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1.1 Introduction

Contingent claims are not new financial instruments. Contracts of this type
have indeed been exchanged for several centuries among economic agents. These
securities have, however, experienced unprecedented growth in the past twenty years
or s0, since the creation of the first organized options market, the Chicago Board of
Options Exchange {CBOE). Since the opening of this market, the number and the
types of options contracts have substantially increased. Today investors can trade
foreign exchange options, futures contracts, index options, and bond options in
organized markets. Additionally, theoretical and technological progress in the past
ten years has made it possible to engineer contracts with new provisions designed
to meet specific mvestment needs. Capped options, Asian options, shout options,
and other types of exotic securities can now be purchased in the over-the-counter
market or can be issued by firms with specific financing needs.

The valuation of derivative securities has been the object of a long quest. A
model describing the random behavior of speculative asset prices was initially pro-
posed in [3]. The development of a rigorous theory of option pricing, however, only
dates back to the 1970’s. Black and Scholes in [6] proposed a valuation formula for
European options which is consistent with the absence of arbitrage opportunities in
the financial market. This model and the underlying methodology are refined and
extended in [37]. An equivalent approach based on an appropriately chosen “risk
neutral” valuation operator was pioneered by [16]. The foundations and principles
underlying these valuation methods are identified and characterized in the seminal
paper [27].

The valuation of American options also has a long history. Samuelson in [42]
and Mckean in [36] initially treat this problem as a stopping time problem unrelated
to the pricing measure embedded in the underlying asset prices. It is only recently,
however, that the optimal stopping problem has been posed relative to an appro-
priate measure which correctly prices American options ([5] and [32]). Karatzas
n [32], in particular, shows that the American option payoff can be replicated by
a carefully chosen strategy of investment in the primary assets in the model. The
value of the American option, then, must equal the value of the replicating portfolio
to avoid arbitrage opportunities and be consistent with economic equilibrium.

While the stopping time approach to American option valuation is instructive,
it does not provide much insight into the properties of the optimal exercise bound-
ary, nor does it lead to efficient numerical procedures. Authors in {34], [30] and
[14] derive, in the context of the standard market model (geometric Brownian mo-
tion for the underlying asset price and a constant interest rate), an early exercise
premium representation of the value of the American option. This representation
expresses the value of the American option as the corresponding European option
value plus the gains from early exercise. The gains from early exercise are the
present value of the dividend benefits in the exercise region net of the interest
iosses on the payments incurred upon exercise.

In fact, the early exercise premium formula is the Riesz decomposition of the
Snell envelope which arises in the stopping time problem associated with the valu-
ation of the option contract. The Riesz decomposition was initially proved in the
context of stopping time problems in [22]. Myneni in [38] adapts their results to
the American put pricing problem in the context of the standard market model.
The decomposition was recently extended to 4 fairly general class of market models
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with semimartingale price processes in [41].

The early exercise premium representation is written in terms of the optimal
exercise boundary. By imposing a boundary condition, this representation can be
used to derive a recursive integral equation for the optimal exercise boundary. This
equation can be used in a numerical procedure to solve for the optimal exercise
boundary which determines the value of the American option.

While the valuation of standard Armerican option contracts has now achieved a
fair degree of maturity, much work remains to be done regarding the new contrac-
tual forms that are constantly emerging in response to new economic conditions
and regulations, One innovation which has received some attention is the class of
capped option contracts. These are options with a ceiling on their payoff {or a floor
for put options) which limits the potential gains from early exercise. These options
are attractive from the perspective of issuers since they limit their potential liabil-
ities, yet they retain some attractiveness for purchasers since they provide upside
potential and are less costly than their uncapped counterpart. As a result, such
options have appeared as components of securities issued by firms to cover certain
financing needs. A recent treatment of these options, in the context of the standard
market model, appears in {10].

In this paper we provide a comprehensive treatment of option pricing with par-
ticular emphasis on the valnation of American options on dividend-paying assets.
In the second section we review valuation principles for European contingent claims
in a financial market in which the underlying asset price follows an Ité process and
the interest rate is stochastic., In Section 1.3 the analysis is extended to Ameri-
can contingent claims. In this context we review the basic valuation principle for
American options. We also provide two representation formulas, the early exercise
premium and the delayed exercise premium representations, which are based on
recent developments in the field. These results are then applied in Section 1.4 to
American option valuation in the context of the standard market model, i.e., when
the underlying asset price follows a geometric Browmnian motion process and the

interest rate is constant. American capped options with constant and growing caps
are analyzed in Section 1.5. Valuation formulas are first provided for capped options
on dividend-paying assets in the context of the standard market model. Previously
unpublished results are then presented for capped options on nondividend-paying
assets when the underlying asset price follows an Itd process with stochastic volatil-
ity and the cap’s growth rate is an adapted stochastic process.

1.2 The valuation of European contingent claims

We first define the classes of contingent claims which are the focus of our
analysis (subsection 1.2.1). We proceed with a description of the economic setting
(subsection 1.2.2). Attainable Furopean contingent claims are then characterized
(subsection 1.2.3) and valued (subsection 1.2.4).

1.2.1 Definitions

A derivative security is a financial contract whose payoff depends on the price(s)
of some underlying or primary asset(s). In their most general form, derivative
securities generate a flow of payments over periods of time as well as cash payments
at specific dates. In addition, the cash flows need not be paid at fixed points in
time or during fixed periods of time. Some derivative securities involve cash flows
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paid at prespecified random times or even at {random) times which are chosen by
the holder of the contract.

The standard example of a derivative security is an option contract. An option
gives the holder of the contract the right, but not the obligation, to buy (or sell)
a given asset, at a predetermined price (the ezercise or strike price), at or before
some prespecified future date (the maturity date). The option to buy (sell) is a call
(put) option. A Furopean option contract can be exercised at the fixed maturity
date T" only. Since exercise at maturity is only optimal if the option is in the money,
the payoff on a European call option written on a stock equals (8¢ — K)7*, where
S is the price of the underlying stock (primary asset) at the specified maturity
date and K > 0 is the exercise price of the contract. An American option contract
can be exercised at any time at or before the maturity date.

1.2.2 The Economy

We consider an economy with the following characteristics. The uncertainty
is represented by a complete probability space (£, F, P) where 0} is the set of
elementary events or “states of nature” with generic element w, F is a o-algebra
representing the collection of observable events and P is a probability measure
defined on (£2, 7). The time period is the finite interval {0, 7]. A Brownian motion
process z is defined on (2, F, P} with values in the real numbers R. The flow
of information is given by the natural filtration {F;}, i.e., the P-augmentation of
the Brownian filtration. Without loss of generality we set Fr = F so that all the
observable events are eventually known. Qur model for information and beliefs is
Q,F, {F,t[0,T]}, P).

Two types of financial securities are traded in the asset market: a riskless asset
(bond) and a risky asset (stock). The price of the riskless asset, B, satisfies the
equation

dB; = ryB,di,t € [0,T], By given, (1.2.1)
where r = {ry, F; : t € [0, T|} is a bounded, strictly positive and progressively mea-
surable process of the filtration which represents the interest rate in the economy.
For notational convenience, define the discount factor A, ; = exp(— f: rudu).

The price of the stock satisfies the stochastic differential equation

dS; = Si[(pe — 6:)dt + ovdz], t € [0, T, So given. (1.2.2)

The process § = {6, F; : t € [0,T]} represents the dividend rate on the stock;
p={u,Fe:t€[0,T)} and 0 = {o¢, F; : t € {0, T]} are the drift and the volatility
coefficients of the stock’s total rate of return, respectively. The coefficients 6, u,
and o are bounded and progressively measurable processes of the filtration. The
dividend rate is nonnegative, § > 0; the volatility o is bounded above and hounded
away from zero (P-a.s.}, Le., the financial market under consideration is complete.

Remark 1.2.1 The financial market is complete when a relevant class of state
contingent claims, ie., cash flows that depend on the realized trajectories of the
Brownian motion process z, can be attained by an appropriate portfolio of avail-
able financial assets. When the volatility coeflicient ¢ is bounded away from zero,
the stochastic shocks affecting the financial market (the Brownian motion z) can
be hedged away, at all times, by investing in the stock. The ability to design un-
constrained investment strategies in the stock and in the bond, then, ensures the
attainability of these contingent claims (j27], [28], [19]).
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It has become standard to use stochastic processes of the form {1.2.2) to model
the behavior of stock prices. For instance, the geometric Brownian motion process
which is obtained by taking constant coefficients (i, o, 8), is used as a basis for
the analysis in [6]. Alternative formulations which have received attention include
some processes with jumps (]37], [16]).

In order to determine the prices of contingent claims we start by characterizing
the set of random variables (payoffs) that can be generated by trading strategies
involving only the stock and the bond.

Let X denote the wealth process generated by an investment strategy in the
financial assets {1.2.1)-(1.2.2). We first define the set of “allowable” or “admissible”
consumption-investment strategies. A portfolio process m = {m;, Fz : t € [0,T]} is a
progressively measurable, R-valued process such that fOT mdt < 0o, (P-a.s.). Here
g denotes the (dollar) investment in the stock at date ¢; the amount invested in
the bond contract is X; — ;. A cumulative consumption process ¢ = {Cy, Fy 1t €
(0,717} is a progressively measurable, nondecreasing, right-continuous process with
values in R and initial value Cy — 0. Since we consider nondecreasing cumulative
consumption processes only, the portfolio processes under consideration allow for
withdrawal of funds (for consumption purposes). When cumulative consumption is
null at all times the portfolio is said to be self-financing: it involves neither infusions
nor withdrawals of funds but only rebalancing of the existing positions held in the
different assets.

An investment of m; in the stock at date t produces a total return (capital
gains plus dividends) equal to m;[(dS:/S:) + 6:dt]. An investment of X; — m; in the
bond has a return of (X; — m;}ridt. The activity of consumption reduces wealth
by the corresponding amount dC;. Hence, a consumption-portfolio strategy (C, )
generates the wealth process X which solves the stochastic differential equation

dXy = (X¢ — m)redt + mi[(dSe/Se) + Gidt] — dCy b € [0, T} Xo = =,

{1.2.3)
= re Xpdt + Wt(ﬂ't — ’J”t}df 4 mopdzy — dCy, Tt € [0, T]; Xy =1

Given an initial investment z > 0, a consumption-portfolio strategy (C, ) is admis-
sible, if the associated wealth process X solving (1.2.3) satisfies the nonnegativity
constraint
X, >0, tel0,T} (P-a.s.) (1.2.4)
This condition is a no-bankruptcy condition which stipulates that wealth cannot be
negative during the trading period. Let .4(z) denote the set of admissible strategies.
A European contingent claim (f,Y") is composed of a cumulative payment pro-
cess f = {f;,F: : t € [0,T]} which is nondecreasing, progressively measurable,
right-continuous and null at zero, and a nonnegative Fp-measurable cash flow ¥
at date T
A consumption-portfolio strategy (C, 7} generates a European contingent claim
(f,Y) if (C,) is admissible, C; = f;, and X7 = ¥. The claim (f,Y) is attainable
from an initial investment z if there exists an admissible consumption-portfolio
strategy such that dC; > df; for all t € [0,7] and X > Y (P-as.).

1.2.3 Attainable Contingent Claims

The pricing of contingent claims amounts to the identification of an appropri-
ate valuation operator which maps future payoffs into current prices. Since the
processes satisfying (1.2.1) and (1.2.2) represent the prices of traded assets, this
valuation operator must be consistent with these prices. In fact, as will become
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clear below, the price processes (1.2.1)—(1.2.2) completely determine the valuation
operator in this economy.

The market model (1.2.1} and (1.2.2) implies a unique market price per unit
risk @ = {0;, 7 : t ¢ [0,T]} equal to 6, = o, (1 — r:). This one-dimensional
process is well defined, progressively measurable and bounded since o is bounded
away from zero; it is uniquely defined because of market completeness. The market
price of risk represents the excess expected return implicitly assigned by the model
(1.2.1)—(1.2.2) to the stochastic shocks z affecting the financial market.

Consider now the exponential process n = {n, 7 : t € [0, T]} defined by

2
= f(} 8 dzs + = ff} 6 dS (125)

Boundedness of the market price of risk implies that the Novikov condition is satis-
fied; it follows that 7 is a martingale ([33], Chapter 3, Corollary 5.13). We can then
define the eguivalent martingale probability measure, Q(A) = E[prla), A € Fr.
That is, (J is equivalent to P and is unique due to the completeness of the financial
market. Additionally, by the Girsanov Theorem ([33], Chapter 3, Theorem 5.1) the
process z; = z + th 8.ds, for t € [0,T), is a standard @-Brownian motion process.

Under the equivalent martingale measure (J, the ex-dividend price process
Ro¢5¢ 18 a (-supermartingale (recall R,; = exp(~ f, "rydv)). The process con-
sisting of the discounted ex-dividend price augmented by the discounted dividends,
SF = Ro5 + fo Ry o6, 5,dv, is a Q-martingale. It satisfies the equation

dSt = R(]’t,StatdZt, te [0, T], SE = S(}. (126)

We conclude that the present value formula

T
S, = E* [Rt,TST + f Rt,U(‘SuSvdvfft] (127)
S

holds, where E* denotes the expectation relative to the measure . In this formula
the discount rate is locally riskless (conditional on contemporaneous informadtion)
but risky relative to the information available strictly prior to current time. Hence
the discount factor R, 7 is an Fr-measurable random variable which cannot be
tactored out of the expectation operator E*|-|7,]. Finally, we note that the sys-
tem of Arrow-Debreu prices implied by the price system (1.2.1)~(1.2.2) is given by
Ry,:n:dP: these prices represent the value attributed by the market at date 0 to
one dollar paid in state (¢,w). The state price densily is defined as & = Rp e

Consider European contingent claims {f, Y') which satisfy the integrability con-
dition

El(rY)+ E Uﬂl 5SdeJ < 00. (1.2.8)

Let I denote this class of claims.

Our first theorem provides a characterization of the set of attamable contingent
claims.

Theorem 1.2.2 Consider a contingent claim (f,Y) € 1. If(f,Y) is attainable
at date T from an initial investment © then

T
E*[RU,TY] + B [/ RU,sdfs (129)
[}
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Equivalently, if (f,Y) is atteinable from © then

T
[ nsRU,sdfs
Q0

where the expectation is taken relative to the measure P. Conversely, suppose that
(1.2.9) holds. Then there erists an admissible consumption-portfolio strategy (C, T)
such that (f,Y} is atteinable from the initial wealth .

EnrRorY{+E <

In Proposition 1.2.6 below we show that E*[Ry rY]+E*| fOT Ry, sdfs] represents
the present value at date 0 of the contingent claim (f,Y). Hence, the condition
(1.2.9) states that the present value of the contingent claim (f,Y") is less than or
equal to the value of initial wealth x which attains the claim.

Proof of Theorem 1.2.2 (i} Necessity: consider an admissible policy (C, ) €
A{z). The associated wealth process corresponding to an initial investment z is
the solution to equation (1.2.3) given by

i £
Xy = R(T,i (.’E - f Rg,gdcs +[ RO,s’J'Tls(!-bs - T‘S)dS + [
Q 0 i}

for all ¢ € [0, 7). Equivalently, using the definition of the process Z,

¢
Rg,swsasdzs) (1.2.10)

t £
XtRD’t + f Rg,sts =T +f R()’S_’.’T]_sﬂ'sdfs. (1211)
0 0

The right-hand side of (1.2.11) is a continuous @-local martingale. Admissibility
of (C,m) implies that the left-hand side of (1.2.11) is nonnegative. The combi-
nation of these two properties implies that the right-hand side is a nonnegative
Q-supermartingale ([33], Chapter 1, Problem 5.19). Taking expectations on both
sides of (1.2.11) and setting ¢t = T yields
T
| Rosdc,
0

Hence if (f,Y) is attainable (Xt > Y and dC, > df; for all ¢ € {0,77}) from initial

wealth z then
T T
| R, | Roudc,
0 0
and (1.2.9) follows.

(ii) Sufficiency: conversely, suppose that (f,Y) € I satisfies Equation (1.2.9).
By the fundamental representation theorem for Brownian martingales ([33], Chap-
ter 3, Theorem 4.15) the P-martingale M; defined by

E*[RD,TXT] + B* <z (1.2.12)

E*[RorY) + E* < E*[Ryv Xy + E* =z (1.213)

EnrRorY R+ E

T
- /0 Ro,sdfalft}

has the representation

t
M, = My +, f bdz, (1.2.14)
0
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where ¢ = {¢, F; : t € [0,T]} is a one-dimensional, F;-progressively measurable
process such that fDT $7dt < oo (P-as.). An application of Bayes’ law shows that
the Q-martingale M = E*{Ry rY |7 + E*| fOT Ry odfs| 7] equals

M; = ‘I}glMt.

Using (1.2.5), (1 2.14), and applying It&’s lemma leads to M} = Mg + fo Prtdz,,
where ¢ = 7; (¢ + M) and 3 is the Q Brownian motion process defined earlier.
Selecting the portfolio process m; = R0 e 1q‘5t and replacing in the wealth process
X of Equation (1.2.11) yields

i t
RosXi+ [ RosdC.—a+ [ gid
0 4}

T T
- [RD,TY + f Ro,sdfs} LB [RD,TY + f Roodf; Iﬂ} ,
0 0

(1.2.15)
fort € [0, T] At time T we get Ry 7 X7 +f0 Ry 4dCs = x—E*[Ry TY+fD Ry o dfs]+
(RorY + fo Ry df) since Ro 7Y + fo Ry sdf; is Fr-measurable, Condition (1.2.9)
then implies Ry X7 + fo Ry .dCs > RorY + fo Ry odf,. Selecting ¢' = f yields
X7 2 Y. Furthermore X7 =Y (P-a.s.) if (1.2.9) holds with equality.

Remark 1.2.3 As shown in the sufficiency part of Theorem 1.2.2, the wealth
process associated with the consumption-portfolio strategy (C,n) that generates

(f:¥)is

T
Xy = FE* l:Rt,TY +/ Rt,sdfslfs} , tE [O’T]‘
£

Hence the wealth process is nonnegative at all times, since f and Y are nonnegative.
The wealth process equals the present value of the future cash flows generated by
the policy (C, ).

1.2.4 The Valuation of Attainable Contingent Claims

Given our characterization of attainable contingent claims in Theorem 1.2.2 it
is now easy to deduce their market value. To this end, we define the notion of an
arbitrage opportunity and the rational price of a contingent claim. Suppose that
the claim (f,y) is marketed at some price V. Agents can now invest in the stock,
the riskless asset and in the contingent claim. Let m; denote the investment in the
claim.

Definition 1.2.4 A consumption-portfolio strategy (C,m,m¢} is an arbitrage
opportunity if (C,m,mf) € A(0), P(X7 > 0) =1, and P(X7 > 0) > 0.

An arbitrage opportunity is a consumption-portfolio strategy which has zero
initial cost, requires no intermediate cash infusions, and has a strictly positive
probability of positive wealth at time T (and zero probability of negative wealth),

Definition 1.2.5 The rational price of the claim (f,Y) is the price which is
consistent with the absence of arbitrage opportinitics in the financial market.
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The rational price of the contingent claim (f,Y) is also called the market value
of the claim. Indeed, deviations of the market price from the rational price would
lead to infinite demand for the arbitrage portfolio. This situation is inconsistent
with an equilibrium in the financial market at these prices. Since the financial
market is complete, the rational price of an attainable contingent claim is unique.
We are now ready to provide a valuation formula for the contingent claim.

Proposition 1.2.6 The rational price at time t of the European contingent
claim (f, Y} € I is uniquely given by
T
| Rl
t

Proof of Proposition 1.2.6 The contingent claim (f,Y} is attainable from
all initial investments z satisfying the budget constraint (1.2.9). Minimizing over
this set yields the (unique) minimum investment from which (f,Y) is attainable:
z* = E*[RyrY] + E*| fOT Ry 4df,]. The rational price of Y at date zero must then
equal Vo(f,Y) = =* for otherwise an arbitrage opportunity exists. Since the sum of
discounted wealth plus cumulative discounted dividends is a Q-martingale, similar
reasoning establishes that the minimum amount of wealth that must be invested
at date t to generate (f,Y) is X; = E*[R, 7Y |F] + E* [ftT R, dfs|F:]. The price
of the claim at date ¢ follows.

Vi, Y) = E*[R Y |F4] + B

fort €[0,T).

Proposition 1.2.6 provides our most general pricing formula in the context of the
It6 financial market model {1.2.1)~(1.2.2). It states that the value of any European
contingent claim involving cash flow payments over [0, T] is simply the expected
value of the discounted cash flows. Here discounting is made at the locally risk-
free interest rate whereas the expectation is taken under the equivalent martingale
measure implicit in the market model (1.2.1)-(1.2.2). Note that this present value
formula is valid even though the riskfree rate as well as the drift and volatility of
the stock price process are progressively measurable processes of the Brownian fil-
tration, i.e., even though they may depend on the history of the Brownian motion.
If the market price of the contingent claim ever deviates from the rational price pre-
scribed by the formula, it is possible to construct a portfolio of the claim, the stock,
and the bond, and a trading strategy which represents an arbitrage opportunity.

Standard European option contracts involve a payment at the maturity date
T only. For a call option the cumulative payment flow is f = 0 and the terminal
payoff is ¥ = (St — K)*; for a put option f = 0 and ¥ = (K — S7)t. In these
cases the pricing formula Vi(f,Y") specializes as follows.

Corollary 1.2.7 In the financial market model (1.2.1)-(1.2.2) the rational
price of a Buropean call option with maturity date T' and ezercise price K is given
by Cy = E*[Ry 7 (ST — K)'|R), for t € [0,T]. The price of a European put option
is P, = E* [Rg,T(K - ST)+}ft,], forte [O,T}.

When the interest rate is constant, the price of an option written on a nondivi-
dend-paying stock whose price follows a geometric Brownian motion process satisfies
the formula by Black and Scholes (6] (see also [37]).
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Corollary 1.2.8 ([6]) Suppose that the interest rate r is constant and that the
stock price follows o geometric Brownian motion process without dividends ((p,0)
constants, § = 0). Then the price of a European call option simplifies to

Cy = SN(d) — e "HN(d - oy/7T) (1.2.16)

where T = T —t is the time to maturity, N(-} is the cumulative standard normal
distribution function, and d = (o/7) '(log(S:/K) + (r + 3a2)7). The price of the
associated European put option with same malurity end ezercise price i3 oblained
from the put-call parity relationship: P, =Cy — S +e K.

Proof of Corollary 1.2.8 Under the conditions stated, Proposition 1.2.6
shows that the option price is given by C; = e ""E*[(Sy — K)*|F]. Define the
exercise region as the set £ = {w € Q : §p > K} of states of nature in which
the stock price at date T exceeds the exercise price K. Let 1g denote the indi-
cator of B. Then the option price simplifies to C; = e ""E*[1g(ST — K)|F| =
e " (E*[1gSr|F:] — KE*[1g|F]). The second expectation appearing in this ex-
pression is simply the )-measure of the set F conditional on the information at
date t. Under the measure  the stock price is given by St = Ste(r_%"z)f'“’(zT —%)
where #r — % is distributionally equivalent to 2+4/T — ¢t where the random variable
# follows has a normal distribution with mean zero and unit variance. It follows
that

EM1Le\F] = QU F) = Qr — 5 > 0~ log(K/S:) — (r = 50°)7)
=1-N(—d+oy7) = N{d—av7),

where N(-) is the cumulative standard normal distribution. The first expectation
simplifies to

(1.2.17)

e T [E*1gSr|F] = S E* [L1pe= 202 tolr =20\ 7]
= Stf IEe_%J2T+auﬁn(u)du,

—Q0

(1.2.18)

where n{u) is the density of the standard normal. Computing the integral yields
formula (1.2.16).

To prove the put-call parity relationship, note that (K — Sy)* = (Sr — K)* —
Sr + K. No arbitrage implics that the value of the put must equal the value of
the portfolio of the securities on the right-hand side of the equality. The parity
relationship follows.

An explicit formula for the option can also be computed when the coefficients
of the model change deterministically over time.

Corollary 1.2.9 (Black-Scholes with deterministic coefficients) Consider the
financial market model with deterministic interest rate, drift and voletilily coeffi-
cients {ry, py,0¢) without dividends (6§ = 0). Then, the price of a Buropean call
option is given by

BHm

T
" t
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where N(-) is the cumulative standard normal distribution function and

d= (-/;Taf,dv)% [log(St/K) + /tT (rv + %0’3) dv} .

Proof of Corollary 1.2.9 Under the assumptions stated, the stock price
St equals S; exp( ff (ro — 202)dv + ftT o,d%,). Furthermore the stochastic integral

f tT oy d%, has normal distribution with zero mean and variance f tT o2dy. Performing
the same computations as in the proof of Corollary 1.2.8 yields the result.

The next result provides the price of a European option on a dividend-paying
stock in a financial market with deterministic coefficients.

Corollary 1.2.10 (Black-Scholes with dividend adjustment) Consider the fi-
nanciel markel meodel with deterministic interest rate, drift and wolatility coeffi-
cients, and dividend rate (re, ju, ov, 6, ), respectively. The price of a European call
aption is given by

T 2
Ct = StDt,TN(d) — Rt,TKN d— (/ aﬁd’u) (1220)
t

where Dy r = exp(— ftT bydv), N(-) is the cumulative standard normal distribution
function, and

d= ([T agd”)% [IOg(St/K) +_/;T (Tw — &+ %oﬁ) dv] .

1.3 American contingent claims

We now turn to the valuation of American contingent claims. These claims
can be exercised during certain prespecified periods of time at the option of the
holder of the security. To value these contracts we first need to identify the optimal
exercise strategy. The absence of arbitrage opportunities implies that the value of
the contract is its value under the optimal exercise policy.

In this section we provide three representations of the price of an American
contingent claim. The results are used in the next two sections to provide explicit
valuation formulas for standard American options and capped American options
when the underlying asset price follows a geometric Brownian motion process.

As a preliminary step we extend the valuation formula in Proposition 1.2.6 to
securities with payoffs at random times. The economic setting is the one described
in subsection 1.2.2.

A random time 7 is a stopping time of the (Brownian) filtration {F; : ¢ € [0, T}
if the event {7 < t} belongs to the o-field F; for every ¢ € [0,T]. That is, 7 is a
stopping time if an observer can tell, on the basis of his current information, whether
7 has occurred before or at the current time ¢. Let Sp 7 denote the set of stopping
times taking values in j0, T].

Consider a contingent claim (f,Y") and an exogenously specified stopping time
T € Sor. Here f = {f;,F; : t € [0,7]} is a cumulative payment process prior
to T which is nondecreasing, progressively measurable, right-continuous and null
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at zero. Also Y is used to represent a nonnegative and progressively measurable
process with value Y; at time 7. By analogy with Section 1.2 we consider {f,Y")
which satisfy the integrability condition

El&Y: |+ E UDT Esdfs] < 00, (1.3.1)

for all 7 € Sg,7. Let IS denote this class of claims.

Theorem 1.3.1 Let T denocte a stopping time in So, 7 and suppose that (f,Y) €
15. The rational price of this contingent clatm is uniquely given by

B [ f ’ Rt,sdfsgftJ + B[R YA, (1.3.2)
i

at any time t € [0,7].

I, instead of being exogenously specified, the stopping time 7 can be chosen by
the holder of the contingent claim, (f,Y) is an American contingent cloim. Since
this choice can only be based on the information available (and since information
is assumed to be homogeneous among participants in the financial market) the
exercise decision can be thought of as the selection of the best stopping time 7 of
the filtration with values in [0, T}]. The next theorem shows that the value of the
contract is the value under the best exercise policy.

Theorem 1.3.2 ([5], [32]) Suppose that (f,Y) € I8. Consider an American
contingent cloim (F,Y). The rational price Vi(f,Y) of this claim is uniquely given
by

Vi(f,Y) = sup (E [ f TRt,Edfslft] +E*[Rt,TYT|}}]), (1.3.3)
t

TESt'T
at time t € [0, 7.

Proof of Theorem 1.3.2 We prove the theorem for the case f = 0. The
proof follows [32]. For t € {0, T] define the discounted payoff process

D, = Ry,Y,.

From the theory of optimal stopping (see, for instance, [21]} we conclude that there
exists a nonnegative, right-continuous with left-hand liinits (J-supermartingale Z =
{Zs F1 1t € [0,T]} such that
Zy = sup E*[D.|Fj
TES:, T
for all t € [0,7]. The process Z is the Snell envelope of D. Furthermore, the
optimal stopping time 7 is given by
7 =inf{s € [t,T]: Z, = Dy }. (1.3.4)

In order to show that (1.3.3) correctly values the American contingent claim we
must show that ¥, = Rém Zy, is attainable by an admissible consumption-portfolio
strategy (C, ) whose value is {1.3.3).

The Snell envelope Z is a process of class D[0,T] and is regular ({38], Chapter
1, Definitions 4.8 and 4.12). Hence the Doob-Meyer decomposition holds,

Zy=Zo+ M, — A, t € 0,77,
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where M is a Q-martingale and A is a continuous, nondecreasing process with
Mo = Ag = 0. The Martingale Representation Theorem also implies that

t
M, :f dodz,, t € 0,T|
0

where ¢ = {¢,F; : t € [0,T]} is a one-dimensional, F;-progressively measurable
process. Selecting the portfolio and consumption {withdrawal) processes

— =1 _-—1
Wlt:Ru,to}, i

14
Cy z/ Ry idA,,
0

defining the process
X:=Ry; 7,
and applying It6’s lemma to X yields, for t € [0, 7],
dX, = r,Ry; Zydt + Ry, (M, — dA,)
= Xydt + Ry ; ($edZ, — dAy)
= 7 Xpdt + m0dZ — dCy.

Hence X is a well-defined wealth process which corresponds to the admissible strat-
egy (C,m). That is (C, ) is an admissible strategy which attams ¥;, and X is the
corresponding wealth process. We conclude that

X =Ry, % = Ry, sup E*[D,|F]
TESg‘T

= Ry, sup E*[Ry.Y;|F]

TCS, T

= Sup E* Ry Y| F),

TES:, T
for all £ € [0,T]. This establishes the valuation formula (1.3.3) of the theorem.

Remark 1.3.3 Theorem 1.3.2 and its proof also demonstrate that the dis-
counted price of an American contingent claim without a flow of payments (i.e.,
with f = 0} is a Q-martingale prior to the optimal exercise titne 7. It follows that
Zy—Zg = f(: (dM,—dA;)}, is a martingale prior to the exercise time 75. We conclude

that f) 17,cm3dAs =0.

Theorem 1.3.2 states that the price of an American contingent claim is the
present value of the payoffs received at or prior to the optimal exercise time. This
representation of the price, although intuitive, is often impractical since the optimal
stopping time, in most cases, cannot be computed explicitly. An alternative rep-
resentation which emphasizes the gains from early exercise (prior to the maturity
date T') often provides additional insights into the contributors to the value of such
a claim.

The early exzercise premium representation is, in fact, the Riesz decomposition
of the Snell envelope. This decomposition was initially demonstrated by [22] for a
class of stopping time problems. Myneni in [38] adapts their results to the valua-
tion of American put options in an economy in which the interest rate is constant
and the underlying asset price follows a geometric Brownian motion process. A
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generalization of the Riesz decomposition to a class of semimartingales adapted to
a filtration satisfying the “usual conditions” appears in [41]. The results reported
below are special cases of Rutkowski since the underlying uncertainty-information
structure, in our economy, is given by the Brownian filtration introduced in Section
1.2.2.

Consider a contingent claim whose payoff Y, under the (?-measure, satisfies

Y = Yo+ A(Y) + My(Y), t€ 0,7 (1.3.5)

where M(Y) is a Q-martingale and A(Y") is a nondecreasing process null at (; both
M(Y) and A(Y) are progressively measurable processes of the Brownian filiration.
For the example of a call option the exercise payoff is Y = {(§— K}™. This payoff can
be decomposed in the form (1.3.5) by an application of the Tanaka-Meyer formula
([33], Chapter 3, Proposition 6.8).

Theorem 1.3.4 Let (0,Y) € IS. The value of the American contingent claim
whose only payoff is the terminal payoff Y at the exercise time has the early exzercise
premium representation

T
Vi(Y) = B*[RorYrlF) + B* f Rialps, oy(rsYads — dA(Y))F |, t € [0,T),

Tt

(1.3.6)
where 7y = inf{v e [t, T : Dy, = Z,}.

Equation {1.3.6) provides an intunitive decomposition of the price of the Amer-
ican contingent claim. It indicates that the price of the contract is the value of a
European contingent claim with matching characteristics augmented by the gains
from early exercise (the early exercise premium). As we shall see in the next section
in a more specific context, the early exercise premium has a nice interpretation in
the case of an American option.

Proof of Theorem 1.3.4 The proof follows from Lemma 1.3.5 below and
from the fact that the process

i
Zi+ f 10,0y RoulroYodv — dAL(Y)], ¢ € [0, 7] (1.3.7)
0

is a Q-martingale (see [41], Lemmas A.2, A.3, and A .4]).

Lemma 1.3.5 Let Z, = sup,¢s, . B*[D:|F, t € [0,T] and suppose that the
process given in (1.3.7) is a Q-martingale. Then the representation (1.9.6) holds.

Proof of Lemma 1.3.5 Since the process in (1.3.7) is a Q-martingale we can
write

T
E* [ZT +f I{Tu=u}Rg'v(rvadv —dA (Y| = E*[Zy]. (1.3.8)
0
By definition
Zr = sup E*|D,|Fr| = E*|Dy|Fr] = Dr. (1.3.9)
TGST,T

and
Zy = sup E*[D;|FR) = E*|D.|FR). (1.3.10)

TGSQIT
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Substituting (1.3.9) and (1.3.10) in (1.3.8) yields

T
E*|Dy] + E* / 1,y Row (o Yodv — dA,(V))| = B*[Do]. (13.11)
Q0

By Theorem 1.3.2 the right-hand side of (1.3.11) equals Vo(Y"). Since 1{;,—, =0
in the random interval {0, 7y] we conclude that the assertion of the lemma holds.

Corollary 1.3.6 Contingent claims such that 7, Y,dv — dA,(Y) < 0 for all
v € [0, T] will never be exercised prior to the maturity date.

Proof of Corollary 1.3.6 Under the condition stated early exercise can only
lead to a reduction in the value of the contract. Hence, it is never optimal to
exercise prior to maturity.

1t is well known that it is suboptimal to exercise an American call option on
a nondividend-paying stock prior to maturity [37]. For this contract ¥ = (5 -
K)* and, in the exercise region, r,Y,dv — dA,(Y) = r,(S, — K)dv — Syrydo =
—ryKdv < 0. Corollary 1.3.6 then applies and shows that early exercise is a
suboptimal strategy.

An alternative to the early exercise premium representation of the American
contingent claim is a decomposition which emphasizes the gains from delayed ex-
ercise. The delayed exercise premium representation for the American put option
on a nondividend-paying asset and in a financial market with constant coeflicients
(constant interest rate and GBMP for the stock price) is due to {14]. The next the-
orem extends their results to the more general class of American contingent claims
discussed in this section.

Theorem 1.3.7 The value of the American contingent claim with payof Y at
the exercise time, such that (0,Y) € IS, has the delayed ezercise premium repre-
sentation

T
ViY) =Y, + E* [ / Reolirysa) (dA(V) — 1, Yads)| |, t€[0,T],  (1.3.12)
t

where 7, = inf{v € [t,T]: 5, = Z, }.

Proof of Theorem 1.3.7 The value of the contingent claim can always be
written as
VoY) =Y, + E*[(R.,.,Y:, — Yo)iFe], £ € [0, 7).

An application of It6’s lemma yields
ViY) = Y, + E* U Ruy(dA,(Y) + dM,(Y) — rYods)|F |, t € [0, 7).
¢
The representation (1.3.12) follows since M(Y) is a -martingale.

1.4 Standard American options: The GBMP model

We now focus on standard American option contracts in an economy in which
the underlying asset price follows a geometric Brownian motion process (GBMP).
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Consider an American call option with exercise price K > 0 and maturity date
T', written on an underlying asset whose price S satisfies the stochastic differential
equation (under the ()-measure)

dS; = Si[(r — 6)dt + 0dz], t € [0,T); So given. (1.4.1)

Here 7, §, and o are constant parameters; r is the interest rate and § represents the
dividend rate paid on the asset. Since exercise can only be optimal when § > K
the option payoff upon exercise is ¥ = (§ — K)*.

Chr first result characterizes the structure of the exercise region and its bound-
ary. Since the environment is Markovian the state space is completely described
by (5,t). Let £ = {(5,t) € Rt x [0,T] : C(S,t) = (§ ~ K)'} denote the im-
mediate exercise region. Its complement is the continuation region C = {(S,t) €

Rt x [0,T]: C(S,8) > (S — K)*}.

Proposition 1.4.1 The tmmediate ezercise region has the following properties

1. right-connectedness: (S,t) € £ implies (S,s) € € for all t € [0,T] and
seft,T].

2. up-connectedness: (S,t) € £ implies (AS,t) € £ for A > 1, for allt € [0, 7).

3. Suppose that § < max{K, (r/6)K}. Then (8,t) £, for allt € [0,T).

Proof of Proposition 1.4.1 Recall that S, denotes the set of stopping

times of the Brownian filtration with values in [s, 7. _

1. Since s > t we have S, C S;r and therefore C(S,t) > C(S,s). By

assumption, immediate exercise is optimal at ¢. Thus (§ — K)T > C(S, s).

2. Consider §' > $? and suppose that (S2%,t) € £ while (§',¢) ¢ £. Let 1y
denote the optimal stopping time at (S',¢). For s > ¢ define the exponential
process Ny ; = exp|(r—6-10?)(s—t)+0(3%—#)] and note that S, = S, Ny .
We have the following sequence of relations

C{S",t) = E* e " (S Ny, — K) T (optimality of 7 at (S?,¢))
- B [e—-r'(‘rz—t) (S2Nf,,n + (Sl o SZ)Nt,ﬁ . _K)+]
< E*w—r(n—t)(sBNt’ﬁ . K)Jr] + E* [efr{n?t)(sl o SQ)Nt,n]
(since (a +b)*T < at + b7}
< O(S% 1)+ (S' = SB[ TON, ]
(suboptimality of 7 at (9%,t))
<O t)+ 8t - 52
(§' — 8% > 0 and supermartingale property of §)
<($*-K)+8'-82=8'-K
(optimality of immediate exercise at (52, 1))
Hence C(S,t) < §' — K, which contradicts the assumed suboptimality of
immediate exercise at (S',1).

3. Suppose that 0 < § < K. Since P[S, > K] > 0 for some v € [¢,T| in-
mediate exercise is a suboptimal policy. Suppose that K < § < (r/§)K
and assume that immediate exercise is optimal, i.e., C(S,t) =5 — K. Con-
sider the portfolio consisting of 1 eall option, 1 share of the stock held
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Figure 1.4.2 Exercise Region for a Standard American Option

short and K dollars invested at the riskfree rate. Define the stopping time
T = Treyg = mf{v € [£,T]: S, = (r/§)K} or 7,5y = T if no such time
exists. Suppose that we liquidate this portfolio at the stopping time 7. The
cash flows generated by this investient strategy are

Time ¢ Time 7
Buy call —C(S,t)=—(5—K) (S: — K)t
Sell stock +5 —8, — [ T 58,dv
Invest K —K K+ [[ et rKdy
Total 0 (K =8+ [[ e rK — 68,)dv

Since (rK — 65,) > 0 for all v < T this straiegy is an arbitrage strategy.
Since the existence of an equilibrium implies the absence of arbitrage oppor-
tunities it must be the case that C'(S,t) > (5 — K), i.e., immediate exercise
is a suboptimal strategy.

An illustration of the exercise region and corresponding boundary for a standard
American option is given in Figure 1.4.2. The next proposition states some basic
properties of the price function. Properties of the call and put price functions in
more general market models are explored in detail in [26].

Proposition 1.4.3 Let C(S,t) denote the value of the American call option.
We have

1. C(5,1) is continuous on RY » [0,T).

2. C(-,t) is nondecreasing and convezr on R* for allt €[0,T}.

3. C(S,-) is noninereasing on [0,T] for all S€RT.

4.0 < 8C(S,1)/88 < 1 on RY x [0,T; 9C(5,4)/88 = 1 for (S,1) in the

interior of £. :
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5. AC(S,1)/08 is continuous on Rt for allt €[0,T).

Proof of Proposition 1.4.3

1. This follows from the continuity of the option payoff function and the con-
tinuity of the flow of the stochastic differential equation (1.4.1) relative to
the initial values.

2. This follows from the monotonicity (increasing) of the flow and the increas-
ing and convex structure of the payoff.

3. This is a straightforward counterpart of Proposition 1.4.1 (1).

4. Consider (§',t) and (S2,t) such that §1 ~ §2. For any stopping time
T € So,r We have

0< (8! — K)* — (82— K)Y < (8 — 52) = (8" = 8" )N

In particular this holds for the optimal stopping time 7 associated with
(§',t). Hence, we can write

0 < C(SY,t) — C(5%,1)
= E*e T (SN, — K) IR
_ Et[e—r(rg—t)(S2Ntﬂ_2 _ K)+|-7:t]
< Be IS — 52) Ny w17
(suboptimality of 71 at (5%,£))
— (Sl - S2)E*[B_T(T17t)Nt1Tz |-7:t]
<(8'-8%),

where the last inequality follows since S* — $% > 0 and since the discounted
price of a dividend-paying asset is a (Q-supermartingale. Dividing both
sides by S' — 52 proves the statement (this argument also establishes the
continnity of the option price with respect to S).

Property (1) implies that the {mmediate exercise region is a closed set (the con-
tinuation region is an open set). We conclude that the boundary of the immediate
exercise region is well defined as B={B; : t € [0, 7]} where B; = inf{S : (5,%) € £}
and belongs to £. The boundary has the following structure.

Proposition 1.4.4 The boundary of the tmmediale ezercise region is comn-
tinwous, nonincreasing and has limiting values limyr By = max{K, (r /8 K} and
limy_ijoe B = Booo = Kb+ )b+ f— o) where b = 6 -1+ 10? and
F= (b +2ro?)3.

The continuity and monotonocity of the boundary B follow from Proposition
1.4.1 properties (1) and (2). The limiting values are obtaied from the recur-
give equation (1.4.5) for the exercise boundary in Theorem 1.4.5 below. Note
that the optimal exercise boundary for the deterministic problem with ¢ = 0 is
max{K, (r/§)K}. For the stochastic problem the remaining uncertainty faced by
the investor (T —t) converges to zero as i 1 T and we expect the optimal exercise
boundary to converge to the boundary for the deterministic problem. This is the
intuition underlying this limiting result stated in Proposition 1.4.4. The American
option exercise boundary is studied in detail in [1] and [4]. See also [44].

In the GMBP case Theorem 1.3.4 specializes a8 follows.
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Theorem 1.4.5 ([35], [30], [14]) Suppose that the underlying asset price fol-
lows the geometric Brownian motion process (1.4.1) and that the interest rate is
constant. The value of an American call option has the early exzercise premium
representation

O(8,, 1) = C°(8y, 1)

T
+ f (88,60 N (da(Se, B, s — 1)) — rKe " U N(d3(Sy, Bs, s — t)))ds,
t

(1.4.2)
for t € [0,T], where C¢(S,t) represents the Black-Scholes value of @ European call
option (Equation (1.2.19)) and

d3(Ss, By, s — £) = (log(Ss/B.) + (r — 6 + %02)(3 ) /(ovE=D  (1.43)

d3(St,BS,S“*t}=d2(Sg,BS,S—t)—O'\IS—t. (144)
The immediate exercise boundaery B solves the backward nonlinear integral equation

B, — K = C*(B,, 1)

T
T f (6Bre " N(do(By, By, 5 —t)) — rKe " Y N(dg(By, B, s — t)))ds,
1t

(1.4.5)
subject to the boundary condition By = max{K, (r/6)K}.

Proof of Theorem 1.4.5 Proposition 1.4.1 implies B > max{K, (r/§)K}.
Hence Y = (S — K)*t equals § — K in the exercise region. If follows that dY; =
Sii(r — 8)dt + odZ;] in the exercise region, i.e., dA:(Y) = Si(r — §)dt on {S; > B,}.
Theorem 1.3.4 then-implies

T
C(S,,t) = C(S,,t) + E* U e (S, — K) — (r — 6)SU}1{szBv}dv|J-}}
t

T
- Ce(St,t) + E* [f e_r(”_t) [631, - TK]]'{SI;)Bu}dUlfﬂ:l s
t

(1.4.6)
Under the GBMP assumption the expectation in (1.4.6) can be computed explicitly.
This leads to (1.4.2). The recursive equation for the optimal exercise boundary
follows from the boundary condition C(B,t) = B — K.

When the option maturity becomes infinite the option price expression (1.4.2)
simplifies as follows ([42] and [37]).

Corollary 1.4.6 (American options with infinite maturity) Consider an Amer-
ican coll option with infinile maturity. Its value is C(S,t) = (Boo—K)(S/Boo)22/7"
where Boo = K(b+ f)/(b+f—0%), a =3+ f,b=6-r+10% and f =
VB T iro?.

Proof of Corollary 1.4.6 When T 1 oo the immediate exercise boundary
becomes time independent: B = B,,,. Then d2(Beo, Boo,8—1) = (r— 6+ %02)(3 -
t)/(ovs — t) and d3(Boo, Boo, s —t) = da(Boo, Boo, 8 —1t) —0+/s — ¢ are independent
of B,,. Since the European call option value also converges to 0 the recursive
equation (1.4.5) becomes linear in B, and Has solution Be, = K (b+ f)/(b+ f—a?).
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The value of the option then follows from (1.4.2): the early exercise premium
simplifies to (Boo — K)(S/BDO)M/UZ_

The next proposition gives a relationship between American puts and calls
which enables us to infer the value of a put on a dividend-paying asset by a simple
reparametrization of the American call pricing function. This symmetry result is a
variation of the international put-call equivalence [25) and was originally proved in
[35].

Proposition 1.4.7 (American put-call symmetry) Consider American put
and call options written on the same underlying asset whose price satisfies (1.4.1).
Suppose that these options have the same maturity and the same exercise price. Let
P(S,K,r,6,T) and C(S, K, 1,6, T) denote the respective price functions. Then

P(S, K,r,6T) = C(K,8,67,T).

Corollary 1.4.7 implies that a put with exercise price K and maturity T, written
on a stock with dividend rate § and price S in a market with interest rate r has the
same value as a call with exercise price § and maturity 7' written on a stock with
dividend rate r and price K when the interest rate is &.

The model for the underlying asset price in (1.4.1) allows for dividends which
are paid at a continuous rate. This type of model has been used to value foreign
currency options, futures options, and index options. See, e.g., [29] for a description
of these contracts. Analytical solutions for American options in the case of discrete
dividends are given in [39], [24] and [45]. Numerical techniques for the valuation
of American options were initiated in [43] and [8, 9]. Convergence of the Brennan
and Schwartz method is proved in [31]. Probably the most widely used numerical
techmique is the binomial method developed in [17] and (18]. Convergence of the
binomial method for pricing American options is proved in [2]. A new numerical
technique and a comparison of existing methods is given in [11].

Pricing results for American bond and yield options are given in [15]. Results
for American options on multiple assets are derived in [12]. The pricing of American
capped options is considered in the next section.

1.5 American capped options

In the past few years several contracts with cap provisions have been issued by
financial institutions. One example is the MILES contract {Mexican Index-Linked
Euro Security). This contract is an American call option on the dollar value of the
Mexican stock index. The contract is somewhat unusual since it has both a cap
and a restriction on the exercise period.

Other examples of capped options are the capped options on the S&P 100 and
S&P 500 indices that were introduced by the Chicago Board of Options Exchange
(CBOE) in November 1991. These capped index options combine a Huropean
exercise feature (the holder of the security cannot exercise until the maturity of the
contract) with an automatic exercise provision. The anfomatic exercise provision
is triggered if the index value exceeds the cap at the close of the day. See {23] for a
critical analysis of these options. Additional examples of European capped options
include the range forward contract, goltar loans, barrier options, indexed notes and
index currency option notes (see [7] and {40]}.
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S B

K

0 T "t
Figure 1.5.2 Exercise Region for an American Capped Call Option

Our treatment in this section follows [10]. We first consider options with con-
stant caps (subsection 1.5.1), then extend the analysis to caps that grow at a
constant rate (subsection 1.5.2), and conclude with capped options on nondividend-
paying assets with stochastic volatility (subsection 1.5.3). In subsections 1.5.1 and
1.5.2, we suppose that the economy under consideration is the economy of Section
1.4 in which the interest rate is constant and the underlying asset price follows the
geometric Brownian motion process (1.4.1).

1.5.1 Capped options with a constant cap

We consider an American capped call option with maturity date T, exercise
price K and constant cap L with L. > K. Upon exercise this contract pays (S A
L—KY*. Let BY and C(5,t) denote the optimal exercise boundary and the price
of the capped option, respectively. The optimal exercise boundary is characterized
in Theorem 1.5.1 and illustrated in Figure 1.5.2.

Theorem 1.5.1 Consider an American capped cell option with maturity date
T, exercise price K and constant cap equal to L with L. > K. The optimal exercise
boundary BY is given by
BY = LAB, (1.5.1)
where B denotes the optimal exercise boundary of an American uncapped call option
with same maturity date and exercise price.

. Then immediate

Proof of Theoremn 1.5.1 Case (i): Suppose first that § > L
* = L — K, which is the

exercise is optimal since the exercise payofl is (SA L — K)
maximurn payoff attainable.

Case (ii): Suppose that B < § < L. Since (SAL— K)t < (§ — K)* the inequality
CE(5,t) < CL8,1) (1.5.2)

always holds. In the region under consideration immediate exercise is optimal for
the holder of the uncapped option. Thus C4(S,t) < (§ — K)* = (5§ — K). Since
immediate exercise is a feasible strategy for the holder of the uncapped option with
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a payoff equal to (SAL— K}t = (§— K)* = (§— K), we conclude that immediate
exercise is optimal for the uncapped option as well (if not there exists a waiting
strategy which dominates immediate exercise for the capped option, hence for the
uncapped option — a contradiction since we are in the case § > B).

Case (iil): Suppose that § < B A L. We must show that immediate exercise is
suboptimal. Consider first the case L > max{(r/8)K,K}. Let B(T,t) denote the
exercise boundary for an uncapped option with exercise price K and maturity date
T. Recall that B(T\,t) is a strictly decreasing function of time and converges to
K Vv (r/8)K as t converges to T. Hence, in the case under consideration, we can
always find a shorter maturity Ty, To < T, such that S; < B(Ty,¢) < L. Clearly
the strategy of exercising at the first hitting time of the set [B(7p, t}, 00) is feasible
for the holder of the capped option. This strategy also has the same payoff as the
uncapped option with shorter maturity 7. We conclude that

C(S,t,Ty) < CE(S,1). (1.5.3)

Since immediate exercise is suboptimal for the shorter maturity uncapped option
when § < B(Ty,t) we must have (§—K)T < CY(8,t). That is, immediate exercise
is suboptimal for the capped option. Consider next the case L < (r/§)K. Let 7
denote the minimum of T and of the first hitting time of the set [L,c0). The policy
of exercising at 7 dominates immediate exercise since §5, —rK <0 for v € [t, 7).

Since the early exercise strategy is fully identified, the valuation of the contract
is easy to perform. Let t* denote the solution to the equation

B(T,t) = L, (1.5.4)

if an interior solution in [0, T] exists. If B(T,t) < L for all ¢ € [0,7T] set t* = 0. If
B(T,t) > Liorallt €[0,T]set t* =T.

The next theorem provides a valuation formula for the American capped call
option,

Theorem 1.5.3 Consider an American capped call option with maturity date
T, exercise price K and constant cap equal to L (L > K ). For § > LA B the option
value is (SALY—K. For § < LAB andt > t* the option value is C*(S,t) = C(5,1).
For S < LA B and t < t* the option is worth CT(S,t) given by

(L— K)Ee ™ D10, oy Rl + EX e 0S8 ) ey | Bl (1.5.5)

where 7, = inf{v € [t,T] : Sy = L} denotes the first hitting time of L in [t,T] and
7, = T if no such time exists in [t,T]. The representation formula in (1.5.5) can
be simplified by computing the expectations explicitly

CL(8,8) = (L — K)(X?*17" N(do) + A2/°° N(do + 2fVE* — t/0?))
. L (1.5.6)
+e Tt f Oz, tMu(z,t, t")de
0

where
u(x,t,t*) = (ndy (z)) — Al_z(r_a)/dzn(df(:E)))/(:ra\/t* —1) (1.5.7)

do = (log(X) — f(t* — 1))/ (vt —¢) (1.5.8)
di(x) = (xlog()) —log(L) + log(z) % b(t* — 1)) /(e VT = 1), (1.5.9)
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andb=6-r1+ 302, f =V +2ro?, ¢ = (b — f}, a=3(b+ f), and A = S/L.

An alternative decoinposition which draws on Theorems 1.3.4 and 1.4.5 relates
the value of the American capped option to the value of a capped option with
automatic exercise at the cap.

Theorem 1.5.4 {Early exercise premium representation) Let C**(S,t,L) de-
note the value of a capped oplion with evlomalic ezercise af the cap (see formula
(1.5.11) below). For S < LA B andt c [0,T], the value of the American capped
option is given by

TL
CE(8,t) = Co°(8,t, L) + B*] / e TS, — 1K) 155,58, dv R, (1.5.10)
t

where 7, = inf{v € [t,T) : 8§, = L} denotes the first hitting time of L in [¢, T}, and
T =T if no such time exists in [t,T).

This decomposition of the American option value is similar to the early exercise
premium representation for standard American options {Theorem 1.4.5). It differs
in that it relates the value of the option contract to the value of a contract which may
be automatically exercised before the maturity date (the standard representation
uses the value of a Furopean option with exercise at the maturity date as the
benchmark).

The next result shows that the valuation formulas (1.5.6} and (1.5.10) simplify
in the case of sufficiently low dividends.

Corollary 1.5.5 (American capped call valuation with low dividends) Suppose
that § < rK/L. For § < L andt € [0,7T), the value of the American capped
call option equals the value of the corresponding capped call option with automatic
ezercise at the cap

Cch(S,t) = C**(S,t, L)
= (L= K)(A%/7" N(dp) + A2/ N(dg + 2f+/7/0))
+ Se *T(N(d; (L) — 04/7) — N(d] (K) — o/T))
= AT e N (GH(L) - 0y'7) — N(df (K) = ov/7))
~ Ke " (N(dy (L)) — N(dy (K)) — X' =20-9/7 (N (df (L)) ~ N(d] (K)))).
In (1.5.11) the expressions for dy and df(z) are the same as in (158)—(1.(51931125

with 7 =T —t replacing t* —t. The expressions for b, [, ¢, and o are the same as
in Theorem 1.5.4.

Remark 1.5.6 The value of a European capped call option with strike price
K, cap L, and maturity T (the option with payoff (Syr A L — K)V at date T) is
given by

C®(S,t,L) = Se PT(N(dy (L) — ovVT — ) — N(d] (K) — ovVT — 1))
— Ke"T=0(1 — N(dy (K))) + Le™" 9 (1 — N(d; (L))
(1.5.12)
The European capped option value can serve as a benchmark to measure the gains
from early exercise (prior to maturity) embedded in the American capped option

value. The early exercise premium is particularly simple to compute in the case of
low dividends (formula (1.5.11})). a
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Figure 1.5.10 Exercise Region for a (t,t*,1f) Policy

Remark 1.5.7 If £ T oo the European capped call option value C¢(S,%, L)
converges to the Black-Scholes formula adjusted for dividends (equation (1.2.20)).

1.5.2 Capped options with growing caps

We now consider the class of American capped options whose caps grow at a
constant rate. Suppose that

L, = Loed*, £ €[0,T}, (1.5.14)
where we assume that Ly > K. Let ¢* denote the solution to the equation
B(T,t) = Ly, (1.5.15)

if an interior solution in {0, 77 exists. If B(T,t) < L for all ¢t € [0, T] set ¢* = 0. If
B(T\t)> Ly forall t € [0,T] set t* = T.

In order to determine the optimal exercise region we need to consider the class
of exercise strategies defined next and illustrated in Figure 1.5.10.

Definition 1.5.8 ((t.,t*,tf) Ezercise Policy) Let t. and ty salisfy 0 < ¢ <
ty <T andte <t* <T. Define the stopping time 11 by inf{v € {t.,tf] : Sy = Ly}
or if no such v exists set = T. Sei the stopping time 1o equal to ty if S, 2 Ly,
otherwise sel Ty = T. Define the stopping time 73 by inf{v € [t*,T]: S, = By} or
if no such v exists set T3 = T. An exercise policy is o (tc,t*,t5)-policy if the option
13 exercised at the stopping time 71 A 7o A T3.

Theorem 1.5.9 Consider an American capped call option with exercise price
K, maturily date T and cap given by equation (1.5.14). Then the optimal exercise
strategy is o (te,t*,ts)-policy.

Proof of Theorem 1.5.9 Case (i): Suppose first that B < S < L. Then the
same argument as in the proof of Theorein 1.5.1, case (ii) applies and demonstrates
that immed:ate exercise is an optimal strategy.
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Case (ii): Consider now the case § < B A L and suppose that (r/6)K > K.
If Ly > (r/§)K the argument in the proof of Theorem 1.5.1, case (iii} applies. If
Ly < (r/6)K the policy of exercising at the stopping time 7 equal to the first hitting
time of the set {(r/§)K A L,o00} or T if no such time exists, dominates immediate
exercise since 65, —rK < 0for v € [¢, 7). In the case (r/6})K < K we have L; > K
for all ¢ € [0,7T] and the argument of Theorem 1.5.1, case (iii), applies again.

Case (iii): Suppose now that § > L. Tt can be verified that the discounted payoff
function e ™(L; — K') is unimodal with a maximuin at

tf = a,rgIna.xtem,Tie_”(L; - K)

and is strictly increasing for t < ¢; and strictly decreasing for ¢ > ¢;. Henceift > t5
immediate exercise strictly dominates any waiting strategy. If ¢ < ts the strategy
of exercising at the first hitting time of L or at ¢; strictly dominates immediate
exercise.

Case (iv): Finally, suppose that immediate exercise is optimal at some time ¢ < t*
when S = L. Then it is optimal to exercise at all v € [t,t*] when S, = I,.. Suppose
not, i.e., suppose that there exists u such that S, = L, and C¥(Sy,u) > (L, — K ).
At t we have
- K =C*(8,,t)

> CY(84,t, T — (u—1t)) (shorter maturity option)

=CH(8,u,T) (H is L translated by u — t)

> C*(Sy,u) — (Ly — L;). (see Lemma 1.5.11 below)

If immediate exercise is suboptimal at u then CZ(Sy, ) > L,—K so that (L,—K) >
(Ly — K) — (L, — L) = Ly — K, a contradiction.

Lemma 1.5.11 Suppose that the underlying asset price S satisfies {1.4.1).
Consider two American capped call options written on S, with common maturity
date T and exercise price K, and respective caps I and H satisfying (1.5.14),
Ly > Hy. Let SO = Lgy and SO Hy. Then CL(SO, ) < OH(S[‘;!,O) + Lq — Hy.

Proof of Lemma 1.5.11 For any stopping time 7 € Sp 7 we have 0 < ((S1 A
Le—K)* —(SIAH, — K)*] < (S} AL, — 82 AH.} = 5§ No.r A Lge™ — S3No.r A
HyeS7, Since S} = Lo and S3 = Hy the right-hand side of the inequality equals
(8§ — S3)(No,- Ae™), which is bounded above by (53— S2)Ny,r. This upper bound
on the payofl holds, in particular, for the optimal stopping time 7 associated with
(53,0). Hence, we can write

0 < C*(55,0) — CH(52,0)
= E*[e""™(S§ No,r, A Loe"™ — K)t| 7]
- E""[e""(TT”(SgNg’.r2 A Hoet™ — KT F)
< E*[e ™™ (85 — S5) No.r | Fo) (suboptimality of 7 at (SZ,0))
< 83 - 52 (Q-supermartingale property of R +S;)

By assumption Sj = Lo and SZ = Hy. So Lemma 1.5.11 follows.
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Theorem 1.5.9 shows that the optimal stopping time is a (t.,t*,¢f) exercise
policy. The parameters ¢* and t; are completely determined from the structure of
the capped option payoff, the cap process, the underlying asset process, and the
interest rate. So t. € {0,¢*] is the only parameter which remains to be determined.
Thus, pricing an American capped call option has been reduced to the identification
of te, which is a simple univariate optimization problem. The valuation formula for
this contract is given in the next theorem.

Theorem 1.5.12 (Valuation of American capped option with growing cap)
Define

ty = argmax,epp ryie (L — K)}. (1.5.16)
The value of the American capped option with growing cap is given by
Cct(8,0) = nfx{cﬂ(te,t*,tf) tte € [0,° Aty]} (1.5.17)
where
Cl(te,t*,ts) = E* e ™0™ g, 1, 3+ C¥is, <, 1 HF- (1.5.18)

and C* and C* are the values at time t, in the events {S;, > Ly,y and {S;, < Ly},
respectively.

Explicit formulas for C* and C¢ are given in [10].

1.5.3 Capped options on nondividend-paying
assets with stochastic volatility

In this subsection we consider a fairly general class of American capped options
written on nondividend-paying assets with stochastic volatility. The underlying
asget price § satisfies (under the @-measure)

A8y = Si(rdt + ordZ),t € [0, T]; So given. (1.5.17)

The volatility process ¢ = {0y, F: : ¢ € [0,T]} is a progressively measurable,
bounded above and bounded away from zero {P-a.s.). The interest rate r is constant
and nonnegative.

The capped call option under consideration has a payoff (S A L — K)*, where
L satisfies

dL; = Lygdt, t € [0,T], Ly given. (1.5.18)

We assume that the growth rate of the cap, ¢, is a progressively measurable process
such that L, > K for all £ € [0, T} and which satisfies the condition

(gt —7)Le + 7K < 0,¢ € [0, T). (1.5.19)

The model (1.5.17)-(1.5.19) for the underlying asset price and for the cap is
relatively general. It allows for a stochastic volatility of the underlying asset price
as well as a stochastic growth rate of the cap. The factor underlying the stochastic
behavior of the volatility and the cap is the same Brownian motion which affects the
stock price. Hence, the model remains one of complete markets. The cap's growth
rate may take positive as well as negative values as long as condition (1.5.19) is
satisfied. This condition is a restriction on the growth rate of the cap which is
clearly satisfied if the cap is constant or decreasing. It is satisfied even when the
growth rate of the cap is positive as long as it is not too large.

For this model we have the following result.
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Theorem 1.5.13 Consider an American capped call option with stochastic
cap given by (1.5.18)~(1.5.19) when the interest rate is constant and the underlying
asset price satisfies (1.5.17). The optimal ezercise boundary is B = L, If 8> L
immediate ezercise is optimal end CY(8,t) = L— K. If S < L the optimal ezercise
policy is described by the stopping time 7, where 7, = inf{v € [t,T]: 8, = L,}, or
7, = T if no such time exists. For S < L and for all t € [0,T], the value of the
capped option is

CL (S, t) — B [efr('r[,—t) (LTL _-K)]-{TL <T}f-7:t]+E* [emT(T—t) (ST"‘K)-’-]-{TL ?T}lft])
1.5.20

Proof of Theorem 1.5.13 We must show the optimality of stopping at the
first hitting time of the cap. The valuation formula (1.5.20) is the value under that
exercise policy.

(i) Suppose first that § < L and assume that immediate exercise is optimal. Con-
sider the investment strategy described below along with the exercise policy 7,
defined in the theorem

Time t Time 77, < T Time 7p, > T
Buy call —C(S,t} L, —K (8¢ — K}t
Sell stock +8 STy, — 8
Invest K —K Ke™t Ker{T—t)
Total 0 K(ert —1) =571 5, <K}

+K(e’"(T"t) _ I{STZK})
Since the payoff on the event 77, > T is bounded below by
“KI{ST-:K} + K(eT(T—t) _ l{STzK}) — K(er(T—t) _ 1)

and since 7 > 0 the strategy outlined is an arbitrage strategy, The absence of arbi-
trage opportunities in equilibrium implies that immediate exercise is a suboptimal
strategy.

(ii) Consider now the case S > L. By Itd’s lemma the discounted payoff 1, =
e (L, — K) satisfies

dy = ((ge —r)e " Ly + e TK)dt, t € [0, T]. (1.5.21)

Condition (1.5.19) implies that the process v is nonincreasing (P-a.s.). The opti-
mality of immediate exercise follows since any waiting strategy leads to a decrease
in the discounted payoff.
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