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Abstract

We analyze a class of stochastic and dynamic vehicle routing problems in

which demands arrive randomly over time and the objective is minimizing wait-

ing time. In our previous analysis ([5] and [6]) on this problem, we needed to

assume uniformly distributed demand locations and Poisson arrivals. In this

paper, using quite different techniques, we are able to extend our results to the

more realistic case where demand locations have an arbitrary distribution and

arrivals follow a general renewal process. Further, we improve significantly the

best known lower bounds for this class of problems and construct policies which

are provably within a small constant factor relative to the optimal solution. We

show that the leading behavior of the optimal system time has a particularly

simple form which offers important structural insight to the behavior of the sys-

tem. Moreover, by distinguishing two classes of policies our analysis shows an

interesting dependence of the system performance on the demand distribution.
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1 Introduction

Dynamic vehicle routing problems occur when one has to visit customers (demands)

that arrive sequentially over a period of time. The objective is to schedule these

visits in a way that is economical yet also provides an acceptable service level (wait

for delivery/service).

Because future demand is often uncertain, it is natural to view the sequence of

arrivals in dynamic vehicle routing problems as a stochastic process. That is, at time

t we know the location and age of all demands that have arrived prior to time t, but

we have only a probabilistic characterization of future demand locations and arrival

times. In addition, if the planning horizon is sufficiently long (as in the day-to-day

operation of a distribution facility), we may view the problem as that of finding a

stationary policy for scheduling vehicles that minimizes a time average cost over an

infinite horizon. In such a setting, the economical delivery objective corresponds to

minimizing the average distance traveled per demand served, while the service level

objective corresponds to minimizing the average wait for delivery/service.

There are many practical settings in which such problems arise. Any distribution

system which receives orders in realtime and makes deliveries based on these orders

(courier services, deliveries of flowers and pizza, etc.) is a clear candidate. Other

applications include scheduling repair crews to service geographically dispersed fail-

ures. Examples of this type include repairing electric utility networks, contract

maintenance of customer premise equipment by computer and telecom equipment

vendors and road/highway maintenance. A third important application is finished

goods distribution from factories to retailers. Arrivals in this context correspond to

the completion of a unit at the factory that is designated for a particular retailer.

The average waiting time in this case not only represents a service level to the re-

tailer, but, for a fixed production rate, is also proportional to the average inventory

held in the distribution channel. A specific example of this type is the delivery of

automobiles from assembly plants to local dealers. We refer the reader to the excel-
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lent general discussion in [15] and to the more specific discussions in [5] and [6] for

more background on dynamic vehicle routing problems,.

1.1 The Dynamic Traveling Repairman Problem (DTRP)

In [5] and [6] we analyzed a version of a dynamic vehicle routing problem, which we

call the dynamic traveling repairman problem (DTRP). Demands arrive according

to a Poisson process to a Euclidean service region, and their locations are random

variables that are independent and uniformly distributed throughout the service

region. (These locations are random only in the stochastic processes sense mentioned

above; namely that at time t we know with certainty the locations of demands that

arrived prior to time t, but future demand locations form and i.i.d sequence.) At

each location, the vehicle serving the demand must spend some amount of time in

on-site service. We assume this time is a generally distributed, i.i.d. random variable

for all demands that is realized only when service is completed. The objective is to

find a stationary policy 1/ for routing one or more vehicles that travel at constant

velocity so that the average system time (wait for completion of service), T,, is

minimized. That is, we seek a policy that maximizes the level of service provided

by the fleet of vehicles.

For the DTRP, we found policies that were provably optimal in light traffic and

policies that had system times whose ratio to the optimum system time, T*, were

provably within a constant factor in heavy traffic. The best of these later policies,

the so-called Modified TSP policy [6], has a guarantee of T,IT* < 3.6. In [6] we also

extended the model the case where vehicles have an upper bound q on the number

of demands they can serve before having to return to a given depot location.

1.2 Overview and Contribution of This Paper

In this paper, we extend the analysis of the DTRP to the case where demand lo-

cations are distributed according to an arbitrary, continuous density defined over
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the service region and arrivals are generated according to a general renewal pro-

cess. (Formal definitions are given in Section 2.) These extensions are important

for both practical and theoretical reasons. On the practical side, one would clearly

like to relax the assumption of uniformly distributed demand locations, since this

distribution is rarely encountered in real systems. Hence, to apply such models, an

understanding of the problem cost and solution structure under nonuniform distri-

butions is essential. Also, while the Poisson arrival assumption may be appropriate

for certain repair systems, other applications (e.g. finished goods distribution from

assembly plants) have less variable interarrival times: therefore, it is important to

understand to what extent the results hold for more regular and/or variable arrival

sequences.

From a theoretical perspective, these generalizations are challenging because

uniformity and PASTA [17] were exploited heavily in our previous analysis; thus,

entirely different analytical techniques are required. These techniques are introduced

and developed in Section 3. Our new analytical approach has the added benefit of

strengthening the lower bound on T* by a factor of two, and thus we are able to

improve our heavy traffic guarantee for the Modified TSP policy to T,/T* < 1.8,

which brings the guarantee into a more practical range. (Indeed, we conjecture that

the ratio is in fact one, and thus the Modified TSP policy is asymptotically optimal

in heavy traffic.)

These extensions also reveal interesting structural properties of the problem

that are not apparent in the uniform case. Specifically, it turns out that we need

to distinguish between policies that provide the same level of service (i.e. mean

waiting time) for all locations, which we call spatially unbiased policies, and those

which may produce waiting times that vary with location, which we call spatially

biased policies. We fully characterize these two behaviors and construct policies

which are provably good for both in Section 4. In Section 5, we compare these two

behaviors and show that there is always an increase in the optimal system time if one
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requires spatially unbiased service. Further, this gap widens as the the distribution

of locations becomes "less uniform".

We re-examine the lower bounds in Section 6 and show that they are as tight

as possible given the information used in their derivation. Thus, improvements can

only be made by exploiting more vehicle routing structure. Finally, in Section 7 we

briefly mention some other extensions to the case of capacitated vehicle and higher

dimensional spaces. In Section 8, we give our conclusions.

2 Notation and Problem Definition

A total of m identical vehicles operate in a bounded service region A C R2. Vehicles

travel at a constant, finite velocity v. Demands arrive to A according to a general

renewal process with intensity . The interarrival times have finite variance co2 and

Laplace transform A*(s). At each location, vehicles spend some time s in on-site

service that is i.i.d. and generally distributed with finite first and second moments

denoted by S and s 2 respectively.

Demand locations {Xi; i 1 are i.i.d. and distributed according to a continu-

ous density f(x) defined over A. They become known (are realized) at a demand's

arrival epoch. The notation f(x) is short for f(xl,z 2 ) (x = [l x 2]). Likewise, we

write f f(x)dx for f f f (xl, 2)dxldx 2. The density f(x) satisfies

P{Xi ES} = s f(x)dx VS C A

and

J f(x)d = 1.

For our analysis, we require the technical condition that 0 < f f(x) < <

oo, x E A.

A policy for routing the vehicles is called stable if the number of demands in the

system is bounded almost surely for all times t. If a policy is stable, p Am is the

fraction of total vehicle time spent in on-site service. The term heavy traffic is used
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to denote the condition p --+ 1. The mean waiting time in this system is denoted

generically by W and the mean system time (wait in queue plus on-site service) by

T= W+s.

Let M denote the subset of all stable, stationary policies p in which decisions are

taken only at service completion epochs and consist of choosing one of the demands

in the system to visit next or alternatively choosing to visit a fixed depot location

xo. We point out that in the uniform demand case discussed in [5] and [6], we

allow for a slightly more general class of policies in which vehicles can wait at any

location x and change destinations at any point in time. Note that within the class

M a vehicle can choose the option of staying put only at the depot x. (At the

depot no restrictions on the timing of decisions is imposed.) This turns out to be

an important property for our subsequent analysis.

Letting T, denote the system time of a particular policy p E M, the DTRP is

then defined as the problem of finding a policy p* such that

T, = inf Tl p E M}.

We let T* denote the infimum on the right hand side above. A policy for which 

is bounded is said to have a constant factor guarantee. If limp-+1 T* is bounded then

the policy p is said to have a constant factor guarantee in heavy traffic.

We shall also need two definitions mentioned informally in Section 1. In these

definitions, X is the location of a randomly chosen demand and W is its waiting

time.

Definition 1 A policy p is called spatially unbiased if

E[WIX S] = W V S CA.

and

Definition 2 A policy p is called spatially biased if there ezists sets S1,S 2 C A such

that

E[WIX E Si] > E[WIX E S2],

7
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If we let W(x) - E[WIX = x], then observe that for spatially unbiased policies

W = W(x) for all x while for spatially biased policy W is given only by the more

general relation

W = IA W(x)f(x)dx.

3 Heavy Traffic Lower Bounds

In this section, we derive our main lower bounds on T*. The bounds are established

using a different proof technique than that used in [5] and [6] that not only allows

us to consider general spatial distributions and arrival processes, but also improves

on the constant value for the Poisson, uniform case (f(x) = 1/A). We begin by

proving some lemmas related to "spatial queues" in the system that culminate in a

generic lower bound on T*. This bound is then specialized to the spatially biased

and unbiased cases to arrive at our main lower bounds.

3.1 Preliminary Lemmas

3.1.1 Spatial Queues on Subsets of R2

We associate a queue with every S C 2, henceforth referred to as simply as the the

queue S, by considering S to be a "black box" that has arrivals (demands arriving to

S) and departures (service completions within S). Let N(S) denote the time average

number of customers in the queue S. Note that since all demands are located in A,

N(S) = N(S n A) for all sets S. In particular, the total time average number in

queue, N, is given by N = N(A).

Let C(x, z) be the set of points within a distance of z from the location x (i.e.

C(x, z) = {YI Ily - xl < z}). For all E A, we define the following limit, which is

essentially the time average density of demands in queue at locations x:

1 lim N(C(x,z))
N z-.o 2 (1)
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We shall assume that if the system is stable, then this limit exists. Further, we will

need a regularity condition on ; namely, that if f < f(x) < f for all x E A, then

_ < (x) < for all x E A, where these bounds on +(x) may depend on f(x) but

not on N. Intuitively, this condition says that the density of demands in queue at

any location x in the system grows uniformly as N -- oo.

From the definition of +(x) and the linearity of expectation, we have for any

subset S of W2 that

N(S) = N s (x)dx. (2)

Also, since N(A) = N and N(.) is always positive, ¢(x) satisfies

JA (x)dx = 1 (3)

>(x) > 0 V x EA. (4)

It is these last two properties of ; that give it its interpretation as a density function.

3.1.2 The Arrival Process to "'Small" Subsets S

We next show that if S is small, the expected number of demands left behind by a

random departure from S is approximately the time average number in queue N(S).

This result which will be useful in our subsequent analysis.

Let the random variable Y(S) denote an interarrival time of the queue S, p(S) =

fs f(x)dx denote the probability that an arrival falls in the set S and A(S) = Ap(S)

denote the arrival rate to S. Note that Y(S) is a geometric sum of interarrival times,

and thus its transform F~(s)(s) is given by

F (S) = A* (s)(p(S)
F()s= 1 - A*(s)(1 - p(S))' (5)

Finally, let n+(S), a random variable, denote the number of customers left behind

by a random departure from S, W(S) denote the waiting time in this queue and

recall N(S) denotes the time average number of demands in S. These definitions

allow us to state the following lemma:
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Lemma 1 Let IISII denote the area of S, then

E[n+(S)] = N(S) + o(llSII).

In particular, if S = C(x, z), then

lim E[n (C(x, ))] = NO(x).

Proof

Note that if the region A itself has Poisson arrivals, then for all S, E[n+(S)] =

N(S). This follows from PASTA [17] and the fact that customers are served sequen-

tially (one at a time). To prove the lemma, it is therefore sufficient to show that

the normalized interarrival time

Y(S) - Y(S)

has an exponential distribution for IIS11 - 0 and then invoke the above PASTA

result.

Letting F1 (s)(s) denote the transform of Y(S) and suppressing the argument S

in p(S) for brevity, we obtain

Fy(s)(s) = J10 e-8 t dF(s)(t)

= J e-tdFy(s)(A-l(S)t)

= f e-PltdFy(s)(t)

- F(s,(sPA).

Note that IISI - O implies p(S) - O. Therefore using (5), taking the limit as p - O

and applying L'Hospital's rule we obtain

lim F* (s) = lim A*(spA)p
p-0 Y(S(s) P-o 1 - A*(SpA)(' - p)

= lim A*(spA) + pA'(spA)sA
p- A*(spA) - (1 - p)A'(spA)sA

1
l+s'
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which is the transform of a exponential random variable with unit intensity.

C (Lemma 1)

The key insight shown by this lemma is that sampling a renewal process with

low probability generates a Poisson process. Thus, for small regions S, the arrival

process to the queue S is approximately Poisson.

3.1.3 Preliminary Lower Bounds

We now combine the above results to derive an important lemma relating the ex-

pected nearest neighbor distance at a completion epoch to N, the average number

in queue. Let di denote the distance traveled from demand i to the next demand

served after i; that is, the distance the serving vehicle travels after departing from

i. Let Zt' denote the distance from the server to either the depot or the closest

unserved demand (which ever is smaller) at the completion epoch of demand i (the

"nearest neighbor" distance). That is, Z* is the decision that minimizes di; thus,

E[Zr] < E[di] and

E[Z*]-- lim E[Zi*] < lim E[di] d.
i--+oo -- OO

We are now ready to state and prove the following key lemma:

Lemma 2

lim VWNE[Z*] > 2 £ q 1/ 2 (x)f(x)dx
N-..oo 3 V A

Proof

Consider a randomly tagged demand arriving at location X and condition on

the event {X = xz. Recall that n+(C(x, z)) denotes the number of customers in the

set C(x, z) at the completion epoch of this customer. Then,

P(Z* < zlX = ) = P(n+(C(x, z)) > 0) E[n+(C(x, z))], (6)

where the last inequality is due to the fact that n+(C(x, z)) is a nonnegative, integer-

valued random variable. Note that we have implicitly assumed that the depot

11

III



(location o) is not within a radius z of x, else the probability above would be one.

We consider this alternate case below.

Considering the service completion of our tagged demand as a departure from

the queue C(x, z), we therefore have by Lemma 1 above that as z -* 0,

E[n (C(x, z))] = N(C(x, z)) + o(z2) = N J() (x)dx + o(z2).

Expressing the integral above in terms of its asymptotic (z --, 0) value and substi-

tuting into the bound (6) implies

P(Z* > zX = x) > 1- Nirz 2q(x) - No(z2 ).

Defining c = Nir(x), we therefore have

E[Z*IX = ] = J P(Z* > zlX = )dz

c /2 c-l1/2
> x, (1 cz2)dz- N Jo (z2)dz

= +3 2 -1/2() - o(N-1/2 )

As mentioned, this bound is valid as long as the depot at xO is not within a radius

c-l/2 = [Nr(x)]-/ 2 of the location x. Let V(N) = {x 1 - xo0l < [N'(x)] - 1/ 2 }

denote the set of points for which the bound is not valid. We next establish that

for large N, the contribution to the lower bound from the set D(N) is negligible

- and it here that we need our technical assumptions on f(x) and +(x). First

note that (x) > VN implies f(N) dx < O(1/N). Using the trivial bound

P(Z* > zX = ) > 0 for the points in V(N) and removing the conditioning

{X = x} implies,

E[Z*] 2> J -V1(N) _ / 2(z)f(x)d -o(N /2)

> [ 2[IA-/ 2 (x)f(x)dx - -l/2fJ dx] o(N-1/2)- 3 VqW-N- fD
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2 - J -1/ 2 (x)f(x)dx -o(N-/2)

which shows the contribution due to D(N) is indeed insignificant. Multiplying both

sides above by vW and taking the limit as N -- oo then proves the lemma.

E] (Lemma 2)

Lemma 2 can be used to prove the following intermediate bound on the optimal

system time T*:

Lemma 3 There ezists a constant 7 such that

lim T*(1 _ p)2 > 72 A 1/2(x)f (x)dx]
p--+l v2 m2

where 7 > -

Proof

Consider the following necessary condition for stability

d m
s+-<-.

v A

Using the fact that E[Z*] < d, multiplying the second term on the left hand side

above by N and rearranging implies

V~4(1- p) > A [Z
my

Note that since N is at least as large as the mean number in queue in the corre-

sponding G/G/m queue (i.e. the queue with v = oo), as p -- 1, we must have

N -+ oo. Therefore taking the limit as p -+ 1 (and consequently N -- oo) on both

sides above and applying Lemma 2 we obtain

lim \v'(1 - p) > A A ' 1 2 (x)f(x)dx
p-+l mV

where Y > g. Squaring both sides and using T > W = we obtain Lemma 3.

O (Lemma 3)
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3.2 A Spatially Unbiased Lower Bound

As mentioned, Lemma 3 is only an intermediate bound since the functions (x)

remains unspecified. Determining +(x) for the unbiased case gives us the first of our

main heavy traffic theorems:

Theorem 1 Within the class of spatially unbiased policies

A [ f l/(2)dxl
lim T*(1 - p)2 > 72 f 2 xd

where -y > -- '

Before proving this theorem, we note that it differs from the heavy traffic bound

in [5] and [6] in that it is an asymptotic bound while our earlier bounds are valid for

all values of p; however, Theorem 1 improves on the constant value 7 by a factor of

,/2 and thus increases the bound by a factor of two.

Proof

Consider the queue C(x, z) and recall that W(C(x,z)) and N(C(x,z)) are the

mean wait and mean number within subset C(x, z) respectively. By Little's Theorem,

N(C(x, z)) = (A X f()d) W(C(x, z)).

However, if the policy being used is spatially unbiased this implies that W(C(x, z)) =

W. Substituting this above and recalling that N(C(x, z)) = N fc(x,z) ()d we

obtain

N fc(xz) ( 4, AW JC(,z) f()d ,

which, since N = AW, implies

JC(x,z) (4)d= jC(x,z) f()c.

Letting z -- 0 above and noting that the above equality is true for all sets C(x, z)

implies that (x) = f(x) V x E A. Making the substitution (x) = f(x) in the

bound in Lemma 3 we obtain the theorem.
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f] (Theorem 1)

Note that +(x) = f(x) also implies = f and S = f, which confirms our

regularity assumption on (x).

3.3 A Spatially Biased Lower Bound

Theorem 1 gives an asymptotic bound for the case where unbiased service is a

constraint, perhaps imposed as a matter of policy. What is the system time behavior

when this constraint is relaxed? The answer, in part, is provided by our second main

theorem:

Theorem 2 Within the class of spatially biased policies

iT( p)2 A[AA f2133(x)dxlim T*(1 - p)2 > 72 
p---* l -- m2 v 2

where > -.

Proof

Since no assumption of unbiased service is made, consider the following mini-

mization problem for the integral term in Lemma 3.

z* = min J b-1/2(x)f(x)dx (7)

subject to J (x)dx = 1

(x) > O.

Using the value z* as a lower bound on the integral term in Lemma 3 will give us

Theorem 1.

Note that the objective function is convex in +(x) and the constraints are lin-

ear; thus, (7) is a convex program. Relaxing the equality constraint above with a

multiplier, we obtain the following Lagrangian dual

z*(=) = )omin - 2l(x)f(x)dx + ii [LA r(x)dx -1]

= 1,4 (min [-l/2(x)f(x) + (x))] dx - (8)

15
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By differentiating the integrand above and setting it equal to zero, we see that a

pair (*(x), *) for which

l[s*(x)]-3/2f(x) -+ = V x EA (9)
2

f *(x)dx = 1 (10)

+0*(x) > 0 (11)

will satisfy the Kuhn-Tucker necessary conditions for optimality. One can verify by

substitution that

*(x) = [ f2/3(x)dx] f2/3(x) (12)

3/2
=* -[J f2/3(x)dx] (13)

is such a pair. The fact that (7) is a convex program implies that these conditions

are also sufficient to assure global optimality. Substituting the value +*(x) above

into Lemma 3 gives us the theorem.

0 (Theorem 2)

Again, note that the regularity condition _ < *(x) < is satisfied if f < f(x) <

f7.

4 Heavy Traffic Policies

We next examine two policies that have provably good performance with respect to

the lower bounds of Theorems 1 and 2. The policies are modifications of policies

introduced in [5] and [6].

4.1 A Provably Good Spatially Unbiased Policy

The spatially unbiased policy we consider is defined as follows:

The Unbiased (U) TSP Policy Let k be a fixed positive integer. From a cen-

tral point in the interior of A, subdivide the service region into k wedges

16



Al,A2,...,Ak such that f, f(x)dx = i = 1,2,...,k. (One could do this

by "sweeping" the region from the depot using an arbitrary starting ray until

fA 1 f(x)dx = ;, continuing the sweep until fA 2f(x)dx = ;, etc.) Within each

subregion, form sets of size n/k (n is a parameter to be determined.) As sets

are formed, deposit them in a queue and service them FCFS with the first

available vehicle by forming a TSP on the set and following it in an arbitrary

directions. Optimize over n.

The following proposition shows that this unbiased policy is guaranteed to within

about 80% of the optimal policy in heavy traffic.

Proposition 1 Let Tu be the optimal system time over the class of spatially unbi-

ased policies. Then

< 2 1.8 asp 1.

where ]3 : 0.72 is the TSP constant in the Euclidean plane (see [3] and [10]).

Proof

We first obtain some moments for the random variable r, the time to service a

set. Let Li denote the length of the optimal TSP on a set in region i. Note that

E[r] = + - E[L],
i=l

Observe that kf(x) is the conditional density in any given subregion. From the

asymptotic TSP results of [3], we can therefore assert that almost surely

rnO = V A fl/2(x)dx

and that E[Li]/x/§~ converges to this value as well. Thus,

E[r] 1 E E[Li]

(n/k) - 'i=1 V

= S vi+ Jf( (x) d x

= s + f1f'/2(x)dx (14)s s fnJ

17
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To determine cr, consider the random variable L which is an equiprobable se-

lection from the set of random variables {Ll,..., Lk}. That is, L is the random

variable such that a2 = oa2 + Var[L]. Note by the above asymptotic behavior

of Li/v/n that for large n the random variable L/6V approaches an equiprobable

selection from the set of constants {/31 f /2 (x)dx, . ,3 fAk f1/ 2(x)dx}, and thus

it follows that for fixed k

Va IL] = Var[L] = 0(1).
n X/n

Hence
2

(n/k) = ' + 0(1). (15)

We will use (14) and (15) shortly.

Note that each region independently generates its own arrival stream of sets

and thus the input to the resulting queue of sets is the superposition of k renewal

processes, one from each region. (A queue is denoted FGI/G/m if its input process

is the superposition of k independent renewal processes (not necessarily identical)).

We analyze this resulting queue using the following theorem of Inglehart and Whitt:

Theorem 3 (Inglehart and Whitt [9]) Consider an m server queue fed by the

superposition of k renewal processes. Let 1/As and oa2, denote, respectively, the mean

and variance of the interarrival time of the i-th renewal process, i = 1, 2,..., k. Let

1/pj and 2ab denote the mean and variance, respectively, of the service times at

server j = 1, 2, ... , m. Define A i= i p p and p-= A. Then as p -- 1

the mean waiting time in queue, W, satisfies

= A3 2 +m 3 2
W Ei 3 X P30' 4bj (16)2p2(1 p)(16)

Let Ai = /n denote the arrival rate of sets to region i and = k= i kA

denote the overall arrival rate of sets. Since the interarrival time in each subregion
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is a geometric sum of interarrival times in the entire region, one can easily show

that the variance of the interarrival time of sets from subregion i, r-2i, is given by

2 (2 k-1
ai = n( + A2

where oa2 is the variance of the interarrival times of demands to the entire region A.

This implies that
k A2 2 1-1

ai = a2(a + -)k A
i=1

We shall use the fact that for large values of k, the right hand side above is approxi-

mately ;A 2 , and in heavy traffic, A c . Using these facts and applying (14) and

(15), we can therefore establish the following limit for Wset, the time a set waits in

queue:

Wset 2(1 - kA E

[A +1 (s2 + O(1))]
2(1 - p - m A fl/2 (x)dx)

Note that the stability condition for this queue implies that p+ m-- A f f/ 2 (x)dx <

1, which implies

n > 2 (A f 1 /2 (x)dx) 2

m 2 v 2 (1 - p) 2

so n - oo as p - 1 and thus using TSP asymptotics is valid in heavy traffic.

The waiting time Wset is not itself the wait for service of an individual demand;

it is the wait in queue for a set. The time of arrival of a set is actually the time of

arrival of the last demand in that set. Therefore, we must add the time a demand

waits for its set to form, denoted W-, and also the time it takes to complete service

of the demand once its set enters service, denoted W + . By conditioning on the

position of a randomly chosen demand in its tour, one can easily show that

Ink n
w- _ Z(k)2 A 2"'
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and

W + < _( + O(V/)

where the O(\/i) term is due to the TSP travel cost to service the sets of size n/k.

Adding W-, W + and Wset we obtain the following bound on Tu

n(1 + m) A + [ (2 q O+(1))]
Tu ~n k + =k ,O

2A + 2(1 - p- m fA f/ 2 ()d) + O(

Making a change of variable to

A3 fA fl/2 (x)dx
Y mv(1 - p)/' '

the bound can be written

A (fA fi/2 (x)dx)2 ( + M) [ + (2 + 0(1))] + 1
2m 2 v2(1 _ p)2 y 2 2 ( 1 -p)(-y)- )

An approximate optimal value for y is

m [ + ( + 0(1))] (1- P)
y* - 2 (fA fl/2 (x)dx)2 (1 + e)

Substituting this value into the above bound we find that as p -A 1,

P3 2(fI f/ 2 (x)dx)2 (1 + )
2m 2 v2 (1 - p) 2

where the second order term is 0((1 - p)-3/2. The proposition then follows by

comparing the above leading behavior to the bound in Theorem 1 and choosing k

arbitrarily large.

0 (Proposition 1)

4.2 A Provably Good Spatially Biased Policy for Piece-Wise Uni-

form Demand

We next propose a policy that achieves a performance guarantee of 2 1.8 with

respect to the spatially biased bound lower bound when f is a piecewise uniform
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density, i.e. there exists a partition of A into J subsets A 1 , A 2,.. . , Aj such that

f(x) = j d x E Aj, j = 1, 2, ... , J. In particular, for such a density note that

JI f 2 3 (x )dx = E 82/3 Aj.
j=l

Though such densities is not perfectly general, one could approximate a continuous

density by a piecewise continuous density and let the approximation become finer

and finer to handle more general cases. Moreover, in practice a piecewise uniform

density is probably adequate. The policy is defined as follows:

The Biased (B) TSP Policy Let A41 ,A 2 ,.. .,Aj be a partition of A such that

f(x) = lj V x E Aj, j = 1,2,..., J. Let Aj denote the area of Aj. For a

given positive integer k, partition each subset Aj further into kj = ,j/3 Ajk

regions of area Aj/kj = (j2/3k)-1 (k is a scale factor that will be chosen

arbitrarily large; hence, we assume an integer kj can be found such that kj/k

is sufficiently close to .2/3 Aj). Within each of these subregions, form demands

into sets of size n/k as they arrive. As sets are formed, deposit them in a queue

and service them FCFS with the first available vehicle as follows: (1) form a

TSP on the set; (2) connect the tour to the depot through an arbitrary point

in the tour; and (3) follow the resulting tour in an arbitrary direction servicing

demands as they are encountered. Optimize over n.

Let the the system time of this policy be denoted TB. We shall prove the

following proposition:

Proposition 2 If f is a piecewise uniform density and TB is the optimal system

time over the class of biased policies, then

TB 2 1.8 as 

- 2y2
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Proof

We again begin by obtaining the first two moments of the random variable r, the

time to service a randomly chosen set of demands. A set formed in Aj will be called

a type j set. Let pj - jAj denote the probability that a randomly selected set is

a type j set. (Note that since the set size is n/k in all subregions, the probability

that a randomly selected demand is contained in a type j set is the same as the

probability that a randomly selected set is of type j.) Let the random variable Lj

denote the length of a tour on a type j set. Then

1 J
E[r] = (n/k)g + - pjE[Lj]

*=1

We show below that as p --* 1, n -v oo; therefore

kE[Lj] A = - 1/3

(V) j 

Note the connection cost to the depot is 0(1) and thus its contribution to E[Lj]//'

is negligible as n --v oo. Substituting this above implies that as n --* oo

E[r] /3 Epj--7/3

(n/k)

s+- p2Aj (17)
=1

To determine o2 we let L be a random variable such that L = Lj with probability

pj,j = 1,..,J. Then
2 n 2

I O's + Var[L].

For large n, the random variable kL tends to a selection of constants from the set

(3j-1 / 3 } with probability pj, and thus it follows that as n -- oo

Var[r[L] = 0k ] = (1)
G7 (n/k)

and hence v.r = .I. Thus, for large n

n/ 2 0(1)
n/k = 0'2 + (18)n/k k
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Defining W-, W + and Wset as before, we have

J 1 ( n/k
~w~~- < 2 ( (pj A) kj

J
.=1n E: 't2/3Aj

and

W+ < 1+- pjE[Lj]
=1

n
-= + O(V). (20)2k

The queue defined by this policy is again a FGI/G/m queue. Let Aij = k. in kj

and a2ij denote, respectively, the arrival rate and variance of the interarrival time of
a3 ksets from the i-th subregion of Aj, i = 1,..., kj. Let = J1 _ j = " denote

the overall arrival rate of sets. Then, by the same reasoning as in the unbiased case

we find that cr2ij n= f(. a + 'l-P'k 2 ), and therefore

j k j kAp 3 n j 

j=1=1 ar ll~(# Pi )2A2

= A Z (Pi j)o + ,(1 i

A(~ + k(a A2)EI /-Li'
j-1

Again, we use the fact that for large values of k, the right hand side above is

approximately 1A2 . Substituting this approximate expression into Theorem 3 and

using Equations (17) and (18) we obtain,

1 0 22(1 - I-AE[r])T( + 1( 2 ++ 0))

2(1 ' vp N n9 J -p2/3Aj)
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Adding the bounds (19) and (20) to the above expression we obtain that as

p - 1,

TB • (a j Aj + k) + 2 /3 ) + (

In terms of
J4 Z .- Cj2/3 A

Y mv(1- p)V/i

we have
)432 [(Za I2/ 3 A j)3 + (jJ= 1 j2/3 Aj)2(! )] A( 1 (+ i ) 1 2

TB A_ + 1 -p )(1 +0( y2m 2v 2 (1 - p) 2y 2 2(1-p)( - y) (1 - p)

An approximate optimal value for y is

~mV1 my + 72 + ))(1 -p)
7 m* ( + -

2 (J 1 j 3Aj)3 + (j_1 j Aj)2

Substituting this into the bound on TB for p -- 1 we obtain

Af
2 [(J 1 I/3 A)3 + ( j1 J2/3Aj)2 ]

TB 2m 2 v2 (1 - p)2

where the second order term is 0((1 - p)- 3 / 2 ). For large k, this is arbitrarily close

to
A,2(E4=1 .2/3Aj)3

TB 2m 2 v2 (1 - p)2

Comparing this to the lower bound in Theorem 2 establishes the proposition.

0 (Proposition 2)

Again, we remark that a continuous density can be approximated arbitrarily

closely by a piecewise uniform density by taking a large number of partitions J

above.

4.3 A Numerical Investigation of the Performance of the Space

Filling Curve (SFC) and Nearest Neighbor (NN) Policies

In two policies we have examined thus far are provably within a constant factor of

the optimal solution. These policies, however, use optimal TSP solutions, which in
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practice are difficult to compute. In this section, we perform simulation experiments

on two other policies that are more computationally efficient. The first is the space

filling curve (SFC) proposed originally by Bartholdi and Platzman in [2]; the second

is the simple nearest neighbor (NN) policy. These policies show new interesting be-

havior and also suggest a generic approach using simulation to estimate the behavior

of policies which cannot be rigorously analyzed.

The policies are defined formally as follows:

The SFC Policy: Let C = {010 < 0 < 1} denote the unit circle and S = {(x, y)0 <

x < 1, 0 < y < 1} denote the unit square. A space filling curve is a continuous

mapping 0b from C onto S that preserves certain "nearness" properties (c.f.

Platzman and Bartholdi [14] and [1] for details). The particular curve we use is

defined in [1]. Without loss of generality, suppose we scale distance so that the

service region A is contained in S and maintain the preimages of all demands

in the system (i.e. their corresponding positions in C). Then the SFC policy

is to service demands as they are encountered in repeated clockwise sweeps of

the circle C.

The NN Policy: At each service completion epoch, the vehicle chooses to visit

next the closest unserved demand.

In [5], we showed via simulation study that the system time for these two policies

has the same form as the TSP policies; namely, for the uniform case,

2 AAT, 7, v2(1_ p)2'

where YSFC 0.66 and 7NN ;z: 0.64. In comparison, the modified TSP policy which

has TSP 0.51 and the lower bound of Theorem 1 has a value 7)LB 0.38.

We next investigate the distributional behavior of these two policies using a

similar set of simulation experiments. We show that the SFC policy behaves ap-

proximately like a unbiased policy. The NN policy, on the other hand, appears to
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Figure 1: An Extreme Case General Demand Example

behave neither like a pure unbiased policy nor like an optimal biased policies; rather,

its performance seems to lie between these two extremes. (We shall quantify these

statements below.) This analysis also suggests a generic approach to estimating the

behavior of policies that cannot be rigorously analyzed.

4.3.1 Simulation Experiments

The general demand distribution used in the simulation experiments is the one

shown in Figure 1. The regions A1 and A 2 have areas e and 1 - e respectively.

Within each region demands are uniformly distributed. Points fall in region A 1

with probability 1 - 6 and in region A2 with probability 6. Thus, the density is

piecewise uniform with

= { E A (21)
I EA 2

We used identical simulation techniques (i.e. same simulation code with different

f(x)) as in [5]. (See [5] for details.) To estimate the dependence of the system time

for each policy, we set e = 10- 4 and fixed A = 1, = 0.1, oa2 = 0 and p = 0.8.

Then, a different simulation run was performed for eleven values of 6 in the range
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0.05 to 0.9999. (This last value corresponds to uniform demand.) The observed

average number in the system (which is proportional to the average system time)

was recorded for each for both the SFC and NN policies.

4.3.2 Distributional Behavior of SFC and NN Policies

Before examining the results of the simulation runs, it is useful to consider the

following representation of the dependence of the system time on the density f(x):

= m2v2(1 - p)2

where

E(a) = [ f(x)d a'

In the unbiased case a = 1/2 and in the optimal biased case a = 2/3. For the

particular density f(x) given by (21) and for small,

E(a) [ -a(1 -e)l-a] 1 -a

and therefore for a particular policy ti

log(T,) log(5) + c,
1-aC

where c, depends on the policy and the system parameters (A, s, etc.) and a gives

the distributional dependence of the policy. Thus, by plotting log(T.) (or log(Ng))

against log(6) and performing a linear regression, one can estimate a and hence the

distributional dependence of the policy It. We would expect a value of a = 1/2 for

unbiased policies and a value of a = 2/3 for policies that behave like the optimal

biased policy. Note that since log(.) is increasing and log(5) < 0, higher values of a

imply lower system times.

Figure 2 shows a log-log plot of the sample average number in the system as a

function of 6 for our simulation runs. The estimate of the slope of each line is shown

in Figure 2 as well. For the SFC policy, the estimated slope of 0.80 corresponds
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Figure 2: Simulation Results for SFC and NN Policies for General Demand Distri-

bution

to a = 0.44 while for the SFC policy, the slope of 1.37 implies a = 0.58. These

values suggest that the SFC policy performs like a unbiased policy since its value of

ca is close to 1/2. (Though the performance appears to be somewhat worse (higher

c) than a purely unbiased policy.) The NN policy, on the other hand, seems to be

between a unbiased and an optimal biased policy; that is, it achieves a higher value

of a than a unbiased policy could, but does not achieve as high a value of as

optimally biased policies.

These results also suggest a means of characterizing other analytically intractable

policies; namely estimate y, and a, as we did above and use the approximation

2 , (ap)
m2 V2 (1 - p)2
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For example, this estimation might be performed using operating data from a "live"

system and the results used to evaluate current operating practice.

5 Relationship Between Biased and Unbiased Behav-

ior

To review, we have determined that

= e (m 2 v2(l p)2)

where for the uniform demand case, E = A, for the spatially unbiased general

demand case . = (IA f1/ 2 (x)dx)2 and for the spatially biased general demand case

= (SA f 2/ 3 (x)dx)3 . We next briefly examine the relationship among these various

distributional behaviors.

Since unbiased service is a constraint, the system time of the optimal biased

policy should be lower than the optimal unbiased policy for all densities f. This is

indeed the case as shown by the following proposition, which also gives the relation-

ship of the general distribution case to the uniform case.

Proposition 3 For any continuous density function f(x) defined over the region A

of area A

A >[J fl/2(x)dx] > [I f2/3(X)dx]

with equality holding throughout if and only if f(x) = 1/A, V x E A.

Proof

The proof requires the following inequality of Hardly, Littlewood and Pblya [8]:

Lemma 4 (Hardly, Littlewood and Pblya) If a > 1 or a < 0, g(x) > 0 and

h(x) > 0 then

J g(x)l h(x)adx > (g(x)dx)' (h(x)dx)

with equality if and only if a- is constant for all x.

29

11



For the first inequality in our proposition, take g(x) = f(x), h(x) = f 1/ 2 (x)

and ca = 2 above, and note that g(x)l-ah(x) = f -l(x)f(x) = 1 which im-

plies that fA g(x)l-h(x)dx = fA dx = A. Also, (fA g(x)dx)l-(fA h(x)dx) =

(fA f1/ 2 (x)dx) 2 . Thus,

A > f(Jf/2(x)dx)2

with equality if and only if fdj = fl/2 (x) is constant for all x, which implies

f(x) = 1/A, V x E A.

For the second inequality, take g(z) = f 2 / 3 (x), h(x) = f 1/ 2 (x) and a = -2

above and note that g(x)'-'h(x)" = f 2 (x)f-l(x) = f(x) and fA f(x)dx = 1 we

obtain

(JA f2/3(x)dx)3( f/2(x)dx) 2 < .

Equality holds above if and only if / = fl/6 (x) is constant for all x, again

implying f(x) = 1/A, V x E A.

0 (Proposition 3)

Proposition 3 says that a uniform density is the worst possible and that any

deviation from uniformity in the demand distribution will strictly lower the optimal

mean system time in either the unbiased or biased case. In addition, allowing

biased service will result in a strict reduction of the optimal mean system time for

any nonuniform distribution f. Also, note that when the density is uniform there is

nothing to be gained by not providing unbiased service.

One may question how different the system times for a biased and unbiased policy

may be in general. That is, how much can one gain by discriminating according to

location? Or, alternatively, how much does one lose by imposing a unbiased service

constraint? The answer is that in the worst case the two can be arbitrarily far apart.

This is illustrated by the simulation example in Figure of 1. For the density used in

this example, it is straightforward to show that for a fixed 6 > 0 and e -- 0,

A fl/2(x)dx] = 6(1 - ) + O(el/2)
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and

[. f2/3(x)dx] = 62(1- e) + O(e/3)

Thus, there exists a constant c such that in heavy traffic

[ f /2(x)d] c
> c Af1---2 as --+ 0,

[A f2/3(x)dx]3 6

where TP and TD are, respectively, the optimal unbiased and biased mean system

times. Since > 0 can be arbitrarily small, this says that in heavy traffic the cost

of the optimal unbiased policy can be unbounded relative to the cost of the optimal

biased policy.

Intuitively, one can explain the behavior of this example as follows: In a unbiased

policy, the few points that fall in the large regions A2 must be visited as regularly

as the large number of points that fall in the much smaller region A1. However,

visiting the points in A 2 is time consuming since they are typically far away from

neighboring points. These infrequent but time consuming trips to demands in A 2

impose large delays on the demands in A 1, which in turn drags down the overall

mean system time. In a biased policy, we can allow the relatively small number of

demands in A 2 to wait much longer than the demands in A41. The demands in A2

will then build up and thus can be serviced more efficiently with larger tours. This

frees up more vehicle time to service the much higher fraction of customers that

land in A 1 , improving their system time. The net result is to reduce the overall

system time.

6 On the Tightness of the Lower Bounds for the Gen-

eral Case

In the proof of Lemma 2, one can see that very little of the vehicle routing "structure"

inherent in the DTRP was used. Indeed, we only assumed that the service was

sequential (i.e. one demand served at a time), which allowed us the establish that
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the mean number left behind by a departure from any given region was the same

as the time average number in queue in that region. The bound therefore applies

to any system in which points arrive randomly to a Euclidean region and are then

removed sequentially according to some given rule. For example, we might remove

a point after it spends a constant amount of time r in the system, in which case the

expected nearest neighbor distance E[Z*] and the mean number in queue N would

also satisfy Lemma 2. A DTRP policy, in this sense, simply defines one such rule

for removing points; namely, remove a point after a vehicle following a given policy

p1 has completed its on-site service. In this section, we show that the lower bound

in Lemma 2 is in fact tight within this broader class of removal rules, and therefore

more vehicle routing features of the DTRP need to be exploited in one wants to

improve on these bounds.

6.1 An Optimal Removal Rule

As in the DTRP, consider a region A that receives arrivals according to a renewal

process with intensity A. The locations of arriving points are i.i.d. and distributed

according to a general spatial density f(x). Points are removed from the system

according to the following rule:

Optimal Removal Rule

Each arrival of a new point triggers a round of removals. A round of removals

proceeds as follows: The oldest point in the system that is within a radius z

of any neighboring point is removed. (z > 0 is an arbitrarily small constant.)

The second oldest point with z of any of the remaining points is then removed,

etc.. The round continues until no more points are left within z of any other

point. Though these removals are sequenced, we assume the round of removals

takes place instantaneously. This process is repeated for every arriving point.

We first analyze this policy for the uniform demand case. Note that at the end

of a round, all points in the system are more than a distance z from their nearest
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neighbor. Also, arriving points are never eliminated in the round of removals that

they initiate. This is because all points within a radius z of the arriving point are

necessarily older and thus will be eliminated before the current arrival is considered.

Similarly, all points in the system at the time of an arrival that are within a distance

z of the arrivals location will be eliminated during its round because the arriving

point is always the newest.

Given these observations, we see that a point waits in the system until a subse-

quent arrival falls within a distance z of it, at which point it is eliminated by the

round of removals generated by this arrival. Since the probability that an arrival

falls within z of any given location is 2 (ignoring edge effects because z is small)

and the mean interarrival time of points is o, the waiting time, W, under this policy

is
A

Arz2 '

We next determine the expected nearest neighbor distance at the time of removal,

E[Z*]. Consider the removal epoch of a point i whose location we denote xi. Note

that at the removal epoch there is only one point within a radius z of xi, namely the

point that initiated the round of removals. Thus, the arriving point that triggers the

removal of i is always the nearest neighbor to xi. Since the arriving points location

is uniformly distributed within the circle of radius z about xi, we have

E[Z*] = P{Z* >x}dx

= ' ( 2)d-
2

Z.
3

Using the expression for W above we have

/ A A
= AWr= 7rN '

which substituted into the expression for E[Z*] implies

E[Z*] = - I
3 V/ FV N'
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Comparing this to the bound in Lemma 2 and recalling that +(x) = f(x) = 1/A

for the spatially unbiased, uniform case shows that the lower bound is indeed tight

within the class of sequential removal rules.

The result can be extended to the nonuniform case by taking the radius z above

to be a function of a points location x; that is, z(x). Define

z(x)= jf(x),
where > 0 is an arbitrarily small constant. Note that the conditional wait given

that a point arrives at location x satisfies (for sufficiently small z(x))

1 1

E[WIX = x] = A) As

and is therefore the same as the unconditional waiting time W. Using this observa-

tion, we can write z(x) as follows:

_ 1
Z(X) = Nf(x)

For the same reasons as in the uniform case,

E[Z*IX = x] = 2z= f-/2()N-1/2

Unconditioning implies

E[Z*] = 3; V f/2(x)dx,

which establishes the tightness of the lower bound for the general unbiased case as

well. (We do not have an analogous example for the general biased case.)

6.2 Relation to the Static Nearest Neighbor Bound

The bound in Lemma 2 is in essence a dynamic counterpart to the following static

nearest neighbor bound for n uniformly distributed points in a region of area A:

E[Z*] >
2 vn~'
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which is used in the probabilistic analysis of such Euclidean problems such as the

TSP, Matching and Minimum Spanning Tree [13]. In the same sense that this nearest

neighbor bound is weak for the static TSP, one can see that the bound of Lemma

2 is likely to be weak for the DTRP. This suggests that the provable performance

bound of 1.83 for the unbiased and biased policies is too pessimistic. Indeed, we

conjecture that these policies are in fact asymptotically optimal.

7 Further Extensions

7.1 General Demand Distributions and Capacitated Vehicles

Most of the results for the general demand distributions extend to the capacitated

vehicle case as well. The capacity constraint we consider is an upper bound of q

on the number of demands a vehicle can serve before it must visit the depot at xo.

We let r-- E[JJX - xoll] denote the average distance form a demand location to

the depot. We shall only summarize results in this section since the analysis closely

parallels the arguments we have seen in previous sections and in [5] and [6].

By simply using the more general bound on the nearest neighbor distance E[Z*]

of Lemma 2 in the arguments of [6], one can show the following theorems:

Theorem 4 Within the class of spatially unbiased policies

T( 2 )2 2 (1 + )2 [fAfl/2(x)dx]
lim T*(1 - 2 _

p+ 2 1 mvq - 9 m2 v2

where 7 > -.

Theorem 5 Within the class of spatially biased policies

2Ar 72 A(1 + _)2 [A f2/3(x)dx]

p+ 2 ,1 mvq - 9 m2 v2

where 7 > r
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A provably good unbiased policy for the finite capacity case can be obtained

by modifying the unbiased policy from Proposition 1 as follows: as sets of size n/k

are formed, partition these sets into feasible tours of at most q points using the

tour partitioning heuristic of Haimovich and Rinnooy Kan [7] as was done for the

Modified qTP policy in [6]. Serve these sets FCFS and optimize over n. For large

k, the resulting system time, Tqu, then satisfies

Ap 2 (1 1 ) 2 ( fl/2 (x)dx) 2

2m 2 v2 (1 - - vq )

which implies the same performance guarantee as in the uniform case (c.f. [6]).

An identical tour partitioning modification applied to the sets formed in the

spatially biased policy of Proposition 2 gives a policy with a system time, T qB,

satisfying

TqB A(1 A)2(fA f 2/ 3 (x)dx)3

2m 2 v2 (1 _- p_ )2

These policies and bounds describe the behavior of the most general version of

the DTRP we have seen thus far and give a comprehensive picture of how a rich set

of parameters influences congestion in dynamic vehicle routing systems.

7.2 Higher Dimensions

Most of the DTRP bounds and policies can be extended to Euclidean subsets A of

Rd for arbitrary dimension d. We examine this extension briefly in this section.

Modifications to the proofs of Theorems 1 and 2 give the following bounds:

Theorem 6 Within the class of spatially unbiased policies

d 7 (d) Ad-i [ f (x)dx]
lim T*(1 - p)d >
p-*l mdv d

where y(d) = ad (c ) l'd ( 1 )I and Cd =- - is the volume of the ball of unit

radius in dimension d (r(x) is the usual gamma function).
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Theorem 7 Within the class of spatially biased policies

7 (d)
®d-1 [fA f (x)dx] d f l

lim T*(1 - p)d > y(d)dd [f f d (x)dx
p- l -mdv d

where y(d) = d ( )l/d (1 )l/d

Again, similar results holds for the capacitated problem, in which case (1- p)

becomes (1 - p - 2) in the above bound and also 7 (d) is replaced by y(d)/3.

In a similar manner, one can analyze the various service policies in d dimensions.

The results parallel those in the two-dimensional case; namely, there are constants

y,(d) that depend only on the policy and the dimension d such that the system

time, T,, satisfies

T4 - 7gd (d) Mdvd(l p)d as p - 1.

where (d) = V for the uniform case, E(d) = [f d (x)dx] d for the spatially

unbiased case and E(d) = [Afd (x)dx] for the spatially biased case. For

example, the modified TSP policy in d dimensions has a constant value of 2,d

where 3(d) is the d dimensional TSP constant.

An interesting result is found by examining this policy for d -+ oo. In [4], it was

conjectured and subsequently proved in [16] that for d --, oo

f(d) 

By using the fact that for d -- o, d+ 1, ( )d 1 and r(d + 1) 

,(d)2d+-e-2d, it is straightforward to show that

(d) Oh

as d -- oo as well. Therefore we have the following theorem:

Theorem 8 For the uncapacitated, m-server DTRP, the modified TSP policy is an

optimal heavy traffic policy asymptotically as d -- oo.
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This theorem gives further evidence of the asymptotic optimality of the modified

TSP policy, which we have already conjectured is optimal for d = 2.

8 Conclusions

We analyzed dynamic vehicle routing problems in Euclidean regions under general

distributional assumptions. The analysis yields simple expressions for the system

time that provide structural insight into the effects of traffic intensity, on-site service

characteristics, the number, speed and capacity of vehicles employed, service region

size, the distribution of customer locations and biasness constraints. Such insights

can be used to develop strategic planning models for terminal location, fleet sizing

and districting. We see such strategic planning models as a potentially fruitful area

for further applied research.

A reoccurring finding in our analysis is that static vehicle routing methods when

properly adapted can yield near optimal or perhaps even optimal policies for dy-

namic routing problems. This is an encouraging result on several levels. On a

theoretical level, it suggests that there is indeed a connection between static and

dynamic problems; that is, the DTRP has geometrical characteristics that are inti-

mately related to the corresponding characteristics for static VRPs. On a practical

level, the results imply that most of the exact algorithms, heuristics and insights

which have been developed over the years of investigation of static VRPs are not

irrelevant in this context and can in fact can form the basis for effective policies in

dynamic, stochastic environments.
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