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Abstract

Previous research concludes that options are mispriced based on the high average

returns, CAPM alphas, and Sharpe ratios of various put selling strategies. One criti-

cism of these conclusions is that these benchmarks are ill-suited to handle the extreme

statistical nature of option returns generated by nonlinear payoffs. We propose an

alternative way to evaluate the statistical significance of option returns by comparing

historical statistics to those generated by well-accepted option pricing models. The

most puzzling finding in the existing literature, the large returns to writing out-of-

the-money puts, are not inconsistent (i.e., are statistically insignificant) relative to

the Black-Scholes model or the Heston stochastic volatility model due to the extreme

sampling uncertainty associated with put returns. This sampling problem can largely

be alleviated by analyzing market-neutral portfolios such as straddles or delta-hedged

returns. The returns on these portfolios can be explained by jump risk premia and

estimation risk.
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1 Introduction

It is a common perception that index options are mispriced, in the sense that certain option

returns are excessive relative to their risks.1 The primary evidence supporting mispricing

is the large magnitude of historical S&P 500 put option returns. For example, Bondarenko

(2003) reports that average at-the-money (ATM) put returns are −40%, not per annum, but

per month, and deep out-of-the-money (OTM) put returns are −95% per month. Average

option returns and CAPM alphas are statistically significant with p-values close to zero,

and Sharpe ratios are larger than those of the underlying index.2

There are three obvious factors to consider when interpreting these results. Option

returns are highly non-normal and metrics that assume normality, such as CAPM alphas or

Sharpe ratios, are inappropriate. In addition, average put returns or CAPM alphas should

be significantly different from zero due to the leverage inherent in options and the presence

of priced risks that primarily affect higher moments such as jumps. Finally, options have

only traded for a short period of time, and it is difficult to assess the statistical significance of

option returns given these short time spans and the non-normal nature of option returns.

Together, these factors raise questions about the usual procedures of applying standard

asset pricing metrics to analyze option returns.

A natural way to deal with these criticisms is to use option pricing models to assess the

evidence for index option mispricing. Option models automatically account for the extreme

nature of option returns (non-normality, skewness and fat-tails), anchor hypothesis tests

at appropriate null values, provide a framework for assessing the impact of risk premia,

and provide a mechanism for assessing statistical uncertainty via finite sample simulations.

Ideally, an equilibrium model over economic fundamentals, such as consumption or divi-

dends, would be used to assess the evidence for mispricing. However, as argued by Bates

(2006) and Bondarenko (2003), such an explanation is extremely challenging inside the

1At this stage, a natural question to ask is why returns and why not option prices? Throughout finance,

returns, as opposed to price levels, are typically analyzed because of their natural economic interpretation.

Returns represent actual gains or losses on purchased securities. In contrast, common option pricing

exercises use pricing errors to summarize fit, which are neither easily interpreted nor can be realized. In

addition, we have stronger intuition about return-based measures such as excess returns, CAPM alphas,

or Sharpe ratios as compared to pricing errors. Coval and Shumway (2000) provide additional motivation.
2The returns are economically significant, as investors endowed with a wide array of utility functions find

large certainty equivalent gains from selling put options (e.g., Driessen and Maenhout, 2004; Santa-Clara

and Saretto, 2005).
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representative agent framework. This conclusion is not surprising, since these models have

difficulties explaining not only the low-frequency features of stock returns (e.g., the equity

premium or excess volatility puzzles), but also higher frequency movements such as price

jumps, high-frequency volatility fluctuations, or the leverage effect. At some level, these

equilibrium models do not operate at a frequency that is relevant for option pricing.

This paper addresses a more modest, but still important, goal of understanding the

pricing of index options relative to the underlying index, as opposed to pricing options

relative to the underlying fundamental variables. To do this, we model stock index returns

using affine-jump diffusion models that account for the key drivers of equity returns and

option prices such as diffusive price shocks, price jumps, and stochastic volatility. The key

step in our implementation is one of calibration: we calibrate the models to fit the observed

behavior of equity index returns over the sample for which option returns are available. In

particular, this approach implies that our models replicate the historically observed equity

premium and volatility.

Methodologically, we proceed using two main tools. First, we show that expected option

returns (EORs) can be computed analytically, which allows us to examine the quantitative

implications of different factors and parameter values on option returns. In particular,

EORs anchor null hypothesis values when testing whether option returns are significantly

different than those generated by a given null model. Second, simulated index sample

paths are used to construct exact finite sample distributions for the statistics analyzed.

This procedure accounts for the small observed samples sizes (on the order of 200 months)

and the irregular nature of option return distributions. Another advantage is that it allows

us to assess the statistical uncertainty of commonly used asset pricing benchmarks and

statistics, such as average returns, CAPM alphas, or Sharpe ratios, while accounting for

the leverage and nonlinearities inherent in options.

Empirically, we present a number of interesting findings. We first analyze returns on

individual put options, given their importance in the recent literature, and begin with the

simplest Black-Scholes and Heston (1993) stochastic volatility models. Although we know

that these models are too simple to provide accurate descriptions of option prices, they

provide key insights for understanding and evaluating option returns. Our first result is

that average returns, CAPM alphas, and Sharpe ratios for deep OTM put returns, are

statistically insignificant when compared to the Black-Scholes model. Thus, one of the

most puzzling statistics in the literature, the high average returns on OTM puts, is not
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inconsistent with the Black-Scholes model. Moreover, there is little evidence that put

returns of any strike are inconsistent with Heston’s (1993) stochastic volatility (SV) model

assuming no diffusive stochastic volatility risk premia (i.e., the evolution of volatility under

the real-world P and the risk-neutral Q measures are the same).

We interpret these findings not as evidence that Black-Scholes or Heston’s models are

correct – we know they can be rejected as models of option prices on other grounds –

but rather as highlighting the statistical difficulties present when analyzing option returns.

The combination of short samples and complicated option return distributions implies that

standard statistics are so noisy that little can be concluded by analyzing option returns.

It is well known that it is difficult to estimate the equity premium, and this uncertainty is

magnified when estimating average put returns.

This conclusion suggests that tests using individual put option returns are not very

informative about option mispricing, and we next turn to returns of alternative option

portfolio strategies such as covered puts, delta-hedged puts, put spreads, at-the-money

straddles, and crash-neutral straddles. These portfolios are more informative because they

either reduce the exposure to the underlying index (delta-hedged puts and straddles) or

dampen the effect of rare events (put spreads and crash-neutral straddles).

Of all of these option portfolios, straddles returns are the most useful as they are model

independent and approximately market neutral. Straddles are also more informative than

individual puts, since average straddle returns are highly significant when compared to

returns generated from the Black-Scholes model or a baseline stochastic volatility model

without a diffusive volatility risk premium. The source of the significance for ATM straddle

returns is the well-known wedge between ATM implied volatility and subsequent realized

volatility.3 As argued by Pan (2002) and Broadie, Chernov, and Johannes (2007), it is un-

likely that a diffusive stochastic volatility risk premium could generate this wedge between

Q and P measures since the wedge is in short-dated options, and a stochastic volatility risk

premium would mainly impact longer-dated options.

We consider two mechanisms that generate wedges between realized and implied volatil-

ity in jump-diffusion models: jump risk premia and estimation risk. The jump risk expla-

nation uses the jump risk corrections implied by an equilibrium model as a simple device

for generating Q-measure jump parameters, given P-measure parameters. Consistent with

our original intent, such an adjustment does not provide an equilibrium explanation, as we

3Over our sample, ATM implied volatility averaged 17% and realized volatility was 15%.
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calibrate the underlying index model to match the overall equity premium and volatility of

returns. In the case of estimation risk, we assume that investors account for the uncertainty

in spot volatility and parameters when pricing options.

We find that both of these explanations generate option returns that are broadly con-

sistent with those observed historically. For example, average put returns are matched

pointwise and the average returns of straddles, delta-hedged portfolios, put spreads, and

crash-neutral straddles are all statistically insignificant. These results indicate that, at

least for our parameterizations, that option returns are not puzzling relative to the bench-

mark models. Option and stock returns may remain puzzling relative to consumption and

dividends, but there appears to be little evidence for mispricing relative to the underlying

stock index.

The rest of the paper is outlined as follows. Section 2 outlines our methodological ap-

proach. Section 3 discusses our data set and summarizes the evidence for put mispricing.

Section 4 illustrates the methodology based on the Black-Scholes and Heston models. Sec-

tion 5 investigates strategies based on option portfolios. Section 6 illustrates how a model

with stochastic volatility and jumps in prices generate realistic put and straddle returns.

Conclusions are given in Section 7.

2 Our approach

We analyze returns to a number of option strategies. In this section, we discuss some of

the concerns that arise in analyzing option returns, and then discuss our approach. To

frame the issues, we focus on put option returns, but the results and discussion apply more

generally to portfolio strategies such as put spreads, straddles, or delta-hedged returns.

Hold-to-expiration put returns are defined as

rp
t,T =

(K − St+T )+

Pt,T (K, St)
− 1, (2.1)

where x+ ≡ max(x, 0) and Pt,T (K, St) is the time-t price of a put option written on St,

struck at K, and expiring at time t + T. Hold-to-expiration returns are typically analyzed

in both academic studies and in practice for two reasons. First, option trading involves

significant costs and strategies that hold until expiration incur these costs only at initiation.

For example, ATM (deep OTM) index option bid-ask spreads are currently on the order of
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3%–5% (10%) of the option price. The second reason, discussed fully in Section 3, is that

higher frequency option returns generate a number of theoretical and statistical issues that

are avoided using monthly returns.

The main objective in the literature is assessing whether or not option returns are

excessive, either in absolute terms or relative to their risks. Existing approaches rely on

statistical models, as discussed in Appendix A. For example, it is common to compute

average returns, alphas relative to the CAPM, or Sharpe ratios. Strategies that involve

writing options generally deliver higher average returns than the underlying asset, have

economically and statistically large CAPM alphas, and have higher Sharpe ratios than the

market.

How should these results be interpreted? Options are effectively leveraged positions

in the underlying asset (which typically has a positive expected return), so call options

have expected returns that are greater than the underlying and put options have expected

returns that are less than the underlying. For example, expected put option returns are

negative, which implies that standard t-tests of average option returns which test the null

hypothesis that average returns are zero are not particularly informative. The precise

magnitude of expected returns depends on a number of factors that include the specific

model, the parameters, and factor risk premia. In particular, expected option returns are

very sensitive to both the equity premium and volatility.

It is important to control for the option’s exposure to the underlying, and the most

common way to do this is to compute betas relative to the underlying asset via a CAPM-

style specification. This approach is motivated by the hedging arguments used to derive the

Black-Scholes model. According to this model, the link between instantaneous derivative

returns and excess index returns is

df (St)

f (St)
= rdt +

St

f (St)

∂f (St)

∂St

[

dSt

St

− (r − δ) dt

]

, (2.2)

where r is the risk-free rate, f (St) is the derivative price, and δ the dividend rate on the

underlying asset. This implies that instantaneous changes in the derivative’s price are linear

in the index returns, dSt/St, and instantaneous option returns are conditionally normally

distributed. This instantaneous CAPM is often used to motivate an approximate linear

factor model for option returns

f (St+T ) − f (St)

f (St)
= αt,T + βt,T

(

St+T − St

St

− rT

)

+ εt,T .
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These linear factor models are used to adjust for leverage, via βt,T , and as a pricing metric,

via αt,T . In the latter case, αT 6= 0 is often interpreted as evidence of either mispricing or

risk premia.

As shown in detail in Appendix B, standard option pricing models (including the Black-

Scholes model) generate population values of αt,T that are different from zero. In the Black-

Scholes model, this is due to time discretization, but in more general jump-diffusion models,

αt,T can be non-zero for infinitesimal intervals due to the presence of jumps. This implies

that it is inappropriate to interpret a non-zero αt,T as evidence of mispricing. Similarly,

Sharpe ratios account for leverage by scaling average excess returns by volatility, which

provides an appropriate metric when returns are normally distributed or if investors have

mean-variance preferences. Sharpe ratios are problematic in our setting because option

returns are highly non-normal, even over short time-intervals.

Our approach is different. We view these intuitive metrics (average returns, CAPM

alpha’s, and Sharpe ratios) through the lens of formal option pricing models. The exper-

iment we perform is straightforward: we compare the observed values of these statistics

in the data to those generated by option pricing models such as Black-Scholes and exten-

sions incorporating jumps or stochastic volatility. The use of formal models performs two

roles: it provides an appropriate null value for anchoring hypothesis tests and it provides a

mechanism for dealing with the severe statistical problems associated with option returns.

2.1 Models

We consider nested versions of a general model with mean-reverting stochastic volatility

and lognormally distributed Poisson driven jumps in prices. This model, proposed by Bates

(1996) and Scott (1997) and referred to as the SVJ model, is a common benchmark (see,

e.g., Andersen, Benzoni, and Lund (2002), Bates (1996), Broadie, Chernov, and Johannes

(2007), Chernov, Gallant, Ghysels, and Tauchen (2003), Eraker (2004), Eraker, Johannes,

and Polson (2003), and Pan (2002)). As special cases of the model, we consider the Black

and Scholes (1973) model, Merton’s (1976) jump-diffusion model with constant volatility,

and Heston’s (1993) stochastic volatility model.

The model assumes that the ex-dividend index level, St, and its spot variance, Vt, evolve
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under the physical (or real-world) P-measure according to

dSt = (r + µ − δ) Stdt + St

√

VtdW s
t (P) + d

(

∑Nt(P)

j=1
Sτj−

[

eZs
j
(P) − 1

]

)

− λPµPStdt (2.3)

dVt = κP
v

(

θP
v − Vt

)

dt + σv

√

VtdW v
t (P), (2.4)

where r is the risk-free rate, µ is the cum-dividend equity premium, δ is the dividend yield,

W s
t and W v

t are two correlated Brownian motions (E [W s
t W v

t ] = ρt), Nt(P) ∼ Poisson
(

λPt
)

,

Zs
j (P) ∼ N

(

µP
z ,
(

σP
z

)2
)

, and µP = exp
(

µP
z + (σP

z )2/2
)

− 1. Black-Scholes is a special case

with no jumps (λP = 0) and constant volatility (V0 = θP
v , σv = 0), Heston’s model is a

special case with no jumps, and Merton’s model is a special case with constant volatility.

When volatility is constant, we use the notation
√

Vt = σ.

Options are priced using the dynamics under the risk-neutral measure Q:

dSt = (r − δ) Stdt + St

√

VtdW s
t (Q) + d

(

∑Nt(Q)

j=1
Sτj−

[

eZs
j
(Q) − 1

]

)

− λQµQStdt (2.5)

dVt = κQ
v (θQ

v − Vt)dt + σv

√

VtdW v
t (Q), (2.6)

where Nt (Q) ∼ Poisson
(

λQt
)

, Zj (Q) ∼ N
(

µQ
z ,
(

σQ
z

)2
)

, Wt (Q) are Brownian motions,

and µQ is defined analogously to µP. The diffusive equity premium is µc, and the total equity

premium is µ = µc + λPµP − λQµQ. We generally refer to a non-zero µ as a diffusive risk

premium. Differences between the risk-neutral and real-world jump and stochastic volatility

parameters are referred to as jump or stochastic volatility risk premia, respectively.

The parameters θv and κv can both potentially change under the risk-neutral measure

(Cheredito, Filipovic, and Kimmel (2003)). We explore changes in θP
v and constrain κQ

v =

κP
v , because, as discussed below, average returns are not sensitive to empirically plausible

changes in κP
v . Changes of measure for jump processes are more flexible than those for

diffusion processes. We take the simplifying assumptions that the jump size distribution is

lognormal with potentially different means and variances. Below we discuss in detail two

mechanisms, risk premia and estimation risk, to generate realistic Q-measure parameters.

2.2 Methodological framework

Methodologically, we rely on two main tools: analytical formulas for expected returns and

Monte Carlo simulation to assess statistical significance.
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2.2.1 Analytical expected option returns

Expected put option returns are given by

EP
t

(

rp

t,T

)

= EP
t

[

(K − St+T )+

Pt,T (St, K)

]

− 1 =
EP

t

[

(K − St+T )+
]

Pt,T (St, K)
− 1

=
EP

t

[

(K − St+T )+]

EQ
t

[

e−rT (K − St+T )+] − 1, (2.7)

where the second equality emphasizes that Pt,T is known at time t. Put prices will depend

on the specific model under consideration. From this expression, it is clear that any model

that admits “analytical” option prices, such as affine models, will allow EORs to be com-

puted explicitly since both the numerator and denominator are known analytically. Higher

moments can also be computed. Surprisingly, despite a large literature analyzing option

returns, the fact that EORs can be easily computed has neither been noted nor applied.4

EORs do not depend on St. To see this, define the initial moneyness of the option as

κ = K/St. Option homogeneity implies that

EP
t

(

rp

t,T

)

=
EP

t

[

(κ − Rt,T )+]

EQ
t

[

e−rT (κ − Rt,T )+
] − 1, (2.8)

where Rt,T = St+T /St is the gross index return. Expected option returns depend only on

the moneyness, maturity, interest rate, and the distribution of index returns.5

This formula provides exact EORs for finite holding periods regardless of the risk fac-

tors of the underlying index dynamics, without using CAPM-style approximations such

as those discussed in Appendix B. These analytical results are primarily useful as they

allow us to assess the exact quantitative impact of risk premia or parameter configurations.

Equation (2.7) implies that the gap between the P and Q probability measures determines

expected option returns, and the magnitude of the returns is determined by the relative

4This result is closely related to Rubinstein (1984), who derived it specifically for the Black-Scholes case

and analyzed the relationship between hold-to-expiration and shorter holding period expected returns.
5When stochastic volatility is present in a model, the expected option returns are can be computed

analytically conditional on the current variance value: EP
(

rp

t,T |Vt

)

. The unconditional expected returns

can be computed using iterated expectations and the fact that

EP
(

rp

t,T

)

=

∫

EP
(

rp

t,T |Vt

)

p (Vt) dVt.

The integral can be estimated via Monte Carlo simulation or by standard deterministic integration routines.
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shape and location of the two probability measures.6 In models without jump or stochastic

volatility risk premia, the gap is determined by the fact that the P and Q drifts differ by

the equity risk premium. In models with priced stochastic volatility or jump risk, both the

shape and location of the distribution can change, leading to more interesting patterns of

expected returns across different moneyness categories.

2.2.2 Finite sample distribution via Monte Carlo simulation

To assess statistical significance, we use Monte Carlo simulation to compute the distribution

of various returns statistics, including average returns, CAPM alphas, and Sharpe ratios.

We are motivated by concerns that the use of limiting distributions to approximate the finite

sample distribution is inaccurate in this setting. Our concerns arise due to the relatively

short sample and extreme skewness and non-normality of option returns.

To compute the finite sample distribution of various option return statistics, we simulate

N months (the sample length in the data) of index levels G =25,000 times using standard

simulation techniques. For each month and index simulation trial, put returns are

r
p,(g)
t,T =

(

κ − R
(g)
t,T

)+

PT (κ)
− 1, (2.9)

where

PT (κ) ,
Pt,T (St, K)

St

= e−rT EQ
t

[

(κ − Rt,T )+] ,

t = 1, . . . , N and g = 1, . . . , G. Average option returns over the N months on simulation

trial g are given by

r
p,(g)
T =

1

N

∑N

t=1
r

p,(g)
t,T .

A set of G average returns forms the finite sample distribution. Similarly, we can construct

finite sample distributions for Sharpe ratios, CAPM alphas, and other statistics of interest

for any option portfolio.

This parametric bootstrapping approach provides exact finite sample inference under

the null hypothesis that a given model holds. It can be contrasted with the nonparametric

bootstrap, which creates artificial datasets by sampling with replacement from the observed

data. The nonparametric bootstrap, which essentially reshuffles existing observations, has

6For monthly holding periods, 1 ≤ exp (rT ) ≤ 1.008 for 0% ≤ r ≤ 10% and T = 1/12 years, so the

discount factor has a negligible impact on EORs.
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difficulties dealing with rare events. In fact, if an event has not occurred in the observed

sample, it will never appear in the simulated finite sample distribution. This is an important

concern when dealing with put returns which are very sensitive to rare events.

2.3 Parameter estimation

We calibrate our models to fit the realized historical behavior of the underlying index re-

turns over our observed sample. Thus, the P-measure parameters are estimated directly

from historical index return data, and not consumption or dividend behavior. For param-

eters in the Black-Scholes model, this calibration is straightforward, but in models with

unobserved volatility or jumps, the estimation is more complicated as it is not possible to

estimate all of the parameter via simple sample statistics.

For all of the models that we consider, the interest rate and equity premium match

those observed over our sample, r = 4.5% and µ = 5.4%. Since we analyze futures returns

and futures options, δ = r. In each model, we also constrain the total volatility to match

the observed monthly volatility of futures returns, which was 15%. In the most general

model we consider, we do this by imposing that
√

θP
v + λP ((µP

z )
2 + (σP

z )2) = 15%

and by modifying θP
v appropriately. In the Black-Scholes model, we set the constant volatil-

ity to be 15%.

To obtain the values of the remaining parameters, we estimate the SVJ model using daily

S&P 500 index returns spanning the same time period as our options data, from 1987 to

2005. We use MCMC methods to simulate the posterior distribution of the parameters and

state variables following Eraker, Johannes, and Polson (2003) and others. The parameter

estimates (posterior means) and posterior standard deviations are reported in Table 1. The

parameter estimates are in line with the values reported in previous studies (see Broadie,

Chernov, and Johannes, 2007 for a review).

Of particular interest for our analysis are the jump parameters. The estimates imply

that jumps are relatively infrequent, arriving at a rate of about λP = 0.91 per year. The

jumps are modestly sized with the mean of −3.25% and a standard deviation of 6%. Given

these values, a “two sigma” downward jump size will be equal to −15.25%. Therefore, a

crash-type move of −15%, or below, will occur with a probability of λP·5%, or, approxi-

mately once in twenty years.
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r µ λP µP
z σP

z

√

θP
v

√

θP
v κP

v σv ρ

(SV) (SVJ)

4.50% 5.41% 0.91 −3.25% 6.00% 15.00% 13.51% 5.33 0.14 −0.52

(0.34) (1.71) (0.99) (1.28) (0.84) (0.01) (0.04)

Table 1: P-measure parameters. We report parameter values that we use in our compu-

tational examples. Standard errors from the SVJ estimation are reported in parentheses.

Parameters are given in annual terms.

As we discuss in greater detail below, estimating jump intensities and jump size distri-

butions is extremely difficult. The estimates are highly dependent on the observed data

and on the specific model. For example, different estimates would likely be obtained if

we assumed that the jump intensity was dependent on volatility (as in Bates (2000) or

Pan (2002)) or if there were jumps in volatility. Again, our goal is not to exhaustively

analyze every potential specification, but rather to understand option returns in common

specifications and for plausible parameter values.

We discuss the calibration of Q-measure parameters later. At this stage, we only em-

phasize that we do not use options data to estimate any of the parameters. Estimating

Q-parameters from option prices for use in understanding observed option returns would

introduce a circularity, as we would be explaining option returns with information extracted

from option prices.

3 Initial evidence for put mispricing

We collect historical data on S&P 500 futures options from August 1987 to June 2005, a

total of 215 months. This sample is considerably longer than those previously analyzed

and starts in August of 1987 when one-month “serial” options were introduced. Contracts

expire on the third Friday of each month, which implies there are 28 or 35 calendar days to

maturity depending on whether it was a four- or five-week month. We construct represen-

tative daily option prices using the approach in Broadie, Chernov, and Johannes (2007);

details of this procedure are given in Appendix C.

Using these prices, we compute option returns for fixed moneyness, measured by strike
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Figure 1: Time series of options returns.

divided by the underlying, ranging from 0.94 to 1.02 (in 2% increments), which represents

the most actively traded options (85% of one-month option transactions occur in this

range). We did not include deeper OTM or ITM strikes because of missing values. Payoffs

are computed using settlement values for the S&P 500 futures contract. Figure 1 shows the

time series for 6% OTM and ATM put returns, which highlights some of the issues that

are present when evaluating the statistical significance of statistics generated by option

returns. The put return time series have very large outliers and many repeated values,

since OTM expirations generate returns of −100%. We also compute returns for a range

of portfolio strategies, including covered puts, put spreads (crash-neutral put portfolios),

delta-hedged puts, straddles, and crash-neutral straddles. For clarity, we first consider the

returns to writing put options, as this has been the primary focus in the existing literature.
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Moneyness 0.94 0.96 0.98 1.00 1.02

08/1987 to 06/2005 −56.8 −52.3 −44.7 −29.9 −19.0

Standard error 14.2 12.3 10.6 8.8 7.1

t-stat −3.9 −4.2 −4.2 −3.3 −2.6

p-value, % 0.0 0.0 0.0 0.0 0.4

Skew 5.5 4.5 3.6 2.5 1.8

Kurt 34.2 25.1 16.7 10.5 7.1

Subsamples

01/1988 to 06/2005 −65.2 −60.6 −51.5 −34.1 −21.6

01/1995 to 09/2000 −85.5 −71.6 −63.5 −50.5 −37.5

10/2000 to 02/2003 +67.2 +54.3 +44.5 +48.2 +40.4

08/1987 to 01/2000 −83.9 −63.2 −55.7 −39.5 −25.5

Table 2: Average put option returns. The first panel contains the full sample, with stan-

dard errors, t-statistics, and skewness and kurtosis statistics. The second panel analyzes

subsamples. All relevant statistics are in percentages per month.

As mentioned earlier, we focus on hold-to-maturity returns. The alternative would be

higher frequency returns, such as weekly or even daily. The intuition for considering higher

frequency returns comes from the Black-Scholes dynamic hedging arguments indicating that

option returns become approximately normal over high frequencies. Appendix D describes

the difficulties associated with higher frequency returns in detail. In particular, we argue

that using higher frequency returns generates additional theoretical, data, and statistical

problems. In particular, simulation evidence shows that moving from monthly to weekly

returns hurts rather than helps the statistical issues because the distribution of average

returns becomes even more non-normal and dispersed.

Table 2 reports average put returns, standard errors, t-statistics, p-values, and measures

of non-normality (skewness and kurtosis). We also report average returns over various

subsamples.

The first piece of evidence commonly cited supporting mispricing is the large magnitude

of the returns: average monthly returns are −57% for 6% OTM strikes (i.e., K/S = 0.94)

and −30% for ATM strikes and are statistically different from zero using t-statistics, as

p-values are close to zero. The bottom panel reports average returns over subsamples. In
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particular, to check that our results are consistent with previous findings, we compare our

statistics to the ones in the Bondarenko (2003) sample from 1987 to 2000. The returns

are very close, but ours are slightly more negative for every moneyness category except

the deepest OTM category. Bondarenko (2003) uses closing prices and has some missing

values. Our returns are more negative than those reported for similar time periods by

Santa-Clara and Saretto (2005).

Average put returns are unstable over time. For example, put returns were extremely

negative during the late 1990s during the dot-com “bubble,” but were positive and large

from late 2000 to early 2003. The subsample starting in January 1988 provides the same

insight: if the extremely large positive returns realized around the crash of 1987 are ex-

cluded, returns are much lower. Doing so generates a sample selection bias and clearly

demonstrates a problem with tests using short sample periods.7

Table 3 reports CAPM alphas and Sharpe ratios, which delever and/or risk-correct

option returns to account for the underlying exposure. CAPM alphas are highly statistically

significant, with p-values near zero. The Sharpe ratios of put positions are larger than those

on the underlying market. For example, the monthly Sharpe ratio for the market over our

time period was about 0.1, and the put return Sharpe ratios are two to three times larger.

Based largely on this evidence and additional robustness checks, the literature concludes

that put returns are puzzling and options are likely mispriced. We briefly review the related

literature in Appendix A.

4 The role of statistical uncertainty

This section highlights the difficulties in analyzing potential option mispricing based on

returns of individual options. We rely on the simplest option pricing models, that is, the

Black-Scholes and SV models without a stochastic volatility risk premium. We show that

expected returns are highly sensitive to the underlying equity premium and volatility and

also document the extreme finite sample problems associated with tests using returns of

individual options. In particular, the biggest puzzle in the literature – the large deep

7In simulations of the Black-Scholes model, excluding the largest positive return reduces average option

returns by about 15% for the 6% OTM strike. This outcome illustrates the potential sample selection

issues and how sensitive option returns are to the rare but extremely large positive returns generated by

events such as the crash of 1987.
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Moneyness 0.94 0.96 0.98 1.00 1.02

CAPM α, % −48.3 −44.1 −36.8 −22.5 −12.5

Std.err., % 11.6 9.3 7.1 4.8 2.9

t-stat −4.1 −4.7 −5.1 −4.6 −4.2

p-value, % 0.0 0.0 0.0 0.0 0.0

Sharpe ratio −0.27 −0.29 −0.29 −0.23 −0.18

Table 3: Risk-corrected measures of average put option returns. The first panel provides

CAPM α’s with standard errors and the second panel provides put option Sharpe ratios.

All relevant statistics except for the Sharpe ratios are in percentages per month. Sharpe

ratios are monthly. The p-values are computed under the (incorrect) assumption that

t-statistics are t-distributed.

OTM put returns – is not inconsistent with the Black-Scholes model because of statistical

considerations.

4.1 Black-Scholes

In this section, we analyze expected option returns in the Black-Scholes model and analyze

the finite sample distribution of average option returns, CAPM alphas, and Sharpe ratios.

In the Black-Scholes model, EORs are large in magnitude, negative, and highly sensitive to

the equity premium µ and volatility σ, especially for OTM strikes. To show this, Table 4

computes EORs using equation (2.8). The cum-dividend equity premium ranges from 4%

to 8% and volatility ranges from 10% to 20%. The impact of µ is approximately linear and

quantitatively large, as the difference in EORs between high and low equity premiums is

about 10% for ATM strikes and more for deep OTM strikes. Because of this, any historical

period that is “puzzling” because of high realized equity returns will generate option returns

that are even more striking. For example, the realized equity premium from 1990 to 1999

was 9.4% and average volatility was only 13% over the same period. If fully anticipated,

these values would, according to equation (2.8), generate 6% OTM and ATM EORs of

about −40% and −23%, respectively, which are much lower than the EORs using the full

sample equity premium and volatility.

Option returns are sensitive to volatility. As volatility increases, expected put option
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Moneyness

σ µ 0.94 0.96 0.98 1.00 1.02 1.04 1.06

4% −27.6 −22.5 −17.6 −13.3 −9.7 −6.9 −5.0

10% 6% −38.7 −32.2 −25.7 −19.7 −14.5 −10.5 −7.7

8% −48.3 −40.8 −33.1 −25.7 −19.2 −14.1 −10.4

4% −15.4 −13.0 −10.8 −8.8 −7.1 −5.6 −4.5

15% 6% −22.5 −19.2 −16.1 −13.2 −10.7 −8.6 −6.9

8% −29.1 −25.0 −21.1 −17.5 −14.3 −11.5 −9.3

4% −10.3 −8.9 −7.7 −6.5 −5.5 −4.6 −3.9

20% 6% −15.2 −13.3 −11.5 −9.9 −8.4 −7.1 −6.0

8% −20.0 −17.6 −15.3 −13.2 −11.2 −9.5 −8.1

Table 4: Population expected returns in the Black-Scholes model. The parameter µ is the

cum-dividend equity premium, σ is the volatility. These parameters are reported on an

annual basis, and expected option returns are monthly percentages.

returns become less negative. For example, for 6% OTM puts with µ = 6%, EORs change

from −39% for σ = 10% to −15% for σ = 20%. Thus volatility has a quantitatively large

impact and its impact varies across strikes. Unlike the approximately linear relationship

between EORs and the equity premium, the relationship between put EORs and volatility

is concave. This concavity implies that fully anticipated time-variation in volatility results

in more negative expected option returns than that if volatility were constant at the average

value.

Expected option returns are extremely difficult to estimate. As a first illustration,

the top panel in Figure 2 shows the finite sample distribution for 6% OTM average put

returns. The solid vertical line is the observed sample value. The upper panel shows

the large variability in average put return estimates: the (5%, 95%) confidence band is

−65% to +28%. The figure also shows the marked skewness of the distribution of average

monthly option returns, which is expected given the strong positive skewness of purchased

put options, and shows why normal approximations are inappropriate.

Table 5 summarizes EORs and p-values corresponding to observed average returns re-

turns for various strikes. Note first that the p-values have increased dramatically relative
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Figure 2: This figure shows histograms of the finite sample distribution of various statistics.

The top panel provides the distribution of average 6% OTM put returns, the middle panel

6% OTM put CAPM alphas, and the bottom panel 6% OTM put Sharpe ratios. The solid

vertical line is the observed value from the data.
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Moneyness 0.94 0.96 0.98 1.00

Average returns Data, % −56.8 −52.3 −44.7 −29.9

BS EP,% −20.6 −17.6 −14.6 −12.0

p-value,% 8.1 1.7 0.4 2.2

SV EP,% −25.8 −21.5 −17.5 −13.7

p-value,% 24.1 9.3 3.0 7.3

CAPM αs Data, % −48.3 −44.1 −36.8 −22.5

BS EP,% −17.9 −15.3 −12.7 −10.4

p-value,% 12.6 2.7 0.3 1.2

SV EP,% −23.6 −19.5 −15.8 −12.4

p-value,% 39.1 14.1 3.4 8.7

Sharpe ratios Data −0.27 −0.29 −0.29 −0.23

BS EP −0.05 −0.07 −0.08 −0.09

p-value,% 4.9 1.9 1.2 4.0

SV EP −0.04 −0.07 −0.09 −0.10

p-value,% 21.5 12.0 7.7 14.3

Table 5: This table reports population expected option returns, CAPM α’s, and Sharpe

ratios and finite sample distribution p-values for the Black-Scholes (BS) and stochastic

volatility (SV) models. We assume that all risk premia (except for the equity premium)

are equal to zero.

to Table 2. For example, the p-values using standard t-statistics for the ATM options in-

crease by roughly a factor of 10 and by more than 10,000 for deep OTM put options. This

dramatic increase occurs because our bootstrapping procedure anchors null values at those

generated by the model (e.g., at negative values, not at zero) and accounts for the large

sampling uncertainty in the distribution of average option returns.

Next, average 6% OTM option returns are not statistically different from those gen-

erated by the Black-Scholes model, with a p-value of just over 8%. Based only on the

Black-Scholes model, we have our first striking conclusion: deep OTM put returns are in-

significant, when compared to the Black-Scholes model. This is particularly interesting

since the results in the previous literature typically conclude that the deep OTM put op-

tions are the most anomalous or mispriced. We arrive at the exact opposite conclusion:
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there is no evidence that OTM put returns are mispriced. It is important to note that

other strikes are still significant, with p-values below 5%.

Next, consider CAPM alphas, which are reported in the second panel of Table 5. For

every strike, the alphas are quite negative and their magnitudes are economically large,

ranging from −18% for 6% OTM puts to −10% for ATM puts. Although Black-Scholes is

a single-factor model, the alphas are strongly negatively biased in population, which is due

to the misspecification discussed at the beginning of Section 2. This shows the fundamental

problem that arises when applying linear factor models to nonlinear option returns.

To see the issue more clearly, Figure 3 displays two simulated time series of monthly

index and OTM option returns. The regression estimates in the top (bottom) panel corre-

spond to α = 64% (α = −51%) per month and β = −58 (β = −19). The main difference

between the two simulations is a single large observation in the upper panel, which sub-

stantially shifts the constant and intercept estimates obtained by least squares.

More formally, the middle panel of Figure 2 depicts the finite sample distribution of

CAPM alphas for 6% OTM puts, and the middle panel of Table 5 provides finite sample

p-values for the observed alphas. For the deepest OTM puts, observed CAPM alphas are

again insignificantly different from those generated by the Black-Scholes model. For the

other strikes, the observed alphas are generally too low to be consistent with the Black-

Scholes model, although again the p-values are much larger than those based on asymptotic

theory.

Finally, consider Sharpe ratios. The bottom panel of Figure 2 illustrates the extremely

skewed finite sample distribution of Sharpe ratios for 6% OTM puts. The third panel

of Table 5 reports population Sharpe ratios for put options of various strikes and finite

sample p-values. As a comparison, the monthly Sharpe ratio of the underlying index over

our sample period is 0.1. The Sharpe ratios are modestly statistically significant for every

strike, with p-values between 1% and 5%.

4.2 Stochastic volatility

Next, consider the SV model, which extends Black-Scholes by incorporating randomly

fluctuating volatility. We do not assume that the volatility risk is priced, that is, we set

θQ
v = θP

v . Table 5 provides population average returns, CAPM alphas, and Sharpe ratios

for the SV model, as well as p-values.
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Figure 3: CAPM regressions for 6% OTM put option returns.
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Notice first that expected put returns are lower in the SV model. This is due to the

fact that EORs are a concave function of volatility, which implies that fluctuations in

volatility, even if fully anticipated, decrease expected put returns. Compared to the Black-

Scholes model, expected put returns are about 2% lower for ATM strikes and about 5%

lower for the deep OTM strikes. While not extremely large, the lower EORs combined

with an increased sampling uncertainty generated by changing volatility increase p-values

significantly. For deep OTM puts, the p-value is now almost 25%, indicating that roughly

one in four simulated sample paths generate average 6% OTM put returns that are more

negative than those observed in the data. For the other strikes, none of the average returns

are significant at the 1% level, and most are not significant at the 5% level.

CAPM alphas for put returns are more negative in population for the SV model than

the Black-Scholes model, consistent with the results for expected returns. The observed

alphas are all insignificant, with the exception of the 0.98 strike, which has a p-value of

about 3%. The results for the Sharpe ratios are even more striking, with none of the strikes

statistically significantly different from those generated by the SV model.

4.3 Discussion

The results in the previous section generate a number of new findings and insights regarding

relative pricing tests using option returns. In terms of population properties, EORs are

quite negative in the Black-Scholes model, and even more so in the stochastic volatility

model. The leverage embedded in options magnifies the equity premium and the concavity

of EORs as a function of volatility implies that randomly changing volatility increases

the absolute value of expected put option returns. Single-factor CAPM-style regressions

generate negative CAPM alphas in population, with the SV model generating more negative

returns than Black-Scholes. This result is a direct outcome of computing returns of assets

with nonlinear payoffs over non-infinitesimal horizons and regressing these returns on index

returns. Therefore, extreme care should be taken when interpreting negative alphas from

factor model regressions using put returns.

In terms of sampling uncertainty, three results stand out. First, sampling uncertainty

is substantial for put returns, so much that the returns for many of the strikes are sta-

tistically insignificant. This is especially true for the stochastic volatility model, since

randomly changing volatility increases the sampling uncertainty. Second, in terms of sta-

tistical efficiency, average returns generally appear to be less noisy than CAPM alphas
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or Sharpe ratios. For example, comparing the p-values for the average returns to those

for CAPM alphas in the stochastic volatility model, the p-values for CAPM alphas are

always larger. This is also generally true when comparing average returns to Sharpe ratios,

with the exception of deep OTM strikes. This occurs because the sampling distribution

of CAPM alphas is more dispersed, with OLS regressions being very sensitive to outliers.

Third, across models and metrics, the most difficult statistics to explain are the 2% OTM

put returns. This result is somewhat surprising, since slightly OTM strikes have not been

previously identified as particularly difficult to explain.

How do we interpret these results? The BS and SV models are not perfect specifications,

because they can be rejected in empirical tests using option prices. However, these models

do incorporate the major factors driving option returns, and more detailed option model

specifications would provide similar features of average monthly option return distributions.

The results indicate that average put returns are so noisy that the observed data are not

inconsistent with the models. Thus, little can be said when analyzing average put returns,

CAPM alphas or Sharpe ratios computed from returns of individual options. If option

returns are to be useful, more informative test portfolios must be used.

5 Portfolio-based evidence for option mispricing

This section explores whether returns on option portfolios are more informative about

a potential option mispricing than individual option returns. We consider a variety of

portfolios including covered puts, which consist of a long put position combined with a

long position in the underlying index; ATM straddles, which consist of a long position in

an ATM put and an ATM call; crash-neutral straddles, which consists of a long position in

an ATM straddle, combined with a short position in one unit of 6% OTM put; put spreads

(also known as a crash-neutral puts), which consists of a long position in an ATM put and

a short position in a 6% OTM put; and delta-hedged puts, which consist of a long put

position with a long position in delta units of the underlying index (because put deltas are

negative, the resulting index position is long).

As observed earlier, a large part of the variation in average put returns is driven by the

underlying index. All of the above mentioned portfolios mitigate the impact of the level of

the index or the tail behavior of the index (e.g., crash-neutral straddles or put spreads).

In interpreting the portfolios, the delta-hedged portfolios are the most difficult. Because
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Strategy Delta-hedged puts ATMS CNS PSP

Moneyness 0.94 0.96 0.98 1.00

Data, % −1.3 −1.2 −1.0 −0.6 −15.7 −9.9 −21.2

BS EP, % 0.0 0.1 0.0 0.0 1.1 2.2 −11.1

p-val, % 0.0 0.0 0.0 0.0 0.0 0.8 12.5

SV EP, % −0.3 −0.1 −0.0 0.1 1.4 2.2 −13.1

p-val, % 0.3 0.0 0.0 0.0 0.0 0.9 17.1

Table 6: Returns on option portfolios. This table reports sample average returns for various

put-based portfolios. Population expected returns and finite sample p-values are computed

from the Black-Scholes (BS) and stochastic volatility (SV) models. We assume that volatil-

ity risk premia are equal to zero. ATMS, CNS and PSP refer to the statistics associated

with at-the-money straddles, crash-neutral straddles and put spreads, respectively.

the portfolio weights are either model or data-dependent, deltas vary across models and

depend on state variables such as volatility and parameters which need to be estimated.

Appendix E provides a detailed accounting of these issues. We use a delta-hedging strategy

based on the Black-Scholes model to generate our results (see Appendix E).

In each case, we analyze the returns to the long side to be consistent with the earlier

results. In analyzing these positions, we ignore the impact of margin for the short option

positions that appear in the crash-neutral straddles and puts. As shown by Santa-Clara

and Saretto (2006), margin requirements are substantial for short option positions. Table 6

evaluates expected returns for each of these strategies using the Black-Scholes and SV

models from the previous section. CAPM alphas and Sharpe ratios are not reported because

they do not add new information, as discussed in the previous section. The table does not

include average returns on the covered put positions, since the t-statistics are not significant.

Table 6 shows that the magnitude of the ATM straddle returns is quite large, more

than 15% per month, while the magnitude of the delta-hedged returns are much lower, on

the order of 1% per month. The corresponding p-values, computed from the finite sample

distribution as described in Section 2.2.2, are approximately zero. As expected, the returns

on the portfolios are less noisy than for individual option positions. It is interesting to

note that put spreads have p-values between 10 and 20 percent and are less significant than

individual put returns, at least for strikes that are near-the-money.
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ATM straddles have two advantages compared to delta-hedged returns: they can be

cleanly interpreted since the portfolio weights are model and data independent and the

source of the returns is clear. Straddle returns are related to the wedge between expected

volatility under the Q measure and realized volatility under the P measure. In our sample,

realized monthly volatility is approximately 15% (annualized) and ATM implied volatility

17%.8

What is interesting about this gap is that it has not vanished during the latter part

of the sample. For example, during the last two one-year periods from July 2003 to July

2004 and July 2004 to July 2005 the gap was 5.3% and 1.9%. This property suggests that

the returns cannot be explained solely by factors that have dramatically increased over

time such as overall liquidity. The next section investigates two explanations for this gap:

estimation risk and jump risk premia.

6 The role of risk premia

In this section, we focus our discussion on straddles and analyzing mechanisms that can

generate gaps between P and Q measures, although we do report results for delta-hedged

returns, crash-neutral straddles, and put spreads. The two mechanisms that we consider

are estimation risk and jump risk premia, although we generically refer to the gap as risk

premia. Both mechanisms also include an equity premium discussed earlier. We also discuss

one other potential explanation, diffusive stochastic volatility risk premia (differences in the

drifts of the volatility process under P and Q), but find this explanation implausible.

6.1 Differences between P and Q

In a purely diffusive stochastic volatility model (i.e., without jumps in volatility), a wedge

between expected volatility under P and Q can arise from a diffusive volatility risk premium.

The simplest version of this assumes that θQ
v > θP

v , and has been informally suggested as

an explanation for the large straddle returns by, e.g., Coval and Shumway (2001). We

argue that this is unlikely to be a main or even a significant driver of the observed straddle

returns.

8Bakshi and Madan (2006) link this gap to the skewness and kurtosis of the underlying returns via the

representative investor’s preferences. Chernov (2007) relates this gap to volatility and jump risk premia.
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The difference between expected variance under Q- and P-measures in the SV model is

given by

E[V Q
t,T ] − E[V P

t,T ] =
(

θQ
v − θP

v

)

(

1 +
e−κP

vT − 1

κP
vT

)

,

where E[V Q
t,T ] denotes the expected average total variance under the measure Q between

time t and t + T , assuming continuous observations (see, e.g., Chernov (2006)). Because

volatility is highly persistent (i.e., κP
v is small) and T is small for one-month options, θQ

v

needs to be much larger than θP
v to generate a large gap between Q and P that is required

to obtain the straddle returns consistent with observed data.9

Our computations show that
√

θQ
v = 22% would generate straddle returns that are

statistically insignificant from those observed. However, such a large value of θQ
v implies

that the term structure of implied volatilities would be steeply upward sloping on average,

which can be rejected based on observed implied volatility term structures, a point discussed

by Pan (2002) and Broadie, Chernov, and Johannes (2007). This implies that a large

diffusive stochastic volatility risk premium can be rejected as the sole explanation for the

short-dated straddle returns. Combined with the previous results, this observation implies

that the SV model is incapable of explaining short-dated straddle returns.

A more promising explanation relies on price jumps and to explore this we consider the

Bates (1996) and Scott (1997) SVJ model in equations (2.3) and (2.4). From a theoretical

perspective, gaps in the P- and Q-measure jump parameters are promising because

E[V Q
t,T ] − E[V P

t,T ] =
(

θQ
v − θP

v

)

(

1 +
e−κP

vT − 1

κP
vT

)

(6.1)

+ λQ
(

(

µQ
z

)2
+
(

σQ
z

)2
)

− λP
(

(

µP
z

)2
+
(

σP
z

)2
)

. (6.2)

In contrast to the SV model, differences between the P- and Q-measure jump parameters

have an impact on expected variance for all maturities and do not depend on slow rates

of mean-reversion. The main issue is determining reasonable parameter values for λQ, µQ
z ,

and σQ
z .

One way to obtain the risk-neutral parameter values is to estimate these parameters

from option data, as in Broadie, Chernov, and Johannes (2007). However, this approach

is not useful for understanding whether options are mispriced. If option prices are used

9We constrain κP
v = κQ

v . Some authors have found that κQ
v < κP

v, which implies that θQ
v would need to

be even larger to generate a noticeable impact on expected option returns.
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to calibrate λQ, µQ
z , and σP

z , then the exercise is circular, since one implicitly assumes that

options are correctly priced. We take a different approach and consider jump risk premia

and estimation risk as plausible explanations for differences between P- and Q-measure

parameters.

6.2 Factor risk premia

Bates (1988) and Naik and Lee (1990) introduce extensions of the standard lognormal dif-

fusion general equilibrium model incorporating jumps in dividends. These models provide

a natural starting point for our analysis. In this application, a particular concern with these

models is that, when calibrated to dividends, they lead to well-known equity premium and

excess volatility puzzles.10

Because our empirical exercise seeks to understand the pricing of options given the

observed historical behavior of returns, we use the functional forms of the risk correction

for the jump parameters, ignoring the general equilibrium implications for equity premium

and volatility by fixing these quantities to be consistent with our observed historical data

on index returns, 5.4% and 15%, respectively. The risk corrections are given by

λQ = λP exp

(

µP
zγ +

1

2
γ2(σP

z )2

)

(6.3)

µQ
z = µP

z − γ(σP
z )2, (6.4)

where γ is risk aversion, and the P-measure parameters are those estimated from stock

index returns (and not dividend or consumption data) and were discussed earlier. The

volatility of jump sizes, σP
z , is the same across both probability measures.

We consider the benchmark case of γ = 10. This is certainly in the range of values

considered to be reasonable in applications. From (6.3) and (6.4), this value generates

λQ/λP = 1.65 and µP
z − µQ

z = 3.6%. The corresponding Q-parameter values are given in

Table 7. We do not consider a stochastic volatility risk premium, θP
v < θQ

v , since most

standard equilibrium models do not incorporate randomly changing volatility.

10Benzoni, Collin-Dufresne, and Goldstein (2006) extend the Bansal and Yaron (2004) model to incorpo-

rate rare jumps in the latent dividend growth rates. They show that this model can generate a reasonable

volatility smile, but they do not analyze the issues of straddle returns, or equivalently, the difference

between implied and realized volatility. Their model does not incorporate stochastic volatility.
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λQ µQ
z σQ

z

√

θQ
v

Jump risk premia 1.51 −6.85% σP
z

√

θP
v

Estimation risk 1.25 −4.96% 6.99% 14.79%

Table 7: Q-measure parameters for the two scenarios that we explore. In addition, in the

estimation risk scenario, we value options with the spot volatility
√

Vt incremented by 1%.

It is important to note that there are other theories that generate similar gaps between

P and Q jump parameters. Given the difficulties in estimating the jump parameters, Liu,

Pan, and Wang (2004) consider a representative agent who is averse to the uncertainty

over jump parameters. Although their base parameters differ, the P- and Q-measure gaps

they generate for their base parametrization and the “high-uncertainty aversion” case are

λQ/λP = 1.96 and µP
z − µQ

z = 3.9%, which are similar in magnitude to those that we

consider.11 We do not have a particular vested interest in the standard risk-aversion expla-

nation vis-a-vis an uncertainty aversion explanation, our only goal is to use a reasonable

characterization for the difference between P- and Q-measure jump parameters.12

6.3 Estimation risk and Peso problems

Another explanation for observed option returns is estimation risk, capturing the idea that

parameters and state variables are unobserved and cannot be perfectly estimated from

short historical data sets. One argument for why the estimation risk appears in options

is provided by Garleanu, Pedersen, and Poteshman (2005). They argue that jumps and

discrete trading imply that market makers cannot perfectly hedge, and therefore estimation

risk could play an important role and be priced.

In our context, estimation risk arises because it is difficult to estimate the parameters

and spot volatility in our models. In particular, jump intensities, parameters of jump size

11Specifically, Liu, Pan, and Wang (2003) assume that γ = 3, the coefficient of uncertainty aversion

φ = 20, and the penalty coefficient β = 0.01. The P-measure parameters they use are λP = 1/3, µP
z = −1%

and σP
z = 4%. We thank Jun Pan for helpful discussions regarding the details of their calibrations.

12An additional explanation for gaps between P and Q jump parameters is the argument in Garleanu,

Pedersen, and Poteshman (2006). Although they do not provide a formal parametric model, they argue

that market incompleteness generated by jumps or the inability to trade continuously, combined with

exogenous demand pressure, qualitatively implies gaps between realized volatility and implied volatility.
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distributions, long-run mean levels of volatility, and volatility mean reversion parameters

are all notoriously difficult to estimate. Spot volatility is not observed either. The uncer-

tainty about drift parameters in the stochastic volatility process will have a minor impact

on short-dated option returns due to the high persistence of volatility.13 The uncertainty

in jump parameters can have a significant impact.14

One way to see the impact of parameter uncertainty is to consider a standard Bayesian

setting for learning about the parameters of the jump distribution, assuming jump times

and sizes are observed.15 First, consider uncertainty over the jump mean parameter. Sup-

pose that jump sizes are given by Zj = µz+σzεj where µz ∼ N (µ0, σ
2
0). Then the predictive

distribution of Zk+1 upon observing k previous jumps is given by

p
(

Zk+1| {Zj}k

j=1

)

∼ N
(

µk, σ
2
k

)

,

where

µk = wkµ0 + (1 − wk)Zk, Zk = k−1∑k

j=1Zk

σ2
k =

(

k

σ2
z

+
1

σ2
0

)

−1

+ σ2
z , wk =

σ2
z/k

σ2
z/k + σ2

0

.

In addition to revising one’s beliefs about the location, we also see that σ2
k > σ2

z , implying

that estimation risk and learning generates excess volatility. Quantitatively, its impact will

be determined by prior beliefs and how many jumps have been observed. In practice, one

would expect even more excess volatility, since jump sizes are not perfectly observed.

The impact of uncertainty on σz can be even greater. Assuming that µz is known, a

standard conjugate inverse-gamma prior on the jump variance, σ2
z ∼ IG, implies that the

predictive distribution of the jump sizes is t-distributed:

p
(

Zk+1 − µz| {Zj}k

j=1

)

∼ tν ,

where the degrees of freedom parameter ν depends on the prior parameters and sam-

ple size (Zellner, 1971, section 3.2.4). To determine prices, expectations of the form

13The argument is similar to the diffusive volatility premium argument in the previous section.
14Eraker, Johannes, and Polson (2003) provide examples of the estimation uncertainty impact on the

implied volatility smiles.
15Benzoni, Collin-Dufresne, and Goldstein (2006) consider uncertainty over the mean parameters with

normal priors. Johannes, Polson, and Stroud (2005) consider sequential learning about jump and stochastic

volatility parameters in jump-diffusion setting using historical S&P 500 index returns.
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E (exp (Zk+1) |Fk) will have to be computed. However, if the jump sizes have a t-distribution,

this expectation may not exist because the moment generating function of a t-random vari-

able does not exist. Thus, parameter uncertainty can have a substantial impact on the

conditional distribution of St, as the two examples demonstrate.

Finally, it is also important to consider difficulties in estimating spot volatility. Even

with high-frequency data, there are dozens of different methods for estimating volatility,

depending on the frequency of data assumed and whether or not jumps are present. Because

of this, estimates of Vt are noisy. One could argue that it is possible to estimate Vt from

options, but this requires an accurate model and parameter estimates. It is important to

note that estimates of Vt differ dramatically across models. In practice, any estimate of Vt

is a noisy measure because of all these factors.

To capture the impact of estimation risk, without introducing a formal model for how

investors calculate and price estimation risk, we consider the following intuitive approach.

We assume that the parameters that we report in Table 1 represent the true data-generating

process, that is, these parameters generated the observed S&P 500 index returns over our

sample period. However, investors priced options taking into account estimation risk by

increasing/decreasing the Q-measure parameters by one standard deviation from the P-

parameters reported in Table 1. Similarly, to reflect the difficulties in estimating the spot

variance Vt, we increase the spot volatility that investors use to value options by 1%. This

adjustment is realistic since it implies bid-ask spreads of about 5% for ATM options and

10% for OTM options.16 The full set of assumed parameter values is reported in the second

line of Table 7.

This implementation of estimation risk is also consistent with a “Peso-based” explana-

tion of the deviations between the P and Q measures. In this scenario, investors expected

a different sample than actually occurred. Potentially, this could mean that fewer jumps

were observed or that the realized stochastic volatility path had different characteristics

than the observed index return process. Investors priced options accounting for the possi-

bility of more volatility (generated by more jump or higher diffusive volatility), and when

these expectations went unfulfilled, put option returns were ex-post quite negative. Thus,

the term “Peso problem” could apply to multiple aspects of our model: the parameters

of the jump distribution, the jump intensity, parameters of the volatility process, or even

16Here we compute a bid-ask spread as the difference between an option valued at the theoretical volatility

value and an option valued at the adjusted volatility value.
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Strategy Delta-hedged puts ATMS CNS

Moneyness 0.94 0.96 0.98 1.00

Data, % −1.3 −1.2 −1.0 −0.6 −15.7 −9.9

Jump risk premia EP, % −1.3 −1.0 −0.7 −0.4 −11.1 −4.6

p-val, % 57.0 35.2 10.9 7.7 8.3 6.9

Estimation risk EP, % −0.9 −0.7 −0.6 −0.4 −11.0 −7.7

p-val, % 30.8 18.2 7.6 10.6 12.4 17.5

Table 8: Returns on option portfolios. This table reports sample average returns for various

put-based portfolios. Population expected returns and finite sample p-values are computed

from the SVJ model for two configurations of Q-measure parameters. ATMS and CNS refer

to the statistics associated with at-the-money and crash-neutral straddles, respectively.

volatility paths. Because of these similarities with the estimation risk, we do not discuss

the Peso explanation separately.

6.4 Results

Table 8 reports the results for the jump risk premia and estimation risk explanations, with

the parameters given in Table 7. Before discussing the results, it is important to note that

the jump risk premia and estimation risk explanations shift the risk-neutral distribution

in slightly different ways, since jump risk premia adds more tail mass and estimation risk

adds more at-the-money volatility. As discussed earlier, CAPM alphas and Sharpe ratios

provide no additional information, even for straddles or delta-hedged returns, and so they

are not included.

For both explanations, the p-values are insignificant, for every portfolio and every strike.

There are slight differences between estimation risk and jump risk premia, since they impact

ATM and OTM options differently. In the risk premium explanation, the lowest p-value

occurs for the crash-neutral straddles, but it is still well over 5%. In the estimation risk

explanation, the 2% OTM delta-hedged puts generate the lowest p-value, at about 8%.

We interpret these results as follows. While we do not have a formal equilibrium expla-

nation that fits consumption, dividends, stock and option prices, option returns computed

from a model with stochastic volatility and jumps which incorporates an equity premium
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and jump risk premia and/or estimation risk appear to be consistent with the observed

data. Both of these explanations increase risk-neutral volatility relative to observed volatil-

ity, and therefore are capable of replicating the observed data. In reality, both estimation

risk and jump risk premia are likely important, and therefore an explanation combining

aspects of both would be even more palatable. Moreover, as shown by Santa-Clara and

Saretto (2005), bid-ask spreads on index options and margin requirements are substantial,

and incorporating these would decrease (in absolute value) the observed option returns,

making it even easier for models incorporating jump risk premia or estimation risk to

explain the observed patterns.

7 Conclusion

In this paper, we propose a new methodology to evaluate the significance of index option

returns. To avoid the pitfalls of using individual option returns, CAPM alphas, Sharpe

ratios, and asymptotic distributions, we rely on standard option-pricing models to com-

pute analytical expected options returns and to construct finite sample distributions of

average option returns using Monte Carlo simulation. When implementing these models,

we constrain the equity premium and volatility of stock returns to be equal to the values

historically observed, a reasonable assumption when trying to understand option returns

(and not equity returns).

We present a number of interesting findings. First, we find that individual put option

returns are not particularly informative about option pricing or mispricing. The finite

sample distributions are extremely dispersed, due to the difficulty in estimating the equity

premium and the highly skewed return distributions generated by put options. In fact,

we find that one of the biggest puzzles in the literature, the very large, in absolute value,

returns to deep OTM options is, in fact, not inconsistent with the Black-Scholes or Heston

stochastic volatility models. Second, we find little added benefit from using CAPM alphas

or Sharpe ratios as diagnostic tools because the results are similar to those from average

option returns.

Third, we provide evidence that option portfolios, such as straddles or delta-hedged

positions, are far more informative, because they are approximately neutral to movements

in the underlying. Unlike returns on individual option positions, delta-hedged or straddle

returns are shown to be inconsistent with the Black-Scholes and SV models with no risk
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premia beyond an equity premium. Finally, we find that option portfolio returns are largely

consistent with explanations such as estimation risk or jump risk premia that arise in the

context of models with jumps in prices.

We conclude by noting that our results are largely silent on the actual economic sources

of the gaps between the P and Q measures. It is important to test potential explanations

that incorporate investor heterogeneity, discrete trading, model misspecification, or learn-

ing. For example, Garleanu, Pedersen, and Poteshman (2005) provide a theoretical model

incorporating both investor heterogeneity and discrete trading. It would be interesting to

study formal parameterizations of this model to see if it can quantitatively explain the

observed straddle returns. We leave these issues for future research.
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A Previous research on option returns

Before discussing our approach and results, we provide a brief review of the existing litera-

ture analyzing index option returns.17 The market for index options developed in the mid

to late 1980s. The Black-Scholes implied volatility smile indicates that OTM put options

are expensive relative to the ATM puts, and the issue is to then determine if these put

options are in fact mispriced.

Jackwerth (2000) documents that the risk-neutral distribution computed from S&P 500

index put options exhibits a pronounced negative skew after the crash of 1987. Based on a

single factor model, he shows that utility over wealth has convex portions, interpreted as ev-

idence of option mispricing. Investigating this further, Jackwerth (2000) analyzes monthly

put trading strategies from 1988 to 1995 and finds that put writing strategies deliver high

returns, both in absolute and risk-adjusted levels, with the most likely explanation being

option mispricing.

In a related study, Äıt-Sahalia, Wang, and Yared (2001) report a discrepancy between

the risk-neutral density of S&P 500 index returns implied by the cross-section of options

versus the time series of the underlying asset returns. The authors exploit the discrepancy

to set up “skewness” and “kurtosis” trade portfolios. Depending on the current relative

values of the two implicit densities, the portfolios were long or short a mix of ATM and

OTM options. The portfolios were rebalanced every three months. Äıt-Sahalia, Wang, and

Yared (2001) find that during the period from 1986 to 1996 such strategies would have

yielded Sharpe ratios that are two to three times larger than those of the market.

Coval and Shumway (2001) analyze weekly option and straddle returns from 1986 to

1995. They find that put returns are too negative to be consistent with a single-factor

model, and that beta-neutral straddles still have significantly negative returns. Impor-

tantly, they do not conclude that options are mispriced, but rather that the evidence

points toward additional priced risk factors.

Bondarenko (2003) computes monthly returns for S&P 500 index futures options from

August 1987 to December 2000. Using a novel test based on equilibrium models, Bon-

17Prior to the development of markets on index options, a number of articles analyzed option returns

on individual securities. These articles, including Merton, Scholes, and Gladstein (1978) and (1982),

Gastineau and Madansky (1979), and Bookstaber and Clarke (1985). The focus is largely on returns to

various historical trading strategies assuming the Black-Scholes model is correct. Sheikh and Ronn (1994)

document market microstructure patterns of option returns on individual securities.
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darenko finds significantly negative put returns that are inconsistent with single-factor

equilibrium models. His test results are robust to risk adjustments, Peso problems, and the

underlying equity premium. He concludes that puts are mispriced and that there is a “put

pricing anomaly.” Bollen and Whaley (2003) analyze monthly S&P 500 option returns from

June 1988 to December 2000 and reach a similar conclusion. Using a unique dataset, they

find that OTM put returns were abnormally large over this period, even if delta hedged.

Moreover, the pricing of index options is different than individual stock options, which were

not overpriced. The results are robust to transaction costs.

Santa-Clara and Saretto (2005) analyze returns on a wide variety of S&P 500 index

option portfolios, including covered positions and straddles, in addition to naked option

positions. They argue that the returns are implausibly large and statistically significant

by any metric. Further, these returns may be difficult for small investors to achieve due to

margin requirements and potential margin calls.

Most recently, Jones (2006) analyzes put returns, departing from the literature by

considering daily option (as opposed to monthly) returns and a nonlinear multi-factor

model. Using data from 1987 to September 2000, Jones finds that deep OTM put options

have statistically significant alphas, relative to his factor model. Both in and out-of-sample,

simple put-selling strategies deliver attractive Sharpe ratios. He finds that the linear models

perform as well or better than nonlinear models. Bates (2006) reviews the evidence on stock

index option pricing, and concludes that options do not price risks in a manner consistent

with current option-pricing models.

Given the large returns to writing put options, Driessen and Maenhout (2004a) assess

the economic implications for optimal portfolio allocation. Using closing prices on the S&P

500 futures index from 1987 to 2001, they estimate expected utility using realized returns.

For a wide range of expected and non-expected utility functions, investors optimally short

put options, in conjunction with long equity positions. Since this result holds for various

utility functions and risk aversion parameters, their finding introduces a serious challenge

to explanations of the put-pricing puzzle based on heterogeneous expectations, since a wide

range of investors find it optimal to sell puts.

Driessen and Maenhout (2004b) analyze the pricing of jump and volatility risk across

multiple countries. Using a linear factor model, they regress ATM straddle and OTM put

returns on a number of index and index option based factors. They find that individ-

ual national markets have priced jump and volatility risk, but find little evidence of an

35



international jump or volatility factor that is priced across countries.

B Expected instantaneous option returns

In this appendix, we develop some intuition about the signs, magnitudes, and determinants

of instantaneous EORs. First, we apply arguments similar to those used by Black and

Scholes to derive their option pricing model for the more general SVJ model. Then we

discuss the single-factor Black-Scholes model and its extensions incorporating stochastic

volatility and jumps.

B.1 Instantaneous expected excess option returns

The pricing differential equation for a derivative price f(St, Vt) in the SVJ model is

∂f

∂t
+

∂f

∂St

(

r − δ − λQµQ
)

St +
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∂Vt

κ(θQ
v − Vt)
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− f (St, Vt)
]

= rf, (B.1)

where Z is the jump size and the usual boundary conditions are determined by the type of

derivative (e.g., Bates (1996)). We denote the change in the derivative’s prices at a jump

time, τj , as

∆fτj
= f

(

Sτj−
eZj , Vt

)

− f
(

Sτj−
, Vt

)

and Ft =
∑Nt

j=1 ∆fτj
.

By Itô’s lemma, the dynamics of derivative’s price under the measure P are given by
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where Sc
t is the continuous portion of the index process:

dSc
t = (r + µ − δ) Stdt + St

√

VtdW s
t − λPµPStdt

=
(

r + µc − δ − λQµQ
)

Stdt + St

√

VtdW s
t . (B.3)
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Substituting the pricing PDE into the drift, we see that

df =

[
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From this expression, we can compute instantaneous EORs. Taking P-measure expec-

tations,

1
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Rearranging, instantaneous excess option returns are given by
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B.2 The Black-Scholes model

In Black-Scholes, the link between instantaneous returns on a derivative, f (St), and excess

index returns is
df (St)

f (St)
= rdt +

St

f (St)

∂f (St)

∂St

[

dSt

St

− (r − δ) dt

]

.

This expression displays two crucial features of the Black-Scholes model. First, instanta-

neous changes in the derivative’s price are linear in the index returns, dSt/St. Second,

instantaneous option returns are conditionally normally distributed. This linearity and

normality motivated Black and Scholes to assert a “local” CAPM-style model:

1

dt
EP

t

[

df (St)

f (St)
− rdt

]

=
∂ log [f (St)]

∂ log (St)
µ.

In the Black-Scholes model, this expression shows that EORs are determined by the equity

premium and the option’s elasticity, which, in turn, are functions primarily of moneyness

and volatility.
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This instantaneous CAPM is often used to motivate an approximate CAPM model for

finite holding period returns,

EP
t

[

f (St+T ) − f (St)

f (St)
− rT

]

≈ βtµT,

and the model is often tested via an approximate linear factor model for option returns

f (St+T ) − f (St)

f (St)
= αT + βt

(

St+T − St

St

− rT

)

+ εt,T .

As reviewed above, a number of authors use this as a statistical model of returns, and point

to findings that αT 6= 0 as evidence of either mispricing or risk premia.

This argument, however, has a serious potential problem since the CAPM does not hold

over finite time horizons. Option prices are convex functions of the underlying price, and

therefore linear regressions of option returns and underlying returns are generically misspec-

ified. This implies, for example, that α could depend on the parameters (St, K, t, T, σ, µ)

and is not zero in population. Since the results hold in continuous time, the degree of

bias depends on the length of the holding period. Since option returns are highly skewed,

the errors εt,T are also highly skewed, bringing into question the applicability of ordinary

least squares. We show below that even the simple Black-Scholes model generates econom-

ically large alphas for put options. These results also bring into question the practice of

computing alphas for multi-factor specifications such as the Fama-French model.

B.3 Stochastic volatility and jumps

Consider next the case of Heston’s mean-reverting stochastic volatility model (SV). As

derived in Appendix B.1, instantaneous realized option returns are driven by both factors,
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and expected excess returns are given by
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where
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∂ log [f (St, Vt)]

∂ log St
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.
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Since βv
t is positive for all options and priced volatility risk implies that θP

v < θQ
v , expected

put returns are more negative with priced volatility risk.

Equations (B.7) and (B.8) highlight the shortcomings of standard CAPM regressions,

even in continuous time. Regressions of excess option returns on excess index returns will

potentially generate negative alphas for two reasons. First, if the volatility innovations are

omitted then α will be negative to capture the effect of the volatility risk premium. Second,

because dSt/St is highly correlated with dVt, CAPM regressions generate biased estimates

of β and α due to omitted variable bias. As in the Black-Scholes case, discretizations will

generate biased coefficient estimates.

Next, consider the impact of jumps in prices via Merton’s model. Here, the link between

option and index returns is far more complicated:
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where dSc
t denote the continous portion of the sample path increment and St = St−eZ .

The first line is similar to the expressions given earlier, with the caveat that excess index

returns contain only the continuous portion of the increment. The second line captures the

effect of discrete jumps. Expected returns are given by
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Because option prices are convex functions of the underlying, f
(

St−eZ
)

−f (St−) cannot

be linear in the jump size, eZ , and thus even instantaneous option returns are not linear

in index returns. This shows why linear factor models are fundamentally not applicable

in models with jumps in prices. For contracts such as put options and standard forms of

risk premia (e.g., µQ
z < µP

z), EP
t

[

f
(

Ste
Z
)]

< EQ
t

[

f
(

Ste
Z
)]

, which implies that expected

put option returns are negatively impacted by any jump size risk premia. As in the case of

stochastic volatility, a single-factor CAPM regression, even in continuous time, is inappro-

priate. Moreover, negative alphas are fully consistent with jump risk premia and are not

indicative of mispricing.
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C Details of the options dataset

In this appendix, we provide a discussion of major steps taken to construct our options

dataset. There are two primary choices to construct a dataset of option prices for mul-

tiple strikes: using close prices or by sampling options over a window of time. Due to

microstructure concerns with close prices, we followed the latter approach. For each trad-

ing day, we select put and call transactions that could be matched within one minute to a

futures transaction, typically producing hundreds of matched options-futures transactions.

With these matched pairs, we compute Black-Scholes implied volatilities using a binomial

tree to account for the early exercise feature of futures options. Broadie, Chernov, and

Johannes (2007) show that this produces accurate early exercise adjustments in models

with stochastic volatility and jumps in prices.

To reduce the dimension of our dataset and to compute implied volatilities for specific

strikes, we fit a piecewise quadratic function to the implied volatilities. This allows us

to combine an entire days worth of information and compute implied volatilities for exact

moneyness levels. Figure 4 shows a representative day, and Broadie, Chernov, and Johannes

(2007) discuss the accuracy of the method. For each month, we select the day that is

exactly one month to maturity (28 or 35 calendar days) and compute implied volatilities

and option prices for fixed moneyness (in increments of 0.02), measured by strike divided

by the underlying.

D Higher frequency data issues

First, it is important to note the advantage of using monthly returns: every month, an

option with exactly one-month to maturity exists. This is not the case for weekly returns.

This implies that either a single weekly option is used every month (which is severely

reduces sample sizes), or weekly returns can be computed by holding a longer-dated option

for one week (for example, hold a four-week maturity option for one week, a three-week

option for one week, a two-week option for one week, and finally a one-week maturity option

until maturity). This strategy has often been utilized in the literature, but it presents an

important theoretical complication in this context since weekly return characteristics vary

by maturity. A one-week return on a five-week option is theoretically different than a one-

week return on a one-week option, generating an “apples and oranges” comparison problem
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Figure 4: This figure shows representative implied volatility smiles that we construct.

Circles represent the actual transactions. The solid line is the interpolated smile.

for weekly returns that is not present in monthly returns.

Second, the option “roll” strategies described above also generates data problems that

are particularly acute for deep OTM options. The 6% OTM strike is a relatively actively

traded strike for options with one month to maturity. For shorter maturity options, a 6%

movement is much less likely, and therefore there is less trading and there are larger bid-ask

spreads. In fact, for one-week options, it is often the case that there is virtually no trading

in deep OTM strikes. This implies that weekly option returns will generate data availability

problems and may also seriously vary in terms of liquidity. For this reason, researchers who

construct daily or weekly returns typically allow for moneyness and maturity windows. This

strategy adds more data points, but also introduces noise because time to maturity and

moneyness vary from one period to another. By using monthly returns, we are able to

largely mitigate these issues.

Third, as one considers weekly or daily trading, transaction costs start playing a much

more important role than in the monthly buy-and-hold case. The roll strategy is expected

to generate inordinate transaction costs. For example, bid-ask spreads are currently on the
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order to 3% to 5% of the option price for ATM index options, and are often more than 10%

for deep OTM strikes. Moreover, because of liquidity issues mentioned above, transaction

costs tend to increase for OTM short-maturity options. We avoid these costs by holding

an option throughout the entire month.

Fourth, since our goal is to estimate averages, the insight of Merton (1980) implies

that the total time span of data is the key for estimating means rather than the sampling

frequency. One the one hand, this would suggest that there is little difference between

weekly and monthly returns, at least after they are properly compounded (see, Rubinstein,

1984). On the other hand, intuition from the continuous-time dynamics of an option price

(2.2) would suggest that the statistical properties of option returns would improve for

higher frequencies.

We analyze this issue by comparing the finite sample distribution of returns in the

Black-Scholes and Merton models. We use Monte Carlo simulation to explore whether an

increasing frequency of option returns helps in reducing statistical uncertainty of average

returns. Simulation analysis is attractive for two reasons. First, we can construct finite

sample distributions of average returns and directly compare these distributions under var-

ious data sampling scenarios. Second, an idealized simulation setting allows us to abstract

from real-life challenges such as transaction costs and additional uncertainty generated by

varying maturities and strikes, which are inevitable at frequencies higher than monthly.

We can directly focus on the impact of higher frequency.

We simulate from the Black-Scholes and the Merton models many paths, each corre-

sponding to 215 months of observations matching the actual sample. Along each path, we

compute average put returns according to two scenarios. First, we replicate the monthly

frequency that we use in our dataset. We compute average buy-and-hold returns on a one-

month maturity put option. Second, we evaluate a weekly “roll” strategy. We purchase a

one-month option and sell it one week later. Then, we take a new option, which has one

week less left to maturity and has the same moneyness as the first one. As a result, we

construct 860 (four times 215) weekly returns. We compute an average of these returns.

Figure 5 plots the finite sample distributions of average 6% OTM put returns obtained

based on our simulation strategy. Consistent with Merton (1980), the statistical properties

of average returns are the same for the Black-Scholes model as the frequency increases from

monthly to weekly returns, indicating no statistical benefit from using higher frequency

returns. Moreover, in the case of the Merton model, higher frequency hurts rather than
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Figure 5: Finite-sample distribution of average option returns.

helps. The distribution of weekly average option returns is more noisy and asymmetric

than that of the monthly returns. Therefore, detecting potential option mispricing will be

even more challenging at the weekly frequency. The intuition for this result is that the

presence of jumps in the underlying asset returns which introduces kurtosis that is more

pronounced over short time periods. Therefore, the impact of jumps will be pronounced at

high frequencies and will gradually dissipate over longer horizons due to the central limit

theorem.

Table 9 complements Figure 5 by providing statistics describing the finite sample distri-

butions of average put returns. In the Black-Scholes case the standard deviation, skewness

and kurtosis do not change appreciably from one frequency to another. In contrast, the

Merton model implies that weekly frequency leads to dramatic increases in standard devi-
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BSw BSm Mw Mm

Average, % −25.9 −20.1 −14.3 −13.8

Std Dev, % 30.2 29.2 55.9 36.3

Skew 45.6 51.7 95.6 62.6

Kurt 45.0 35.3 122.4 51.8

Table 9: Put option returns at different frequencies. This table reports statistics describing

finite sample distribution of average 6% OTM put returns. BS and M refer to the Black-

Scholes and Merton models, respectively. The notation “w” and “m” refers to weekly and

monthly frequency of portfolio rebalancing, respectively.

ation, skewness and kurtosis of average returns.

E Delta hedging

In this appendix, we discuss delta-hedged returns and, more generally, returns on strategies

with data- or model-based portfolio weights. Delta hedging raises a number of issues that,

in our view, make the interpretation of the delta-hedged returns difficult. The main issue

is that hedge ratios, or deltas, can be computed in multiple ways.

Here are three approaches to implementing an option delta-hedging strategy. The first

uses a formal option pricing model, e.g., the SV model, to compute the required hedging

portfolio weights. The second uses a data-based approach that computes the hedge ratios

using the shape of the current implied volatility smile (see Bates (2005)). The third, com-

monly used by practitioners, computes deltas from the Black-Scholes model and substitutes

implied volatility for the constant volatility parameter. We discuss each of the approaches

in turn.

Model-based hedging requires the knowledge of the spot variance state variable, Vt,

and the model parameters. To compute delta-hedged returns using real data we have to

estimate Vt in sample. To do this, we require a formal model, which leads to a joint

hypothesis issue and introduces estimation noise. Moreover, estimates of spot volatilities

and delta-hedged returns are highly sensitive to the model specification and, in particular,

to the importance of jumps in prices. For example, Branger and Schlag (2004) show that
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delta-hedged errors are not zero if the incorrect model is used or if rebalancing is discrete.

As an alternative, Bates (2005) proposes an elegant model-free technique to establish

delta-hedged weights. This approach circumvents the issues mentioned in the previous

paragraph. However, the approach assumes that options are priced correctly in the mar-

ket.18 This concern is particularly relevant in the context of our paper, because we attempt

to evaluate whether options are priced correctly.

The most practical approach is to use a Black-Scholes model delta evaluated at the

option’s implied volatility. Because of the well-known smile effect in the data, the 6%

OTM delta in the Black-Scholes model will be evaluated at an implied volatility that is

different from the one used for the ATM delta. This is inconsistent with the Black-Scholes

model which assumes a single volatility which is constant across strikes and over time.

However, the deltas computed in this manner are similar to the deltas obtained from more

elaborate models and estimation procedures.

Finally, delta hedging requires rebalancing, which increases transaction costs and data

requirements.19 Thus, while less attractive from the theoretical perspective, the more

practical static delta-hedging strategy should be evaluated. According to this strategy, a

delta-hedged position is formed a month prior to an option’s maturity and is not changed

through the duration of the option contract.

Because static Black-Scholes-based delta-hedging is reasonable and practical, we use it

to compute the results in Tables 6 and 8. Thus a consistent delta-hedging strategy is

used for generating the results with historical data and the model-based results using the

Black-Scholes, SV and SVJ models.

18Bates (2005) notes: “. . . while the proposed methodology may be able to infer the deltas . . . perceived

by the market, that does not mean the market is correct. If options are mispriced, it is probable that the

implicit deltas . . . are also erroneous.”
19Bollen and Whaley (2004) is the only paper that considers rebalancing. Because of data demands, they

take a shortcut and use the volatility at the time the option position was opened and hold this constant

until expiration.
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