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Abstract

This paper introduces new variance reduction techniques and computational improvements
to Monte Carlo methods for pricing American-style options. For simulation algorithms that
compute lower bounds of American option values, we apply martingale control variates
and introduce the local policy enhancement, which adopts a local simulation to improve
the exercise policy. For duality-based upper bound methods, specifically the primal-dual
simulation algorithm (Andersen and Broadie 2004), we have developed two improvements.
One is sub-optimality checking, which saves unnecessary computation when it is sub-optimal
to exercise the option along the sample path; the second is boundary distance grouping, which
reduces computational time by skipping computation on selected sample paths based on the
distance to the exercise boundary. Numerical results are given for single asset Bermudan
options, moving window Asian options and Bermudan max options. In some examples the
computational time is reduced by a factor of several hundred, while the confidence interval
of the true option value is considerably tighter than before the improvements.
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1 Introduction

1.1 Background

Pricing American-style options is challenging, especially under multi-dimensional and path-

dependent settings, for which lattice and finite difference methods are often impractical due

to the curse of dimensionality. In recent years many simulation-based algorithms have been
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proposed for pricing American options, most using a hybrid approach of simulation and dynamic

programming to determine an exercise policy. Because these algorithms produce an exercise

policy which is inferior to the optimal policy, they provide low-biased estimators of the true

option values. We use the term lower bound algorithm to refer to any method that produces a

low-biased estimate of an American option value with a sub-optimal exercise strategy.1

Regression-based methods for pricing American options are proposed by Carriere (1996),

Tsitsiklis and Van Roy (1999) and Longstaff and Schwartz (2001). The least-squares method by

Longstaff and Schwartz projects the conditional discounted payoffs onto basis functions of the

state variables. The projected value is then used as the approximate continuation value, which

is compared with the intrinsic value for determining the exercise strategy. Low-biased estimates

of the option values can be obtained by generating a new, i.e., independent, set of simulation

paths, and exercising according to the sub-optimal exercise strategy. Clément, Lamberton and

Protter (2002) analyze the convergence of the least-squares method. Glasserman and Yu (2004)

study the tradeoff between the number of basis functions and the number of paths. Broadie,

Glasserman and Ha (2000) propose a weighted Monte Carlo method in which the continuation

value of the American option is expressed as a weighted sum of future values and the weights

are selected to optimize a convex objective function subject to known conditional expectations.

Glasserman and Yu (2002) analyze this ‘regression later’ approach, compared to the ‘regression

now’ approach implied in other regression-based methods.

One difficulty associated with lower bound algorithms is that of determining how well they

estimate the true option value. If a high-biased estimator is obtained in addition to the low-

biased estimator, a confidence interval can be constructed for the true option value, and the

width of the confidence interval may be used as an accuracy measure for the algorithms. Broadie

and Glasserman (1997, 2004) propose two convergent methods that generate both lower and

upper bounds of the true option values, one based on simulated trees and the other a stochastic

mesh method. Haugh and Kogan (2004) and Rogers (2002) independently develop dual formu-
1The terms exercise strategy, stopping time and exercise policy will be used interchangeably in this paper.
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lations of the American option pricing problem, which can be used to construct upper bounds

of the option values. Andersen and Broadie (2004) show how duality-based upper bounds can

be computed directly from any given exercise policy through a simulation algorithm, leading

to significant improvements in their practical implementation. We call any algorithm that

produces a high-biased estimate of an American option value an upper bound algorithm.

The duality-based upper bound estimator can often be represented as a lower bound estima-

tor plus a penalty term. The penalty term, which may be viewed as the value of a non-standard

lookback option, is a non-negative quantity that penalizes potentially incorrect exercise deci-

sions made by the sub-optimal policy. Estimation of this penalty term requires nested simu-

lations which is computationally demanding. Our paper addresses this major shortcoming of

the duality-based upper bound algorithm by introducing improvements that may significantly

reduce its computational time and variance. We also propose enhancements to lower bound

algorithms which improve exercise policies and reduce the variance.

1.2 Brief results

The improvements developed and tested in this paper include martingale control variates and

local policy enhancement for lower bound algorithms, and sub-optimality checking and bound-

ary distance grouping enhancements for upper bound algorithms. The least-squares Monte

Carlo method introduced by Longstaff and Schwartz (2001) is used as the lower bound algo-

rithm and the primal-dual simulation algorithm by Andersen and Broadie (2004) is used as

the upper bound method, although the improvements can be applied to other lower bound and

duality-based upper bound algorithms.

Many lower bound algorithms approximate the option’s continuation value and compare it

with the option’s intrinsic value to form a sub-optimal exercise policy. If the approximation of

the continuation value is inaccurate, it often leads to a poor exercise policy. To improve the

exercise policy, we propose a local policy enhancement which employs sub-simulation to gain

a better estimate of the continuation value in circumstances where the sub-optimal policy is

likely to generate incorrect decisions. Then the sub-simulation estimate is compared with the
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intrinsic value to potentially override the original policy’s decision to exercise or continue.

In many upper bound algorithms, a time-consuming sub-simulation is carried out to estimate

the option’s continuation value at every exercise time. We show in Section 4 that sub-simulation

is not needed when the option is sub-optimal to exercise, that is, when the intrinsic value is lower

than the continuation value. Based on this idea, sub-optimality checking is a simple technique

to save computational work and improve the upper bound estimator. It states that we can

skip the sub-simulations when the option’s intrinsic value is lower than an easily derived lower

bound of the continuation value along the sample path. Despite being simple, this approach

often leads to dramatic computational improvements in the upper bound algorithms, especially

for out-of-the-money (OTM) options.

Boundary distance grouping is another method to enhance the efficiency of duality-based

upper bound algorithms. For many simulation paths, the penalty term that contributes to the

upper bound estimator is zero. Thus it would be more efficient if we could identify in advance

the paths with non-zero penalties. The goal of boundary distance grouping is to separate the

sample paths into two groups, one group deemed more likely to produce zero penalties, the

‘zero’ group, and its complement, the ‘non-zero’ group. A sampling method is used to derive

the upper bound estimator with much less computational effort, through the saving of sub-

simulation, on the sample paths in the ‘zero’ group. The fewer paths there are in the ‘non-zero’

group, the greater will be the computational saving achieved by this method. While the saving

is most significant for deep OTM options, the technique is useful for in-the-money (ITM) and

at-the-money (ATM) options as well.

Bermudan options are American-style options that can be exercised at discrete time prior to

the maturity. Most computer-based algorithms effectively price Bermudan options, instead of

continuously-exercisable American options, due to the finite nature of the computer algorithms.

This paper provides numerical results on single asset Bermudan options, moving window Asian

options and Bermudan basket options, the latter two of which are difficult to price using lattice

or finite difference methods. The techniques introduced in this paper are general enough to be
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used for other types of Bermudan options, such as Bermudan interest rate swaptions.

The rest of this paper is organized as follows. In Section 2, the Bermudan option pricing

problem is formulated. Section 3 addresses the martingale control variates and local policy

enhancement for the lower bound algorithms. Section 4 introduces sub-optimality checking and

boundary distance grouping for the upper bound algorithms. Numerical results are shown in

Section 5. In Section 6, we conclude and suggest directions for further research. Some numerical

details, including a comparison between ‘regression now’ and ‘regression later,’ the choice of

basis functions, the proofs of propositions, and the variance estimation for boundary distance

grouping, are given in the appendices.

2 Problem formulation

We consider a complete financial market where the assets are driven by Markov processes in a

standard filtered probability space (Ω, F , P). Let Bt denote the value at time t of $1 invested

in a risk-free money market account at time 0, Bt = e
∫ t
0 rsds, where rs denotes the instantaneous

risk-free interest rate at time s. Let St be an Rd-valued Markov process with the initial state

S0, which denotes the process of underlying asset prices or state variables of the model. There

exists an equivalent probability measure Q, also known as the risk-neutral measure, under which

discounted asset prices are martingales. Pricing of any contingent claim on the assets can be

obtained by taking the expectation of discounted cash flows with respect to the Q measure.

Let Et[·] denote the conditional expectation under the Q measure given the information up to

time t, i.e., Et[·] = EQ[·|Ft]. We consider here discretely-exercisable American options, also

known as Bermudan options, which may be exercised only at a finite number of time steps

Γ = {t0, t1, ..., tn} where 0 = t0 < t1 < t2 < ... < tn ≤ T . τ is the stopping time which can take

values in Γ. The intrinsic value ht is the option payoff upon exercise at time t, for example

ht = (St −K)+ for a single asset call option with strike price K, where x+ := max(x, 0).

The pricing of Bermudan options can be formulated as a primal-dual problem. The primal
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problem is to maximize the expected discounted option payoff over all possible stopping times,

Primal: V0 = sup
τ∈Γ

E0

[
hτ

Bτ

]
. (1)

More generally, the discounted Bermudan option value at time ti < T is

Vti

Bti

= sup
τ≥ti

Eti

[
hτ

Bτ

]
= max

(
hti

Bti

, Eti

[
Vti+1

Bti+1

])
, (2)

where Vt/Bt is the discounted value process and the smallest super-martingale that dominates

ht/Bt on t ∈ Γ (see Lamberton and Lapeyre 1996). The stopping time which achieves the

largest option value is denoted τ∗.2

Haugh and Kogan (2004) and Rogers (2002) independently propose the dual formulation of

the problem. For an arbitrary adapted super-martingale process πt we have

V0 = sup
τ∈Γ

E0

[
hτ

Bτ

]
= sup

τ∈Γ
E0

[
hτ

Bτ
+ πτ − πτ

]
≤ π0 + sup

τ∈Γ
E0

[
hτ

Bτ
− πτ

]
≤ π0 + E0

[
max
t∈Γ

(
ht

Bt
− πt

)]
, (3)

which gives an upper bound of V0. Based on this, the dual problem is to minimize the upper

bound with respect to all adapted super-martingale processes,

Dual: U0 = inf
π∈Π

{
π0 + E0

[
max
t∈Γ

(
ht

Bt
− πt

)]}
, (4)

where Π is the set of all adapted super-martingale processes. Haugh and Kogan (2004) show

that the optimal values of the primal and the dual problems are equal, i.e., V0 = U0, and the

optimal solution of the dual problem is achieved with π∗t being the discounted optimal value

process.

3 Improvements to lower bound algorithms

3.1 A brief review of the lower bound algorithm

Most algorithms for pricing American options are lower bound algorithms, which produce low-

biased estimates of American option values. They usually involve generating an exercise strategy
2In general we use ‘*’ to indicate a variable or process associated with the optimal stopping time.
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and then valuing the option by following the exercise strategy. Let Lt be the lower bound value

process associated with τ , which is defined as

Lt

Bt
= Et

[
hτt

Bτt

]
, (5)

where τt = inf{u ∈ Γ ∩ [t, T ] : 1u = 1} and 1t is the adapted exercise indicator process, which

equals 1 if the sub-optimal strategy indicates exercise and 0 otherwise. Clearly, the sub-optimal

exercise strategy is always dominated by the optimal strategy,

L0 = E0

[
hτ

Bτ

]
≤ V0,

in other words, L0 is a lower bound of the Bermudan option value V0.

We denote Qt, or Qτ
t , as the option’s continuation value at time t under the sub-optimal

strategy τ ,

Qti = Eti

[
Bti

Bti+1

Lti+1

]
, (6)

and Q̃t as the approximation of the continuation value. In regression-based algorithms, Q̃t is

the projected continuation value through a linear combination of the basis functions

Q̃ti =
b∑

k=1

β̂kfk(S1,ti , ..., Sd,ti), (7)

where β̂k is the regression coefficient and fk(·) is the corresponding basis function.

Low bias of sub-optimal policy is introduced when the decision from the sub-optimal policy

differs from the optimal decision. Broadie and Glasserman (2004) propose policy fixing to

prevent some of these incorrect decisions: the option is considered for exercise only if the

exercise payoff exceeds a lower limit of the continuation value, Qt. A straightforward choice for

this exercise lower limit is the value of the corresponding European option if it can be valued

analytically. More generally it can be the value of any option dominated by the Bermudan

option or the maximum among the values of all dominated options (e.g., the maximum among

the values of European options that mature at each exercise time of the Bermudan option).

We apply policy fixing for all lower bound computations in this paper. Note that we only use
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the values of single European options and not the maximum among multiple option values,

because the latter invalidates the condition for Proposition 1 (refer to the proof of Proposition

1 in Appendix B for more detail). Denote the adjusted approximate continuation value as

Q̃t := max(Q̃t, Qt). The sub-optimal strategy with policy fixing can be defined as

τt = inf{u ∈ Γ ∩ [t, T ] : hu > Q̃u}. (8)

If it is optimal to exercise the option and yet the sub-optimal exercise strategy indicates

otherwise, i.e.,

Q∗
t < ht ≤ Q̃t, 1∗t = 1 and 1t = 0, (9)

it is an incorrect continuation. Likewise when it is optimal to continue but the sub-optimal

exercise strategy indicates exercise, i.e.,

Q∗
t ≥ ht > Q̃t, 1∗t = 0 and 1t = 1, (10)

it is an incorrect exercise.

3.2 Distance to the exercise boundary

In this section we discuss an approach to quantify the distance of an option to the exercise

boundary. The exercise boundary is the surface in the state space where the option holder, based

on the exercise policy, is indifferent between holding and exercising the option. Accordingly

the sub-optimal exercise boundary can be defined as the set of states at which the adjusted

approximate continuation value equals the exercise payoff, i.e., {ωt : Q̃t = ht}. The exercise

region is where Q̃t < ht and the sub-optimal policy indicates exercise, and vice versa for the

continuation region.

Incorrect decisions are more likely to occur when the option is ‘close’ to the exercise bound-

ary. To determine how ‘close’ the option is from the sub-optimal exercise boundary we introduce

a boundary distance measure

dt := |Q̃t − ht|. (11)
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This function is measured in units of the payoff as opposed to the underlying state variables.

It does not strictly satisfy the axioms of a distance function, but it does have similar charac-

teristics. In particular, dt is zero only when the option is on the sub-optimal exercise boundary

and it increases as Q̃t deviates from ht. We can use it as a measure of closeness between the

sample path and the sub-optimal exercise boundary. Alternative boundary distance measures

include |Q̃t − ht|/ht and |Q̃t − ht|/St.

3.3 Local policy enhancement

The idea of local policy enhancement is to employ a sub-simulation to estimate the continu-

ation value Q̂t and use that, instead of the approximate continuation value Q̃t, to make the

exercise decision. Since the sub-simulation estimate is generally more accurate than the ap-

proximate continuation value, this may improve the exercise policy, at the expense of additional

computational effort.

It is computationally demanding, however, to perform a sub-simulation at every time step.

To achieve a good tradeoff between accuracy and computational cost, we would like to launch

a sub-simulation only when an incorrect decision is considered more likely to be made. Specifi-

cally, we launch a sub-simulation at time t if the sample path is sufficiently close to the exercise

boundary.

The simulation procedure for the lower bound algorithm with local policy enhancement is

as follows:

(i) Simulate the path of state variables until either the sub-optimal policy indicates exercise

or the option matures.

(ii) At each exercise time, compute ht, Qt, Q̃t, and dt. Continue if ht ≤ Qt, otherwise

a. If dt > ε, follow the original sub-optimal strategy, exercise if ht > Q̃t, continue

otherwise.

b. If dt ≤ ε, launch a sub-simulation with Nε paths to estimate Q̂t, exercise if ht > Q̂t,

continue otherwise.
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(iii) Repeat steps (i)-(ii) for NL sample paths, obtain the lower bound estimator L̂0 by aver-

aging the discounted payoffs.

Due to the computational cost for sub-simulations, local policy enhancement may prove to

be too expensive to apply for some Bermudan options.

3.4 Use of control variates

The fast and accurate estimation of an option’s continuation values is essential to the pricing

of American options in both the lower and upper bound computations. We use the control

variate technique to improve the efficiency of continuation value estimates. The control variate

method is a broadly used technique for variance reduction (see, for example, Boyle, Broadie

and Glasserman 1997), which adjusts the simulation estimates by quantities with known ex-

pectations. Assume we know the expectation of X and want to estimate E[Y ]. The control

variate adjusted estimator is Ȳ − β(X̄ − E[X]), where β is the adjustment coefficient. The

variance-minimizing adjustment coefficient is β∗ = ρXY
σY
σX

, which can be estimated from the

X and Y samples. Broadie and Glasserman (2004) use European option values as controls for

pricing Bermudan options and apply them in two levels: inner controls are used for estimating

continuation values and outer controls are used for the mesh estimates. Control variates con-

tribute to tighter price bounds in two ways, by reducing both the standard errors of the lower

bound estimators and the bias of the upper bound estimators.

Typically control variates are valued at a fixed time, such as the European option’s maturity.

Rasmussen (2005) and Broadie and Glasserman (2004) use control variates that are valued at

the exercise time of the Bermudan option rather than at maturity, which leads to larger variance

reduction because the control is sampled at an exercise time and so has a higher correlation with

the Bermudan option value. This approach requires the control variate to have the martingale

property and thus can be called a martingale control variate. We apply this technique in

our examples, specifically by taking single asset European option values at the exercise time

as controls for single asset Bermudan options, and the geometric Asian option values at the
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exercise time as controls for moving window Asian options. For Bermudan max options, since

there is no simple analytic formula for European max options on more than two assets, we use

the average of single asset European option values as the martingale control.

As discussed in Glasserman (2003), bias may be introduced if the same samples are used to

estimate the adjustment coefficient β and the control variate adjusted value. In order to avoid

bias which may sometimes be significant, we can fix the adjustment coefficient at a constant

value. In our examples we fix the coefficient at one when estimating the single asset Bermudan

option’s continuation value with European option value as the control, and find it to be generally

effective.

4 Improvements to upper bound algorithms

The improvements shown in this section can be applied to duality-based upper bound algo-

rithms. In particular we use the primal-dual simulation algorithm of Andersen and Broadie

(2004).

4.1 Duality-based upper bound algorithms

The dual problem of pricing Bermudan options is

U0 = inf
π∈Π

{
π0 + E0

[
max
t∈Γ

(
ht

Bt
− πt

)]}
.

Since the discounted value process Vt/Bt is a super-martingale, we can use Doob-Meyer de-

composition to decompose it into a martingale process π∗t and an adapted increasing process

A∗
t

Vt

Bt
= π∗t −A∗

t . (12)

This gives

ht

Bt
− π∗t =

ht

Bt
− Vt

Bt
−A∗

t ≤ 0, ∀t ∈ Γ,

since ht
Bt
≤ Vt

Bt
and A∗

t ≥ 0. Hence,

max
t∈Γ

(
ht

Bt
− π∗t

)
≤ 0
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and using the definition of U0 above we get U0 ≤ π∗0 = V0. But also V0 ≤ U0, so U0 = V0, i.e.,

there is no duality gap. For martingales other than π∗ there will be a gap between the resulting

upper and lower bounds, so the question is how to construct a martingale process that leads to

a tight upper bound when the optimal policy is not available.

4.2 Primal-dual simulation algorithm

The primal-dual simulation algorithm is a duality-based upper bound algorithm that builds

upon simulation and can be used together with any lower-bound algorithm to generate an

upper bound of Bermudan option values. We can decompose Lt/Bt as

Lt

Bt
= πt −At, (13)

where πt is an adapted martingale process defined as,

π0 := L0, πt1 := Lt1/Bt1 ,

πti+1 := πti +
Lti+1

Bti+1

− Lti

Bti

− 1tiEti

[
Lti+1

Bti+1

− Lti

Bti

]
for 1 ≤ i ≤ n− 1. (14)

Since Qti
Bti

= Lti
Bti

when 1ti = 0 and Qti
Bti

= Eti

[
Lti+1

Bti+1

]
when 1ti = 1, we have

πti+1 = πti +
Lti+1

Bti+1

− Qti

Bti

. (15)

Define the upper bound increment D as

D := max
t∈Γ

(
ht

Bt
− πt

)
, (16)

which can be viewed as the payoff from a non-standard lookback call option, with the discounted

Bermudan option payoff being the state variable and the adapted martingale process being the

floating strike. The duality gap D0 := E0[D] can be estimated by D̄ := 1
NH

∑NH
i=1 Di, and

Ĥ0 = L̂0 + D̂0 will be the upper bound estimator from the primal-dual simulation algorithm.

The sample variance of the upper bound estimator can be approximated as the sum of sample

variances from the lower bound estimator and the duality gap estimator,

ŝ2
H

NH
≈

ŝ2
L

NL
+

ŝ2
D

NH
, (17)
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because the two estimators are uncorrelated when estimated independently. The simulation

procedure for the primal-dual simulation algorithm is as follows:

(i) Simulate the path of state variables until the option matures.

(ii) At each exercise time, launch a sub-simulation with NS paths to estimate Qt/Bt and

update πt using equation (15).

(iii) Calculate the upper bound increment D for the current path.

(iv) Repeat steps (i)–(iii) for NH sample paths, estimate the duality gap D̂0 and combine it

with L̂0 to obtain the upper bound estimator Ĥ0.

Implementation details are given in Anderson and Broadie (2004). Note that At is not

necessarily an increasing process since Lt/Bt is not a super-martingale. In fact,

Ati+1 −Ati = −1tiEti

[
Lti+1

Bti+1
− Lti

Bti

]
=

{
0, 1ti = 0,
hti
Bti

− Qti
Bti

, 1ti = 1,

which decreases when an incorrect exercise decision is made.

The ensuing Propositions 1 and 2 illustrate some properties of the primal-dual simulation

algorithm. Proofs are provided in Appendix B.

Proposition 1

(i) If hti ≤ Qti for 1 ≤ i ≤ k, then πtk = Ltk
Btk

and htk
Btk

− πtk ≤ 0.

(ii) If hti ≤ Qti for l ≤ i ≤ k, then πtk = πtl−1
− Qtl−1

Btl−1
+ Ltk

Btk
and htk

Btk
− πtk ≤

Qtl−1

Btl−1
− πtl−1

.

Proposition 1(i) states that the martingale process πt is equal to the discounted lower bound

value process and there is no contribution to the upper bound increment before the option enters

the exercise region, and 1(ii) means that the computation of πt does not depend on the path

during the period that option stays in the continuation region. It follows from 1(ii) that the sub-

simulation is not needed when the option is sub-optimal to exercise. In independent work, Joshi
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(2007) derives results very akin to those shown in Proposition 1 by using a hedging portfolio

argument. He shows that the upper bound increment is zero in the continuation region, simply

by changing the payoff function to negative infinity when the option is sub-optimal to exercise.

If an option stays in the continuation region throughout its life, the upper bound increment

D for the path is zero. The result holds even if the option stays in the continuation region until

the final step. Furthermore, if it is sub-optimal to exercise the option except in the last two

exercise dates and the optimal exercise policy is available at the last step before maturity (for

example, if the corresponding European option can be valued analytically), the upper bound

increment D is also zero, because πtn−1 =
Ltn−1

Btn−1
=

Vtn−1

Btn−1
≥ htn−1

Btn−1
.

Proposition 2 For a given sample path,

(i) If ∃δ > 0 such that |Q̃t − Qt| < δ, and dt ≥ δ or ht ≤ Qt holds ∀t ∈ Γ, then At is an

increasing process and D = 0 for the path.

(ii) If ∃δ > 0 such that |Q̃t −Q∗
t | < δ, and dt ≥ δ or ht ≤ Qt holds ∀t ∈ Γ, then 1t ≡ 1∗t .

The implication of Proposition 2 is that, given a uniformly good approximation of the sub-

optimal continuation value (|Q̃t − Qt| is bounded above by a constant δ), the upper bound

increment will be zero for a sample path if it never gets close to the sub-optimal exercise

boundary. And if the approximation is uniformly good relative to the optimal continuation

value (|Q̃t−Q∗
t | is bounded above by a constant δ), the sub-optimal exercise strategy will always

coincide with the optimal strategy for the path never close to the sub-optimal boundary.

4.3 Sub-optimality checking

The primal-dual simulation algorithm launches a sub-simulation to estimate continuation values

at every exercise time along the sample path. The continuation values are then used to deter-

mine the martingale process and eventually an upper bound increment. These sub-simulations

are computationally demanding, however, many of them are not necessary.

Sub-optimality checking is an effective way to address this issue. It is based on the idea of

Proposition 1, and can be easily implemented by comparing the option exercise payoff with the
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exercise lower limit Qt. The sub-simulations will be skipped when the exercise payoff is lower

than the exercise lower limit, in other words, when it is sub-optimal to exercise the option.

Despite being simple, sub-optimality checking may bring dramatic computational improve-

ment, especially for deep OTM options. Efficiency of the simulation may be measured by the

product of sample variance and simulation time, and we can define an effective saving factor

(ESF) as the ratio of the efficiency before and after improvement. Since the sub-optimality

checking reduces computational time without affecting variance, its ESF is simply the ratio of

computational time before and after the improvement.

The simulation procedure for the primal-dual algorithm with sub-optimality checking is as

follows:

(i) Simulate the path of underlying variables until the option matures.

(ii) At each exercise time, if ht > Qt, launch a sub-simulation with NS paths to estimate

Qt/Bt and update πt using Proposition 1; otherwise skip the sub-simulation and proceed

to next time step.

(iii) Calculate the upper bound increment D for the current path.

(iv) Repeat (i)-(iii) for NH sample paths, estimate the duality gap D0 and combine it with

L̂0 to obtain the upper bound estimator Ĥ0.

4.4 Boundary distance grouping

By Proposition 2, when the sub-optimal strategy is close to optimal, many of the simulation

paths will have zero upper bound increments D. The algorithm, however, may spend a sub-

stantial amount of time to compute these zero values. We can eliminate much of this work by

characterizing the paths that are more likely to produce non-zero upper bound increments than

others. We do so by identifying paths that, for at least once during their life, are ‘close’ to the

sub-optimal exercise boundary.

In boundary distance grouping, we separate the sample paths into two groups according to

the distance of each path to the sub-optimal exercise boundary. Paths that are ever within a
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certain distance to the boundary during the option’s life are placed into the ‘non-zero’ group,

because it is suspected that the upper bound increment is non-zero. All other paths, the ones

that never get close to the sub-optimal exercise boundary, are placed into the ‘zero’ group. A

sampling method is used to eliminate part of the simulation work for the ‘zero’ group when

estimating upper bound increments. If the fraction of paths in the ‘non-zero’ group is small,

the computational saving from doing this can be substantial. The two groups are defined as

follows:

Z := {ω : ∀t ∈ Γ, dt(ω) ≥ δ or ht ≤ Qt}, (18)

Z̄ := {ω : ∃t ∈ Γ, dt(ω) < δ and ht > Qt}. (19)

If there exists a small constant δ0 > 0 such that P ({ω : maxt∈Γ |Q̃t(ω)−Qt(ω)| < δ0}) = 1,

the distance threshold δ could simply be chosen as δ0 so that by Proposition 2, D is zero for

all the sample paths that belong to Z. In general δ0 is not known, and the appropriate choice

of δ still remains, as we will address below.

Assume the D estimator has mean µD and variance σ2
D. Without loss of generality, we

assume nZ̄ out of the NH paths belong to group Z̄ and are numbered from 1 to nZ̄ , i.e.,

ω1, ..., ωnZ̄
∈ Z̄, and ωnZ̄+1, ..., ωNH

∈ Z. Let pZ̄ be the probability that a sample path belongs

to group Z̄,

pZ̄ = P (ω ∈ Z̄) = P ({ω : ∃t ∈ Γ, dt(ω) < δ and ht > Qt}). (20)

The conditional means and variances for upper bound increments in the two groups are µZ̄ , σ2
Z̄
,

µZ and σ2
Z . In addition to the standard estimator which is the simple average, an alternative

estimator of the duality gap can be constructed by estimating Dis from a selected set of paths,

more specifically the nZ̄ paths in group Z̄ and lZ paths randomly chosen from group Z (lZ �

NH − nZ̄). For simplicity, we pick the first lZ paths from group Z. The new estimator is

D̃ :=
1

NH

 nZ̄∑
i=1

Di +
NH − nZ̄

lZ

nZ̄+lZ∑
i=nZ̄+1

Di

 , (21)
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which may be easily shown to be unbiased. Although the variance of D̃ is higher than the

variance of D̄, the difference is usually small (see Appendix C).

As shown in Appendix C, under certain conditions the effective saving factor of boundary

distance grouping is simply the saving of computational time by only estimating Dis from group

Z̄ paths instead of all paths, i.e.,

ESF =
Var[D̄] · TD̄

Var[D̃] · TD̃

≈ 1 +
TDZ

pZ̄TDZ̄

, (22)

which goes to infinity as pZ̄ → 0, TD̄ and TD̃ are the expected time to obtain the standard

estimator and the alternative estimator, TDZ̄
and TDZ

are respectively the expected time to

estimate upper bound increment D from a group Z̄ path and from a group Z path.

Notice that after the grouping, we cannot directly estimate Var[D̃] by calculating the sample

variance from Dis because they are no longer identically distributed. Appendix C gives two

indirect methods for estimating the sample variance. The simulation procedure for primal-dual

algorithm with boundary distance grouping is as follows:

(i) Generate np pilot paths as in the standard primal-dual algorithm. For each δ among a set

of values, estimate the parameters pZ̄ , µZ̄ , σZ̄ , TP , TI , etc., and calculate l′Z , then choose

the δ′ that optimizes the efficient measure.

(ii) Simulate the path of underlying variables until the option matures.

(iii) Estimate the boundary distance dt along the path, if ∃t ∈ Γ such that dt < δ′ and ht > Qt,

assign the path to group Z̄, otherwise assign it to Z.

(iv) If the current path belongs to group Z̄ or is among the first l′Z paths in group Z, estimate

the upper bound increment D as in the regular primal-dual algorithm, otherwise skip it.

(v) Repeat steps (ii)-(iv) for NH sample paths, estimate the duality gap using the alternative

estimator D̃ and combine it with L̂0 to obtain the upper bound estimator Ĥ0.
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5 Numerical results

Numerical results for single asset Bermudan options, moving window Asian options and Bermu-

dan max options are presented in this section. The underlying assets are assumed to follow

the standard single and multi-asset Black-Scholes model. In the results below, L̂0 is the lower

bound estimator obtained through the least-squares method (Longstaff and Schwartz 2001), tL

is the computational time associated with it, Ĥ0 is the upper bound estimator obtained through

the primal-dual simulation algorithm (Andersen and Broadie 2004), tH is the associated com-

putational time, and tT = tL + tH is the total computational time. The point estimator is

obtained by taking the average of lower bound and upper bound estimators. All computations

are done on a Pentium 4 2.0GHz computer and computation time is measured in minutes.

In the four summary tables below (Tables 1-4), we show the improvements from methods

introduced in this paper, through measures including the low and high estimators, the standard

errors and the computational time. Each table is split into three panels: the top panel contains

results before improvement, the middle panel shows the reduction of upper bound computa-

tional time through sub-optimality checking and boundary distance grouping, and the bottom

panel shows the additional variance reduction and estimator improvement through local policy

enhancement and the martingale control variate. Note that the local policy enhancement is

only used for moving window Asian options (Table 2), for which we find the method effective

without significantly increasing the computational cost.

For all regression-based algorithms, which basis functions to use is often critical but not

obvious. We summarize the choice of basis functions for our numerical examples, as well as the

comparison between ‘regression later’ and ‘regression now,’ in Appendix A.

5.1 Single asset Bermudan options

The single asset Bermudan option is the most standard and simplest Bermudan-type option.

We assume the asset price follows the geometric Brownian motion process

dSt

St
= (r − q)dt + σdWt, (23)
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where Wt is standard Brownian motion. The payoff upon exercise for a single asset Bermudan

call option at time t is (St − K)+. The option and model parameters are defined as follows:

σ is the annualized volatility, r is the continuously compounded risk-free interest rate, q is the

continuously compounded dividend rate, K is the strike price, T is the maturity in years, and

there are n + 1 exercise opportunities, equally spaced at time ti = iT/n, i = 0, 1, ..., n.

In the implementation of lower bound algorithms, paths are usually simulated from the

initial state for which the option value is desired, to determine the sub-optimal exercise policy.

However, the optimal exercise policy is independent of this initial state. To approximate the

optimal policy more efficiently, we disperse the initial state for regression, an idea independently

proposed in Rasmussen (2005). The paths of state variables are generated from a distribution

of initial states, more specifically by simulating the state variables from strike K at time −T/2

instead of from S0 at time 0. This dispersion method can be particularly helpful when pricing

deep OTM and deep ITM options, given that simulating paths from the initial states of these

options is likely to contribute little to finding the optimal exercise strategy, since most of the

paths will be distant from the exercise boundary. The regression only needs to be performed

once for pricing options with same strike and different initial states, in which case the total

computational time is significantly reduced. In terms of regression basis functions, using powers

of European option values proves to be more efficient than using powers of the underlying asset

prices.

Table 1 shows the improvements in pricing single asset Bermudan call options using tech-

niques introduced in this paper. It demonstrates that the simulation algorithm may work

remarkably well, even compared to the binomial method. In each of the seven cases, a tight

confidence interval containing the true value can be produced in a time comparable to, or less

than, the binomial method. The widths of 95% confidence intervals are all within 0.4% of the

true option values.
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Table 1: Summary results for single asset Bermudan call options
S0 L̂0(s.e.) tL Ĥ0(s.e.) tH 95% C.I. tT Point est. True
70 0.1261(.0036) 0.03 0.1267(.0036) 4.26 0.1190, 0.1338 4.29 0.1264 0.1252
80 0.7075(.0090) 0.04 0.7130(.0091) 4.73 0.6898, 0.7309 4.77 0.7103 0.6934
90 2.3916(.0170) 0.05 2.4148(.0172) 6.12 2.3584, 2.4484 6.16 2.4032 2.3828

100 5.9078(.0253) 0.07 5.9728(.0257) 7.95 5.8583, 6.0231 8.02 5.9403 5.9152
110 11.7143(.0296) 0.08 11.8529(.0303) 8.33 11.6562, 11.9123 8.41 11.7836 11.7478
120 20.0000(.0000) 0.03 20.1899(.0076) 5.83 20.0000, 20.2049 5.87 20.0950 20.0063
130 30.0000(.0000) 0.00 30.0523(.0043) 3.55 30.0000, 30.0608 3.55 30.0261 30.0000
70 0.1281(.0036) 0.03 0.1288(.0037) 0.00 0.1210, 0.1360 0.03 0.1285 0.1252
80 0.7075(.0090) 0.04 0.7113(.0091) 0.01 0.6898, 0.7291 0.05 0.7094 0.6934
90 2.3916(.0170) 0.05 2.4185(.0172) 0.12 2.3584, 2.4523 0.16 2.4051 2.3828

100 5.9078(.0253) 0.07 5.9839(.0258) 0.61 5.8583, 6.0344 0.68 5.9459 5.9152
110 11.7143(.0296) 0.08 11.8624(.0304) 1.98 11.6562, 11.9219 2.06 11.7883 11.7478
120 20.0000(.0000) 0.03 20.2012(.0075) 2.09 20.0000, 20.2159 2.12 20.1006 20.0063
130 30.0000(.0000) 0.00 30.0494(.0040) 1.75 30.0000, 30.0572 1.75 30.0247 30.0000
70 0.1251(.0001) 0.03 0.1251(.0001) 0.00 0.1249, 0.1254 0.04 0.1251 0.1252
80 0.6931(.0003) 0.04 0.6932(.0003) 0.01 0.6925, 0.6939 0.05 0.6932 0.6934
90 2.3836(.0007) 0.05 2.3838(.0007) 0.12 2.3821, 2.3852 0.16 2.3837 2.3828

100 5.9167(.0013) 0.07 5.9172(.0013) 0.61 5.9141, 5.9198 0.68 5.9170 5.9152
110 11.7477(.0019) 0.08 11.7488(.0019) 1.98 11.7441, 11.7524 2.07 11.7482 11.7478
120 20.0032(.0015) 0.04 20.0105(.0016) 2.19 20.0003, 20.0136 2.22 20.0069 20.0063
130 30.0000(.0000) 0.00 30.0007(.0004) 0.71 30.0000, 30.0015 0.71 30.0004 30.0000

Note: Option parameters are σ = 20%, r = 5%, q = 10%, K = 100, T = 1, n = 50, b = 3, NR = 100, 000,
NL = 100, 000, NH = 1000, NS = 500. The three panels respectively contain results before improvement
(top), after the improvement of sub-optimality checking and boundary distance grouping (middle), and
additionally with martingale control variate (bottom)–European call option value sampled at the exercise
time in this case. The true value is obtained through a binomial lattice with 36,000 time steps, which
takes approximately two minutes per option.

20



5.2 Moving window Asian options

A moving window Asian option is a Bermudan-type option that can be exercised at any time ti

before T (i ≥ m), with the payoff dependent on the average of the asset prices during a period

of fixed length. Consider the asset price St following the geometric Brownian motion process

defined in equation (23), and let Ati be the arithmetic average of St over the m periods up to

time ti, i.e.,

Ati =
1
m

i∑
k=i−m+1

Stk . (24)

The moving window Asian option can be exercised at any time ti with payoff (Ati −K)+ for

a call and (K −Ati)
+ for a put. Notice that it becomes a standard Asian option when m = n,

and a single asset Bermudan option when m = 1. The European version of this option is a

forward starting Asian option or Asian tail option.

The early exercise feature, along with the payoff’s dependence on the historic average,

makes the moving window Asian option difficult to value by lattice or finite difference methods.

Monte Carlo simulation appears to be a good alternative to price these options. Polynomials

of underlying asset price and arithmetic average are used as the regression basis functions.

As shown in Table 2, the moving window Asian call options can be priced with high pre-

cision using Monte Carlo methods along with the improvements in this paper. For all seven

cases, the 95% confidence interval widths lie within 1% of the true option values, compared

to 2-7 times that amount before improvements. The lower bound computing time is longer

after the improvements due to the sub-simulations in local policy enhancement, but the total

computational time is reduced in every case.

5.3 Symmetric Bermudan max options

A Bermudan max option is a discretely-exercisable option on multiple underlying assets whose

payoff depends on the maximum among all asset prices. We assume the asset prices follow
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Table 2: Summary results for moving window Asian call options
S0 L̂0(s.e.) tL Ĥ0(s.e.) tH 95% C.I. tT Point est.
70 0.345(.007) 0.04 0.345(.007) 3.08 0.331, 0.359 3.12 0.345
80 1.715(.017) 0.05 1.721(.017) 3.67 1.682, 1.754 3.72 1.718
90 5.203(.030) 0.05 5.226(.030) 5.13 5.144, 5.285 5.18 5.214

100 11.378(.043) 0.08 11.427(.044) 6.97 11.293, 11.512 7.05 11.403
110 19.918(.053) 0.10 19.992(.053) 8.24 19.814, 20.097 8.34 19.955
120 29.899(.059) 0.10 29.992(.060) 8.58 29.782, 30.109 8.68 29.945
130 40.389(.064) 0.10 40.490(.064) 8.61 40.264, 40.616 8.71 40.440
70 0.345(.007) 0.04 0.345(.007) 0.00 0.331, 0.358 0.04 0.345
80 1.715(.017) 0.05 1.721(.017) 0.01 1.682, 1.754 0.06 1.718
90 5.203(.030) 0.05 5.227(.030) 0.10 5.144, 5.286 0.15 5.215

100 11.378(.043) 0.08 11.419(.044) 0.25 11.294, 11.504 0.33 11.399
110 19.918(.053) 0.10 19.990(.054) 0.55 19.814, 20.095 0.65 19.954
120 29.899(.059) 0.10 29.995(.060) 1.26 29.782, 30.112 1.36 29.947
130 40.389(.064) 0.11 40.478(.064) 1.67 40.264, 40.604 1.78 40.433
70 0.338(.001) 0.08 0.338(.001) 0.00 0.336, 0.340 0.08 0.338
80 1.699(.003) 0.30 1.702(.003) 0.01 1.694, 1.708 0.31 1.701
90 5.199(.005) 0.91 5.206(.006) 0.11 5.189, 5.217 1.02 5.203

100 11.406(.007) 2.01 11.417(.008) 0.25 11.391, 11.433 2.26 11.411
110 19.967(.009) 3.36 19.987(.010) 0.55 19.949, 20.007 3.92 19.977
120 29.961(.010) 4.24 29.972(.011) 1.26 29.942, 30.993 5.50 29.967
130 40.443(.010) 4.22 40.453(.011) 1.68 40.423, 40.475 5.89 40.448

Note: Option parameters are σ = 20%, r = 5%, q = 0%, K = 100, T = 1, n = 50, m = 10, b = 6, NR =
100, 000, NL = 100, 000, NH = 1000, NS = 500. The three panels respectively contain results before
improvement (top), after the improvement of sub-optimality checking and boundary distance grouping
(middle), and additionally with local policy enhancement and martingale control variate (bottom)–
geometric Asian option value sampled at the exercise time in this case. For the local policy enhancement
ε = 0.5 and Nε = 100.
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correlated geometric Brownian motion processes, i.e.,

dSj,t

Sj,t
= (r − qj)dt + σjdWj,t, (25)

where Wj,t, j = 1, ..., d, are standard Brownian motions and the instantaneous correlation be-

tween Wj,t and Wk,t is ρjk. The payoff of a 5-asset Bermudan max call option is (max1≤j≤5 Sj,t−

K)+.

For simplicity, we assume qj = q, σj = σ and ρjk = ρ, for all j, k = 1, ..., d and j 6= k. We call

this the symmetric case because the common parameter values mean the future asset returns do

not depend on the index of specific asset. Under these assumptions the assets are numerically

indistinguishable, which facilitates simplification in the choice of regression basis functions. In

particular, the polynomials of sorted asset prices can be used as the (non-distinguishing) basis

functions, without referencing to a specific asset index.

Table 3 provides pricing results for 5-asset Bermudan max call options before and after

the improvements in this paper. Considerably tighter price bounds and reduced computational

time are obtained, in magnitudes similar to that observed for the single asset Bermudan option

and moving window Asian option.

Next we consider the more general case, in which the assets have asymmetric parameters

and are thus distinguishable.

5.4 Asymmetric Bermudan max options

We use the 5-asset max call option with asymmetric volatilities (ranging from 8% to 40%) as

an example. Table 4 shows that the magnitude of the improvements from the techniques in

this paper are comparable to their symmetric counterpart. The lower bound estimator in the

asymmetric case may be significantly improved by including basis functions that distinguish the

assets (see Table 5). Nonetheless, for a reasonably symmetric or a large basket of assets, it is

often more efficient to use the non-distinguishing basis functions, because of the impracticality

to include the large number of asset-specific basis functions.

Table 6 illustrates that the local policy enhancement can effectively improve the lower bound
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Table 3: Summary results for 5-asset symmetric Bermudan max call options
S0 L̂0(s.e.) tL Ĥ0(s.e.) tH 95% C.I. tT Point est.
70 3.892(.006) 0.72 3.904(.006) 2.74 3.880, 3.916 3.46 3.898
80 9.002(.009) 0.81 9.015(.009) 3.01 8.984, 9.033 3.82 9.009
90 16.622(.012) 0.97 16.655(.012) 3.39 16.599, 16.679 4.36 16.638

100 26.120(.014) 1.12 26.176(.015) 3.72 26.093, 26.205 4.83 26.148
110 36.711(.016) 1.18 36.805(.017) 3.90 36.681, 36.838 5.08 36.758
120 47.849(.017) 1.18 47.985(.019) 3.92 47.816, 48.023 5.10 47.917
130 59.235(.018) 1.16 59.403(.021) 3.86 59.199, 59.445 5.02 59.319
70 3.892(.006) 0.72 3.901(.006) 0.05 3.880, 3.913 0.77 3.897
80 9.002(.009) 0.80 9.015(.009) 0.10 8.984, 9.033 0.90 9.008
90 16.622(.012) 0.97 16.662(.012) 0.45 16.599, 16.686 1.42 16.642

100 26.120(.014) 1.12 26.165(.015) 0.91 26.093, 26.194 2.03 26.142
110 36.711(.016) 1.19 36.786(.017) 1.33 36.681, 36.819 2.52 36.749
120 47.849(.017) 1.19 47.994(.020) 1.62 47.816, 48.033 2.81 47.921
130 59.235(.018) 1.16 59.395(.021) 2.14 59.199, 59.437 3.30 59.315
70 3.898(.001) 0.70 3.903(.001) 0.06 3.896, 3.906 0.76 3.901
80 9.008(.002) 0.79 9.014(.002) 0.10 9.004, 9.019 0.90 9.011
90 16.627(.004) 0.95 16.644(.004) 0.46 16.620, 16.653 1.41 16.636

100 26.125(.005) 1.09 26.152(.006) 0.91 26.115, 26.164 2.00 26.139
110 36.722(.006) 1.15 36.781(.009) 1.34 36.710, 36.798 2.49 36.752
120 47.862(.008) 1.16 47.988(.012) 1.62 47.847, 48.011 2.78 47.925
130 59.250(.009) 1.45 59.396(.013) 2.14 59.233, 59.423 3.59 59.323

Note: Option parameters are σ = 20%, q = 10%, r = 5%, K = 100, T = 3, ρ = 0, n = 9, b = 18,
NR = 200, 000, NL = 2, 000, 000, NH = 1500 and NS = 1000. The three panels respectively contain
results before improvement (top), after the improvement of sub-optimality checking and boundary dis-
tance grouping (middle), and additionally with martingale control variate (bottom)–average of European
option values sampled at the exercise time in this case.

24



Table 4: Summary results for 5-asset asymmetric Bermudan max call options
S0 L̂0(s.e.) tL Ĥ0(s.e.) tH 95% C.I. tT Point est.
70 11.756(.016) 0.74 11.850(.019) 2.75 11.723, 11.888 3.49 11.803
80 18.721(.020) 0.96 18.875(.024) 3.43 18.680, 18.921 4.39 18.798
90 27.455(.024) 1.25 27.664(.028) 4.26 27.407, 27.719 5.52 27.559

100 37.730(.028) 1.57 38.042(.033) 5.13 37.676, 38.107 6.70 37.886
110 49.162(.031) 1.75 49.555(.037) 5.73 49.101, 49.627 7.48 49.358
120 61.277(.034) 1.82 61.768(.040) 5.99 61.211, 61.848 7.81 61.523
130 73.709(.037) 1.83 74.263(.044) 6.07 73.638, 74.349 7.89 73.986
70 11.756(.016) 0.74 11.850(.019) 0.19 11.723, 11.883 0.93 11.801
80 18.721(.020) 0.96 18.875(.024) 0.38 18.680, 18.933 1.34 18.803
90 27.455(.024) 1.25 27.664(.028) 0.62 27.407, 27.741 1.87 27.570

100 37.730(.028) 1.57 38.042(.033) 1.47 37.676, 38.106 3.04 37.886
110 49.162(.031) 1.75 49.555(.037) 2.58 49.101, 49.626 4.33 49.357
120 61.277(.034) 1.82 61.768(.040) 3.17 61.211, 61.830 4.99 61.514
130 73.709(.037) 1.83 74.263(.044) 4.11 73.638, 74.351 5.94 73.986
70 11.778(.003) 0.75 11.842(.007) 0.19 11.772, 11.856 0.95 11.810
80 18.744(.004) 0.98 18.866(.011) 0.39 18.736, 18.887 1.38 18.805
90 27.480(.006) 1.29 27.659(.014) 0.62 27.468, 27.686 1.90 27.570

100 37.746(.008) 1.62 37.988(.016) 1.48 37.730, 38.020 3.10 37.867
110 49.175(.010) 1.79 49.492(.020) 2.58 49.155, 49.531 4.37 49.334
120 61.294(.015) 1.86 61.686(.023) 3.17 61.269, 61.730 5.04 61.490
130 73.723(.015) 1.88 74.184(.026) 4.12 73.694, 74.234 6.00 73.953

Note: Option parameters are the same as in Table 3, except that σi = 8%, 16%, 24%, 32% and 40%
respectively for i = 1, 2, 3, 4, 5. The three panels respectively contain results before improvement (top),
after the improvement of sub-optimality checking and boundary distance grouping (middle), and ad-
ditionally with martingale control variate (bottom)–average of European option values sampled at the
exercise time in this case.

Table 5: Impact of basis functions on 5-asset asymmetric Bermudan max call options
S0 = 90 S0 = 100 S0 = 110

b L̂S
0 L̂A

0 ∆L̂0 L̂S
0 L̂A

0 ∆L̂0 L̂S
0 L̂A

0 ∆L̂0

18 27.049 27.517 +0.468 37.089 37.807 +0.718 48.408 49.254 +0.846
12 27.325 27.480 +0.155 37.529 37.746 +0.217 48.910 49.175 +0.265

Note: Option parameters are the same as in Table 4. L̂S
0 represents the lower bound estimator using

symmetric (non-distinguishing) basis functions, L̂A
0 is the estimator using asymmetric (distinguishing)

basis functions. The 95% upper bounds for S0 = 90, 100, 110 are respectively 27.686, 38.020, and 49.531.
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Table 6: Lower bound improvements by local policy enhancement (5-asset Bermudan max call)
S0 = 90 S0 = 100 S0 = 110

b L̂0 L̂E
0 ∆L̂0 L̂0 L̂E

0 ∆L̂0 L̂0 L̂E
0 ∆L̂0

6 16.563 16.613 +0.050 26.040 26.108 +0.068 36.632 36.713 +0.081
12 16.606 16.629 +0.023 26.106 26.138 +0.032 36.715 36.756 +0.041
18 16.627 16.634 +0.007 26.125 26.139 +0.014 36.722 36.750 +0.028
19 16.618 16.630 +0.012 26.113 26.134 +0.021 36.705 36.739 +0.034

Note: Option parameters are the same as in Table 3 except that the local policy enhancement is used
here with ε = 0.05 and Nε = 500. L̂0 is the regular lower bound estimator, L̂E

0 is the estimator with
local policy enhancement. The 95% upper bounds for S0 = 90, 100, 110 are, respectively, 16.652, 26.170,
and 36.804.

estimator, especially when the original exercise policy is far from optimal. The lower bound

estimator using 12 basis functions with local policy enhancement consistently outperforms the

estimator using 18 basis functions without local policy enhancement. This indicates that the

local policy enhancement can help reduce the number of basis functions needed for regression

in order to achieve the same level of accuracy.

Table 7 shows the effective saving factor by sub-optimality checking and boundary distance

grouping, which is calculated as the ratio of the product of computational time and variance

of estimator, with and without improvements. Both methods are most effective on deep OTM

options (for example, the S0 = 70 case for a moving window Asian call shows an effective saving

factor of more than 1000), and show considerable improvements for ATM and ITM options. The

sub-optimality checking shows greater improvements in most cases, while the boundary distance

grouping works better for deep ITM single asset and max Bermudan options, for which many

sample paths are far above the exercise boundary thus will be placed in the ‘zero’ group and

save the computation. Also notice that the improvements of two methods are not orthogonal,

especially for OTM options, since the time saving for both methods comes mainly from the

sample paths that never go beyond the exercise lower limit. More specifically, the expected

time for estimating upper bound increment from a group Z path is shorter than that from a

group Z̄ path after applying the sub-optimality checking, which limits the additional saving

through boundary distance grouping.
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Table 7: Effective saving factor by sub-optimality checking and boundary distance grouping
Option type S0 tH tSH ESFS∗ tBH ESFB tS,B

H ESFS,B

Single 70 4.22 0.01 739.7 0.03 196.8 0.00 N.A.∗∗

asset 90 5.87 0.24 32.3 1.13 6.9 0.10 92.3
Bermudan 110 7.90 3.26 2.3 3.71 2.6 1.95 6.0

call 130 3.58 4.21 1.2 1.18 4.5 1.08 5.4
Moving 70 3.05 0.01 1163.1 0.06 69.4 0.00 1172.1
window 90 5.00 0.15 43.3 2.30 2.7 0.11 62.0
Asian 110 7.97 1.04 9.1 4.88 1.9 0.55 16.5
call 130 8.37 2.33 4.4 6.33 1.3 1.68 5.7

Bermudan 70 2.72 0.10 26.5 0.32 8.2 0.06 47.2
max 90 3.49 1.01 3.4 1.16 2.4 0.46 7.4
call 110 4.04 3.93 1.0 2.70 1.6 1.34 1.6

130 4.08 4.30 1.0 2.30 1.6 2.14 1.6

∗: Effective saving factor (ESF) is defined in Section 4.
∗∗: Due to zero upper bound increment after improvements being the denominator.
Note: Option parameters are the same as in Table 1, 2 and 3 respectively for three types of options. tH ,
tSH , tBH , tS,B

H are the computational time for the primal-dual simulation estimates, respectively with no
improvement, with sub-optimal checking, boundary distance grouping and two methods combined.

Table 8 demonstrates how the computational time increases with the number of exercise

opportunities n, using the moving window Asian call option as an example. For the least-

squares lower bound estimator, the computational time tL increases linearly with n. After

applying the local policy enhancement, dependence becomes between linear and quadratic,

because sub-simulations are performed, but only when the path is close to the sub-optimal

exercise boundary.

The computational time for primal-dual simulation algorithm, tH , has a quadratic depen-

dence on the number of exercise steps, as a sub-simulation is needed at every step of the sample

path. By combining the sub-optimality checking and boundary distance grouping, the depen-

dence becomes more than quadratic, while the computational time is actually reduced–that

is because the boundary distance grouping is more effective for options with fewer exercise

opportunities, in which case there are fewer sample paths in the ‘non-zero’ group.
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Table 8: Computational time vs. number of exercise opportunities (moving window Asian call)
S0 70 100 130
n tL tEL tH tS,B

H tL tEL tH tS,B
H tL tEL tH tS,B

H

10 0.01 0.01 0.20 0.00 0.02 0.14 0.35 0.00 0.02 0.55 0.46 0.05
25 0.02 0.03 1.13 0.00 0.04 0.73 2.08 0.05 0.05 1.76 2.54 0.31
50 0.04 0.08 4.31 0.00 0.08 2.01 8.00 0.25 0.10 4.22 9.59 1.68
100 0.07 0.21 16.83 0.01 0.15 5.51 30.89 1.30 0.21 11.36 37.23 8.64

Note: Option parameters are the same as in Table 2 except the number of exercise opportunities n. The
window size is set as m = n/5 to ensure the consistent window length.

6 Conclusion

In this paper we introduce new variance reduction techniques and computational improvements

for both lower and upper bound Monte Carlo methods for pricing American-style options.

Local policy enhancement may significantly improve the lower bound estimator of Bermudan

option values, especially when the original exercise policy is far from optimal. Sub-optimality

checking and boundary distance grouping are two methods that may reduce the computational

time in duality-based upper bound algorithms by up to several hundred times. They both work

best on out-of-the-money options. Sub-optimality checking is easy to implement and more

effective in general, while boundary distance grouping performs better for options that are deep

in-the-money. They can be combined to achieve a more significant reduction.

Tight lower and upper bounds for high-dimensional and path-dependent Bermudan op-

tions can be computed in the matter of seconds or a few minutes using the methods proposed

here. Together they produce narrower confidence intervals using less computational time, by

improving the exercise policy, reducing the variance of the estimators and saving unnecessary

computations. For all the numerical examples tested, widths of 95% confidence intervals are

within 1% of the option values, compared to 5% ∼ 10% before the improvements. And it takes

up to 6 minutes to price each option, instead of several hours before the improvements. These

improvements greatly enhance the practical use of Monte Carlo methods for pricing complicated

American options.
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A Regression related issues

A.1 ‘Regression now’ vs. ‘regression later’

As a comparison with the standard least-squares estimator, we implement the ‘regression later’

technique (Broadie, Glasserman and Ha 2000, Glasserman and Yu 2002) on single asset Bermu-

dan options and Bermudan max options. The ‘regression later’ approach requires the use of

martingale basis functions, thus we choose St, S2
t and Et (European option value at time t)

as the basis functions for single asset Bermudan options and the first two powers of each asset

price {Si,t, S2
i,t} for Bermudan max options. The corresponding martingale basis functions for

St, S2
t and Et are e−(r−q)tSt, e−2(r−q)t−σ2tS2

t and e−rtEt.

As shown in Tables 9 and 10, ‘regression later’ approach generates more accurate estimates

than ‘regression now’ in most cases, especially when fewer paths are used for regression and

the exercise policy is far from optimal. However, when the number of regression paths are

sufficiently large, ‘regression later’ does not lead to an observable improvement because the

regression estimates approach their convergence limit and there is no room for additional im-

provement by ‘regression later’. Note also that, the requirement of martingale basis functions

limits the use of this algorithm.

A.2 Choice of basis functions

The choice of basis functions is critical for the regression-based algorithms. We list here the

basis functions we use for our examples. Note that the constant c is counted as one of the basis

functions.

For the single asset Bermudan options, we use 3 basis functions {c, Et, E
2
t } where Et is the

value of the European option at time t.

The 6 basis functions used for the moving window Asian options include the polynomials of

St and At up to the second order {c, St, S2
t , At, A2

t , StAt}.

Polynomials of sorted asset prices are used for the symmetric Bermudan max options. Let

S′
i,t be the i-th highest asset price at t. The 18 basis functions include the polynomials up to
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Table 9: Regression now vs. regression later (single asset Bermudan call)

S0 = 90 S0 = 100 S0 = 110
NR L̂N

0 L̂L
0 ∆L̂0 L̂N

0 L̂L
0 ∆L̂0 L̂N

0 L̂L
0 ∆L̂0

10000 2.3759 2.3786 0.0027 5.8938 5.9017 0.0079 11.7141 11.7263 0.0122
100000 2.3832 2.3835 0.0003 5.9149 5.9154 0.0005 11.7442 11.7447 0.0005

Note: Option parameters are the same as in Table 1 except the number of basis functions b = 4 here.

Table 10: Regression now vs. regression later (5-asset asymmetric Bermudan max call)
S0 = 90 S0 = 100 S0 = 110

NR L̂N
0 L̂L

0 ∆L̂0 L̂N
0 L̂L

0 ∆L̂0 L̂N
0 L̂L

0 ∆L̂0

2000 27.268 27.310 0.042 37.473 37.489 0.016 48.817 48.858 0.041
200000 27.315 27.318 0.003 37.494 37.494 0.000 48.846 48.833 -0.013

Note: Option parameters are the same as in Table 3 except the number of basis functions b = 11 here.

the fifth order: {c, S′
1, S′2

1 , S′
2, S′2

2 , S′
1S

′
2, S′3

1 , S′3
2 , S′

3, S′2
3 , S′

1S
′
3, S′

2S
′
3, S′4

1 , S′5
1 , S′2

1 S′
2, S′

1S
′2
2 ,

S′
1S

′
2S

′
3, S′

4S
′
5}; 12-case includes the polynomials of three highest asset prices, i.e., the first

twelve in the list above; 6-case includes polynomials of two highest asset prices, i.e., the first

six in the list above; 19-case is the same as in Longstaff and Schwartz (2001), which are {c, S′
1,

S′2
1 , S′3

1 , S′4
1 , S′5

1 , S′
2, S′2

2 , S′
3, S′2

3 , S′
4, S′2

4 , S′
5, S′2

5 , S′
1S

′
2, S′

2S
′
3, S′

3S
′
4, S′

4S
′
5, S′

1S
′
2S

′
3S

′
4S

′
5}.

The 18 asset-distinguishing basis functions for the asymmetric Bermudan max options are

{c, S′
1, S′2

1 , S′
2, S′2

2 , S′
1S

′
2, S1, S2, S3, S4, S5, S′3

1 , S2
1 , S2

2 , S2
3 , S2

4 , S2
5 , S′3

2 }; 12-case includes the

first twelve in the list above.

For the comparisons between ‘regression now’ and ‘regression later,’ 4 basis functions

{c, St, S
2
t , Et} are used for the single asset Bermudan options, 11 basis functions {c, S1,t, S2,t,

S3,t, S4,t, S5,t, S2
1,t, S2

2,t, S2
3,t, S2

4,t, S2
5,t} are used for the asymmetric Bermudan max options.

B Proof of Proposition 1 and 2

In this section we give proofs of Propositions 1 and 2 in Section 4.

Proposition 1

(i) If hti ≤ Qti for 1 ≤ i ≤ k, then πtk = Ltk
Btk

and htk
Btk

− πtk ≤ 0.
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(ii) If hti ≤ Qti for l ≤ i ≤ k, then πtk = πtl−1
− Qtl−1

Btl−1
+ Ltk

Btk
and htk

Btk
− πtk ≤

Qtl−1

Btl−1
− πtl−1

.

Proof.

(i) If hti ≤ Qti for 1 ≤ i ≤ k, then 1ti = 0, and

πtk = πtk−1
+

Ltk

Btk

−
Ltk−1

Btk−1

= πtk−2
+

Ltk−1

Btk−1

−
Ltk−2

Btk−2

+
Ltk

Btk

−
Ltk−1

Btk−1

= π0 +
k∑

j=1

(
Ltj

Btj

−
Ltj−1

Btj−1

)
=

Ltk

Btk

,

therefore,

htk

Btk

− πtk ≤
Qtk

Btk

− Ltk

Btk

≤ 0.

Notice that the last inequality holds for instance if Qt is a Q-sub-martingale, which is valid

with the choice of one European option value but invalid with the choice of maximum

among multiple option values.

(ii) If hti ≤ Qti for l ≤ i ≤ k

πtk = πtk−1
+

Ltk

Btk

−
Ltk−1

Btk−1

= πtk−2
+

Ltk−1

Btk−1

−
Ltk−2

Btk−2

+
Ltk

Btk

−
Ltk−1

Btk−1

= πtl−1
−

Qtl−1

Btl−1

+
Ltk

Btk

.

and

htk

Btk

− πtk =
htk

Btk

− πtl−1
+

Qtl−1

Btl−1

− Ltk

Btk

≤
Qtl−1

Btl−1

− πtl−1
.�

Proposition 2 For a given sample path,

(i) If ∃δ > 0 such that |Q̃t −Qt| < δ, and dt ≥ δ or ht ≤ Qt holds for ∀t ∈ Γ, then At is an

increasing process and D = 0 for the path.
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(ii) If ∃δ > 0 such that |Q̃t −Q∗
t | < δ, and dt ≥ δ or ht ≤ Qt holds for ∀t ∈ Γ, then 1t ≡ 1∗t .

Proof.

(i) For ∀ti ∈ Γ, if hti ≤ Qti , 1ti = 0 and Ati+1 −Ati = 0; otherwise if dti ≥ δ,

(a) 1ti = 0, Ati+1 −Ati = 0 and hti − Q̃ti < −δ,

hti − Lti = hti −Qti = (hti − Q̃ti) + (Q̃ti −Qti) < −δ + δ = 0;

(b) 1ti = 1, hti = Lti and hti − Q̃ti > δ,

Ati+1 −Ati =
hti

Bti

− Eti

[
Lti+1

Bti+1

]
=

1
Bti

(hti −Qti)

=
1

Bti

[(hti − Q̃ti) + (Q̃ti −Qti)]

>
1

Bti

(δ − δ) = 0.

Finally,

D = max
t

(
ht

Bt
− πt

)
= max

t

(
ht

Bt
− Lt

Bt
−At

)
= 0.

(ii) For ∀t ∈ Γ, if ht ≤ Qt, 1t = 0 = 1∗t ; otherwise if dt ≥ δ, since |Q̃t −Q∗
t | < δ,

(a) 1t = 0, Q∗
t > Q̃t − δ ≥ ht + δ − δ = ht and thus 1∗t = 0;

(b) 1t = 1, Q∗
t < Q̃t + δ ≤ ht − δ + δ = ht and thus 1∗t = 1.�

As we noted in the introduction, D may be interpreted as a penalty term for incorrect

decisions. An incorrect continuation decision at t will be penalized and cause ht
Bt
− πt to be

positive if the path never enters the exercise region before t. To see this, assume an incorrect

continuation decision is made at ti for a sample path that has not been in the exercise region

before ti. By Proposition 1, πti = Lti
Bti

and Lti ≤ Q∗
ti < hti < Q̃ti ,

hti

Bti

− πti =
hti

Bti

− Lti

Bti

≥ hti

Bti

−
Q∗

ti

Bti

> 0.

On the other hand, an incorrect exercise decision at t will only get penalized (i.e., D > 0

for the path) either when the option leaves and re-enters the exercise region or the option never
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comes back into the exercise region and matures OTM. For example, suppose an incorrect

exercise decision is made at tk, and tk is the first time that the sample path enters the exercise

region. Assume the next time that the sample path enters the exercise region is at time tl, i.e.,

l = infi>k{i : 1ti = 1} ∧ n. By Proposition 1,

πtl = πtk −
Qtk

Btk

+
htl

Btl

=
Ltk

Btk

− Qtk

Btk

+
htl

Btl

,

thus

htl

Btl

− πtl =
Qtk

Btk

− Ltk

Btk

≈
Q∗

tk

Btk

− Ltk

Btk

>
htk

Btk

− Ltk

Btk

= 0,

assuming the sub-optimal continuation value is a good approximate of the true continuation

value.

C Numerical details in boundary distance grouping

C.1 Estimators of the duality gap

The standard estimator of the duality gap D0 is D̄ =
∑NH

i=1 Di

NH
, and the alternative estimator

using boundary distance grouping is

D̃ =

∑nZ̄
i=1 Di + NH−nZ̄

lZ

∑nZ̄+lZ
i=nZ̄+1 Di

NH
.

Assume

E[Di|Z̄] = µZ̄ ,Var[Di|Z̄] = σ2
Z̄ ,

E[Di|Z] = µZ ,Var[Di|Z] = σ2
Z .

Since each path belongs to group Z̄ with probability pZ̄ and group Z with probability 1−pZ̄ , nZ̄

is a binomial random variable with parameters (NH , pZ̄). We have E[nZ̄ ] = NHpZ̄ , Var[nZ̄ ] =

NHpZ̄(1 − pZ̄). By Proposition 2, if the Q̃t almost surely lies within δ0 from the sub-optimal

continuation value, we can choose δ = δ0 so that D = 0 for almost all paths in group Z, thus

µZ and σZ are both close to zero. The variance of the standard estimator is,

Var[D̄] = E[Var(D̄|nZ̄)] + Var(E[D̄|nZ̄ ])
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= E

[
nZ̄σ2

Z̄
+ (NH − nZ̄)σ2

Z

N2
H

]
+ V ar

(
nZ̄µZ̄ + (NH − nZ̄)µZ

NH

)
=

1
NH

σ2
Z +

1
NH

pZ̄(σ2
Z̄ − σ2

Z) +
(µZ̄ − µZ)2V ar(nZ̄)

N2
H

=
1

NH
[σ2

Z + pZ̄(σ2
Z̄ − σ2

Z) + pZ̄(1− pZ̄)(µZ̄ − µZ)2]

=
1

NH
[(1− pZ̄)σ2

Z + pZ̄σ2
Z̄ + pZ̄(1− pZ̄)(µZ̄ − µZ)2]

=
σ2

D

NH
.

It is easy to verify the alternative estimator is unbiased,

E[D̃] = E[E[D̃|nZ̄ ]] = E

[
nZ̄

NH
µZ̄ +

NH − nZ̄

NH
µZ

]
= pZ̄µZ̄ + (1− pZ̄)µZ = µ,

and the variance is

Var[D̃] = E[Var(D̃|nZ̄)] + Var(E[D̃|nZ̄ ])

= E

 1
N2

H

nZ̄∑
i=1

Var(Di) +
(NH − nZ̄)2

l2ZN2
H

V ar

 nZ̄+lZ∑
i=nZ̄+1

Di

 + V ar

(
nZ̄

NH
µZ̄ +

NH − nZ̄

NH
µZ

)

= E

[
1

N2
H

nZ̄σ2
Z̄ +

(NH − nZ̄)2

l2ZN2
H

lZσ2
Z

]
+

(µZ̄ − µZ)2

N2
H

Var(nZ̄)

=
pZ̄σ2

Z̄

NH
+

σ2
Z

lZN2
H

E[N2
H − 2nZ̄NH + n2

Z̄ ] +
(µZ̄ − µZ)2

NH
pZ̄(1− pZ̄)

=
1
lZ

(1− pZ̄)2σ2
Z +

1
lZNH

pZ̄(1− pZ̄)σ2
Z +

1
NH

pZ̄σ2
Z̄ +

1
NH

pZ̄(1− pZ̄)(µZ̄ − µZ)2.

For any choice of lZ ≤ NH(1− pZ̄), where NH(1− pZ̄) is the expected number of paths in

Z,

Var[D̃] >
1
lZ

(1− pZ̄)2σ2
Z +

1
NH

pZ̄σ2
Z̄ +

1
NH

pZ̄(1− pZ̄)(µZ̄ − µZ)2

≥ 1
NH

[(1− pZ̄)σ2
Z + pZ̄σ2

Z̄ + pZ̄(1− pZ̄)(µZ̄ − µZ)2]

=
σ2

D

NH
= Var[D̄],

which means the variance of D̃ is always greater than that of D̄. The ‘=’ sign in the second

inequality holds when lZ = NH(1 − pZ̄), in which case Var[D̄] and Var[D̃] are only different

by a small term 1
N2

H
pZ̄σ2

Z . The difference is due to the randomness in the number of paths in
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group Z̄ and Z. Generally,

Var[D̃] <
σ2

Z

lZ
+

1
NH

[(1− pZ̄)σ2
Z + pZ̄σ2

Z̄ + pZ̄(1− pZ̄)(µZ̄ − µZ)2]

=
σ2

D

NH
+

σ2
Z

lZ
,

i.e., Var[D̃] falls into [σ2
D/NH , σ2

D/NH + σ2
Z/lZ ], i.e., [Var[D̄],Var[D̄] + σ2

Z/lZ ], which is a tight

interval if σ2
Z � lZσ2

D/NH .

C.2 Effective saving factor

The effective saving factor for boundary distance grouping can be calculated as the ratio of the

efficiency before and after improvement, where the efficiency of simulation is measured by the

product of sample variance and computational time. As denoted in Section 4, TP is the expected

time spent for generating one sample path, TI is the expected time to identify which group the

path belongs to, TDZ̄
and TDZ

are the expected time to estimate upper bound increment D

from a group Z̄ path and from a group Z path respectively, typically TP , TI � TDZ̄
, TDZ

.

The total expected time for estimating D̄ is,

TD̄ ≈ NHTP + NHpZ̄TDZ̄
+ NH(1− pZ̄)TDZ

= NH [TP + pZ̄TDZ̄
+ (1− pZ̄)TDZ

],

and for D̃,

TD̃ ≈ NHTP + NHTI + pZ̄NHTDZ̄
+ lZTDZ

= NH(TP + TI + pZ̄TDZ̄
) + lZTDZ

.

For a fixed boundary distance threshold δ > 0, parameters pZ̄ , µZ̄ , µZ , σ2
Z̄
, σ2

Z can be esti-

mated from simulation. We may maximize the effective saving factor with respect to lZ (the

number of paths selected from group Z to estimate D) for a fixed δ and find the optimal δ′

from a pre-selected set of δ choices,

δ′ := arg(min
δ

Var[D̃] · TD̃). (26)

The variance and efficiency measure for D̃ are

Var[D̃] =
1
lZ

(1− pZ̄)σ2
Z [(1− pZ̄) +

1
NH

pZ̄ ] +
1

NH
pZ̄σ2

Z̄ +
1

NH
pZ̄(1− pZ̄)(µZ̄ − µZ)2
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≈ 1
lZ

(1− pZ̄)2σ2
Z +

1
NH

pZ̄σ2
Z̄ +

1
NH

pZ̄(1− pZ̄)(µZ̄ − µZ)2,

Var[D̃] · TD̃ =
1
lZ

NH(1− pZ̄)2σ2
Z(TP + TI + pZ̄TDZ̄

)

+lZ
pZ̄σ2

Z̄
TDZ

NH
+ lZ

pZ̄(1− pZ̄)(µZ̄ − µZ)2TDZ

NH
+ constant.

Take the partial derivative with respect to lZ ,

∂(Var[D̃] · TD̃)
∂lZ

|lZ=l′Z

= − 1
l′2Z

NH(1− pZ̄)2σ2
Z(TP + TI + pZ̄TDZ̄

) +
pZ̄σ2

Z̄
TDZ

NH
+

pZ̄(1− pZ̄)(µZ̄ − µZ)2TDZ

NH
,

thus the product achieves its minimum at

l′Z =

√
(1− pZ̄)2σ2

Z

pZ̄TDZ

·
TP + TI + pZ̄TDZ̄

σ2
Z̄

+ (1− pZ̄)(µZ̄ − µZ)2
NH = γNH ,

where γ denotes the portion of the sample paths that we should choose to estimate the group

Z average. As

∂2(Var[D̃] · TD̃)
∂l2Z

=
2
l3Z

NH(1− pZ̄)2σ2
Z(TP + TI + pZ̄TDZ̄

) > 0,

the function is strictly convex and l′Z is the unique minimum.

The effective saving factor of boundary distance grouping can be calculated as,

ESF =
Var[D̄] · TD̄

Var[D̃] · TD̃

|lZ=l′Z

=
[(1− pZ̄)σ2

Z + pZ̄σ2
Z̄

+ pZ̄(1− pZ̄)(µZ̄ − µZ)2][TP + pZ̄TDZ̄
+ (1− pZ̄)TDZ

]

[ (1−pZ̄)2

γ σ2
Z + pZ̄σ2

Z̄
+ pZ̄(1− pZ̄)(µZ̄ − µZ)2](TP + TI + pZ̄TDZ̄

+ γTDZ
)

.

Assume pZ̄ ≈ 0, µZ ≈ 0 and pZ̄TDZ̄
� TP + TI , then

γ ≈

√
σ2

ZTDZ̄

(σ2
Z̄

+ µ2
Z̄
)TDZ

.

If in addition we have σ2
Z � l′Zσ2

D
NH

which leads to Var[D̄] ≈ Var[D̃], the effective saving is

essentially the saving of time spent for estimating D,

ESF ≈
pZ̄TDZ̄

+ (1− pZ̄)TDZ

pZ̄TDZ̄
+ γTDZ

.

38



If the boundary distance can effectively identify the paths with zero upper bound increment,

group Z will have approximately zero mean and variance, thus γ ≈ 0 and

ESF ≈ 1 +
TDZ

pZ̄TDZ̄

.

C.3 Two ways to estimate Var[D̃]

We can not directly estimate the variance of the alternative estimator D̃ from Dis because they

are not i.i.d. random variables after grouping, in this section we show two indirect ways to

estimate it.

One is through the batching procedure, in which we estimate the batch mean D̃(j) with

boundary distance grouping from k independent batches (j = 1, ..., k), each using bNH
k c simu-

lation paths. D̃(j) are i.i.d. estimates of D̃ and the sample variance can be calculated by

ŝ2
D =

∑k
j=1(D̃

(j) −
∑k

j=1 D̃(j)

k )2

k − 1
,

which is an unbiased estimator of Var[D̃].

The other alternative is to use a modified sample variance to approximate it. Similar to the

regular sample variance, a modified sample variance estimator ŝ can be constructed as below,

θ̂ =
1

NH(NH − 1)

 nZ̄∑
i=1

(Di − D̃)2 +
NH − nZ̄

lZ

nZ̄+lZ∑
i=nZ̄+1

(Di − D̃)2

 ,

or equivalently,

θ̂ =
1

NH(NH − 1)

 nZ̄∑
i=1

D2
i +

NH − nZ̄

lZ

nZ̄+lZ∑
i=nZ̄+1

D2
i −NHD̃2

 .

The expectation of θ̂ is

E[θ̂] = E

∑nZ̄
i=1(D

2
i − 2DiD̃ + D̃2) + NH−nZ̄

lZ

∑nZ̄+lZ
i=nZ̄+1(D

2
i − 2DiD̃ + D̃2)

NH(NH − 1)


= E

[
nZ̄(µ2

Z̄
+ σ2

Z̄
)− 2NHD̃2 + (NH − nZ̄)(µ2

Z + σ2
Z) + NHD̃2

NH(NH − 1)

]

= E

[
nZ̄(µ2

Z̄
+ σ2

Z̄
) + (NH − nZ̄)(µ2

Z + σ2
Z)−NHD̄2

NH(NH − 1)

]
− E

[
D̃2 − D̄2

NH − 1

]
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= Var[D̄]− E

[
D̃2 − D̄2

NH − 1

]

= Var[D̃]− E

[
NH(D̃2 − D̄2)

NH − 1

]

= Var[D̃]−
σ2

Z

lZ

(NH + pZ̄ − lZ)(1− pZ̄)
NH − 1

≥ Var[D̃]−
σ2

Z

lZ
(1− pZ̄)

≥ Var[D̃]−
σ2

Z

lZ
.

Thus our new estimator can be constructed as

ŝ2
D̃

= θ̂ +
σ̂2

Z

lZ

=

∑nZ̄
i=1(Di − D̃)2 + NH−nZ̄

lZ

∑nZ̄+lZ
i=nZ̄+1(Di − D̃)2

NH(NH − 1)
+

∑nZ̄+lZ
i=nZ̄+1(Di −

∑nZ̄+lZ
i=nZ̄+1 Di

lZ
)2

lZ(lZ − 1)
,

whose expectation is

E[ŝ2
D̃

] = E[θ̂] +
σ2

Z

lZ
∈

[
Var[D̃],Var[D̃] +

σ2
Z

lZ

]
.

Although the modified sample variance is not an unbiased estimator of the true variance,

it closely bounds the true variance from above. Since Var[D̃] ∈
[

σ2
D

NH
,

σ2
D

NH
+ σ2

Z
lZ

]
, we have

E[ŝ2
D̃

] ∈
[

σ2
D

NH
,

σ2
D

NH
+ 2σ2

Z
lZ

]
, which is a tight interval if σ2

Z � lZσ2
D

NH
.
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