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I n many industries, managers face the problem of selling a given stock of items by a deadline. 
We investigate the problem of dynamically pricing such inventories when demand is price 

sensitive and stochastic and the firm's objective is to maximize expected revenues. Examples 
that fit this framework include retailers selling fashion and seasonal goods and the travel and 
leisure industry, which markets space such as seats on airline flights, cabins on vacation cruises, 
and rooms in hotels that become worthless if not sold by a specific time. 

We formulate this problem using intensity control and obtain structural monotonicity results 
for the optimal intensity (resp., price) as a function of the stock level and the length of the 
horizon. For a particular exponential family of demand functions, we find the optimal pricing 
policy in closed form. For general demand functions, we find an upper bound on the expected 
revenue based on analyzing the deterministic version of the problem and use this bound to 
prove that simple, fixed price policies are asymptotically optimal as the volume of expected 
sales tends to infinity. Finally, we extend our results to the case where demand is compound 
Poisson; only a finite number of prices is allowed; the demand rate is time varying; holding 
costs are incurred and cash flows are discounted; the initial stock is a decision variable; and 
reordering, overbooking, and random cancellations are allowed. 
(Dynamic Pricing; Inventory; Yield Management; Intensity Control; Stochastic Demand; Optimal 
Policies; Heuristics; Finite Horizon; Stopping Times) 

1. Introduction and Motivation 
Given an initial inventory of items and a finite horizon 
over which sales are allowed, we are concerned with 
the tactical problem of dynamically pricing the items to 
maximize the total expected revenue. Two key prop- 
erties of this problem are the lack of short-term control 
over the stock and the presence of a deadline after which 
selling must stop. Demand is modeled as a price- 
sensitive stochastic point process with an intensity that 
is a known decreasing function of the price; revenues 
are collected as the stock is sold; no backlogging of de- 
mand is allowed; unsold items have a given salvage 
value; and all costs related to the purchase or production 
of items are considered sunk costs. 

This generic problem arises in a variety of industries. 
Retailers that sell seasonal and style goods are an ex- 

ample (cf. Pashigan 1988 and Pashigan and Bowen 
1991). For instance, the authors recently have worked 
with a major New York fashion producer-retailer that 
designs, produces (via subcontractors), and sells fashion 
apparel through its own line of retail outlets. (Other 
similar retailer-producers include The GAP and The 
Limited.) The firm is known for the subtle and unique 
colors of its garments, which are achieved using custom- 
made fabrics. To produce its garments, the firm must 
special order fabric directly from mills. The raw bolts 
of fabric are then shipped off-shore (usually by surface 
freight) to a subcontractor that cuts and assembles the 
various styles. The finished garments are then shipped 
back to the U.S. (again, often by surface freight) where 
they are sorted, boxed, and delivered to individual 
stores. This entire production process takes from six to 
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eight months to complete, yet the firm plans to "sell- 
through" garments in as little as nine weeks! 

The basic assumptions of the model fit this situation 
quite well. There is a deadline for the sales period (nine 
weeks), and for all practical purposes the company has 
no resupply option during the sales season. Further, it is 
clear that the once the items are on the rack, the entire 
production decision is sunk. Leftover garments are sold 
through an affiliated outlet store yielding a given salvage 
value. (The salvage value does impact the pricing de- 
cision, as we discuss below.) Demand for garments is 
uncertain but is influenced by price. The merchandise 
manager's job is to adjust the price (via markdowns or 
periodic sales) throughout the selling season in response 
to the realized demand to maximize revenues. Similar, 
though perhaps less extreme, instances of the problem 
occur when selling seasonal appliances such as snow 
blowers, air conditioners, etc. 

The problem is also a fundamental one in the travel 
and leisure industry. Managers in that industry face hard 
time constraints and have almost no control in the short 
run over available space. For example, airlines have a 
specified number of seats available on each flight, and 
empty seats are worthless after the plane departs. To 
increase their revenues, airlines give customers incen- 
tives to book in advance. These incentives typically are 
adjusted in response to the realized demand by opening 
and closing the various fare classes available at any 
given point in time. This practice, known as yield man- 
agement, is now used by all major airlines and is in- 
creasingly adopted by major hotel chains and even by 
some car rental companies and cruise ship lines (Kimes 
1989). The benefits of yield management are often 
staggering; American Airlines reports a five-percent in- 
crease in revenue, worth approximately $1.4 billion 
dollars over a three-year period, attributable to effective 
yield management (Smith et al. 1992). 

Yet, despite its growing importance, there appears to 
be a certain confusion about precisely what phenom- 
enon yield management actually is trying to exploit. 
Indeed, in a recent survey, Weatherford and Bodily 
(1992) conclude that "Several definitions of yield man- 
agement have been put forward, but to date no agree- 
ment exists on its meaning." They point to market seg- 
mentation through time-of-purchase mechanisms (e.g., 
advance purchase requirements, cancellation penalties, 

Saturday-night stays, etc.) as one possibility. Though it 
is certainly an important factor, market segmentation 
provides only a partial-and perhaps not the most cen- 
tral-explanation for the benefits of yield management. 
This explanation appears somewhat biased by the 
business-traveler / vacation-traveler division of the 
customer population particular to the airline industry. 
In fact, for resort hotels, cruiseship lines, and theaters, 
yield management mechanisms seem to be beneficial 
even though the customer population is arguably much 
more homogeneous. 

Our results provide some important insights on this 
issue. In particular, they suggest two alternative expla- 
nations for the benefits of yield management: (1) Yield 
management is an attempt to adjust prices to compensate 
for "normal" (to be made precise below) statistical fluc- 
tuations in demand. For this first explanation, we have 
a negative result. Namely, under some rather mild as- 
sumptions, we prove that if demand as a function of 
price is known and prices are unconstrained, then a 
single fixed-price policy is very nearly optimal. Thus, 
offering multiple prices can at best capture only second- 
order increases in revenue due to the statistical vari- 
ability in demand. (Of course, even second-order in- 
creases in revenue may be significant in practice, so this 
explanation cannot be totally discounted.) Also, the rel- 
ative fluctuations of an optimal pricing policy appear 
to be small (on the order of 10% or less), while those 
found in the airline industry in particular can differ by 
100% or more. 

The second explanation revealed by our analysis is 
more compelling: (2) Yield management is an attempt to 
"synthesize" a range of optimal prices from a small, static 
set of prices in response to a shifting demand function. The 
above fixed-price results hold only when the firm knows 
the demand function in advance and can price each 
instance of the problem (e.g., day/flight/voyage) in- 
dividually. In most applications, these conditions do not 
hold. Airlines and hotels must, for a variety of opera- 
tional and customer-relations reasons, offer a limited 
number of fares that remain relatively static, at least in 
the sense of spanning several problem instances. Fur- 
ther, demand may shift significantly during the week 
or over holidays, and also may not be easy to predict 
in advance. In such a setting, we prove that a near- 
optimal policy is to allocate an appropriate fraction of 
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time and capacity to each fare class, much as is done 
in conventional yield management practice. In this way, 
a static set of fare classes together with a dynamic al- 
location scheme can be used to synthesize different 
prices for each instance. This interpretation better ex- 
plains both the magnitude of revenue increases and the 
disparity in fare prices found in yield management 
practice. 

Finally, we note that one important consideration 
which is ignored in our formulation is the cost of price 
changes. Often, these costs are small. For example, travel 
agents provide customers with current price quotes 
based on information obtained from computer databases 
which can easily be updated. In retailing, items may be 
bar-coded, and thus the cost of a change involves only 
a computer entry and a change in the displayed price. 
In such a case, assuming no cost for price changes is a 
reasonable approximation. In many businesses, how- 
ever, substantial advertising or ticketing costs are as- 
sociated with a price change. In these cases, more stable 
pricing strategies are needed. We show, however, that 
policies that have no price changes are asymptotically 
(as the expected volume of sales increases) optimal over 
the class of policies that allow an unlimited number of 
price changes at no cost. This, of course, implies asymp- 
totic optimality for the problem with price change costs 
as well. Further, we bound the additional expected rev- 
enue one can obtain from a dynamic pricing policy over 
a fixed-price policy. This bound can then be used in 
conjunction with cost information on price changes to 
help determine if dynamic pricing is cost effective. 

1.1. Literature Review 
Research on pricing policies has been pursued by econ- 
omists, marketing scientists, and operations researchers 
from a range of perspectives. A considerable body of 
work has evolved on joint ordering/production and 
pricing models. A recent and comprehensive survey of 
this area is given by Eliashberg and Steinberg (1991). 
In contrast, the main applications and models we study 
fundamentally have few or no options for reordering. 
However, in ?5 we do analyze extensions to our model 
that consider initial inventory decisions, reordering, 
holding costs, and discounting under specialized (unit) 
cost structures. These extensions relate more closely to 
the production-pricing literature. 

Production-pricing problems are broadly categorized 
in Eliashberg and Steinberg (1991) into convex and 
concave ordering cost cases. We shall adopt this clas- 
sification as well. In the convex case, several discrete- 
time stochastic models have been investigated in which 
ordering and pricing decisions are allowed in each pe- 
riod. Single-period models are analyzed by Hempenius 
(1970), Karlin and Carr (1962), Mills (1959), and 
Whitin (1955) (his style goods model). These single- 
period models are essentially price-sensitive versions of 
the classic "news-boy" problem and are similar to our 
initial-order-quantity extension discussed in ?5.4. The 
difference is that these models assume static prices and 
demand, while our model involves a continuous, dy- 
namic demand process and allows dynamic pricing de- 
cisions throughout the period. Lazear (1986) considers 
a model of retail pricing with a single ordering decision 
and one recourse option to change the price. He for- 
mulates a simple, two-stage dynamic program to solve 
the problem. Pashigan (1988) and Pashigan and Bowen 
(1991) investigate this model empirically. 

Multi-period, finite-horizon models with convex costs 
are considered by Hempenius (1970), Thowsen (1975) 
and Zabel (1972). Veinott (1980) uses the theory of 
lattice programming to investigate monotonicity prop- 
erties of a class of deterministic, multi-period problems. 
Our reorder option extension in ?5.5 fits broadly in this 
class, though it is a continuous time model and only 
unit ordering costs are considered. Karlin and Carr also 
analyze a stationary, infinite-horizon discounted cost 
problem, a problem which is also briefly discussed by 
Mills (1959). 

To our knowledge, Li (1988) is the only other paper 
that considers a continuous time model where demand 
is a controlled Poisson processes. (Our reorder process 
in ?5.5 is deterministic while Li's is Poisson.) The ob- 
jective in his paper is to maximize expected discounted 
profit over an infinite horizon. There is a cost for pro- 
duction capacity, production and holding costs are lin- 
ear, and both production and pricing decisions are con- 
sidered. Li's main result is that a barrier policy is optimal 
for the production decision. He also gives an implicit 
characterization of the optimal pricing policy when dy- 
namic pricing is allowed. 

Concave order costs, usually due to the presence of 
fixed order costs, are more difficult to analyze and most 
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work has been confined to deterministic models. EOQ 
models with price sensitive demand are investigated in 
Keunreuther and Richard (1971) and Whitin (1955). 
Cohen (1977) and Rajan et al. (1992) consider problems 
with decaying inventories. Thomas (1970), Wagner 
(1960), and Wagner and Whitin (1958) analyze 
discrete-time, multi-period models with concave costs. 
To our knowledge, Thomas (1974) is the only paper 
that studies a stochastic, multi-period model with fixed 
order costs. 

In marketing science, dynamic models of pricing date 
back to Robinson and Lakhani (1975) and the subse- 
quent work of Bass (1980), Dolan and Jeuland (1981), 
Jeuland and Dolan (1982), and Kalish (1983). (See Rao 
1984 for an overview.) This research, however, focuses 
on strategic issues of life cycle pricing based on deter- 
ministic models of how firm economics and consumer 
behavior change with time. Several marketing scientists 
have looked at tactical, dynamic pricing problems. 
Chakravarty and Martin (1989) examine setting optimal 
quantity discounts in the face of deterministic, dynam- 
ically changing demand. Kinberg and Rao (1975) model 
consumer purchase behavior as a Markov chain and 
examine the problem of selecting the optimal duration 
for a price promotion. (See also Nagle 1987 and Oren 
1984.) 

We have already mentioned that the area of yield 
management is quite related to our problem. The study 
of yield management problems in the airlines dates back 
to the work of Littlewood (1972) for a stochastic two- 
fare, single-leg problem and to Glover et al. (1982) for 
a deterministic network model. Belobaba (1987, 1989) 
proposed and tested a multiple-fare-class extension of 
Littlewood's rule, which he termed the expected marginal 
seat revenue (EMSR) heuristic. Extensions and refine- 
ments of the multiple-fare-class problem include recent 
papers by Brumelle et al. (1990), Curry (1989), Rob- 
inson (1991), and Wollmer (1992). Kimes (1989) gives 
a general overview of yield management practice in the 
hotel industry. (See Bitran and Gilbert 1992, Liberman 
and Yechiali 1978, and Rothstein 1974 for analytical 
models of hotel problems.) A recent review of research 
on yield management is given by Weatherford and 
Bodily (1992), where they adopt the term perishable 
asset revenue management (PARM) to describe this class 
of problems. Our problem can certainly be considered 
a continuous-time PARM problem. 

Lastly, we mention three papers that address suffi- 
ciency conditions for problems similar to our basic 
model.' Miller (1968) studies a finite horizon, contin- 
uous-time Markov decision process where only finitely 
many actions (prices) are allowed. He obtains sufficient 
conditions for optimality and shows that optimal policies 
are piecewise constant. Kincaid and Darling (1963) an- 
alyze a problem that is functionally equivalent to the 
basic single-commodity version of our problem. By 
studying the problem from first principles, they again 
obtain sufficient conditions; recently Stadje (1990) in- 
dependently re-derived a similar set of results. Unfor- 
tunately, the sufficient conditions derived in these pa- 
pers rarely lead to a solution; indeed, even for the basic 
version of the problem few practical results have been 
obtained using these exact approaches. 

1.2. Overview and Outline 
In ?2 we discuss our assumptions, formulate our basic 
model, provide structural results, and find an exact so- 
lution for an exponential demand function. We show 
that the stochastic optimal policy changes prices con- 
tinuously and thus may be undesirable in practice. This 
leads us to try approximate methods. In ?3 we find up- 
per bounds on the optimal revenue by considering a 
deterministic version of the problem. We solve the de- 
terministic problem and show that the optimal policy 
is to set a fixed price throughout the horizon. Further, 
this deterministic fixed-price policy is asymptotically 
optimal for the stochastic problem as the volume of 
expected sales increases or as the time horizon tends to 
zero. Numerical examples are given that indicate the 
performance of fixed-price policies is quite good even 
when the expected volume of sales is moderate. In ?4 
we analyze the case where only a finite set of prices is 
allowed, a variant of the problem that is most closely 
related to the yield management problem. 

Finally, in ?5 we examine several extensions to the 
basic problem. First, we generalize our results to the 
case where demand is a compound Poisson process. We 
then consider the case where the demand function var- 
ies in time through a multiplicative seasonality factor; 
holding costs are incurred and cash flows are dis- 
counted; the initial inventory is a decision variable; ad- 
ditional items can be obtained at a unit cost after the 

I We are indebted to Sid Browne, Cyrus Derman and Arthur F. Veinott, 
Jr., for pointing out these references to us. 
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initial inventory is depleted. The last extension allows 
for overbooking and cancellations. For all these cases, 
we find asymptotically optimal heuristics. Our conclu- 
sions and thoughts for future research in this area are 
given in ?6. 

2. Assumptions, Formulation and 
Preliminary Results 

2.1. Economic and Modeling Assumptions 
We assume our firm operates in a market with imperfect 
competition. For example, the firm may be a monopolist, 
the product may be new and innovative, in which case 
the firm holds a temporary monopoly, or the market 
may allow for product differentiation. Under imperfect 
competition, a firm can influence demand by varying 
its price, p. We express the demand as a rate (# items/ 
time) that depends only on the current price p through 
a function X (p). In the monopoly or new product case, 
X(p) is the market demand and is assumed to be non- 
increasing in p due to substitution effects. For example, 
if the arrival rate of customers is a, and each customer 
has an i.i.d. reservation price with tail probability F(p), 
then the expected demand rate at price p is aF(p). In 
the case of product differentiation, the demand function 
is unique to the firm and is assumed to be non-increasing 
in p due to both lost sales to competitors and substitution 
effects. In this case, for example, the demand rate seen 
by the firm as a function of its price and those of its 
competitors may be modeled using a multinomial logit 
(cf. Anderson et al. for a fairly extensive treatment of 
discrete choice theory of product differentiation). Here, 
we assume that X (p) is given and do not explicitly model 
the competitive forces that give rise to this demand 
function. (See Eliashberg and Steinberg 1991 and 
Dockner and Jorgensen 1988 for examples of dynamic 
pricing models that represent competition explicitly.) 

The assumption that consumers respond only to the 
current price is, of course, somewhat restrictive. In par- 
ticular, it does not account for the fact that consumers 
may act strategically, adjusting their buying behavior 
in response to the firm's pricing strategy. To do so would 
require a game theoretic formulation, which is beyond 
the scope of our analysis. The current-price assumption 
is approximately true when "impulse purchases" are 
common (e.g., fashion items). Further, the fact that 
near-optimal strategies use very stable prices makes this 

assumption reasonable in other applications as well. 
(See Lazear 1986, p. 28 for further discussion of the 
importance of strategic behavior.) 

Realized demand is stochastic and modeled as a Pois- 
son process with intensity X (p). Thus, if the firm prices 
at p over an interval 6, it sells one item with probability 
X(p)6 + o((b), no items with probability 1 - (p)6 -o() 
and more than one item with probability o (b). In ?5.2 
we study the case where the demand rate can also de- 
pend on the time. We initially consider the case where 
no backlogging of demand is allowed, so once the firm 
runs out of stock it collects no further revenues. 

Several mild assumptions concerning the demand 
function are imposed: First, we assume there is a one- 
to-one correspondence between prices and demand 
rates so that X(p) has an inverse, denoted p(X). One 
can therefore alternatively view the intensity X as the 
decision variable; the firms determines a target sales 
intensity X (i.e., an output quantity) and the market 
determines the price p ( X) based on this quantity. From 
an analytical perspective, the intensity is more conve- 
nient to work with. 

We assume the revenue rate, 

r(X) Xp(X), (1) 

satisfies limx,,o r(X) = 0, is continuous, bounded and 
concave, and has a bounded least maximizer defined 
by X* = min {X: r(X) = maxx?o r(X)}. Continuity, 
boundedness of the revenue rate and the maximizer X*, 
and the condition lim>,,o r(X) = 0 are all reasonable 
requirements. Concavity of r(X) stems from the standard 
economic assumption that marginal revenue is decreas- 
ing in output. 

Cohen and Karlin and Carr consider demand func- 
tions with similar conditions. Specifically, the condition 
limx,,o r(X) = 0 implies the existence of what Karlin 
and Carr [22] term a null price p, (possibly +ox) for 
which lim,Pa, XA(p) = 0 and lim1PpX pX(p) = 0. (Cohen 
requires the existence of a null price as well, though he 
does not give it this term.) In our case, the null price 
allows us to model the out-of-stock condition as an im- 
plicit constraint that forces the firm to price at p = pr,. 

when inventory is zero. Note that this modeling artifact 
partially blurs the distinction between demand and 
sales, since in reality we can certainly have demand for 
items without a corresponding sale when the firm is out 
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of stock. However, in the context of the model, no gen- 
erality is lost by making this assumption. 

We call a function X(p) that satisfies all of the as- 
sumptions above a regular demand function. An ex- 
ample of a regular demand function is the exponential 
class X(p) = ae-P. One can verify that this function is 
decreasing in p, has a unique inverse p ( X) = log (a / X) 
and results in a concave revenue rate r(X) = X log (a / 
X) with unique maximizer X* = ae-'. The null price in 
this case is pr, = +oo. Linear demand functions are also 
regular. 

2.2. Formulation 
The pricing problem is formulated as follows: At time 
zero, the firm has a stock n (a nonnegative integer) of 
items and a finite time t > 0 to sell them. The firm 
controls the intensity of the Poisson demand X, = X(p,) 
at time s using a non-anticipating pricing policy PS. The 
intensity X(*) is assumed to be a regular demand func- 
tion. Let NS denote the number of items sold up to time 
s. A demand is realized at time s if dN, = 1, in which 
case the firm sells one item and receives revenue of Ps. 

The price p5 must be chosen from the set of allowable 
price P = X+ U { p:, }. The set of allowable rates is 
denoted A = {X(p): p E P }. Note that since p, E P, 
we always have 0 E A. We consider other sets of allow- 
able prices P in ?5. We denote by '1 the class of all 
non-anticipating pricing policies which satisfy 

T dNs < n (a.s.) (2) 

and 

Ps E P Xs E A Vs. (3) 

Constraint (2) is the modeling artifact mentioned above. 
It acts to "turn off" the demand process when the firm 
runs out of items to sell. The existence of the null price 
pc, in the set ?P guarantees that it can always be satisfied. 

Without loss of generality, we assume the salvage 
value of any unsold items at time t is zero, since for 
any positive salvage value q we can always define a 
new regular demand function X(p) *- X(p - q) and a 
new price p *- p - q (the excess over salvage value) 
that transforms the problem into the zero-salvage-value 
case. We also assume all costs related to the purchase 
and production of the product are sunk. 

Given a pricing policy u E 'a, an initial stock n > 0, 
and a sales horizon t > 0, we denote the expected rev- 
enue by 

Ju(n, t) Eu[f psdNs] (4) 

where 

Ju(n, 0) 0 Vn (5) 

and 

Ju(0, t) 0 Vt. (6) 

The firm's problem is to find a pricing policy u * (if one 
exists) that maximizes the total expected revenue gen- 
erated over [0, t], denoted J*(n, t). Equivalently, 

J*(n, t) sup Ju(n, t). (7) 
uEVl 

2.2.1. Optimality Conditions and Structural Re- 
sults. One can informally derive the Hamilton-Jacobi 
sufficient conditions for J* by considering what happens 
over a small interval of time bt. Since by selecting the 
intensity X (i.e., pricing at p(X)) we sell one item over 
the next bt with probability approximately Xbt and no 
items with probability approximately 1 - Xbt, by the 
Principle of Optimality, 

J*(n, t) = sup [X3t(p(X) + J*(n - 1, t - 3t)) 
x 

+ (1 - Xbt)J*(n, t - bt) + o(3t)]. 

Using r(X) Xp(X), rearranging and taking the limit 
as bt 0, we obtain 

Ij*(n, 
t) = sup [r(X) - X(J*(n, t) - J*(n - 1, t))] at 

Vn>1, Vt>0. (8) 

with boundary conditions J*(n, 0) = 0, Vn and J*(0, t) 
= 0, Vt. The above argument is not rigorous because 
we have not justified interchanging supx and limbto0; 
however, these conditions can be justified formally us- 
ing Theorem 11.1 in Bremaud, where general intensity 
control problems are studied. Thus, a solution to equa- 
tion (8) is indeed the optimal revenue J*(n, t) and the 
intensities X*(n, t) that achieve the supremum form an 
optimal intensity control. Equivalent conditions were 
derived in Kinkaid and Darling (1963), Miller (1986), 
and Stadje (1990) without using the theory of intensity 
control. 
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The existence of a unique solution to equation (8) is 
resolved by the following proposition, which is proved 
in the appendix: 

PROPOSITION 1. If X(p) is a egulardemilanid fiuctioni, 
theni thiere exists a unique solutioni to equiationi (8). Futrther, 
tile optimiial initenisities satisfies X*(ii, s) < X* for all vi and 
for all 0 < s ? t. 

Although Proposition 1 guarantees the existence of 
a unique solution to equation (8), obtaining it in closed 
form is quite difficult if not impossible-for arbitrary 
regular demand functions. However, we can make a 
number of qualitative statements about the optimal ex- 
pected revenue, intensities and prices. We summarize 
these in the following theorem. 

THEOREM 1. J*(ii, t) is strictly inlcreasinig anld strictly 
conicave ini bothl n anid t. Fuorthermore, there exists ani op- 
ti;nial initenisity X*(n, t) (resp., price p*(n, t)) that is strictly 
inicreasing (resp., decreasinig) in ii and strictly decreasinig 
(resp., increasinig) ini t. 

This theorem shows that more stock and/or time 
leads to higher expected revenues. Further, at a given 
point in time, the optimal price drops as the inventory 
increases; conversely, for a given level of inventory, the 
optimal price rises if we have more time to sell. These 
properties are not only intuitively satisfying, but they 
are also useful if one wants to compute the optimal 
policy numerically because they significantly reduce the 
set of policies over which one needs to optimize. A proof 
of a slightly weaker version of Theorem 1 is implied by 
a sequence of results in Kincaid and Darling (1963). 
A compact proof of Theorem 1 is presented in the 
appendix. 

2.3. An Optimal Solution for X(p) = ae-'a 

We can find an exact solution for the demand function 
X(p) = aec-J', where a > 0, a > 0 are arbitrary param- 
eters. The solution is useful if one can adequately fit 
demand to this particular function. More importantly, 
however, the solution provides interesting insights into 
the behavior of the optimal policy. 

First note that without loss of generality we can take 
a = 1 by simply changing units of price to p' -- a p. 
The maximizer of r(X) in the case a = 1 is Xk = a/e 
and p* = p(X*) = 1. It is not hard to verify (see also 
[25] and [44]) that the solution to equation (8) in this 
case is 

J*(11, t) = log( E (X*t) i ) ' (9) 

and the optimal price p *(ii, t) is given by 

p*(j, t) = J*(;j, t) - J*(11 - 1, t) + 1. (10) 

Some sample paths of this optimal price p*(ii, t) are 
shown in Figure 1 for a problem with 25 items and a 
unit time horizon. (The line marked FP is explained 
below in ?3.) The top graph shows a sample price 
path when demand is low relative to the initial stock 
(a = 40, \*t = ae-' 9.5), while the bottom graph 
shows a price path for the same 25 items when demand 

Figure 1 Sample Paths of p*(n - Ns, 1 - s) over s E [0, 1]: Top: n 
= 25, a 20. Bottom: n 25, a 100 
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is high relative to the initial stock (a = 100, X*t = ae-1 
- 36.8). There are several interesting things to note 

about these graphs. First, the upward jumps in price 
correspond to sales (dN, = 1). After a sale, the price 
decays until another sale is made, at which point the 
price takes another jump. This behavior follows from 
Theorem 1. The upward jumps are due to the fact that 
the firm prices higher if it has fewer items to sell over 
a given interval t. The decaying price between sales can 
be thought of as a price promotion and follows from 
the fact p*(n, t) is decreasing in t for fixed n. The firm 
gradually reduces the price as time runs out in order to 
induce buying activity. 

3. Bounds and Heuristics 
For regular demand functions other than X(p) = ae-aP 
it is quite difficult, if not impossible, to find closed form 
solutions to equation (8). Further, by Theorem 1, the 
optimal price varies continuously over time. Yet in many 
applications this degree of price flexibility is either im- 
possible or prohibitively expensive to implement. 
Therefore, one might often prefer more stable policies 
that are close to optimal over a "jittery" optimal policy. 
In this section, we propose heuristics that meet these 
criteria. They are easy to implement and also provably 
close to optimal in many cases. Our approach is to first 
construct an upper bound based on a deterministic ver- 
sion of the problem. The solution to this deterministic 
problem then suggests a simple fixed-price heuristic that 
we show is provably good when the volume of expected 
sales is large. 

3.1. An Upper Bound Based on a Deterministic 
Problem 

3.1.1. Formulation of Deterministic Problem. 
Consider the following deterministic version of the 
problem: At time zero, the firm has a stock x, a contin- 
uous quantity, of product and a finite time t > 0 to sell 
it. The instantaneous demand rate is deterministic and 
a function of the price at time s, p (s), again denoted 
X (p (s)). (Our notation distinguishing a deterministic 
policy follows that in Bremaud (1980).) We assume 
X(.) is a regular demand function. As before, without 
loss of generality, we assume the salvage value of the 
product at time t is zero and that all other costs are 
sunk. The price p(s) must again be chosen from a set 
P of allowable prices. As before, we can equivalently 

view the firm as setting the rate X ( s) E A, which implies 
charging a price p(s) = p(X(s)) E P. 

The firm's problem is to maximize the total revenue 
generated over [0, t] given x, denoted jD(x, t). 

r 
jD(x t) = max r(X(s))ds (11) 

{X (s)} O 

subject to 

rt 
X(s)ds x 

X(s) E A. 

3.2. Optimal Solution of the Deterministic 
Problem 

We begin with some definitions. Define the run-out rate, 
denoted X0, byX0 x/ t, the run-out price, denoted po, 
by p 0 p(X0), and the run-out-revenue rate ro p0X?. 
Notice that X0 (resp., po) is the fixed intensity (resp., 
price) at which the firm sells exactly its initial stock x 
over the interval [0, t]. Recall that X* is the least max- 
imizer of the revenue function r(X) = Xp(X). We find 
it convenient to define p* p(X*), and r* p*X*. The 
quantity r* is the maximum instantaneous revenue rate. 
These definitions allow us to state the following prop- 
osition, which is proved in the appendix: 

PROPOSITION 2. The optimal solution to the determini- 
istic problem (11) is X(s) = XD min{X*, XO}, 0 ? s 
< t. In terms of price the optimal policy is p(s) = pD 

max{p*, p0}, 0 < s < t. Finally, the optimal revenue 
is 

jD(X, t) = t min{r*, ro} (12) 

The intuition for this solution is the following: If the 
firm has a large number of items to sell (x > X*t), it 
ignores the problem of running out of stock and prices 
at the level that maximizes the revenue rate. In this case 
the firm ends with x - X*t unsold units. If the items are 
scarce (x < X*t), the firm can afford to price higher, and 
it indeed prices at the highest level that still enables it 
to sell all the items. Note that in both cases the solution 
is to set a fixed price for the entire interval. 

3.2.1. The Deterministic Revenue as an Upper 
Bound. Intuitively, one would expect that the uncer- 
tainty in sales in the stochastic problem results in lower 
expected revenues. The following theorem formalizes 
this idea: 
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THEOREM 2. If X(p) is a regular demand function, 
then for all 0 < n < +oo and 0 < t < +oo, 

J*(n, t) < jD(n, t). 
PROOF OF THEOREM 2. As shown in Proposition 1, 

Xs < X* < oc, which implies fo Xs ds < oo almost surely 
for all t 2 0. Recall Cd denotes the class of policies that 
satisfy fo dNs ? n (a.s.); therefore by Bremaud 1980, 
Theorem II, 

E[f dNs] E[ Xsds ? n. (13) 

Since the demand intensity in the control problem (7) 
is Markovian, it is sufficient to consider only Markovian 
policies u (Bremaud 1980, Corollary 11.2). That is, 
policies for which the price at time s is a function ps 
= pu (n - Ns, s) only. (Equivalently, the intensity at time 
s is a function Xs = X(n - Ns, s).) By Bremaud 1980, 
Theorem II, we can write, 

J,(n, t) = pi(n - Ns, S)dNs] 

- Eu[J r(Xs)ds] (14) 

and 

J*(n, t) = sup Ju(n, t). 

Now for ,u 2 0 we define the augmented cost functional 

Ju(n, t, ,u) = Eu (r(Xs) - AXs)ds] 

+ n,u > ju (n, t), (15) 

and the augmented deterministic cost function 
t 

jD(n, t, ,u) = max I (rX(s) - AX(s))ds + np. (16) 
X(s)CA O 

We claim the following: 
LEMMA 1. 

ju(n, t, u) < JD(n, t, ,) Vu E l, ,A 2 0. 
PROOF. This follows by viewing the integrand inside 

the expectation in equation (15) as purely a function 
of X and maximizing pointwise: 

rt 
Jl(n, t, ,u) < max {r(X(s)) - AX(s)}ds + nAi 

X A(s)Ez-A 

t 

= max J (r(X(s)) - AX(s))ds + n/A 
X X(s)CA} o 

-JD(n,t) 

Since Lemma 1 holds for all u E Cd and ,u > 0, we have 
by equation (15) 

J*(n, t) < inf J'( n, t,,u). 

Theorem 2 then follows by noting that the quantity on 
the right above is the optimal dual value of the infinite 
dimensional program 

t 

JD(n, t) = max I r(X(s))ds 
X(s)CA o 

subject to 
t 

X(s)ds c n. 

Since this is a convex program, and the null price to- 
gether with the fact that n > 0 implies that X(s) = 0, 0 
c s < t is a strictly interior solution, there exists a mul- 
tiplier A* for which the duality gap is zero and jD (n, t) 
= inf ,,o JD (n, t, u) = JD (n, t, ,*). (See Luenberger 
1969). L 

Theorem 2 is useful for several reasons. It suggests 
that the solution of the deterministic problem may pro- 
vide insight into optimal or near-optimal pricing strat- 
egies for the stochastic problem. It also provides per- 
formance guarantees on the cost of such pricing strat- 
egies. Together, these results can be used to establish a 
strong relationship between the stochastic and deter- 
ministic problems, as we show next. 

3.3. Asymptotically Optimal Fixed-price 
Heuristics 

The deterministic optimal solution suggests a simple 
fixed price (FP) heuristic, namely, for the entire horizon 
set the price to pD = max { p 0, p * }. Of course, one could 
improve on this heuristic by choosing the best fixed price; 
that is, the one maximizing pE[min { n, N, (p) } ], where 
Na denotes a Poisson random variable with mean a. In 
general the best fixed price cannot be found analytically; 
however, it is easy to find numerically. We let OFP de- 
note this optimal fixed-price heuristic and JOFP (n, t) 
(resp., JFP(n, t)) denote the revenue of the OFP (resp., 
FP) heuristic. We will use the fact that JOFP ( n, t) 
> JFP(n, t). 

Note that using a fixed price for the entire horizon is 
quite convenient since there is no effort involved in 
monitoring time and inventory levels and no cost in- 
curred for changing prices. Further, the performance of 
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the heuristics turn out to be quite good in several cases, 
one of which is shown by the following theorem: 

THEOREM 3. 

JOFP(n, t) JFP (n, t) 1 
2 ?1- , 

J*(n, t) J*(n, t) 2Vmin{n, X*t} 

PROOF. The first inequality follows from the defi- 
nition of the heuristics. To show the second, note the 
expected revenue obtained when the price is fixed at p 
is 

pE[Nx(p)t - (Nx(p)t - n)+]. (17) 

Gallego (1992) shows that for any random variable N 
with finite mean ,u and finite standard deviation a, and 
for any real number n, 

v 2 ? (n - 2 - (n- E[(N-n)+]< + (n- 
-(n-2 (18) 

where x+ max(x, 0). Consider first the case X*t > n. 
That is, the case where items are scarce and the FP 
heuristic uses the run-out price po. Using the above 
inequality in equation (17) and noting that when pricing 
at po?, , = a2 = n, we obtain 

JFP(n, t) ? np?(l - I ) = rOt(1- 2V) 

In the case where X*t < n we price at p*, by the same 
reasoning we obtain 

JFP(n, t) > p _ t + (n - X*t) - (n- X*t)) 

> p*X*t(1 - 2 r*) rt( 21V5Yi) (19) 

Comparing these two cases to the deterministic revenue 
(12) and using Theorem 2 completes the proof. O 

REMARK. When X*t > n, one can determine the exact 
cost of the FP heuristic by noting that E (Nn - n) + = n (1 
-P { Nil = n }), which implies 

JFP(n, t) = np?(l - e-7) 

This provides a slightly better guarantee for small n, 
though it has an identical rate of convergence since by 
Stirling's formula (n / n!) e-1 

" 1 / 27rnW. 

Theorem 3 shows that the FP heuristic, and conse- 
quently the OFP heuristic, are asymptotically optimal 
in two limiting cases: (1) the number of items is large 
(n > 1) and there is plenty of time to sell them (n < X*t); 
or (2) there is the potential for a large number of sales 
at the revenue maximizing price (X*t > 1), and there 
are enough items in stock to satisfy this potential de- 
mand (n ? X*t). Thus, we see that if the volume of 
expected sales is large, the heuristics perform quite well. 

One can gain an intuitive understanding of this result 
by examining Figure 1, which shows the FP price and 
the optimal price for two sample paths of the example 
in ?2.3. Note the that optimal price paths in this figure 
appear roughly centered about the FP price shown by 
the horizontal lines in Figure 1. Also, on a relative basis 
the variations about the FP price appear small. Thus, it 
seems the FP price is a reasonable approximation to the 
optimal policy. 

An example serves to illustrate the utility of the 
bounds in Theorem 3: Consider a firm that has 400 
items and enough time to price at the run-out price 
p0(X*t > n). Theorem 3 then guarantees that the ex- 
pected revenue collected by simply offering a fixed price 
of p0 is at least 97.5% of what could be obtained by 
using an optimal state-dependent strategy. For 100 
items, the guarantee drops to 95%, while for 25 items, 
it is only 90%. However, as we illustrate in the next 
subsection, these guarantees are in fact quite pessimistic, 
and the actual performance of fixed-price policies is 
good even for small ( -10 items) problems. 

As a last example where fixed-price heuristics are 
asymptotically optimal, we state without proof 

THEOREM 4. 

lim JP(n t) ? Flim JF( n,t)1 Vn>O. 
t >0-0 J*(n, t) to f0 *(n, t) 

3.4. Numerical Example of the Performance of 
Fixed-Price Heuristics 

For the case where the demand function is ae-"P we 
have a closed form expression for the optimal cost, 
which allows us to examine the performance of the 
fixed-price heuristics for problems of moderate size. Ta- 
ble 1 shows the prices and resulting revenues for a series 
of problems with a unit horizon, X*t = 10 and starting 
inventories n ranging from 1 to 20. Note that the optimal 
fixed price (pOFP) is initially lower than the deterministic 
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Table 1 Prices and Revenues for the Case X*t = 10 

n ppOFP p FP J* JOFP/J* JFP/J 

1 2.74 3.30 2.40 0.945 0.871 
2 2.36 2.61 4.11 0.947 0.926 
3 2.10 2.20 5.43 0.950 0.945 
4 1.90 1.92 6.47 0.954 0.954 
5 1.74 1.69 7.30 0.958 0.956 
6 1.61 1.51 7.96 0.962 0.956 
7 1.50 1.35 8.49 0.967 0.952 
8 1.41 1.22 8.89 0.971 0.946 
9 1.33 1.11 9.22 0.976 0.937 

10 1.26 1.00 9.46 0.980 0.925 
11 1.21 1.00 9.64 0.985 0.951 
12 1.16 1.00 9.77 0.989 0.970 
13 1.12 1.00 9.85 0.992 0.982 
14 1.08 1.00 9.91 0.995 0.990 
15 1.05 1.00 9.95 0.997 0.995 
16 1.04 1.00 9.97 0.998 0.997 
17 1.02 1.00 9.99 0.999 0.999 
18 1.01 1.00 9.99 0.999 0.999 
19 1.01 1.00 10.00 1.000 1.000 
20 1.00 1.00 10.00 1.000 1.000 

price (pFP) when there are few items to sell, but for n 
> 5 it is higher. Thus, the OFP price seems to smooth 
the transition between the low and high demand price 
extremes, p* and p?. Note also that the worst relative 
performance of the OFP heuristic is only 5.5%, and 
when n > 12 it is within 1% of the optimal revenue. 
Indeed, in numerical experiments on many different 
examples we never once observed a value of IOFP that 
was more than seven percent less than the optimal rev- 
enue. The relative performance of the FP heuristic, on 
the other hand, is poorest at n = 1 (12.9% below the 
optimal revenue), though for n > 15 its revenue is com- 
parable to that of the OFP heuristic. 

These results suggest that even for moderate sized 
problems the FP heuristic, and especially the OFP heu- 
ristic, perform quite well. They also suggest that dy- 
namic pricing in response to the sort of statistical vari- 
ations in demand modeled here can at best provide only 
minimal increases in revenue-on the order of one per- 
cent or less for moderate to large problems. For this 
reason, we conclude that if demand functions are well 
known and prices can be set freely, then one should 
not see great benefits from the highly dynamic pricing 
practices, such as those found in fashion retailing and 
yield management practice. Other explanations of the 

benefits of these practices, one of which we propose in 
?4, are needed. (An explanation based on the producer's 
imperfect knowledge of customers' reservation prices is 
proposed by Lazear.) 

3.5. Some Structural Observations for the Case 

X(p) = ae-P 
We next show that for X (p) = ae -P the optimal intensity 
(resp., price) for the stochastic problem is always smaller 
(resp., larger) than the corresponding optimal intensity 
(resp., price) for the deterministic problem. 

PROPOSITION 3. If X(p) = ae6P, then Vn ? 0, Vt ? 0, 

X*(n, t) < XD(n, t) 

and 

p*(n, t) > p D(n, t). 

PROOF. We can write the optimal intensity as 

X*(n, t)=* P{Nt ? n - 1 <* 

Since XD(n, t) = n/t for t 2 n/X* and XD(n, t) = A* 
otherwise, and by Proposition 1, X*(n, t) < X* always, 
we only need to show that X*(n, t) < n/t, for t 2 n 
A*. Equivalently, 

X*tP{NA*t < n - 1} < nP{N,*t < n}. 

But this holds since the left-hand side can be written 
,=o iet (X*t)/ i!, which is clearly less than n P { Nx*t 

< n }. The corresponding properties for p *(n, t) follow 
in a similar way. E 

This proposition helps address a question raised by 
Mills (1959) about the relation between the optimal 
price for a stochastic model and its deterministic coun- 
terpart. Karlin and Carr (1962) and Thowsen (1975) 
analyzed this question for fixed price models under ad- 
ditive or multiplicative uncertainty. They showed the 
optimal stochastic price is always higher (resp., lower) 
under multiplicative (resp., additive) uncertainty than 
the optimal deterministic price. Note that the demand 
uncertainty in the exponential model is neither additive 
nor multiplicative. Though Proposition 3 suggests that 
the optimal stochastic price is always higher, this is not 
true for the revenue function r(X) = 1 - (X - 1)2. It is 
true, however, that for all regular demand functions 
over short time horizons, i.e., t < n / X*, the optimal 
stochastic price (resp., intensity) is always higher (resp., 
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lower) than the optimal deterministic price (resp., in- 
tensity). 

4. Discrete Price Case 
Consider the case where the set of allowable prices is 
P = { Pi, ... PK, PR }, a discrete set. The restriction to 
a discrete set of prices may arise if a firm decides, at a 
strategic level, to restrict itself to a given set of prices 
in order to achieve market segmentation. Alternatively, 
the discrete set of prices may be the result of an explicit 
or implicit consensus at the industry level (e.g., "price 
points"). We also suggest below that a discrete price 
scheme together with dynamic allocation of the units 
allows firms to synthesize a wide range of effective 
prices to accommodate shifting demand functions while 
retaining the appeal and practicality of having only a 
small, stable set of prices for their product or service. 
We propose this as one plausible explanation for the 
practice of yield management. 

As before, we have n items and t units of time to sell 
them. Corresponding to price Pk, we have a known de- 
mand rate Xk, k = 1, . . . , K. Without loss of generality, 
we assume that pi < P2 < * * *, < PK, and Xi > X2 > . . . 

> XK. Equality in the demand rates is ruled out since 
equation (8) selects the largest price corresponding to 
any given demand rate. 

Let rk PkXk, denote the revenue rate associated with 
price Pk, k = 1, .. ., K. We assume that the revenue 
rates are monotonically decreasing: 

r, > r2 > . > rK- 

This assumption is again without loss of generality since 
0 ? X ? A* by Proposition 1, and because r(.) is in- 
creasing over this region. 

4.0.1. Optimal Solution of the Deterministic Prob- 
lem. The proof of Theorem 2 goes through unchanged 
for the discrete price case; thus, we can again use the 
deterministic revenue as an upper bound. The deter- 
ministic solution also gives an asymptotically optimal 
heuristic, though the resulting heuristic is no longer a 
fixed -price heuristic, but consists of pricing at some price, 

Pk*, for a specified period of time and at a neighboring 
price, Pk*+1, for the balance of the horizon. 

To solve the deterministic pricing problem let tk 

Jo 1 (ps = Pk) ds denote the amount of time we price 
the items at Pk, k = 1, . . ., K, over the horizon [0, t]. 
Here 1 (Ps = Pk) = 1 if the price at time s is Pk and zero 

otherwise. Then equation (11) reduces to a linear pro- 
gram. For convenience, set X0-oc, XK+1 0, and ro 
= rK+1 0. The next proposition states, without proof, 
that this linear program can be solved in closed form: 

PROPOSITION 4. For any (n, t), let k* be such that 
Xk*t ? n > Xk*+lt, then the solution to the linear program 
is given by tj = O forj { k*, k* 1 }, and 

n - Xk*+lt 

t \Xk - Xk*+1 

tk*+1 
Xk*t - n 

Xk- Xk*+1 

where tk 0, tk+- t when kn = and tk X n/SK, tk+1 

-0 when k* = K. 

REMARK. If there exists a salvage value q > 0 then 
the above results continue to hold provided (1) we 
eliminate all prices p < q, and all prices pi such that 
q(Xi - X1)> ri - rj for some pj> pi > q, and (2) we set 
ri = Xi (pi - q) in the linear program. 

Notice that the solution prices at Pk* for cat units of 
time and at Pk*+l for (1 - c)t units of time where a 
E [0, 1) satisfies caXk*t + (1 - a)Xk*+lt = n. Thus, aXk*t 
and ( 1 - a) Xk *+ it are approximately the number of items 
allocated to prices Pk* and Pk*+, respectively, and (aerk 
+ (1 - ) rk *+l ) t / n is the effective price paid, averaged 
across the n items. By adjusting the allocations in this 
way, one can synthesize effective prices for many dif- 
ferent demand functions. There are many practical ad- 
vantages to such a scheme. It allows a firm to offer only 
a small set of stable prices, which are easy for consumers 
to interpret and for the firm to advertise and manage. 
Yet it also enables the firm to respond to short-term 
variations in demand, such as those caused by day-of- 
the-week cycles, holidays, seasonalities, etc. This may 
be one reason why industries with highly variable de- 
mand patterns, such as airlines, hotels and cruise-ships, 
have adopted the fixed-fare-classes, dynamic allocation 
policies of yield management. 

4.1. An Asymptotically Optimal Heuristic 
The deterministic solution suggests a stopping-time (ST) 
heuristic for the stochastic problem. Let m FXk*tk*1, 
T", be the (random) time the mth item is demanded 
when the price is fixed at Pk*, and let tm = m / Xk*, be 
the time it takes to sell m items at price Pk* when demand 
is deterministic. The heuristic is defined as follows: 
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ST Heuristic: Start pricing at Pk* and switch to Pk.+, at 
(random) time 

T = min(Tn,, tn) 

Let IST(n, t) denote the expected revenue for the ST 
heuristic. The following theorem is proved in the ap- 
pendix: 

THEOREM 5. Suppose n - oo and t - oo such that 

Xkt ? n > Xk+lt. Then, 

IST (n t) 
lim D =1 
t-* I (n, t) 

As an example illustrating the rate of convergence, 
consider a flight with n = 300 seats that is open for sale 
t = 360 days before the departure of the flight. Assume 
that at the promotional fare pi = $198, the average de- 
mand rate is X1 = 1 seats per day, and that at the regular 
fare P2 = $358, the average demand is X2 = 0.5 seats 
per day. Then m = ti = 240, and the promotional fare 
is stopped when 240 seats are sold or when 240 days 
elapse, whichever occurs first. Using the bounds in the 
appendix, we obtain 

$66,080 C iST(n, t) ? J*(n, t) ? $69,000. 

To assess the performance of the ST heuristic we sim- 
ulated 300 flights with the above data. The expected 
revenue of the ST heuristic was estimated to be $67,546, 
or about 98% of the deterministic upper bound. 

The analysis of the ST heuristic can be sharpened 
when n ? X1t, and when n ? XKt in the sense that the 
absolute, rather than the relative, error goes to zero as 
n and/or t goes to infinity. The first case occurs when 
demand is so low that we cannot expect to sell all the 
items even at the lowest price (pl); the second occurs 
when demand is so high that we can expect to sell all 
the items at the highest price (PK)- In both cases the 
heuristic reserves the entire stock to the lowest (resp., 
the highest) price. 

Finally, we point out that a heuristic with the same 
asymptotic properties can be constructed whereby ini- 
tially the items are priced at Pk*+, and subsequently re- 
duced to Pk*. Thus, both the low-to-high and the high- 
to-low stopping-time heuristics are asymptotically op- 
timal. For example, in air travel the desirability of a seat 
usually increases as the date of flight is approached, 

while in fashion retailing the desirability of garments 
decreases as the season draws to a close; thus airlines 
price low-high, while fashion retailers price high-low. 
See Feng and Gallego (1992) for structural results and 
algorithms to compute optimal stopping-time rules in 
situations that allow, at most, one price change. 

5. Extensions to the Basic Problem 
We next examine several extensions of the basic prob- 
lem. The first extension allows demand to be compound 
Poisson. Next we consider a demand function that varies 
with time according to a multiplicative seasonality fac- 
tor. Then, we extend our results to the case where there 
are holding costs and cash flows are discounted. We 
then allow the initial stock n to be a decision variable 
along with price. Finally, we allow a resupply option 
in the presence of overbooking and random cancella- 
tions. For all these cases, we find asymptotically optimal 
heuristics and, in some instances, a closed-form optimal 
policy for the exponential demand case. 

5.1. Demand is a Compound Poisson Processes 
Let N, be a Poisson Process with random intensity { X": 
O < u < s } and let Tk be the epoch of the kth arrival of 
N, That is, N, = k for Tk < S < Tk+l. At time Tk we see 
a demand of size Xk where the Xk's are i.i.d. random 
variables with EX > 0, and EX 2 < xo . Let Cd be the set 
of nonanticipatory policies such that fo XNSdNs ? n al- 
most surely. The expected revenue can be written as 

t 

Ju(n, t) = Eu p(Xs)XNsdNs. 

Let JD(n, t) = EX maxx(S)EA fo (r(X(s))ds subject to 
t 

J XNs dNs < n be the optimal revenue for the deter- 

ministic problem. We next show 

THEOREM 6. 

ju (n, t) < jD (n, t). 

PROOF. For ,u ? 0, we define 

ju(n, t, A.) -ju(n, t) + -lEu n-I XNsdNs) 2 ju(n, t). 

Because Xk = XNTk is independent of Nss < Tk, we can 
write 
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Ju(n, t, Eu) = I (P( XT) -)Xkl {Tk ? t} + ny 
k=1 

= zJEXkEu(P(Tk) - A)1 {Tk < t} + nA 
k=1 

= EX E Eu(p(XTk) - A)l}Tk < t} + nA 
k=1 

rt 
? EXE m (p(Xs) )))dN+ + nI 

rt 
=EXEU J(r(X,)- AX,)d, + nA 

rt 
< EX max (r(XN(s)) - IX(s))ds + n/I 

X(s)EA 

rt 
=EX max (r(X(s)) - X(s))ds + nA 

_JD(n, t, A). 

Consequently, 

Ju(n, t) < Ju(n, t, /I) < inf JD(n, u, A) = JD(n t). E 

Thus, again the deterministic problem provides 
an upper bound. The solution to the deterministic prob- 
lem is easily seen to be Xs - D, < S < t, where XD 

- min{X*, X0} and X- n/(tEX). Consequently, 
JD(n, t) = min{r*, r? }tEX, where ro XOp(X0). As 
before, we can use the deterministic solution as a heu- 
ristic for the stochastic problem. Let 

NtxD 

JFP(n t) = pDE min n, 2 Xk 
k=1 

Following the arguments used in Theorem 3 to establish 
the asymptotic optimality of the fixed price heuristic, 
we obtain 

THEOREM 7. 

JOFP(n, 
t) 

JFP(n, 
t) _ 1 

J*(n, t) J*(n, t) 2 /min {n, X*t} 

where p EX 2/EX. 

5.2. Time Varying Demand 
Assume now that the demand rate X (p, s) depends both 
on the price p and the time elapsed s since the start of 

the selling season. Assume further that dependence in 
time is through a positive multiplicative factor g(s), so 

X(p, s) = X(p)g(s) 0 ? s ? t. 

For example, g(s) may be a concave function peaking 
near the middle of the selling season. A simple method 
allows us to transform this problem into one in which 
demand is time homogeneous. Let 

u =G(s) = g(z)dz, O < s ? t, 

and define 

X(p, u) X(p), 0 ? u ? G(t). 

Then, for all s < s', let u = G(s), and u' = G(s'), and 
note that 

f X(p, z)dz = X(p) f g(z)dz = X(p)[G(s') - G(s)] 

= x(p)[u - u] = X(p, v)dv. 

Thus by using the clock u = C(s), 0 ? u ? G (t), instead 
of the clock 0 < s < t, we have transformed the problem 
into one where demand is time homogeneous. Conse- 
quently, all of our results apply to the transformed 
problem. In particular, the FP heuristic becomes: 

pFP = max{p*, p(n/G(t))}. 

By Theorem 3, the performance guarantee of the FP 
heuristic is 

THEOREM 8. 

JFP(n, t) 1 

jD (n, t) 
> 

l/min(n, X*G(t)) 

The above procedure can also be used in the discrete 
price case as well. Indeed as in ?4, let k* be such that 
Xk*G(t) ? n > Xk *+G(t). Then the optimal solution to 
the transformed deterministic problem is to price at pk* 

for 

n - Sk*G(t) 
Uk* =I 

SXk - Xk*+1 

units of time, and to price at Pk*+l for 

_ Xk*G(t) - n 

Xk* - Xk*+1 
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units of time. The stopping-time heuristic for the original 
problem can be constructed by pricing at p k for Sk* 

= G-'(Uk*) units of time in the original clock, and by 
pricing at Pk*+1 for t - Sk* units of time, again in the 
original clock. 

Now, let X*(n, u) denote the optimal intensity for the 
transformed problem when u units of time have elapsed 
(with respect to the new clock) and there are n units in 
inventory. We know from Theorem 1 that X*(n, u) is 
increasing in u. The optimal intensity X*(n, s) when s 
units of time have elapsed (with respect to the original 
clock) and there are n units in inventory is related to 
X*(n, u) by 

X*(n, s) = X*(n, G(s))g(s). 

Now let p *(n, s) denote the optimal price when s units 
of time have elapsed with respect to the original clock 
and there are n units in inventory. Then, by definition, 

X*(n, s) = X(p*(n, s), s) = X(p*(n, s))g(s). 

Consequently, we have 

X(p*(n, s)) = X*(n, G(s)). 

Now since X (p) is a decreasing function of p, it follows 
that p*(n, s) is decreasing in s. This is consistent with 
Theorem 1 viewing s as elapsed time. We note, however, 
that the analogous result does not hold for X*(n, s) since 
its behavior also depends on g(s). 

5.3. Holding Cost and Discount Rate 
Now suppose cash flows are discounted at rate /, and 
a linear holding cost h is charged on existing inventories. 
Let Z(s) be the inventory level at time s. Then 

Z(s) = n -N 

where N, is a Poisson process with random intensity 
{ Xu, 0 < u ? s }. The intensity X, is set to zero whenever 
Z(s) = 0. 

Recall 'U denotes the class of nonanticipatory policies 
that satisfy fo dN, < n almost surely. For any u E 'i, 
the expected discounted revenue is given by 

rt rt 
Eu f e-#Sp(Xs)dNs = Eu e-#Sr(Xs)ds. 

The expected discounted holding cost is given by 

hEu e-3sZ(s)ds = hEu , e-OS(n - J u xdu)ds. 

Integrating the last expression by parts, we obtain 

hEu f ef(n - 
- 

( 1 - e - (t-s)) Xs) ds. 

Consequently, the net expected discounted revenue 
Ju(n, t) is given by 

~~~~~~~~ 
ju (n, t) =Eu e e-'3Sr(X,) + (1 - e ,( t-S ))Xs- hn]ds. 

Let J*(n, t) = maxUE9d Ju(n, t) denote the maximal 
expected net revenue among policies in 'U. Let r((Xs) 
- e-s[r(Xs) + h/(1 - e-(t-s))s -hn], and let JD(, 

t) = maxx5 fo rf(Xs)ds subject to jt Xsds < n denote the 
maximal net discounted revenue when demand is de- 
terministic. Note that r((Xs) inherits the concavity of 
r(Xs), so by Theorem 2 we have 

THEOREM 9. 

J*(n, t) < 
jD (n, t). 

Again, one can show that the deterministic solution 
is an asymptotically optimal heuristic for the stochastic 
problem, though in the presence of holding cost and/ 
or discount rates, it is no longer time invariant. Indeed, 
let JD(n, t, ,) = maxx5 fo [r(Xs) - ,Xs]ds + n,u, then 
JD(n, t) = inf',?0 JD(n, t, ,t). Let ,u* denote the optimal 
dual variable. Then for each s E (0, t) we have r'(Xs) 
= ,u*. Or equivalently, 

Xs = +geO 
h ) e - 

where g(*) f1()* Now, since g(*) is a decreas- 
ing function, and the argument e S (/,* + (h / e) e t) 

- h / /3 is increasing in s, it follows that the optimal 
intensity Xs (resp., price ps) is monotonically decreasing 
(resp., increasing) in s E (0, t). 

At this point it is useful to isolate the holding and 
discounting effects. If there were no discounting, then 

Xs = g(,*- h(t -s)), 

and the argument is strictly increasing in s E (0, t) re- 
gardless of the value of ,*. If there were no holding 
costs, then 

Xs = g(eOSA*) 

and the argument is strictly increasing in s E (0, t) only 
if u* > 0. From the holding cost point of view, the in- 
tuition is that we want to sell initially at a faster rate in 
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order to reduce the cost of holding inventories. From 
the discounting point of view, we are interested in the 
rate at which revenue is flowing in. If n is large enough 
so that ,u* = 0, we want to sell at X* g(0) to maximize 
the revenue rate r(X*). If on the other hand, n is small 
enough so that ,* > 0, then we want to sell at a lower 
rate X, = g(e#s A*) < A* to avoid running out of stock 
before time t. However, since we are discounting we 
start with higher revenue rates. 

5.4. Initial Stock as a Decision Variable 
Suppose we are allowed to determine the initial stock 
n, the order quantity, and also decide the subsequent 
pricing policy. If the initial stock can be purchased at a 
unit cost c > 0, we want to find the order quantity n* 

that maximizes the expected profit 

Ji(n, t) = J*(n, t) - cn. 

This problem reduces to the classical newsboy problem 
if we replace J* above by the expected revenue for a 
given fixed price. If we control this fixed price, then we 
obtain the problem studied by Karlin and Carr (1962) 
and Whitin (1955). 

By Theorem 2, J*(n, t) < JD(n, t); consequently an 
upper bound on H(n, t) (cf. equation (12)) is given by 

f tr(X*) - cn if n > X*t 

tr(n/t) - cn otherwise. 

Treating n as a continuous variable, let nC denote the 
maximizer of JD(n, t). We see that for n > X*t, 
JD(n, t) is strictly decreasing in n, so nC < X*t. For n 

< X*t, flD(n, t) is concave in n, so 

nC= Xct, 

where Xc r'-'(c) < X*. Thus 

fl(n*, t) ? fD(nc, t) = t[r(Xc) - cXC]. 

THEOREM 10. The deterministic solution (nc, Xc) is 
asymptotically optimal as t -- oo. 

PROOF OF THEOREM 10. By Theorem 3, 

l(nC, t) = J*(nC, t) - cnC 

11 D ~~1 
> flD(n c t) - 

2 r(XC) t Xc. 

Consequently, 

H(nC, t) > JJ(nC, t) > 1 r(XC) 

17(n*, t) JJD(nC, t) 2(r(XC) - cXc) 6/ 

Thus, we have 

t s1-(n'1 , t ) limiL 
t-, H-(n*, t) 

REMARK. Using Theorem 1, one can show that n* 
and XC are related in a rather interesting way, namely, 

X(n*, t) < X' ?< X(n* + 1, t). 

5.5. Resupply, Cancellations, and Overbooking 
Suppose additional units can be secured at a unit cost 
b > 0, so the firm now has the option of selling beyond 
its initial inventory (overbooking). We view this option 
in one of two ways: (1) demand is satisfied by placing 
a special order every time a sale is made while out of 
stock, or (2) demand is backlogged and at time t the 
firm orders as many additional units as needed to satisfy 
the backlog. The first case is most common when items 
are hard goods (clothes, appliances, etc.), in which case 
b may represent unit transshipment costs or special 
handling charges. The second case applies to a model 
of overbooking in the airline and hotel industry, where 
b may correspond to the cost of a seat on an alternate 
flight or a room at an alternate hotel site (i.e., a sec- 
ondary supply) or may also be a loss-of-goodwill pen- 
alty for not providing on time service. 

Overbooking is often practiced to compensate for 
cancellations. Here we assume that each reservation is 
canceled independently, at time t, with probability 1 
- p. In addition, we assume that customers who cancel 
are refunded the purchase price less a penalty, which 
consists of a fixed plus variable component. Specifically, 
let c represent the fixed fee and : represent the fraction 
of the price paid that composes the variable fee. Thus, 
a customer who pays price p and cancels gets a refund 
of p(l - A) - c. (See Bitran and Gilbert 1992 and Lib- 
erman and Yechiali 1978 for alternative models that 
consider cancellations and overbooking.) 

Given a non-anticipating intensity control policy X, 
based on the initial inventory n and the current history 
of reservations, the number of reservations N, is Poisson 
with random intensity fo X, dv. Let { Tk: k > 1 } denote 
the jump points of the counting process Ns, 0 < s ? t, 
and let {Zk: k ? 1 } be a sequence of independent Ber- 
noulli random variables taking value 1 with probability 
p and taking value 0 with probability 1 - p. By our 
above assumptions about the cancellation process, these 
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random variables are also independent of the counting 
process Ns. 

We assume that revenues are collected as reservations 
are made and refunds for canceled reservations are paid 
at the end of the horizon. If we disregard the time value 
of money, the net expected revenue can be written as 

rt 
E I p(XTk)l(Tk < t)l(Zk = 1) = E pr(X,)ds. 

k2 1 

If the firm imposes a 1003% penalty of the price paid 
for each canceled reservation, then the expected net 
revenue is obtained by replacing p by p + 3(1 - p) 
above. In addition, if each canceled reservation is subject 
to a fixed penalty c, then we add to the expected net 
revenue the quantity 

rt 
Ec I l(Tk < t)l(Zk = 0) = E c(1 - p)X,ds. 

k21 0 

The number of uncanceled reservations is 

E l(Tk ? t)l(Zk = 1) = dNs 
k2>10 

where Ns is Poisson with random intensity p fos Xvdv. 
If fo dNs > n, we must purchase (fo dNs > n ) + additional 
units at b dollars each. Therefore, the expected net rev- 
enue under a nonanticipating policy u is 

rt 
Vu(n, t) = Eu (p + /(1 - p))r(Xs)ds 

+ Eu c ( 1 - p) X ds - bEl(jX dNs - n) 

where 

00 m 2 0 
V1l(r, 0)- (20 

L bE(Xl - n)+ m <o, (20) 

n denotes the initial inventory (capacity), m denotes 
the possibly negative unsold capacity at time t before 
learning about cancellations, and Xt,, is a binomial ran- 
dom variable with parameters n - m and p. Thus, Xr,, 
- n, if positive, is the number of uncanceled reservations 
in excess of the initial capacity. 

As before, the firm's problem is to find a pricing policy 
u * (if one exists) that achieves an expected revenue 

V*(n, t) = sup Vu(n, t), (21) 
14 E U 

where we let 'U denote the class of all Markovian policies 
satisfying ps E P, Vs. 

In the next subsection we find a closed-form solution 
to the stochastic problems when demand is exponen- 
tially decaying and no cancellations occur (p = 1). We 
then solve the deterministic counterpart for the general 
case and present an asymptotically optimal heuristic. 

5.5.1. An Optimal Policy for the Exponential De- 
mand Function with no Cancellations. Let X(p) 
= ae-P and p = 1, and b > 0. This case corresponds to 
having no cancellations and a unit reorder cost. It per- 
haps most appropriate for applications where items are 
hard goods and the cost b is a per-unit special-order 
cost or per-unit transshipment cost for obtaining ad- 
ditional units. One can verify that in this case V *(n, t) 
is the solution to equation (8) with boundary conditions 
V*(n, t) = 0 if n ? 0 and V*(n, t) = nb if n < 0. As 
before, without loss of generality we take a = 1. Let X b 

argmax (r(X) - Xb) = X*eb. Then V*(n, t) is given 
by 

Flog( (\ t) + eytk L (At)b n> 

V*(n, t) = ( + e?l i n 
t Xbt + nb n < 0 

and the optimal price is given by p*(n, t) = V*(n, t) 
- V*(n - 1, t) + 1. 

Note, for n > 0 we can write, 

exp(V*(n, t)) = exp(J*(n, t)) + enb 

c 

(xboi 

t=1n+1 

where J*(n, t) is the optimal revenue with no reorder 
option (the basic problem), and the second term above 
is always nonnegative. Thus, the expected revenue is 
strictly greater than without the reorder option as ex- 
pected. The price trajectory itself has characteristics 
similar to the basic problem (b = GO), taking upward 
jumps as items are sold and decaying as time elapses 
without a sale. The exception is when the inventory 
drops to zero, at which point the policy switches to a 
fixed price of b + 1. 

5.5.2. An Asymptotically Optimal Heuristic for the 
General Case. For the general case with both cancel- 
lations and reordering, the deterministic problem cor- 
responding to equation (21) can be written as 
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rt 

VD(X, t) = max f (p + /(1-p))r(X(s))ds 
X(s) 0 

+ c(l -P)X(s)ds - b(p X(s)ds-x) 

Now V*(x, t) < VD(X, t) follows by applying Jensen's 
inequality to the third term of V U(x, t) and by viewing 
the integrand inside the expectation as purely a function 
of X and maximizing pointwise. 

To solve the deterministic problem we need to intro- 
duce notation that is pertinent only to this section. Let 

r^(X) (p + /(1 - p))r(X) + c(l - p)X, (22) 

denote the modified revenue rate. Let X0 x/(pt) be 
the expected-run-out rate. At rate X0, we book X0t = x/ 
p ? x units over the horizon, of which p X0t = x show 
at time t'. Let p0 ? p(X0) be the expected-run-out price, 
and r^0 r^(Xo). Let X* denote the least maximizer of 
r^(X), p* p(X*) its corresponding price, and r^* -r^(X*). 
Finally, let Xb be the least maximizer of r^(X) - bp X, pb 

p ( X b) its corresponding price, and r _( X- ) The 
following proposition is given without proof: 

PROPOSITION 5. The optimal solution to the determin- 
istic problem (22) is 

p X* P*t < x 

PD(S) P? pXbt < X < pX*t O < s < t, (23) 

p x < pXbt 

pX* P*t < x 

D(S) i ? pXbt < X < p *t O < s < t, (24) 

X x < pXbt 

and 

rf r*t p X*t < x 

VD(X, t) = bp)+ pXbt < x < pX*t (25) 

( r bp Xb) t + x < pXbt 

Thus if capacity is high (x> p X*t), we price to maximize 
the modified revenue rate (equation (22)). If capacity 
is low (x < pXb), we price at pb, since in this case Xb 

maximizes the modified profit rate r^(X) - bX. For in- 
termediate capacity (pXbt < x < p X*t) we price at the 
expected-run-out price. 

REMARK. If pb > rf'(O), then Xb = 0, and the solution 
reduces to the case with no reorder option provided x 
? 0. 

Notice that the deterministic solution consists of a 
fixed price over the entire horizon. Consider the fixed- 
price (FP) heuristic that prices according to the deter- 
ministic intensities XD(S ), 0 < s < t. The expected value 
of the FP heuristic is given by 

V FP(X, t) = f (p + /(1 - p))r(XD(S))ds 

rt 
+ c( - p)XD(s)ds - Eb(Nt -x)+, 

where Nt is Poisson with intensity f pXD(v)dv. Note 
that the first two terms of V FP(X, t) are equal to those 
of VD(x, t). To establish the asymptotic optimality of 
V FP(X, t), we need a slight variant of ( 18). Let N be a 
random variable with mean A and variance a 2, writing 
(N- = 2 (IN-x I + (N - x)), taking expectations 
and using the Cauchy-Schwartz inequality, we obtain 

1 1 
E(N-x) <- V-2 + (A-X)2 + -(-X) 

2 2 

1 11 1 
< a a + - (Itt - xI + (,u - x)) = a a + - (,u - x)+. 

2 2 2 2 

We can now state 

THEOREM 11. 

VFP (n, t) 
V*(n, t) 

b p X*t p*t?< n 
1-2r*t 

' ?b 
pXt 

pXbt < n < pX*t 

b pbt n < Xbt 

1-2(rb - bpxbt + 2nb <pb 

PROOF. Applying the above bound to E(N, - x)+ 
in V FP (n, t) we obtain 

1 1 
Eb(Nt -n)+ bPXDt + - b(pXDt - n)+. 

2 2 
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Consequently, V FP((n, t) > V D(n, t) - I bPDpt. The 
result follows after dividing by V D(n, t). El 

By observing that when n < 0, E[(N, - n)+] = Xbt 

- n, we obtain the following corollary to Theorem 11: 

COROLLARY 1. If n < 0, then 

VFP((n, t) = V*(n, t). 

That is, when there are no items in inventory, the op- 
timal policy is to fix the price at pb, The reason for this 
is that backlogged items represent a sunk cost that can- 
not be influenced by our pricing policy. Thus, we ignore 
n and simply try to maximize the net revenue rate r(X) 
- p Xb over the remaining time, which implies pricing 
at pb. 

6. Conclusions 
We have shown how a range of inventory pricing prob- 
lems can be analyzed using intensity control theory, 
bounds, and heuristics. By analyzing the deterministic 
version of different versions of the basic problem, we 
were able to obtain both upper bounds on the expected 
revenue and insights into the form of near-optimal pol- 
icies. Exact optimal policies were found in certain cases 
for a family of exponential demand functions. Perhaps 
the strongest conclusion from our results is that using 
simple fixed-price policies appears to work surprisingly 
well in many instances. This is encouraging since the 
optimal dynamic policies are quite jittery and require 
constant price adjustments, an undesirable characteristic 
in practical applications. In the discrete-price case, we 
showed that a policy that varies the allocation of units 
and time to two neighboring prices is nearly optimal. 
The policy provides a good explanation of the structure 
of current yield management practice. 

We believe that this class of inventory pricing models 
represents a fertile area for future research. From a 
practical standpoint, revenue maximization holds the 
potential for dramatic improvements in profitability and 
thus is likely to be a topic of intense interest to managers 
in a wide range of industries. On a methodological level, 
we think that formulating problems in the framework 
of intensity control is a promising approach. Though 
exact solutions appear limited to special cases, one can 
easily obtain bounds similar to those in Theorem 2 that 
relate the stochastic and deterministic variants of the 
problem. No doubt other variants of the problem can 

be attacked using precisely this approach. Similar 
bounds could potentially be useful for a wide range of 
intensity control problems in other application contexts 
as well.2 

2 We thank three anonymous referees and the associate editor for 
providing several references and many helpful comments. The research 
of G. Gallego was supported in part by the National Science Foun- 
dation grant DDM 9109636. The research of both authors was sup- 
ported by the National Science Foundation grant SES93-09394. 

Appendix 
PROOF OF PROPOSITION 1. We first show that the supremum in 

equation (8) can be replaced by maxAE[O,A]. To do so, let Xi be an 
arbitrary intensity satisfying Xi > A*. By concavity of r(X) and the 
definition of X*, we have r(X*) 2 r(Xi), and since J(n, t) is non- 
decreasing in n, we have 

r(X*) - X*[J(n, t) - J(n - 1, t)] 2 r(Xi) - Xi[J(n, t) - J(ii - 1, t)]. 

Hence the optimal choice of X is always within the set [0, X*], a 
compact set. Combining compactness with the fact that r(X) is con- 
tinuous and bounded establishes the conditions required by Bremaud 
Theorem 11.3 for the existence of a unique solution to equation (8). 

PROOF OF THEOREM 1. The fact that J*(n, t) is strictly increasing 
in n and t is straightforward to show, so we omit the details. We next 
show by induction that X*(n, t) is strictly decreasing in t and in 
so doing establish that X*(n, t) is strictly increasing in n and that 
J*(n, t) is strictly concave in both n and t. The results for p*(n, t) 
follow from the fact that X(p) is a regular demand function. 

We begin with the case ii = 1. Note that from equation (8), 

J*(n, t) = J*(n - 1, t) + r'(X*(n, t)) 2 J*(n - 1, t) (26) 

with strict inequality holding when t > 0. For n = 1, observe that 
J*(1, t) = r'(X*(l, t)). Thus, since J*(1, t) is strictly increasing in t, 
we have 

0 < aJ*(1a ') = r(X*(1, t))X*'(1, t), 
,at 

which along with the concavity of r(*) implies that X*( 1, t) is strictly 
decreasing in t. It also follows from equation (8) that 

aJl(1, t)- r(X*(1,t))-X*(1,t)J*(1,t). 
,at 

Again, combining this with the fact that J*(1, t) = r'(X*(l, t)), we 
find 

daJ (t = _ X*(1, t) at <0, 

which shows J*(1, t) is strictly concave in t. Thus, all of the claimed 
properties hold for n = 1. 
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Next assume that X*( n - 1, t) is strictly decreasing in t. From equation 
(26) we see that r'(X*(n, t)) > 0 for t > 0, implying X*(n, t) 
< *. Note that as t approaches zero from the right in problem (26), 

lim,_0 r'(X*(n, t)) = 0, so X*(n, 0+) = A*. Hence, X*(n, t) is initially 
strictly decreasing in t. Now assume for the sake of contradiction that 
X*(n, t) is strictly decreasing over [0, to) but is nondecreasing over a 
nonempty interval [to, t1]. Taking derivatives with respect to t in 

equation (8), we find that over [0, to) 

aJ*(l, t) aJ*(> l - 1, t) (27) 
,At At 

with the opposite inequality holding over [ to, t1 ]. From this and equa- 
tion (8), it then follows that over [0, to), J*(n, t) - J*(n - 1, t) < J*(n 
- 1, t) - J*(n - 2, t), and consequently X*(n, t) > X*(n - 1, t), again 
with the opposite inequalities holding over [to, t1]. But this implies 
that X*(n - 1, t) must be nondecreasing in the neighborhood of to, 
which contradicts the inductive hypothesis. Therefore, we conclude 
that X*(n, t) must be strictly decreasing in t and that X*(n, t) > X*(n 
- 1, t). 

We now use these facts to show concavity of J*(n, t). Indeed, the 
fact that X*(n, t) is strictly increasing in n, the concavity of r(. ) and 
(26) imply 

J*(n, t) - J*(,l - 1, t) < J*(n - 1, t) - J*(n - 2, t), 

so J*(n, t) is strictly concave in n. Also, equations (8) and (27) imply 

a21*(n, t) - X*(n, t) aJ*(n, t) J*(n - 1 )<0 
at 2 at atJ] 

so J*(n, t) is strictly concave in t. The claims for p*(n, t) follow 
directly from the results for X*(ii, t). 

PROOF OF PROPOSITION 2. Consider the deterministic problem (11). 
Note that the integrand in problem (11) is simply the revenue function, 
r(X), which is concave by assumption. There are two cases. First, 
suppose the maximizer of r(X), X*, satisfies X*t c x, then clearly X, 
= X*, 0 c s c t is the optimal solution since this choice maximizes the 
integrand pointwise. In the second case, X*t > x, it follows from the 
fact that r(X) is concave that for a given value y = f0 X5ds, X. = y/t, 
0 c s c t maximizes the integral. The maximum revenue given y is 
therefore t(y/t)p(y/t) = tr(y/t). Now since y/t < X* and r(X) is 
increasing for X < X*, it follows that y = x in any optimal solution, 
and thus Xs = (x/ t) = X ', 0 c s c t maximizes the integral. Converting 
these rates to their corresponding prices and computing the corre- 
sponding total revenue associated with this solution establishes the 
proposition. 

PROOF OF THEOREM 5. Notice that T- is a stopping time, since T- is 
finite with probability one and the event r < s, can be determined 
by the history of the arrivals up to time s. To obtain a lower bound 
on JsT(n, t) consider a wasteful heuristic that reserves m (resp., n 
- m) units to be priced at pk (resp., pk+l) over tm (resp., t - tm) units 
of time. Let JW(n, t) denote the expected revenue of the wasteful 
heuristic. Evidently, the wasteful heuristic is a lower bound on the 
stopping-time heuristic since if T = Tm < tm the wasteful heuristic 
delays the selling of the remaining ii - m units until time tm. On the 
other hand, if T = tm < Tm more than n - m units are left at time tm, 

and the wasteful heuristic only makes n - m of them available for 
sale at price Pk+l- In spite of these limitations, we will show that the 
wasteful heuristic, and consequently the ST heuristic, is asymptotically 
optimal. 

To do this, let tn_m n - m / Xk+l. Note that t,-,, is the time it takes 
to sell n - m items at price Pk+l when the demand is deterministic. 
Consequently, t' = tm + tn-m is the total time it takes to dispose of the 
n items when the demand rates are deterministic. Observe that by 
our choice of m we have 

t Xk - Xk+l < t' 
C t (28) 

XkXk+ 1 

Consequently, a lower bound on the wasteful heuristic can be obtained 
by delaying the start of the sales by t - t' so that effectively the 
horizon is shrunk to t'. Recall that the deterministic revenue is 

JD (n t) = rk 
- 

rk+1 n + Xkrk+ - Xk+lrk t 
Xk - Xk+1 Xk -Xk+l 

so by equation (28) JD(n, t) < JD(n, t') + (Pk+l - Pk). We thus have 

IST ( t) Jw(n, t), > W(n, t ) . (29) 
J*(n, t) JD(n, t) 

- 
JD(n, t') + (Pk+l 

- 
Pk) 

( 

Now if t oo with Xkt 2 n > Xk+1t. Then, by construction, t' X0 

with Xkt' 2 n > Xk+lt . Evidently JW(n, t') Xo and JD(n, t') Xo 

as t oo, hence, if we can show that 

lim Jw(n, t') 

I 
D 

( n, t') 

we can conclude that 

lim JW(n, t') =1 
tJ_ ID(n, t') + (Pk+l - Pk) 

and by (29) that the ST heuristic is asymptotically optimal. 
Notice that showing this first limit is equivalent to showing it holds 

for a subsequence { t. -m /(a Xk), m = 1,. } where 

m = [aXkt,m] = aXktmn. 

Thus, we drop the prime notation and assume that m = aXkt and that 
n - m = a Xk+1 t are integers. 

Let NAk, be a Poisson random variable with rate XkS. Clearly the 
expected revenue for the wasteful heuristic is 

Jw (n, t) = pkE min {Nxkeat, 
a Xkt} + pk+1E min {NAk+l&t, aXXk+1t} 

Noting that E min (Nx,, Xs) = ENAS - E(NAS - Xs)+, and that ENAS 
= Var(Nx,) = Xs, and using equation (18) we obtain the following 
lower bound on the performance of the wasteful heuristic. 

JW(n t) 2 Pk[aXkt 
- 

1/2VaXkt] + Pk+l[aXk+lt 
- 

1/2VaXk+?t]. 

From the deterministic solution, we know that JD(,, t) = pkaXkt 
+ Pk+latXk+lt. Taking ratios, we observe that 

wJD(n 
t) > 1 - 1/21 + 

1 

LhicXkt e sXk+?th 

which establishes the result. 
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