d. sequence 
t(Xk, Wk): k 2 11 with distribution ,M. Note z(n)/n -7r 

and 2-< / n - 7r (a.s.) by the strong law of large numbers; 
see Revesz (1968) and 

c*((n)) 
y(y) = lim C(S) (a.s.) (11) 

I n 

by Kingman's theory of subadditive ergodic processes 
(Kingman 1976). It follows from Lemma 2 and Theorem 
1 that: 

LEMMA 3. CLP(wr(h)) c `() c (h)). 

We must therefore compare the two linear program 
values in Lemma 3. We will show that they converge 
under appropriate conditions on the distribution ,u and 
for h tending to zero. Note first that the upper bound in 
Lemma 3 is constructive and corresponds to the asymp- 
totic value of the following heuristic: 

Math Programming (MP) Heuristic 
1. Fixh>O. 
2. Round attributes up to the nearest multiple of h 

and discretize locations based on h as described above 
to form I = h2(1 + 1 /h)d customer types. 

3. Count the number of customers of each type and 
form the vector z(n). 

4. Replace distances by d and generate the set of fea- 
sible columns A. 

5. Solve the corresponding linear program. Round 
the basic variables up to the nearest integer to produce 
a feasible solution. 
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For fixed h, the dimension of the linear program in 
Step 5 is fixed, and thus the running time of the heuristic 
is O(n log n) as in the discrete case. Of course, one could 
also solve the integer program directly in the same time 
since its size too is fixed. However, the linear- 
programming-based upper bound is more efficient to 
compute and more convenient to analyze. 

3.3. Analysis of the Discretized VRP 
As mentioned above, we assume that the conditional 
distributions of the attribute vector w given x are con- 
tinuous, with density functions f(w I x). Let ,u ( ) denote 
the marginal probability measure of the locations x. By 
definition, we take f(w I x) = 0 if (x, w) | [0, 1]d+2. We 
begin by relating the probability measures 7r and 7r in 
Lemma 4. (See the Appendix for a proof.) To do so, we 
need: 

DEFINITION 1. A density function f: [0, 11'd [0, oo) 

is Lipschitz continuous of order s on a set ,A s Rd if 

If(x) -f(y)I CKIx - yls Vx,y C A, 

where we define f(w) = 0 for w A [0, 1]d. 

For example, triangular densities on [0, 1] are first 
order Lipschitz continuous everywhere while the uni- 
form density is not Lipschitz continuous on Rd since it 
is discontinuous at the boundary of the unit cube; how- 
ever, the uniform density is Lipschitz continuous of all 
orders on the interior of the unit cube. 

LEMMA 4. (a) Let D = {(x, w) E Rd+2: f(w I x) is dis- 
continuous in w}. If /1(D) = 0, then 1Ir(h) - r(h) I -O 0 as 
h -O 0. 

(b) If the densities f(w I x) are uniformly bounded on Rd+2 

and first order Lipschitz continuous in w on the interior of 
[0, l]d for every x, then 1zr(h) - -r(h) I = 0(h). 

(c) If the densities f(w I x) are uniformly bounded on Rd+2 
and Lipschitz continuous of order s in w everywhere on Rd 

for everyx then 1r(h)- r(h)I =O(hs). 

Part (b) above is satisfied whenever the marginal den- 
sities f(w I x) are continuously differentiable on the in- 
terior of the unit d-cube, and the result can be general- 
ized to the case where the densities have discontinuities 
on the interior provided these occur only along a finite 
number of sufficiently smooth surfaces. Part (c) shows 
that the rate of convergence of 1 7r(h) - -r(h) I is a func- 
tion of the smoothness of the underlying density. 

The above lemma allows us to characterize the as- 
ymptotic value of the continuous version of the gener- 
alized VRP. Namely, 

THEOREM 4. Suppose ft satisfies the conditions of Lemma 
4 a). Then lim",x C*(S(n))/n = y(ft) (a.s.) where y(Q) 
-lim,"o cLPOir(h)), and the MP heuristic can be designed 

to be (a.s.) e-optimal as n -- oo by an appropriate choice of h. 
In addition, if ft satisfies the conditions of Lemma 4 b), then 
for any h > 0, 

cLP(7r(h)) C y(ft) C cLP(wr(h)) + 0(h). 

PROOF. Case 1. B = 0: We have for every tour T, 

c -r) s c (r) + Kh I ri, (12) 

for some constant K since by (9) each distance lk, k = 1, 
. T. . I r I is increased by at most 2hll(1, 1)11 when replac- 
ing the distance function d by d, and by Property P7 the 
cost c(r) is first order Lipschitz in these distances. Con- 
sider now cLP(7r(h)) and let y be an optimal solution of 
the associated LP. Note y* is feasible for c LP(r(h)) since 
B = 0. In view of (12) and Lemma 1 d), we have 

I' 

EjLP(r(h)) = cTy 
? cTy + Kh 7ri(h) 

i=l 

- cLP( (h)) + Kh c cLP(qr(h)) 

+ C I 7r(h) - 7r(h) + Kh. 

In view of Lemma 3, we have yQ(.) - C Ir(h) - -r(h) 

- Kh c cLP((7r(h)) c y(i), and the result follows from 
Lemma 4. 

Case 2: B * 0. As mentioned, in this case we describe 
customers by a triple (x, s, w). To construct an upper 
bound on c(M?1)), consider a tour T = I(Xk, Sk, Wk): 1, 

T . . that is feasible under the distance metric d (x, 
y). Let a = 11(1, 1)11 and choose h small enough that sk 

2 F2a /I vlh, k = 1, . . ., I Tr I. Then by P6 and (9), the tour 
It= I(Xk, Sk -F2a/I vlh, Wk): 1, . . ., I T I I is feasible under 
the distance metric d(x, y). For each such tour T, define 
a new tour cost c(T) = c(T) + K(2ah + F2a/hvlh)JTI, 
where K is the Lipschitz constant from property P7. 
Note also that by P6, P7 and the definition of the cost 
c(r) that for all r and T' defined above, 

c c(r') + K(2ah) I r I 

c(T) + KF2a/vlhI T I + K(2ah)ITI = clT). (13) 
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Now for a given h > 0, consider the following con- 
struction: 

1. Remove all customers in the set A11(S()) = {(Xk, Sk, 

Wk) : Sk + hF2a/vl > 11. Service each customer in Al, (S()) 
with a separate vehicle. 

2. Set Sk -- Sk + F2a/vlh for all k / A;C(S(")). Using 
these modified values of Sk, apply the MP discretization 
scheme to these remaining customers, forming a vector 
z of discrete types. More formally, let O.i = Ti x Ui, 
where Ti (Ui) denotes the set of values s (w) that, when 
rounded up, correspond to those of a type i object. Then 
for i = 1, . . ., I, =ii = I{(Xk, Sk, Wk) E S(\)Ak(S( )): Xk 

E Si, Wk E Ui, Sk + F2a/vlh E Til I. 

3. Solve the problem 

c*z (11)) = min{=Ty Ay 2- y 2 0, y integer I (14) 

The problem solved in Step 3 uses the columns of the 
lower bound matrix A along with the cost vector ic. By 
P6, any tour generated by this problem will be feasible 
for the original values (Xk, Sk, Wk). Considering the tours 
that are optimal in the program c*(z (t")), we get 

c (z n)? c (z ') + K(2a + F2a/vl)hn. (15) 

Considering those that are optimal in (14) we get by (13) 
and the definition of A\h(S(n)) that 

C*( (tl)) C C*(Z(n)) + Cl Al(S00) I . (16) 

Let Ti = {s: s + F2a/vlh E TiI denote the set of s values 
that, when shifted and rounded up, produce the same 
s value as a type i customer. Define a new measure on 
the set of discrete types, 7ri = ,u(Si x Ti x U). Combining 
(15) and (16), dividing both sides above by n and taking 
limits we obtain (a.s.) by Theorem 1, 

cj(7r) c c"(lr) + CP{s > 1 - F2a/vlhl + C'h 

CLP(7r) + Cl|- _ rl + C|- r 

+ CP{s > 1 - F2a/vlhI + C'h (17) 

where C ' C(2a + F2a / vl). Clearly, C'h < e /5 for h 
< e/5C'. 

Also, by the continuity of f(w I x), we can select h > 0 
so that Cl7r - 7rl < e/5, by Lemma 4 a), and Cl7r 
- I < e/5 by recognizing that for all i = 1, . F. ,1', 7ri 
and ri are obtained by integrating the same probability 
measure over regions that are shifted by only an amount 
F2a / vlh along the s-axis. Again, by the continuity of f, 

P{s > 1 - F2a/vlh} = 0(h) so that the last term in (17) 
can also be made less that e /5 for an appropriate choice 
of h > 0. The rest of the proof follows as in Case 1. C: 

So far we have characterized the performance of the 
MP heuristic for a fixed discretization level h > 0. In 
particular, we have shown for any e > 0, that the heu- 
ristic is asymptotically e-optimal (a.s.) when choosing a 
fixed h sufficiently small, and that its running time is 
O(n log n). We now show that the heuristic can be made 
asymptotically (fully) optimal while maintaining poly- 
nomial complexity by choosing h as a function 
of n: 

THEOREM 5. Suppose ft satisfies the conditions of Lemma 
4 a). Choose h as function of n such that nhd?2 4 oo. Then 
the MP heuristic is both polynomial in n and asymptotically 
optimal (a.s.). 

PROOF. Recall that every feasible tour w has I?1 M 
and I' = O(h-(d?2)). The number of columns in the linear 
program solved in the MP heuristic is therefore bounded 
by the number of ways in which M objects can be spread 
over I' types, i.e., I'M. Then, using any of several interior 
point methods (see Goldfarb and Todd 1989), the dual 
of the linear program can be solved in O(I'4L) where L 
= O(I'M) is the length of the input string. The complexity 
is thus O(I'M+4) = O(h-(d+2)(M+4)) = o(nM+4) since nhd?2 

o00. * 

The above analysis can be extended to obtain upper 
bounds on the rate of convergence of E[c*(S(")] to its 
asymptotic value. These rates of convergence also apply 
to the MP heuristic. The results require that the density 
be Lipschitz of order one or higher. 

THEOREM 6. a) Suppose ,u has conditional densities 
f(w I x) satisfying the conditions of Lemma 4(b). Then 

ny(y) c E[c*(S("))] c ny(y) + O(n(d+3)/(d+4)). 

b) If the conditional densities f(w I x) are Lipschitz of order 
s in w everywhere and the cost function c(-r) is also Lipschitz 
of order s in the distances Ik, k = 1,i.. ., -rl, then 

ny(f) c E[c*(S("))] c ny(Q) + O(n(s+d+2)/(2s+d+2)). 

PROOF. We only show part b), since the proof of 
part a) is analogous. First, the lower bound follows from 
the fact that E[c*(S(n))] 2 E[CLP(Z())] 2 CLP (n7r(h)) 

= ncLP(7r(h)) by Jensen's inequality (e.g., Royden (1968), 
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p. 110) and Lemma 1. Letting h -O 0, we have by Theo- 
rem 4 that E[c*(S("'))] 2 n lim;10 cLP(7r(h)) = n y (). 

For the second inequality, consider first the case 
where A = A. Proceeding as in Theorem 4 and using 
Lemma 4 and the fact that the conditional densities and 
cost function are Lipschitz order s, we obtain, by 
Lemma 1, that 

E[c*(S("1))] cERcL(f ("))I + I' _ nC L'Or (h)) 

+ CE[ I z") - n-r(h) I ] + I' 

ncLP(7r(h)) + nCl1r(h) - 7r(h)I 

+ nKhs + CE[LIV) - nTr(h)l] + I' 

ny(u) + O(nhs) + nKhs 

+ O((n/hd+2)1/2) + 0(1/hd+2), 

since 

I, 

-(n 

E[I-z(") - n7(h)] II E E[Izi n7-nTi(h) I 

i=1 

C i E[(zi n)-r i (h))2 

= V n7ri(h)(1 - i(h)) 
i=l 

Fn,-;ri (h) --1H., 
i-l 

where the last inequality follows from 1i iFr being a 
concave separable function of the 7ri probabilities with 

,i 7ri = 1. The convergence rate in part b) above is then 
obtained by letting h = na and selecting a to minimize 
the largest exponent in the error terms. Doing this yields 
h = n-1/(2s+d+2) from which the convergence rate fol- 
lows. 

For the case where feasibility of the tours depends on 
the distances, we can proceed the same way by using 
the bound (17) in the proof of Theorem 4, noting that 
the last term in (17) can be improved to C'hS due to the 
Lipschitz condition on the cost function. Similarly, the 
fourth term in (17) is O(hS) by the Lipschitz condition 
on the densities. The rest of the proof then follows as in 
the case where A = A. D1 

A tail probability result can be obtained using an ar- 
gument similar to that in Theorem 2 (cf. Federgruen and 
van Ryzin 1992). Specifically, 

THEOREM 7. Under the conditions of Theorem 4, for 
every e > 0, a > 0 there exists a nO = no(e, a) such that 

p{| ( ) - -yQ)) > e} C 6e-E 2/25(1+a) 

for all n 2 no, where y(u) = limh;O cLP(7r(h)). 

REMARK. The above convergence rates and tail prob- 
ability bounds also apply to the LP relaxation of the set 
covering formulation by our observations in ?3.4. 

3.4. Relationship to the LP Relaxation of the 
Classical Set Covering Formulation 

Bramel and Simchi-Levi (1993) recently showed for a 
time-window VRP that the LP relaxation, cSCLP of the 
set covering formulation (2)-(4) is asymptotically op- 
timal. Here we show, as a simple corollary of Theorem 
4, that the same result applies to our general class of 
VRPs. 

COROLLARY 1. Under the conditions stated in Theorem 
4, the value of the linear programming relaxation of the clas- 
sical set covering formulation, csCLP, satisfies 

lim = yt(y) (a.s.). 
noo n 

In addition, Theorems 6 and 7 apply to cSCLP(S(n)), under the 
conditions stated there. 

PROOF. The result follows by verifying that CLP(Z(n)) 

C cscLP(s () C c*(SW)). The second inequality follows 
since CSCLP( ) is a LP-relaxation of c*( ) and the first is 
obtained by showing that CLP(Z(n)) is obtained from 
CSCLP(S( 0)) by a series of relaxation steps. First, aggregate 
for all i = 1, . . ., I' all constraints in (2)-(4) that corre- 
spond to customers with (x, w) e Si x Ai. The T-th 

column in the resulting aggregated constraint matrix is 
identical to a specific column in A, say column j(T), and 

cj(T) c cT by P7. Replacing for T = 1, . . . , m the objective 
function coefficients cT by cj(T) results in a second relax- 
ation. Finally, cLP(z(n)) is obtained by adding all col- 
umns of A which do not correspond to a column in the 
aggregated constraint matrix of CSCLP a third relaxation. 
(A specific column Aj and corresponding coefficient cj 
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may appear multiple times in the resulting linear pro- 
gram.) D1 

4. Alternative Implementation of the 
MP Heuristic 

The complexity of the MP heuristic is determined by the 
effort required to solve the linear program in Step 5. We 
have shown that the complexity can be limited to O(n 
log n) (to be polynomial in n) all while guaranteeing 
asymptotic e-optimality (full optimality). These bounds 
apply when the LP is solved by a standard (interior 
point) method. Unfortunately, the size of the LP can 
grow very quickly in h-1, unless M, the number of cus- 
tomers in a single tour, is explicitly or implicitly re- 
stricted to be small, for example 2-4 stops per tour. 
(This indeed often arises, see e.g. Bell et al. (1983) or 
implicitly Cullen et al. (1981).) In this section, we dis- 
cuss alternative implementations for settings where M 
is large. 

First, the LP may be solved by column generation tech- 
niques. Bell et al. (1983) and Cullen et al. (1981) describe 
how large scale instances of CSCLP can be solved effectively 
via such methods. From a theoretical, worst case point of 
view, we showed in Federgruen and van Ryzin (1992) that 
if generating columns is polynomial in 1 /h, then by using 
the Grotschel-Lovasz-Schrijver (GLS) (1981, 1988) ellip- 
soid algorithm, so is the entire LP. Karmarkar and Karp 
(1982), used the same approach for the worst-case analysis 
of classical bin packing. To solve an LP with I' variables 
within a fixed tolerance 6, the GLS algorithm requires at 
most O(IP2 log(1 /6)) calls to a colunm generating routine 
and O(I'4 log(1/e)) time per call (excluding the running 
time of the column generating routine itself). Several ex- 
amples of polynomial time column generation procedures 
for some packing problems are given in Federgruen and 
van Ryzin (1992). See Karmarkar and Karp (1982) for 
more details on the GLS algorithm. This method allows 
us to achieve better complexity bounds on the MP heuris- 
tic in special cases. 

Consider first the classical VRP. In a discretization of 
this problem, each type i corresponds to a load size, wi 
= i/h, i = 1, . . ., I', in a particular subregion Si. Each 
feasible tour T is described by a column j of A, with 
LI=, aijwi c 1. All nonnegative, integer vectors (alj, ... 

a1,j) that satisfy the above inequality are contained in A. 

The cost of the column, Cj, is the length, under distance 
metric d(x, y), of the shortest tour through the set of 
customers corresponding to column j. 

A column generation routine verifies for an initial fea- 
sible basis and associated vector of dual prices y 
whether the basis is optimal. This is the case iff yTA1 
- Cj for all feasible tours j = 1, ..., J, which can be 

checked by solving the following dynamic program: 

V(w, i) = max{y(k,j) - d(i, j) + V(w - kh, j): 

k = O, 1, . . ., l/h,j = 0, 1, . .., (1/h)2, kh ' w} 

with the boundary condition V(O, i) = d(i, 0), i = 0, 1, 
... . (1/h)2, where i indexes the sets of the partitioned 
service region, i = 0 indicates the depot subregion, k 
indexes the discretized load sizes, Y(k,) is the dual value 
corresponding to a customer with load size kh in sub- 
region i and d(i, j) is the distance from subregion i to 
subregion j using the metric d. V(w, i) is the optimal 
value given a remaining capacity of w and a current 
location i; hence, V(1, 0) is the maximum value of yTAj 
- c;. If V (1, 0) > 0, then the dynamic programming 
solution can be traced back to identify a column to be 
added to the LP. If V(1, 0) c 0, the current LP solution 
is optimal. Note the running time of the dynamic pro- 
gram is polynomial in 1 /h(O((l /h)6)). 

One can use the GLS algorithm with the above col- 
umn generating DP to solve the dual of the linear pro- 
gram in the MP heuristic. If we let h decrease at the rate 
n-l/5, then the error term in Theorem 6 a) of O(n4/5) is 

obtained, provided one chooses e - O(n -/5). This gives 
a polynomial running time of O(n3 6 log2(n)). One could 
improve on this running time by letting h and e decrease 
more slowly than n- /5 at the expense of a slower con- 
vergence rate. In practice, column generation may be 
more effectively implemented in conjunction with 
simplex-based or Karmarkar-type interior point meth- 
ods. (See Cullen et al. 1981, Goffin and Vial 1990 and Ye 
1992.) 

Similar dynamic programs can be formulated for 
problems with time windows, pick-up and delivery 
constraints and inventory routing costs and constraints. 
However, the dynamic programs become more com- 
plex. Nevertheless, using column generation with the 
MP heuristic provides a theoretically powerful ap- 
proach to constructing provably asymptotically optimal, 
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polynomial time heuristics for a wide class of VRPs. In 
addition, it corresponds closely to the math program- 
ming approaches that one frequently encounters in 
practice. 

5. Numerical Examples 
We have used the MP heuristic to generate solutions to 
several variants of the example in Figure 1. Though styl- 
ized, this example is easy to understand intuitively; 
hence, it is a useful aid in developing insights. It also 
illustrates some fundamental problem characteristics 
that impact on the heuristic's numerical performance. 

5.1. Description of Experiments and Observations 
In the example, we used three values for h (h = 1, 2 and 

4), three values of y (5, 10 and 100) and three values of 
n (32, 320 and 3,200). For each combination of param- 
eters, we generated a random instance and computed 
the values of the MP heuristic solution (CMp), the value 
of the partition heuristic (CPART), the linear program re- 
laxation of both the upper and lower bound problems, 
(CLP(Z(nl)(h)) and CLP(Z(fl)(h)), and the asymptotic esti- 
mates nCLP(7r(h)). An example solution for the case h 
= 2is shown in Figure 1. 

We constructed the complete set of feasible columns 
off-line. CPU times on a 486 66 Mhz PC (using the 
LINDO solver) were quite modest: well under one sec- 
ond for h = 1, under 1.5 seconds for h = 2 and approx- 
imately 15 seconds for h = -. These times were inde- 
pendent of the number of customers n. Tables 1-3 show 
the numerical results. 

Several observations can be made based on these data. 
First, the performance of the MP heuristic relative to the 

lower bound cLP(z(n)(h)) improves as y increases. This is 
expected, since the tour lengths under the two distance 
metrics d and d-and hence the values of the upper and 
lower bound problems-are closer when y is large. 

As the grid size h is reduced, the solution value of the 
MP heuristic decreases while the lower bound, 
cLP(z(n)(h)), increases, improving the optimality gap. 
This gap ranges from 50% for the case y = 5 and h = 1 
to about 0.7% when y = 100 and h = 1/4. The optimality 
gap is less sensitive to the value of h when y is large for 
the reasons discussed above. 

By comparing the values of CMP and cLP( (n)(h)), one 
gauges the error introduced by rounding in the MP heu- 
ristic. For these examples, the error is minimal. Indeed, 
in most cases the LP solution was integral and no 
rounding was required. Only for the case y = 5 and n 
= 320 was some rounding error introduced, and even 
this is quite small (less than 0.3% for all values of h). As 
a result, the optimality gap is not strongly affected by 
the number of customers n, especially for h small (see 
e.g. h = D). However, these characteristics are dependent 
on the problem, as we discuss in more detail below. 

Note finally, the partitioning heuristic cost is signifi- 
cantly higher than the MP cost in all cases, approaching 
50% when y = 100, as expected. This performance is due 
to the MP heuristic forming routes that match one cus- 
tomer in Region A with one customer in Region B (see 

Figure 3); such routes are not considered in a pure par- 
titioning approach. The performance of the partitioning 
heuristic actually deteriorates in several cases when the 
grid size h is reduced (see e.g. y = 100, n = 32). This 
occurs because when n is small, many subregions in 

Table 1 Numerical Results: y 5 

n =32 n =320 n =3200 

h = 1 h =1/2 h = 1/4 h = 1 h =1/2 h = 1/4 h = 1 h =1/2 h = 1/4 

CPART 337.7 308.0 316.9 3,253.6 2,824.1 2,746.4 33,717 29,401 28,141 
% Over LB 91.0% 58.5% 56.1% 86.5% 49.2% 39.5% 84.3% 46.7% 34.5% 

CMP 267.3 239.6 225.6 2,627.2 2,336.9 2,193.5 27,520 24,647 23,220 
% Over LB 51.2% 23.3% 11.1% 50.6% 23.5% 11.4% 50.4% 23.0% 11.0% 
C&P (2,n)(h)) 267.3 239.6 225.6 2,620.1 2,330.7 2,187.1 27,520 24,647 23,220 
CLP (Zn)(h)) 176.8 194.3 203.0 1,743.9 1,892.7 1,968.1 18,293 20,035 20,914 

fLCLP(7r(h)) 176.8 193.9 202.5 1,768.0 1,938.9 2,025.0 17,680 19,389 20,249 
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Table 2 Numerical Results: y = 10 

n = 32 n =320 n =3200 

h = 1 h = 1/2 h = 1/4 h = 1 h =1/2 h = 1/4 h = 1 h =1/2 h = 1/4 

CPART 590.5 575.7 624.5 5,796.1 5,460.0 5,385.4 56,412 52,928 51,692 
% Over LB 57.7% 47.5% 57.3% 63.1% 47.1% 42.0% 26.8% 50.2% 43.3% 
CMP 465.0 435.5 419.6 4,459.3 4,163.5 4,019.1 42,589 39,733 38,308 
% Over LB 24.2% 11.6% 5.7% 25.5% 12.2% 6.0% 26.8% 12.8% 6.2% 
C-P(2n)(h)) 465.0 435.5 419.6 4,459.3 4,163.5 4,019.1 42,589 39,733 38,308 
CLP(zin)(h)) 374.4 390.2 397.0 3,554.2 3,710.9 3,792.8 33,598 35,237 36,060 
fLCLP(zr(h)) 336.4 353.0 361.3 3,363.8 3,529.6 3,612.8 33,638 35,298 36,128 

Region A contain only one point, making it worthwhile 
to form tours that combine points from two different 
subregions. Such tours are not considered in the parti- 
tioning heuristic. When h = 1, all points are in the same 
subregion and maximal pairing can take place. When y 
is large, the additional cost introduced by the coarser 
grid size is more than offset by the reduction in the 
number of tours. The MP heuristic, on the other hand, 
allows pairing across subregions, and hence does not 
suffer from this effect; its performance consistently im- 
proves as the grid size h is reduced. 

5.2. Rounding Error 
Another series of examples shows that the error from 
rounding the LP solution, which was small in the pre- 
vious cases, can be highly dependent on the problem 
characteristics. Consider Figure 3 with 15 randomly 
distributed customers and the solution produced by 
the MP heuristic. The thin lines represent tours with 

one stop in Region A and one stop in Region B (mixed 
tours); the thick lines represent tours that visit one 
region only (pure-A or pure-B tours). Note in this case 
nearly all customers are served using mixed tours; 
only one customer in Region B is served with a pure-B 
tour. The cost of this collection of tours is 203.8. (See 
Table 4.) 

Consider the same set of customer locations, but 
with customers in Region A having a weight of 0.1 
and customers in Region B having weight 0.9. Note 
the same solution in Figure 3 is still feasible for these 
new weights; however, the MP heuristic generates a 
more costly solution (19% higher; see Table 4) with 
more pure tours, as shown in Figure 4. Figure 5 shows 
the MP solution when the weights in Region A (B) are 
0.01 (0.99). It uses only pure-A and pure-B tours, and 
the cost is 48% higher than the Figure 3 solution. (See 
Table 4.) 

Table 3 Numerical Results: y = 100 

n = 32 n = 320 n =3200 

h = 1 h = 1/2 h = 1/4 h = 1 h = 1/2 h = 1/4 h = 1 h =1/2 h = 1/4 

CPART 5,081.6 5,254.2 5,842.8 49,003 49,121 49,184 486,605 483,925 483,349 
% Over LB 40.6% 44.8% 60.7% 50.5% 50.1% 49.9% 51.3% 49.7% 49.2% 
CMP 3,704.5 3,674.4 3,658.5 33,463 33,169 33,026 330,621 327,655 326,200 
% Over LB 2.5% 1.2% 0.6% 2.8% 1.4% 0.7% 2.8% 1.4% 0.7% 
C-P (2,n)(h)) 3,704.5 3,674.4 3,658.5 33,463 33,169 33,026 330,621 327,655 326,200 
CLP(zin)(h)) 3,614.0 3,629.1 3,635.9 32,558 32,717 32,800 321,590 323,140 323,943 
LCLP(lr(h)) 3,216.0 3,232.1 3,240.1 32,160 32,321 32,401 321,603 323,210 324,013 
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Figure 3 MP Solution: Weight A - 0.4, Weight B = 0.6 Figure 4 MP Solution: Weight A 0.1, Weight B = 0.9 

Region A Region B Region A Region B 
w=0.4 w=0.6 w=0.1 w=0,9 

To understand this behavior, note that in varying the 
weights, the set of feasible mixed and pure-B tours re- 
mains the same; however, new pure-A tours are intro- 
duced; e.g. with weights in Region A (B) of 0.01 (0, 99), 
tours that visit 100 customers in a single subregion of A 
become feasible. Thus, the LP solution can cover each 
A customer with 1 / 100-th of a column of this type- 

Table 4 Performance of Heuristics with Varying Region Weights 

Weight Weight 
A B CMP &-P(yn,(h)) CLP(z(n)(h)) % Rounding 

0.40 0.60 203.8 203.8 193.6 0.0% 
0.10 0.90 242.8 185.3 176.7 30.9% 
0.01 0.99 301.9 172.2 166.46 75.3% 

and in fact does so for all but two customers. Rounding 
these small fractional values up to the nearest integer (1 
in this case) significantly increases the solution cost (see 
Table 4). However, the rounding error goes down as 
the number of customers increases. For an example with 
n = 32,000 customers and A (B) weights of 0.01 (0.99), 
the MP solution also consists of only pure tours; how- 
ever, the rounding error is only 0.4% and the optimality 
gap is only 3.8%. 

Finally, a potential rounding problem arises when ob- 
ject sizes are discretized. Consider discretizing contin- 
uous weights on [0, 1] using a small grid size h. This 
produces tours that can cover a large number of small 
objects (e.g. a tour that visits 1 /h points of weight h in 
a single subregion). For a given n-no matter how 
large-a sufficiently small h will introduce significant 
rounding errors. This is precisely the reason for Prop- 
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Figure 5 MP Solution: Weight A - 0.01, Weight B 0.99 

Region A Region B 
w=0.O1 w=0.99 

_ F 7 F I 

erty P3, which guarantees that the maximum number 
of customers per tour remains bounded as h - 0. This 
behavior, along with the proper scaling of h as a func- 
tion of n (e.g. h = o(n-1/(d+2))) so that the number of 
customers of each type increases with n (a.s.), ensures 
that the number of customers of each type becomes 
significantly larger than any component in a feasible 
column (a.s.). Hence, the rounding error in the MP 
heuristic becomes negligible as n -+oo. For example, if 
the weights in our example were uniformly distributed 
on the interval [6, 1] for 6 > 0, then a tour would con- 
tain at most M = 1/6 customers, regardless of the grid 
size h. 

Appendix 
PROOF OF LEMMA 4. First consider the case where the conditional 

densities f(w I x) are continuous in w everywhere in Rd for every value 

of x E R2, where by convention we define f(w I x) to be zero when x 
lies outside [0, 112 or w lies outside [0, 1]1d. Then the mean value the- 
orem implies f ,f (w l x)dw = h f(wj Ix) and f-,, f(w I x)dw = h df(w-J Ix) 
for some w, EE 4i and some w-; E 4, which may depend on x. 
Therefore, unconditioning we have 7ri = fs5 h'f(w_ I x)y,dx}, -ri 
= fs' h df(w-z I x)1fI{dx} and 1 7ri - 7r iI ' fs' h'1I f( x) - f(w_ I x) I t{dx}. 
Since continuity of f( I x) implies uniform continuity over the 
bounded region [-h, 1 + hi]d and I w-i - wi I ? dh, it follows that for 
every c > O we can select a 6 > O such that lf(w-i I x) - f(wi I x)I ? 5/ (I 

+ h )d for all i, x and h < 8. Thus, for h < 6, 17r - r I = Y-j Iri 

- ri ch'/(l + h)d 1= fs' At0{dx}. It follows by our construction 
that there are exactly (1 + 1 /h)'d customer types that each have loca- 
tions x corresponding to the same subsquare (one for each attribute 
type), so the sets Si are identical for exactly (1 + 1 /hI'd indices i, while 
the collection of distinct sets S,, i = 1, . . ., I' partitions [0, 1]2. Thus, 

E J pdx} = (1 I /h)'I (18) 

and therefore 1 7r - 7r I (h'(1 1 /h)d)/(d + h)d = c. This establishes 
part (a) where the marginal densitiesf(w I x) are continuous in w every- 
where on R' for every x. 

Suppose now that some of the conditional densities f(w I x) has dis- 
continuities in w but that [u(D) = 0. Define e to be the set of indices i 
for which either (,A> x S,) or (4i x S,) intersects 6D and e2 = II,. . ., I' 
- e1. Then we can write 17r - 7r = I |7ri - 7riI + i(E2 Iri 
- 1. Since for i E 6?, f(w I x) is continuous over both 4i and 4i for 
every x, by the same argument as above we can select an h such that 
the second sum above is no more than c/2. Further, iE(. 17ri - TriI 

_ I4 U i Si x (,Ai U 7i )}. But the fact that [u(D) = 0 implies that for 

sufficiently small h, the term plUs(l S, x (,Ai U S,-)} can be made 
arbitrarily small since lim,_0 Mt{UiE(1 S, x (,4A U M = p(D). Thus, h 
can be chosen small enough so that the first term is no more that c / 2 
as well, which combined with the bound on the second term implies 

I r - 7 1 E e. This completes the proof of part (a). 
To prove part (b), note that if the densities f(w x) are Lipschitz 

continuous of order one on the interior of [0, 1]d for all x, then for all 
indices i with both .4i and e j subsets of [0, 1]d, we have as before 17ri 
- fsI 1 hf I (wjx) - f(wI I x) I p{,dx} x Jj+l fs, ,t{dx}. The total 
contribution from all such indices to J 7r - 7J l is therefore at most 

1= Kd+l fs. x I{dx} = 0(h) by (18). For an index i with either Ai or 

4i outside [0, 1]d, the boundedness of the conditional densitiesf(w I x) 
implies 17ri - 7ri l - hdM f5s pt, dx} and since there are 0(1 /hd+l) in- 
dices i on the boundary, these contribute at most O(h) as well. 

For part (c), note that if the densitiesf(w I x) are Lipschitz continuous 
of order s everywhere, then I Xi - 7I i I(h+s fd. fSixdx} for all i and 
the result follows as in the previous cases.' 

l The research of both authors was supported by an internal grant from 
the Columbia Graduate School of Business. 
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