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Abstract

The mean-variance model for portfolio selection requires estimates of many parameters. This
paper investigates the effect of errors in parameter estimates on the results of mean-variance analy-
sis. Using a small amount of historical data to estimate parameters exposes the model to estimation
errors. However, using a long time horizon to estimate parameters increases the possibility of non-
stationarity in the parameters. This paper investigates the tradeoff between estimation error and
stationarity. A simulation study shows that the effects of estimation error can be surprisingly
large. The magnitude of the errors increases with the number of securities in the analysis. Due to
the error maximization property of mean-variance analysis, estimates of portfolio performance are
optimistically biased predictors of actual portfolio performance. It is important for users of mean-
variance analysis to recognize and correct for this phenomenon in order to develop more realistic
expectations of the future performance of a portfolio. This paper suggests a method for adjusting
for this bias. A statistical test is proposed to check for nonstationarity in historical data.
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1. Introduction
This paper investigates the effect of estimation error in the Markowitz mean-variance model

for portfolio selection. For a description of this model see Markowitz [11]. The tradeoff between
estimation error and the stationarity of model parameters is also addressed. This paper provides
a framework for providing quantitative results in these areas. For example, how much error in the
recommendations of the model is caused by errors in the input parameters? How far away from the
efficient frontier is the recommended portfolio? How different is the composition of a recommended
portfolio from the true optimal portfolio?

The parameters of the Markowitz model are the means, standard deviations, and correlations
of security returns. These parameters can be estimated using historical data, analytical models,
analysts’ forecasts, or other methods. When historical data is used to estimate model parameters,
there are at least two main areas of concern: stationarity of the model parameters and estimation
errors. Stationarity means that the model parameters do not change over time.1 Return data
from forty years ago might have little bearing on returns this year, so parameters are not likely to
be stationary over long periods of time. However, using only very recent data to estimate model
parameters exposes the model to estimation errors. Even if the process that generates returns is
stationary, using a limited amount of recent data means that estimates of the unknown parameters
will differ from their true values. The estimation errors decrease when more data is used, but more
data requires a longer time horizon. There is a tradeoff between stationarity and estimation error
when deciding how much data to use in estimating parameters.

The tendency of mean-variance analysis to exaggerate errors in the input parameters has been
noted by previous researchers and practitioners. Jobson and Korkie [7] and Jobson [6] investigate
the effect of errors in the input parameters, but without restrictions on short-selling. Michaud
[12] discusses the implications of estimation error for portfolio managers. Chopra [2] and Jorion
[9] examine the composition of optimal and near-optimal portfolios. Best and Grauer [1] analyze
the effect of changes in the mean returns of assets on the mean-variance efficient frontier and the
composition of optimal portfolios. Chopra and Ziemba [4] and Kallberg and Ziemba [10] study the
relative importance of errors in means, variances, and covariances on the investor’s utility function.

In addition to investigating the effects of estimation error, this paper suggests a method for
adjusting for the bias inherent in mean-variance analysis. This could be an important tool to
develop more realistic expectations of the future performance of a portfolio.

In the next section, the effect of estimation error on the results of mean-variance analysis is
investigated. In order to isolate the effect of estimation error, it is assumed that stationarity holds.
Section 3 provides intuitive explanations for the results. The effect of using improved estimates
of parameters is explored in Section 4. Section 5 focuses on errors in the estimated frontier. The
effect of the number of securities on errors in mean-variance analysis is examined in Section 6. A
method for adjusting for the bias inherent in mean-variance analysis in illustrated in Section 7. A

1 It is important to distinguish constant parameters (i.e., stationarity) from constant outcomes. Suppose that the
annual returns of a security over three years are −10%, 5%, and 18%. These returns could represent normal statistical
variation consistent with a model that has constant parameters. For example, the returns are consistent with a normal
distribution that has a constant mean of 8% and a constant standard deviation of 13%. The observed returns could
also be consistent with a model that has nonstationary (i.e., time-varying) parameters. Three observations is not
nearly enough data to reject either possibility.
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test for stationarity of historical data and results are presented in Section 8. Conclusions are given
in Section 9.

2. Investigating Estimation Error Using Simulation
The effect of estimation error on the computation of mean-variance efficient frontiers is inves-

tigated in this section. A simulation procedure is used because it can directly show the effect of
estimation error on the results of the mean-variance analysis. An analytical approach would be
more difficult because of the following reasons. There are simultaneous and correlated estimation
errors in a large number of parameters. While it is easy to determine the degree of estimation error
for a single parameter, it is more difficult for a large number of parameters. More importantly,
investors are not directly interested in the magnitude of the estimation errors in the parameters,
but in their effect on the outcome of the mean-variance analysis. Analytical approaches to the
latter problem would be more complicated than the simulation procedure used here. In spite of
these difficulties, Jobson [6] develops confidence regions for the efficient frontier when there are no
restrictions on short-selling. Best and Grauer [1] develop analytical results for the sensitivity of the
optimal portfolio to changes in the mean returns of the assets.

Details of the mean-variance analysis and the simulation procedure used in this paper are given
in the Appendix. The approach will be illustrated with an example. Suppose that there are five
securities with true parameters given in Table 1. The parameters were chosen to be in the average
range of monthly returns for many securities.2 A monthly time interval was chosen as a reasonable
intermediate point between weekly and yearly intervals. A weekly time horizon is too short for
most portfolio planning problems and an annual time horizon is too long for gathering relevant
historical data. However, the same analysis can be applied to any chosen time horizon.

Using the simulation procedure described in the Appendix, 24 monthly returns of the five
securities are generated. Using this simulated data, means, standard deviations, and correlations
of monthly returns are estimated by the usual sample estimates. The estimated parameters are
given in Table 2. Comparing the numbers in Table 1 to Table 2 shows that the estimated standard
deviations are quite close to the true values. The estimated correlations are not as accurate, e.g.,
ρ13 = 0.30 while ρ̂13 = 0.52. The security with the largest estimated mean error is security 3, for
which µ3 = 0.014 while µ̂3 = 0.042.

2 Average monthly returns can be stated in approximate annual terms by multiplying by 12. Monthly standard
deviations of return can be stated in approximate annual terms by multiplying by

√
12.
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Table 1. True Monthly Parameters Table 2. Estimated Monthly Parameters

Means, µ
0.006 0.010 0.014 0.018 0.022

Std. Devs., σ
0.085 0.080 0.095 0.090 0.100

Correlations, ρ
1.00 0.30 0.30 0.30 0.30
0.30 1.00 0.30 0.30 0.30
0.30 0.30 1.00 0.30 0.30
0.30 0.30 0.30 1.00 0.30
0.30 0.30 0.30 0.30 1.00

Means, µ̂
−.009 0.002 0.042 0.022 0.028

Std. Devs., σ̂
0.090 0.085 0.113 0.097 0.085

Correlations, ρ̂
1.00 0.51 0.52 0.08 0.11
0.51 1.00 0.49 0.05 0.12
0.52 0.49 1.00 0.54 0.30
0.08 0.05 0.54 1.00 0.45
0.11 0.12 0.30 0.45 1.00

The effect of using estimated parameters instead of true parameters on the computation of the
mean-variance efficient frontier is graphed in Figure 1. Using the true parameters from Table 1,
the “true” efficient frontier is computed. Next, using the estimated parameters from Table 2, a
similar frontier, the “estimated” frontier is computed. Finally, the “actual” frontier is computed.
The actual frontier is defined as follows. Each point on the estimated frontier corresponds to a
portfolio of the five securities. Using the portfolio weights derived from the estimated parameters,
and then applying the true parameters, the true portfolio expected return and standard deviation
are computed. This defines a point on the “actual” frontier. Definitions of these terms are given
in the Appendix.

To summarize, the true efficient frontier is the efficient frontier based on the true (but un-
known parameters). The estimated frontier is the frontier based on the estimated (and hence
incorrect) parameters. The actual frontier consists of the true portfolio mean and variance points
corresponding to portfolios on the estimated frontier. In short, the estimated frontier is what ap-
pears to be the case based on the data and the estimated parameters, but the actual frontier is
what really occurs based on the true parameters. The estimated frontier is the only frontier that is
observable in practice. The true and actual frontiers are unobservable because the true parameters
are unknown.

In Figure 1, the point on the estimated frontier with maximum estimated expected return
(labeled B) corresponds to the portfolio with minimum expected return (labeled F ) on the actual
frontier. Similarly, the point on the estimated frontier with minimum variance, labeled A, corre-
sponds to point E on the actual frontier. Point E is quite close to the true minimum variance
portfolio, labeled C, on the true efficient frontier.

Point B on the estimated frontier corresponds to a portfolio entirely invested in security 3.
Recall that security 3 is the security with the largest positive error in the estimation of mean returns.
This illustrates the error maximization property of mean-variance analysis. That is, points on the
estimated frontier correspond to portfolios that overweight securities with large positive errors in
mean returns, large negative errors in standard deviations, and large negative errors in correlations.
Hence the estimated frontier tends to exaggerate certain errors in the input parameters, resulting
in optimistically biased estimates of portfolio performance.
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Figure 1. Mean-Variance Frontiers using 24 Months of Simulated Data

What seems most striking about Figure 1 is that the actual frontier lies far from the true
efficient frontier and even farther from the estimated frontier. The distance of the actual frontier
from the true frontier is not uniform along the curves, e.g., point F is relatively far from point D
while point E is close to point C. This small example suggests that with a limited amount of data
minimum variance portfolios can be estimated more accurately than maximum return portfolios.

Is the result shown in Figure 1 a typical outcome using 24 data points or does it represent a
low probability outcome of a simulation? As the number of data points increases, the estimates of
the model parameters approach their true values. The estimated frontier and the actual frontier
converge to the true efficient frontier. How fast is this convergence? How much data is necessary
to achieve a desired level of convergence? The simulation procedure can be repeated to gain some
understanding about these issues.

Each trial of the simulation involves generating random monthly returns (based on the true
parameters from Table 1), estimating model parameters from the simulated returns, and then
computing mean-variance frontiers. The results from 25 trials using 24 months of data are shown
in Figure 2. Similar results from 25 trials using 120 months of data are shown in Figure 3. These
figures illustrate the range of uncertainty in the actual frontiers based on a limited amount of data.
The results improve with more data, i.e., the actual frontiers lie closer to the true efficient frontier
in Figure 3 compared to Figure 2. However, the result in Figure 1 is fairly typical.
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Figure 2. 24 Months of Simulated Data Figure 3. 120 Months of Simulated Data

The results in Figures 2 and 3 can be clarified by focusing on individual target points on the
true efficient frontier. The target point is defined as the point in the mean-variance plane that
maximizes µP − tσ2

P for a given value of t. The parameter t represents the tradeoff in utility for
expected portfolio return (µP ) versus risk (measured by variance in portfolio return, σ2

P ). For t = 0
the solution is the portfolio with the maximum return. For t equal to infinity, the solution is the
minimum variance portfolio. For practical purposes, t = 10, 000 is more than sufficient to give the
minimum variance portfolio. Results are given in Figures 4–11.

In Figures 4–11 the scattered dots represent points on the actual frontier corresponding to a
given t value. Each dot is the result of a single simulation trial. The ellipses are a visual aid to
summarize the location of the multitude of dots. The ellipses represent 50% and 90% confidence
regions, i.e., each smaller ellipse contains approximately 50% of the dots and each larger ellipse
contains approximately 90% of the dots.3 Figures 4–11 illustrate how close a point on the actual
frontier is to a target optimal point on the true efficient frontier.

3 The ellipses are computed under the assumption that the points follow a bivariate normal distribution. In fact
the points from the actual frontiers do not follow a bivariate normal distribution. However, the ellipses are still a
useful visual aid for summarizing the location and the spread of the points. Also, many points are repeated and
repeated points cannot be distinguished from single points in the figures. So the ellipses are also useful because they
are computed with the proper weight given to repeated points. The ellipses are computed based on 10,000 points,
but to maintain the clarity of the figures, only 200 points are plotted in each figure.
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Figure 4. Actual Frontier Points Figure 5. Actual Frontier Points
n = 24, t = 10, 000 n = 120, t = 10, 000

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

0.022

0.024

0.026

0.050 0.060 0.070 0.080 0.090 0.100 0.110

M
ea

n 
P

or
tfo

lio
 R

et
ur

n

Standard Deviation of Portfolio Return

Target

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

0.022

0.024

0.026

0.050 0.060 0.070 0.080 0.090 0.100 0.110

M
ea

n 
P

or
tfo

lio
 R

et
ur

n

Standard Deviation of Portfolio Return

Target

Figure 6. Actual Frontier Points Figure 7. Actual Frontier Points
n = 24, t = 3 n = 120, t = 3
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Figure 8. Actual Frontier Points Figure 9. Actual Frontier Points
n = 24, t = 0.5 n = 120, t = 0.5
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Figure 10. Actual Frontier Points Figure 11. Actual Frontier Points
n = 24, t = 0 n = 120, t = 0

QUANTITATIVE MEASURES OF ESTIMATION ERROR

In order to determine an appropriate amount of data to use for parameter estimation, it is
useful to have a quantitative measure of the error caused by using estimated parameters. The
distance between a point on the true efficient frontier and the actual frontier is one way to measure
the error.4 It measures the actual performance of the portfolio relative to the true optimal portfolio.
One way to quantify this measure is described next. Let (µP (t), σP (t)) denote the target point on
the true efficient frontier for a fixed value of t. Let (µ̃sP (t), σ̃sP (t)) represent the mean and standard
deviation of portfolio return for a corresponding point on the actual frontier for simulation trial s
(where s ranges from 1 to S). Then the root-mean-squared (RMS) µ-error, denoted fµ(t), and the
RMS σ-error, denoted fσ(t), are given by

fµ(t) =

√√√√ 1
S

S∑
s=1

(µP (t)− µ̃sP (t))2 and fσ(t) =

√√√√ 1
S

S∑
s=1

(σP (t)− σ̃sP (t))2. (1)

Table 3 shows how these error measures decline as the number of data points, n, used to esti-
mate the parameters increases. Suppose the target point on the true efficient frontier corresponds
to t = 3 and n = 24 months of data are used to estimate parameters. Then, in the sense of the
RMS-error defined above, the actual mean portfolio return will be 0.37% from the true optimal
mean return of 1.72%. Also, on average, the actual standard deviation of portfolio return will be
1.27% from the true optimal standard deviation of 6.49%.

Compared to the size of the true efficient frontier, these errors are large. For example, the
error in the actual portfolio mean as a percent of the difference between the largest and smallest
means on the true efficient frontier is 40% (= 0.0037/(0.022−0.0126)). Similarly, the error in the
actual standard deviation as a percent of the difference between the largest and smallest standard
deviations on the true efficient frontier is 31% (= 0.0127/(0.1−0.0588)).

4 Another way is to compare values of the objective function µP − tσ2
P for the true optimal portfolio and for the

estimated optimal portfolio. Other useful measures are the cash equivalent loss described in Chopra and Ziemba [4]
and the utility loss used in Jorion [8].
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Table 3. RMS-Error Measures

Target n = 24 n = 72 n = 120 n = 360 n = 600
t µP (t) σP (t) fµ(t) fσ(t) fµ(t) fσ(t) fµ(t) fσ(t) fµ(t) fσ(t) fµ(t) fσ(t)

10,000 1.26 5.88 0.19 0.51 0.12 0.20 0.09 0.12 0.05 0.04 0.04 0.02
5 1.53 6.11 0.29 1.11 0.20 0.59 0.16 0.43 0.10 0.21 0.08 0.16
3 1.72 6.49 0.37 1.27 0.26 0.75 0.22 0.58 0.13 0.33 0.10 0.26
1 2.02 7.73 0.56 1.25 0.41 1.09 0.34 1.01 0.19 0.76 0.13 0.62

0.5 2.10 8.40 0.62 1.06 0.46 1.07 0.38 1.06 0.21 1.02 0.15 0.97
0.3 2.18 9.65 0.68 1.06 0.51 1.11 0.43 1.13 0.25 1.11 0.19 1.12
0 2.20 10.00 0.70 0.93 0.53 0.76 0.46 0.69 0.28 0.50 0.21 0.44

All values in the table are expressed in percent (except for the t column).
“Target” is the optimal point on the true efficient frontier.
n is the number of data points (i.e., number of months) used to estimate the parameters.
The RMS-error measures fµ(t) and fσ(t) are defined in equation (1) and computed with S = 10,000.

What is a reasonable error level to set, i.e., how close, on average, should the actual frontier
point be to the target point on the true efficient frontier? Clearly, the answer differs according
to the preferences of the investor. For example, suppose an investor uses t = 1 and desires RMS-
errors in the mean of less than 0.20% per month and RMS-errors in standard deviation of less than
0.75% per month (i.e., fµ(1) < 0.20% and fσ(1) < 0.75%). Then Table 3 shows that n should be
approximately 360. In other words, 30 years of monthly data are needed to achieve the desired
level of accuracy.

3. Intuition Behind the Results
As the results in the previous section illustrate, the effect of estimation error can be quite large.

Along the efficient frontier, it appears to be easier to estimate minimum variance portfolios than
to estimate maximum return portfolios. These results can be understood by separately considering
the steps in the construction of the efficient frontier. First, how large is the error in each type
of input parameter? Second, how do errors in the input parameters translate into errors in the
efficient frontier and optimal portfolios? We start by considering estimation errors in expected
returns of securities.

FINDING THE SECURITY WITH MAXIMUM EXPECTED RETURN

The point on the true efficient frontier with maximum expected return corresponds to a port-
folio that is 100% invested in the security with the largest expected return. Hence, to correctly
identify this point requires only that the security with the largest expected return is correctly iden-
tified. The estimates of standard deviations and correlations do not matter for this purpose. If
expected returns are estimated with historical data, how much data is necessary to identify the
security with the largest expected return?

In order to gain some intuition about this problem, consider the following example consisting
of only two securities. Suppose security A has an expected monthly return of 1.5% and security
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B has an expected monthly return of 1.0%. Furthermore, suppose the monthly returns each have
a standard deviation of 7%, the returns have a correlation of 0.5, and both returns are normally
distributed. It is not known which returns belong to security A and which belong to security B.
How many months of data would be necessary to correctly distinguish the two securities with a
probability of 90%?

The answer is illustrated in Figure 12. Even though the expected return of security A is 50%
larger than security B, more than 26 years of monthly returns are necessary. Figure 12 shows
results for three levels of correlations of returns. If the correlation is 0.1, then approximately 50
years of monthly data are necessary to correctly distinguish the securities with probability 0.9. The
90% probability level is therefore too stringent a requirement to be achieved in practice. Figure 12
shows that to correctly distinguish the securities with probability 0.65 requires less than 5 years of
monthly data.5

These results occur because the standard deviations of return are large relative to the expected
mean returns. However, the values chosen for illustration are typical of monthly returns for many
securities.

FINDING THE SECURITY WITH MINIMUM VARIANCE OF RETURN

Suppose security A has monthly returns that have a standard deviation of 7.0% and security B
has monthly returns with a standard deviation of 6.0%. Furthermore, suppose the monthly returns
each have a mean of 1%, the returns have a correlation of 0.5, and both returns are normally
distributed. It is not known which returns are security A’s and which are security B’s. How many
months of data would be necessary to correctly distinguish the two securities with a probability of
90%?

The answer is illustrated in Figure 13.6 Less than five years of monthly data are necessary,
even though the standard deviations are quite close. To distinguish the securities with probability
0.65 requires less than one year of data.

5 Denote the random monthly returns of securities A and B by RA and RB , respectively. Suppose the returns
are normally distributed, i.e., RA ∼ N(µA, σ2

A), RB ∼ N(µB , σ2
B), with correlation ρ. Without loss of generality,

suppose that µA > µB . Let R = RA−RB . Then R ∼ N(µA −µB , σ2
A+σ2

B − 2ρσAσB). Let R̄ denote the average
of n monthly observations of R. The probability that the securities are correctly identified is P (R̄ > 0), namely:

P (R̄ > 0) = P
( R̄− (µA − µB)

σ(R̄)
>
−(µA − µB)

σ(R̄)

)
= P

(
Z <

µA − µB
σ(R̄)

)
= P

(
Z <

µA − µB√
1
n (σ2

A + σ2
B − 2ρσAσB)

)
Since Z is a standard normal random variable, the last probability is easily evaluated. If the desired probability is
0.9, the corresponding standard normal z-value is 1.28. Solving for n using the parameter values from the text gives

µA − µB√
1
n (σ2

A + σ2
B − 2ρσAσB)

≥ 1.28 ⇒ n ≥

1.28
√

(σ2
A + σ2

B − 2ρσAσB)

µA − µB

2

=
(1.28(0.07)

0.005

)2
≈ 321.

Hence to correctly identify the securities with 90% probability requires at least 321 months of data.

6 The values in Figure 13 were determined by simulation. Using the procedure outlined in the Appendix, returns
were simulated and sample standard deviations were computed. The security with the larger sample standard
deviation was assumed to be security A. The simulated fraction of the time that this conclusion is correct is an
estimate of the true probability of correctly identifying the securities.
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Figure 12. Probability of Distinguishing Securities with Different Mean Returns
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Figure 13. Probability of Distinguishing Securities with Different Std. Devs. of Return

These results illustrate that distinguishing securities with different standard deviations of re-
turn is much easier (i.e., requires fewer observations) than distinguishing securities with different
mean returns. Alternatively, for a given number of observations, the error in the estimate of mean
returns is typically much larger than the error in the estimate of standard deviation of returns.
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INTERMEDIATE CASES

Points on the efficient frontier are obtained by maximizing µP − tσ2
P for various values of t.

For small values of t, mean returns drive the optimization. For larger values of t, variances become
increasingly important in the optimization. In most cases, the investor’s objective will lie between
the extremes of t = 0 and t =∞. Figure 14 shows an investor’s indifference curve for t = 0.5. The
indifference curve, or iso-utility curve, is a plot of equal values of the objective function µP − tσ2

P .
Figure 14 shows that the indifference curve and true efficient frontier are both nearly linear in a
large region around the optimal solution. Hence a small change in the parameters could lead to
a large change in the optimal solution. This explains, in part, why many of the scattered dots in
Figure 9 lie on the true efficient frontier, but far from the target point. The points on the actual
frontier can be close to the true efficient frontier, but not particularly close to the target point.
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Figure 14. Indifference Curve for t = 0.5

ERROR MAXIMIZATION

Suppose that two securities each have a mean return of 1% per month, but the estimated
mean returns are 1.4% and 0.4% per month. A portfolio that is 50% invested in each security
will have a true mean return of 1% and an estimated mean return of 0.9%. The error, i.e., the
difference between the true and estimated returns, for this fixed portfolio is only 0.1%.7 For fixed
weight portfolios estimation errors tend to cancel. However, if an investor chooses the portfolio
which maximizes (estimated) expected return, the error is 0.4%. Optimizing expected return leads
the investor to choose securities with the largest (positive) estimation errors. The magnification

7 This notion of error, the difference between true and estimated portfolio returns, is considered in Section 5.
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of estimation error induced by the optimization step in forming a portfolio is commonly termed
error maximization. The effect becomes more pronounced as the number of securities increases, as
detailed in Section 6. A similar effect happens when the investor is trying to minimize portfolio
variance. In this case, the optimization will overweight securities with the most underestimated
standard deviations. The relative importance of errors in means, variances, and covariances is
documented in Chopra and Ziemba [4].

The problem of finding the maximum return portfolio involves maximizing a linear function
over a convex region. Optimal solutions for this problem are found at extreme points of the feasible
region. That is, the maximum return portfolio will be entirely invested in a single security. Any error
in estimating returns will tend to be magnified because of this portfolio specialization. Conversely,
the problem of finding the minimum variance portfolio involves minimizing a convex function over
a convex region. Optimal solutions for this problem are found in the interior of the feasible region,
i.e., where the portfolio weights on many securities are positive. The error maximization effect of
the optimization will be somewhat mitigated because of this portfolio diversification.

To summarize, using historical data to estimate parameters leads to greater errors in means
than in standard deviations. The error maximization property of the optimization step implies
that optimal portfolios favor securities with overestimated expected returns and underestimated
standard deviations. These remarks indicate why using estimated parameters produces greater
errors in the maximum return extreme of the efficient frontier than in the minimum variance
extreme.

4. Estimation Error with Improved Parameter Estimates
Significant improvements in the results of mean-variance analysis are possible if better methods

are used to estimate parameters. Suppose that a security has a mean monthly return of 1%. If
historical data is used to estimate the mean, it is quite possible that the estimate will be negative.
However, it is unlikely that investors would hold positive amounts of the security if it truly had a
negative mean return. Clearly, then it is possible to improve historical estimates of mean returns.

Parameter estimates based solely on historical data can be improved upon in several ways.
Chopra [2], Chopra, Hensel, and Turner [3], and Jorion [8] investigate techniques for improving
historical estimates, including the use of Stein estimators. Historical estimates can be combined
with analysts’ forecasts. Mathematical models can be used to estimate mean returns and standard
deviations. For example, dividend discount models are often used to estimate stock parameters,
and yield-based models are often used to estimate parameters for bonds. Several authors have
investigated methods for adjusting historical estimates of a security’s beta. These methods correct
for the tendency of betas to regress towards one. See Chapter 5 of Elton and Gruber [5] for a
summary and bibliography. These methods can be applied to adjusting historical estimates of
a security’s mean return and also to estimating the correlation matrix of returns. Theories of
efficient markets can be used to determine the market consensus estimate of mean returns. See,
for example, the discussion in Chapter 7 of Sharpe [13]. This approach is appropriate when the
securities represent very large asset classes. Combining implied volatility from option values with
historical estimates might give better forecasts of future standard deviations of security returns.
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The effect of using improved estimates of mean returns on estimating mean-variance efficient
frontiers is investigated next. The method for improving the estimates will remain unspecified, but
it will be assumed that some method for adjusting historical estimates of mean returns is used that
improves the estimates by 50%. That is, the adjusted estimates lie halfway between the historical
estimates and the true values for every security. The parameters from Table 1 were used to analyze
the distance of points on the actual frontier (AF) from the corresponding point on the true frontier
with improved estimates of the mean. The results are presented in Figures 15–20 and in Table 4.
Figure 15 is directly comparable to Figure 6, Figure 16 is directly comparable to Figure 7, etc. The
minimum variance portfolio results (corresponding to t = 10,000) are not repeated, because they
are identical to Figures 4 and 5.

Table 4. RMS-Error Measures with Improved Mean Estimates

Target n = 24 n = 72 n = 120 n = 360 n = 600
t µP (t) σP (t) fµ(t) fσ(t) fµ(t) fσ(t) fµ(t) fσ(t) fµ(t) fσ(t) fµ(t) fσ(t)

10,000 1.26 5.88 0.19 0.51 0.12 0.20 0.09 0.12 0.05 0.04 0.04 0.02
5 1.53 6.11 0.23 0.79 0.15 0.38 0.12 0.27 0.07 0.14 0.06 0.10
3 1.72 6.49 0.27 0.87 0.17 0.47 0.14 0.36 0.08 0.20 0.06 0.16
1 2.02 7.73 0.38 1.09 0.22 0.84 0.17 0.71 0.08 0.44 0.06 0.34

0.5 2.10 8.40 0.42 1.07 0.24 1.03 0.18 0.99 0.09 0.87 0.07 0.76
0.3 2.18 9.65 0.47 1.11 0.28 1.12 0.22 1.12 0.12 1.04 0.09 0.97
0 2.20 10.00 0.49 0.72 0.31 0.53 0.24 0.47 0.12 0.30 0.08 0.21

All values in the table are expressed in percent (except for the t column).
“Target” is the optimal point on the true efficient frontier.
n is the number of data points (i.e., number of months) used to estimate the parameters.
The RMS-error measures fµ(t) and fσ(t) are defined in equation (1) and computed with S = 10,000.

The results show that significant reductions in errors are possible with improved estimates of
mean returns. For example, suppose that an investor uses t = 1 and desires RMS-errors in the mean
of less than 0.20% per month and RMS-errors in standard deviation of less than 0.75% per month.
Recall that the RMS-values are a measure of the distance of the target point on the true efficient
frontier from the corresponding point on the actual frontier. If the investor uses a method that
improves all of the estimates of mean returns by 50% over historical estimates, then Table 4 shows
that n should be approximately 96. Only about one-fourth as much historical data is needed to
obtain the same level of accuracy. Comparing the results in Tables 3 and 4 shows that improving
the estimates of mean returns reduces the RMS-µ error and the RMS-σ error. Examination of
Figure 18 shows that even with a large amount of data, improved estimates of mean returns, and
stationary parameters, the points on the actual frontier can be close to efficient, but still not be close
to the target point on the true efficient frontier. A complementary phenomenon is that portfolios
with quite different compositions can be close to the same target point on the true efficient frontier.
See Chopra [2] for a discussion of this point.
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Figure 15. AF Points with Impr. Means Figure 16. AF Points with Impr. Means
n = 24, t = 3 n = 120, t = 3

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

0.022

0.024

0.026

0.050 0.060 0.070 0.080 0.090 0.100 0.110

M
ea

n 
P

or
tfo

lio
 R

et
ur

n

Standard Deviation of Portfolio Return

Target

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

0.022

0.024

0.026

0.050 0.060 0.070 0.080 0.090 0.100 0.110

M
ea

n 
P

or
tfo

lio
 R

et
ur

n

Standard Deviation of Portfolio Return

Target

Figure 17. AF Points with Impr. Means Figure 18. AF Points with Impr. Means
n = 24, t = 0.5 n = 120, t = 0.5

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

0.022

0.024

0.026

0.050 0.060 0.070 0.080 0.090 0.100 0.110

M
ea

n 
P

or
tfo

lio
 R

et
ur

n

Standard Deviation of Portfolio Return

Target

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

0.022

0.024

0.026

0.050 0.060 0.070 0.080 0.090 0.100 0.110

M
ea

n 
P

or
tfo

lio
 R

et
ur

n

Standard Deviation of Portfolio Return

Target

Figure 19. AF Points with Impr. Means Figure 20. AF Points with Impr. Means
n = 24, t = 0 n = 120, t = 0
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The same approach can be used to investigate the effect of improved estimates of standard
deviations and correlations. Rather than reproduce several tables analogous to Table 4, results
for n = 48 are presented in Table 5. In Table 5, the improved parameter estimates refer to 50%
improvements in all of the parameters of a given type. While improved estimates of mean returns
dramatically reduce RMS-errors, improvements in estimates of standard deviations and correlations
have very little impact. Small additional reductions in RMS-errors are possible if means and
standard deviations are improved. Except if the investor is solely interested in minimizing variance,
Table 5 indicates that historical estimates of mean returns should be used with caution. If possible,
effort should first be focused on improving the historical estimates of mean returns.

Table 5. RMS-Error Measures with Improved Parameter Estimates

Target Historical Est. Improved µj Improved σj Improved ρjk
t µP (t) σP (t) fµ(t) fσ(t) fµ(t) fσ(t) fµ(t) fσ(t) fµ(t) fσ(t)

10,000 1.26 5.88 0.14 0.29 0.14 0.29 0.11 0.18 0.11 0.19
5 1.53 6.11 0.23 0.75 0.18 0.50 0.22 0.66 0.23 0.73
3 1.72 6.49 0.31 0.92 0.21 0.59 0.30 0.85 0.30 0.93
1 2.02 7.73 0.48 1.17 0.28 0.94 0.47 1.16 0.47 1.17

0.5 2.10 8.40 0.53 1.07 0.31 1.05 0.53 1.07 0.53 1.07
0.3 2.18 9.65 0.59 1.10 0.35 1.13 0.58 1.10 0.58 1.10
0 2.20 10.00 0.61 0.84 0.38 0.61 0.60 0.84 0.60 0.84

Historical Improved Improved Improved
Target Estimates µj and σj µj and ρjk µj , σj , and ρjk

t µP (t) σP (t) fµ(t) fσ(t) fµ(t) fσ(t) fµ(t) fσ(t) fµ(t) fσ(t)

10,000 1.26 5.88 0.14 0.29 0.11 0.18 0.11 0.19 0.07 0.08
5 1.53 6.11 0.23 0.75 0.15 0.39 0.16 0.45 0.13 0.32
3 1.72 6.49 0.31 0.92 0.19 0.49 0.20 0.58 0.18 0.46
1 2.02 7.73 0.48 1.17 0.27 0.92 0.27 0.96 0.27 0.92

0.5 2.10 8.40 0.53 1.07 0.30 1.05 0.30 1.06 0.30 1.05
0.3 2.18 9.65 0.59 1.10 0.35 1.12 0.35 1.12 0.35 1.12
0 2.20 10.00 0.61 0.84 0.37 0.60 0.37 0.60 0.37 0.60

All values in the table are computed with n = 48 and S = 10,000.
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5. Errors in the Estimated Frontier
The previous sections focused on one type of error, namely the distance between points on

the actual frontier and the corresponding points on the true efficient frontier. However, neither of
these frontiers is observable in practice. Hence it is also of interest to ask how far is the estimated
frontier, which is observable, from the true and actual frontiers.

Figures 21 and 22 show points on the estimated frontier (EF) corresponding to t = 0.5. The
points are computed assuming that estimates of mean returns are improved by 50% over historical
data alone. Figures 21 and 22 are directly comparable to Figures 17 and 18. The estimated frontier
has much more error (relative to the true efficient frontier) than the actual frontier.
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Figure 21. EF Points with Impr. Means Figure 22. EF Points with Impr. Means
n = 24, t = 0.5 n = 120, t = 0.5

The centers of the ellipses in Figures 21 and 22 lie beyond the true efficient frontier. This is
another manifestation of the error maximization property of mean-variance analysis. The estimated
frontier, on average, overstates means and understates standard deviations of portfolio return.

ESTIMATED FRONTIER RELATIVE TO THE ACTUAL FRONTIER

Investors observe the estimated frontier but portfolio performance is given by the actual fron-
tier. How far is the estimated frontier from the actual frontier? Let (µ̂sP (t), σ̂sP (t)) denote the mean
and standard deviation of portfolio return for a point on the estimated frontier for simulation trial
s and let (µ̃sP (t), σ̃sP (t)) denote the corresponding point on the actual frontier. Then the average
difference of the µ values, denoted gµ(t), and the average difference of the σ values, denoted gσ(t),
are given by

gµ(t) =
1
S

S∑
s=1

(µ̂sP (t)− µ̃sP (t)) and gσ(t) =
1
S

S∑
s=1

(σ̂sP (t)− σ̃sP (t)). (2)

Results are given in Table 6. The g-values summarize the average position of the estimated frontier
relative to the actual frontier. The RMS-error measures previously used combined relative position
and spread.
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Table 6. Relative Position of the Estimated and Actual Frontiers
with Improved Mean Estimates

True Eff. Frontier n = 24 n = 72 n = 120 n = 360 n = 600
t µP (t) σP (t) gµ(t) gσ(t) gµ(t) gσ(t) gµ(t) gσ(t) gµ(t) gσ(t) gµ(t) gσ(t)

10,000 1.26 5.88 0.00 −1.01 0.00 −.36 0.00 −.22 0.00 −.07 0.00 −.04
5 1.53 6.11 0.35 −.92 0.13 −.35 0.08 −.22 0.02 −.07 0.02 −.04
3 1.72 6.49 0.47 −.81 0.18 −.31 0.12 −.20 0.04 −.07 0.03 −.04
1 2.02 7.73 0.66 −.49 0.27 −.19 0.17 −.12 0.05 −.04 0.04 −.02

0.5 2.10 8.40 0.70 −.32 0.30 −.12 0.20 −.08 0.07 −.03 0.04 −.02
0.3 2.18 9.65 0.70 −.24 0.30 −.09 0.20 −.06 0.06 −.02 0.04 −.01
0 2.20 10.00 0.69 −.10 0.29 −.03 0.19 −.02 0.05 −.01 0.02 0.00

All values in the table are expressed in percent (except for the t column).
n is the number of data points (i.e., number of months) used to estimate the parameters.
The error measures gµ(t) and gσ(t) are defined in equation (2) and computed with S = 10,000.

The results in Table 6 quantify the amount of error maximization in mean-variance analysis.
For example, suppose that n = 48 months of data are used to estimate parameters, and that
estimated means can be improved by 50%. If an investor chooses portfolios with t = 1, then the
mean portfolio return on the estimated frontier will be 0.39% greater than the actual mean portfolio
return, on average. Similarly, the standard deviation of return on the estimated frontier will be
0.26% less than the actual standard deviation of return on average. To be more explicit, suppose
the point on the estimated frontier has an average annual return of 25.0% and an annual standard
deviation on 24.2%. Then an unbiased estimate of the actual portfolio mean return is 20.3% (=
25.0% − 12(0.39)%) and standard deviation is 25.1% (= 24.2% +

√
12(0.26)%).

These results are important because they indicate the large degree to which estimated frontiers
are optimistically biased predictors of actual portfolio performance. To get better estimates of actual
portfolio performance, the portfolio means and standard deviations reported by the estimated
frontier should be adjusted to account for the bias caused by the error maximization effect. An
example of this adjustment process is given in Section 7.

6. Results with Additional Securities
As the number of securities increases, the error maximization property of mean-variance analy-

sis becomes even more pronounced. Points on the estimated frontier tend to increasingly overstate
actual portfolio performance as the number of securities increases. With more securities in the
analysis, it is likely that some security will have a large positive error in the estimation of its mean
return. It is also likely that some security will have a large negative error in the estimation of its
standard deviation of return.

The average magnitude of these effects is illustrated in Table 7. Additional securities were
created by duplicating the mean and standard deviation parameters from Table 1. All correlations
ρjk for j 6= k were set to 0.30. Table 7 illustrates how the average position of the estimated frontier
relative to the actual frontier increases with the number of securities. For example, suppose an
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investor uses t = 1 to choose a portfolio from m = 5 securities. From Table 7, the estimated mean
portfolio return will, on average, exceed the actual portfolio mean return by 4.7% per year (i.e.,
(12)0.39%). If m = 40 securities are used in the analysis, the estimated mean portfolio return will,
on average, exceed the actual portfolio mean return by 10.6% per year (i.e., (12)0.88%). Since the
largest possible expected return with these parameters is only 26.4%, the optimistic bias in the
estimated frontier can be very large. These results are based on the investor using n = 48 months
of data and improving estimates of mean returns by 50%.

Table 7. Effect of the Number of Securities on the Relative Position
of the Estimated and Actual Frontiers with Improved Mean Estimates

m = 5 m = 10 m = 20 m = 40
t gµ(t) gσ(t) gµ(t) gσ(t) gµ(t) gσ(t) gµ(t) gσ(t)

10,000 0.00 −.52 0.00 −.84 0.00 −1.18 0.00 −1.50
5 0.19 −.49 0.33 −.73 0.45 −.97 0.57 −1.17
3 0.27 −.44 0.42 −.62 0.55 −.79 0.68 −.94
1 0.39 −.26 0.57 −.36 0.72 −.44 0.88 −.52

0.5 0.42 −.17 0.62 −.24 0.79 −.28 0.95 −.33
0.3 0.42 −.12 0.63 −.17 0.81 −.20 0.98 −.23
0 0.42 −.04 0.64 −.05 0.82 −.05 0.99 −.05

All values in the table are expressed in percent (except for the t column).
m is the number of securities.
All values in the table are computed for n = 48.
The error measures gµ(t) and gσ(t) are defined in equation (2) and computed with S = 10, 000.

Suppose that the true parameters of securities are known. Then as the number of securities
included in mean-variance analysis increases, the resulting portfolio performance must improve.
Now suppose that the parameters of the securities are estimated. Table 7 illustrates that the
performance improvement measured by estimated parameters will tend to overstate the gains from
additional securities. The amount of the overstatement can be estimated by procedures similar
to the ones used to develop Table 7. As noted by Jorion [9] the amount of improvement with
additional securities should be tested in this way for statistical significance.

7. Adjusting for the Bias in the Estimated Frontier
The results of the previous sections were all derived using true underlying parameters. In

practice the true parameters are rarely, if ever, known. Even so, the effects of estimation error can
be estimated using the same simulation methodology, by using the estimated parameters in place
of the true parameters.

Suppose an investor wishes to correct for the optimistic bias inherent in the estimated frontier.
The same simulation methodology described in the Appendix and applied in Section 5 can be used
with the estimated parameters taking the place of the true parameters. As done in Table 6, the
average position of the estimated frontier relative to the actual frontier can be estimated. The
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results can then be used to estimate the position of the actual frontier. More specifically, the
simulation procedure can be used to estimated the values gµ(t) and gσ(t) defined in equation (2).
Denote a point on the estimated frontier by (µ̂P (t), σ̂P (t)). Then an estimate of the corresponding
point on the actual frontier is (µ̂P (t)− gµ(t), σ̂P (t)− gσ(t)).

To illustrate the procedure, the following steps were performed. Using parameters from Table 1,
n = 48 months of historical data was generated. Parameters were estimated and then estimates
of mean returns were improved by 50%. Then the estimated frontier was computed. Using the
procedure described above, the position of the actual frontier was estimated. The results are plotted
in Figure 23. The estimated position of the actual frontier lies beneath the estimated frontier. For
reference, Figure 23 also shows the real position of the actual frontier. As expected, the adjustment
process is not perfect, but still the estimated position of the actual frontier gives a better indication
of portfolio performance than the original estimated frontier. Figure 24 displays 50% and 90%
confidence regions for the location of a point on the actual frontier corresponding to a target point
on the estimated frontier.8 Notice that the actual frontier point corresponding to t = 3 lies within
both the 50% and 90% confidence regions determined by the simulation.

The procedure illustrated in this section gives a method for adjusting for the bias inherent in
mean-variance analysis. The procedure can be used to give both point estimates and confidence
regions for the bias adjustment.
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Figure 23. Est. Position of Actual Frontier Figure 24. Conf. Regions for AF Point
n = 48, Impr. Means n = 48, Impr. Means, t = 3

8 The confidence regions displayed in Figure 24 are approximate, because they are determined from estimated
parameters rather than the true parameters.
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8. Investigating Stationarity Using Historical Data
Nonstationarity means that parameters change over time. If parameters are not stationary,

then parameter estimates based on simple sample estimates can be biased. Nonstationary pa-
rameters can increase the errors described in the previous sections. In this section a test for
nonstationarity in historical data is described.

In order to illustrate the ideas, the following data will be used for analysis. There are five
asset classes, with monthly returns from January, 1926 through December, 1988. The asset classes
are: (1) common stocks (based on Standard and Poor’s Composite index), (2) small stocks, (3)
long-term corporate bonds, (4) long-term government bonds, and (5) U.S. Treasury bills.9

An obvious approach to investigating the stationarity of data is to plot time series of returns and
check for trends or patterns. While this is a reasonable starting point, several problems immediately
arise. First, if there are m securities, then there are m time series to analyze. In addition to
investigating the stationarity of m mean returns, there are also m standard deviations and (m2 −
m)/2 correlations to be investigated. Visual evidence of trends might suggest nonstationarity,
but without quantitative analysis it is difficult to determine whether the trends are statistically
significant.

Figures 25 and 26 plot 2-year moving average estimates of mean returns and standard de-
viations for common stocks and long-term government bonds, respectively. The horizontal axis
scale counts the number of months from the end of the data. For example, n = 1 corresponds to
December, 1988, n = 2 is November, 1988, n = 24 is January, 1987, etc. This numbering scheme
is used to compare results with values of n from the previous sections. The plots in Figures 25
and 26 go back to n = 240 corresponding to January, 1969. The market break of October, 1987 is
evidenced by a drop in the moving average return and a sharp rise in the moving average standard
deviation at n = 15 in Figure 25. Both graphs show evidence of nonstationarity in the parameters.
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Figure 25. Moving Average Results for Figure 26. Moving Average Results for
Common Stocks Government Bonds

9 This data is from Ibbotson Associates.
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Stationarity of any correlation parameter can be investigated in the same way. Figure 27 plots
2-year moving average correlation of returns of common stocks and long-term government bonds.
From Figure 27 it appears that the correlation between these two asset classes is almost always
positive. However Figure 28, which shows results going back to January, 1926, contradicts this
conclusion. This is also evidence of nonstationarity of this parameter.
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Figure 27. Moving Average Correlation of Figure 28. Moving Average Correlation of
Stock and Bond Returns Returns (Complete Data)

The graphs give evidence of nonstationarity of the return parameters, but are the patterns
statistically significant? A nonparametric test for detecting nonstationary data is described in the
Appendix. The test attempts to measure the degree of nonstationarity between the data in the
period indexed from 1, . . . , n/2 and the data in the period n/2+1, . . . , n. The results in Table 8 are
presented by type of parameter (µ, σ, and ρ) and an overall measure that combines all parameters is
also given. The p-values are a quantitative measure of the nonstationarity of the data, where large
p-values (i.e., values close to one) are evidence that the returns are not generated by stationary
parameters.

For this data set, the results in Table 8 give strong evidence of overall nonstationarity in
the data if more than 360 months of data are used. Evidence of nonstationarity in the standard
deviations is strong for n at least 240.

The p-values are not exceptionally large for n = 36, which includes the market break at roughly
the midpoint of the data at n = 15. There are several reasons why the p-values are not larger.
First, the measures of nonstationarity combine all five asset classes. While common stocks and
small stocks experienced an exceptionally large negative return at n = 15, the other assets did not.
Also, the spike at n = 15 was only a one-time occurrence. The test for nonstationarity given in
this paper is more powerful at detecting longer term consistent changes in parameters. Also, the
reasoning that showed it is difficult to distinguish two securities with different mean returns also
implies that it is difficult to detect nonstationarity in mean returns.
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Table 8. Results of the Nonparametric Test for Nonstationary Data
p-values

n Mean Std. Dev. Correlation Overall

12 0.89 0.21 0.40 0.51
24 0.21 0.88 0.75 0.69
36 0.59 0.13 0.56 0.44
48 0.51 0.42 0.83 0.76
60 0.61 0.74 0.13 0.25
72 0.28 0.69 0.04 0.04
84 0.39 0.46 0.22 0.16
96 0.21 0.57 0.61 0.47
108 0.49 0.60 0.73 0.71
120 0.78 0.64 0.57 0.71

180 0.89 0.80 0.05 0.44
240 0.82 0.97 0.48 0.89
300 0.73 0.90 0.40 0.72
360 0.88 0.99 0.44 0.93
420 0.73 1.00 0.78 0.99
480 0.89 1.00 1.00 1.00
540 0.78 1.00 1.00 1.00
600 0.68 0.99 1.00 1.00

While nonstationarity appears to be evident from Figures 25 and 26, it does not appear to be
statistically significant until n = 240. The test for nonstationarity divides the data into two equal
parts. Roughly this means that parameters generating returns in the 1970’s were different than
parameters in the 1980’s. Although these results apply to the particular data set being analyzed,
the same procedure can be applied to any data set. Clearly, the results for other data sets could
be very different than these results.

The amount of historical data to use in estimating parameters depends on many factors,
including the number of securities in the analysis, whether or not parameter estimates are improved
over historical estimates, and the preferences of the investor. The results of this section indicate
the likelihood of nonstationarity over different time horizons in one data set. The results of the
previous sections indicate how estimation error affects mean-variance results over different time
horizons.
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9. Conclusions
The mean-variance model for portfolio selection requires the specification of many input pa-

rameters. The problem is to determine the parameters that apply for the next planning period.
Using a limited amount of historical data exposes the model to estimation errors in the parameters.
Using a large amount of historical data increases the likelihood of nonstationarity in the parame-
ters. In this case, the estimated parameters may not be representative of the true parameters for
the next period.

This paper analyzed the effect of estimation error through the use of simulation. An important
distinction was made between the true efficient frontier, the estimated frontier, and the actual
frontier. The problem of stationarity in historical data was investigated with a nonparametric
statistical test.

Although the exposition in this paper focused on specific examples, several conclusions appear
to hold generally. The error in computing efficient frontiers caused by using parameters estimated
with historical data can be very large, even if the underlying parameters are stationary. The results
vary depending on the utility parameter t, but errors are generally larger for maximum return
portfolios than for minimum variance portfolios.

The greatest reduction in errors in mean-variance analysis can be obtained by improving his-
torical estimates of mean returns of the securities. The errors in estimates of mean returns using
historical data are so large that these parameter estimates should always be used with caution.
Improvements in estimates of standard deviations and correlations have much less effect. One
recommendation for practitioners is to use historical data to estimate standard deviations and
correlations but use a model to estimate mean returns.

Errors in the estimated frontier, relative to the true efficient frontier, are larger than are errors
in the actual frontier. Due to the error maximization property of mean-variance analysis, points on
the estimated frontier are optimistically biased predictors of actual portfolio performance. A point
on the estimated frontier will, on average, have a larger mean and a smaller standard deviation
than the corresponding point on the actual frontier. These effects become more pronounced as
the number of securities increases. It is important for practitioners to recognize and correct for
this phenomenon in order to develop more realistic expectations of the future performance of a
portfolio. This paper suggested a method for adjusting for this bias.

Appendix
Define

m is number of securities.

µ is the vector of true mean returns, i.e., µ = (µ1, . . . , µm).

σ is the vector of true standard deviations of returns, i.e., σ = (σ1, . . . , σm).

ρ is the matrix of true correlations of returns of the securities, i.e., ρjk is the
true correlation of returns of securities j and k, for j, k = 1, . . . ,m.

Mean-variance efficient portfolios are computed by solving the following quadratic program:
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(MV ) max
x1,...,xm

m∑
j=1

xjµj − t
( m∑
j=1

x2
jσ

2
j + 2

m∑
j=1

m∑
k=j+1

xjxkρjkσjσk
)

subject to:
m∑
j=1

xj = 1

xj ≥ 0 j = 1, . . . ,m

Denote the optimal solution to (MV ) by x(t) = MV (µ, σ, ρ, t), where x(t) = (x1(t), . . . , xm(t)).
That is, x(t) is the vector of optimal portfolio weights. Corresponding to this optimal solution
is an expected portfolio return of µP (t) =

∑m
j=1 xj(t)µj and a portfolio variance of σ2

P (t) =∑m
i=1 x

2
j (t)σ

2
j+ 2

∑m
j=1

∑m
k=j+1 xj(t)xk(t)ρjkσjσk.

TRUE, ESTIMATED, AND ACTUAL FRONTIERS DEFINED

The true efficient frontier is the curve (µP (t), σP (t)) for values of t ranging from zero to infinity.
In practice, t = 10, 000 is sufficient to solve for the minimum variance portfolio.

Let r1, . . ., rn represent vectors of security returns over n time periods. For example, ri =
(ri1, . . . , rim) are the returns of the m securities at time period i. These returns could represent
real historical data or simulated data. Expected returns, standard deviations, and correlations can
be estimated by the usual sample estimates:

µ̂j =
1
n

n∑
i=1

rij , σ̂2
j =

1
n− 1

n∑
i=1

(rij − µ̂j)2, ρ̂jk =
1

n− 1

n∑
i=1

(rij − µ̂j)(rik − µ̂k).

Estimated parameters are distinguished with hats. Denote the solution of (MV ) with estimated
parameters by x̂(t) = MV (µ̂, σ̂, ρ̂, t), where x̂(t) = (x̂1(t), . . . , x̂m(t)). The corresponding esti-
mated expected portfolio return is µ̂P (t) =

∑m
j=1 x̂j(t)µ̂j and the estimated portfolio variance is

σ̂2
P (t) =

∑m
j=1 x̂

2
j (t)σ̂

2
j + 2

∑m
j=1

∑m
k=j+1 x̂j(t)x̂k(t)ρ̂jkσ̂jσ̂k. The estimated frontier is the curve

(µ̂P (t), σ̂P (t)) for values of t ranging from zero to infinity.
For each value of t, the actual portfolio expected return is µ̃P (t) =

∑m
j=1 x̂j(t)µj and the actual

portfolio variance is given by σ̃2
P (t) =

∑m
j=1 x̂

2
j (t)σ

2
j+2

∑m
j=1

∑m
k=j+1 x̂j(t)x̂k(t)ρjkσjσk. The actual

portfolio mean and variance involve portfolio weights derived from estimated parameters, together
with the true security means, standard deviations, and correlations. The actual frontier is the
curve (µ̃P (t), σ̃P (t)) for values of t ranging from zero to infinity.

The true optimal portfolio, x(t), will differ from the estimated optimal portfolio, x̂(t). Jorion
[9] essentially studies the differences in these portfolios to define “statistically equivalent portfolios.”

DETAILS OF THE SIMULATION PROCEDURE

Suppose that the returns of m securities follow a multivariate normal distribution with a vector
of mean returns µ and a covariance matrix C, where C = σT ρσ. The main logic of the simulation
is summarized next. The total number of trials in the simulation is S and the trials are indexed by
s = 1, . . . , S.
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1. (Main Loop) FOR s = 1 to S:
2. Simulate n independent returns from the multivariate normal distribution
N(µ,C). Denote these returns by rs1, . . ., r

s
n.

3. Estimate the parameters µ̂s, σ̂s, and ρ̂s.
4. Compute the estimated and actual frontiers for simulation trial s. Denote

these frontiers by (µ̂sP (t), σ̂sP (t)) and (µ̃sP (t), σ̃sP (t)), respectively.
5. Goto step 1. (End of Main Loop)

Details of step 2, simulating returns that follow a multivariate normal distribution, are given
next. First, compute the eigenvalues and eigenvectors of C and then write C as

C = V DV T ,

where V is the matrix whose columns are eigenvectors of C, D is the diagonal matrix of eigenvalues
of C, and V T is the transpose of V . The eigenvalue matrix is normalized so that the length of each
eigenvector is one, i.e., V V T = I, where I is the identity matrix.

Let D1/2 denote the diagonal matrix whose elements are the square-roots of the eigenvalues.
Define the linear transformation from the vector of random variables z to r by

r = V D1/2z = Fz + µ,

where F = V D1/2. Suppose that the random variables z satisfy E(z) = 0 and Cov(z) = I. The
covariance matrix of z equal to the identity matrix means that zj has standard deviation 1 for all
j and zj and zk are uncorrelated for all j 6= k. Under these assumptions, E(r) = µ and

Cov(r) = Cov(Fz) = FCov(z)FT = (V D1/2) I (V D1/2)T = V DV T = C.

That is, if returns r are generated by Fz + µ where E(z) = 0 and Cov(z) = I, then the resulting
returns will satisfy E(r) = µ and Cov(r) = C. Furthermore, if the z’s are normally distributed,
then r will also be normally distributed.

This reduces the problem of simulating multivariate normally distributed returns r to the
problem of simulating independent and identically distributed standard normal random variables
z. Many programming languages have built-in routines for the latter problem.

DESCRIPTION OF THE NONPARAMETRIC TEST FOR NONSTATIONARY DATA

To begin, measures of nonstationarity are defined. Let r1, . . ., rn represent vectors of historical
security returns over n time periods. As before, ri = (ri1, . . . , rim) are the returns of them securities
at time period i. Divide the returns into two equal groups. To simplify the discussion, suppose
that n is even. Then group A consists of r1, . . ., rn/2 and group B consists of rn/2+1, . . ., rn.
Denote the sample estimates of means, standard deviations, and correlations of each group by
µ̂j(A), µ̂j(B), σ̂j(A), σ̂j(B), ρ̂jk(A), and ρ̂jk(B). If the returns are stationary, then µ̂j(A) should
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not be significantly different than µ̂j(B), σ̂j(A) should not be significantly different than σ̂j(B),
etc. Define the following measures of nonstationarity

hµ =

√√√√ 1
m

m∑
j=1

(µ̂j(A)− µ̂j(B))2, hσ =

√√√√ 1
m

m∑
j=1

(σ̂j(A)− σ̂j(B))2, and

hρ =

√√√√ 1
(m2 −m)/2

m∑
j=1

m∑
k=j+1

(ρ̂jk(A)− ρ̂jk(B))2.

Large values of h indicate nonstationarity in the corresponding parameter. The problem is to
determine how large a value of h is statistically significant. In other words, under the assumption
of stationarity, what is the probability that a value as large as h would be observed?

To answer this question, we apply a standard nonparametric testing method. The idea is
to randomly reorder the returns, divide the returns into two groups, estimate parameters, and
compute measures of nonstationarity. If the returns are stationary, then the new h-measures will
not be significantly different than the original h-values. This process is then repeated for many
random orderings of the data to determine the empirical distribution of the h-values.

To make this idea more precise, let S be the total number of random orderings generated,
indexed by s = 1, . . . , S. For trial s, let π be a random permutation of (1, 2, . . . , n). The dependence
of π on s will be suppressed for convenience. Divide the returns into two groups, where group A
consists of rπ(1), . . ., rπ(n/2) and group B consists of rπ(n/2+1), . . ., rπ(n). Denote the sample
estimates of means, standard deviations, and correlations by µ̂sj(A), µ̂sj(B), etc. As above, define
the measures of nonstationarity hsµ, h

s
σ, and hsρ for the reordered data.

Suppose that hµ, corresponding to the original order of the data, is larger than a fraction p of
the hsµ-values. If the returns are stationary, then p is an estimate of the probability of observing
a value of hµ or larger. (Note that p is only an estimate, because S is a sample out of the total
n! permutations of the original data.) The same procedure is applied to determine the p-values
corresponding to the parameters σ and ρ.

The measures of nonstationarity can be combined into an overall measure as follows. Define
hOV by

hOV = hµ + hσ + chρ. (3)

The constant c is chosen so that the variability of the hρ-values does not dominate the variability
in the hµ-values or the hσ-values. A reasonable choice for c is 0.20 when using monthly data. Using
this overall measure of nonstationarity, an overall p-value can be determined as before.

The p-values computed in this way indicate the probability that the returns are nonstationary.
Large p-values are inconsistent with the hypothesis that the returns are stationary. More precisely,
under the hypothesis that returns are generated by stationary parameters, p is an estimate of the
probability of observing a value of the nonstationarity measure as large or larger than h.

Nonstationarity can occur in many ways. It can occur in any of the parameters and at any
time in the data. For this reason, it is impossible to design a single test that is powerful at
detecting all kinds of nonstationarity. The test in this paper was designed to be powerful at
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detecting nonstationarity when the parameters change halfway through the data set. Similar tests
for nonstationarity can be developed by dividing the data into more groups.
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