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Recent Advances in Numerical
Methods for Pricing Derivative
Securities

M. Broadie and J. Detemple

1 Introduction

In the past two decades there has been an explosion in the use of derivative
securities by investors, corporations, mutual funds, and financial institutions.
Exchange traded derivatives have experienced unprecedented growth in vol-
ume while ‘exotic’ securities (i.e., securities with nonstandard payoff patterns)
have become more common in the over-the-counter market. Using the most
widely accepted financial models, there are many types of securities which
cannot be priced in closed-form. This void has created a great need for effi-
cient numerical procedures for security pricing.

Closed-form prices are available in a few special cases. One example is a
Eurcpean option (i.e., an option which can only be exercised at the maturity
date of the contract) written on a single underlying asset. The European op-
tion valuation formula was derived in the seminal papers of Black & Scholes
(1973) and Merton (1973). In the case of American options (i.e., options
which can be exercised at any time at or before the maturity date) ana-
lytical expressions for the price have been derived, but there are no easily
computable, explicit formulas currently available. Researchers and practi-
tioners must then resort to nuwmerical approximation techniques to compute
the prices of these instruments. Further complications occur when the pay-
off of the derivative security depends on multiple assets or multiple sources
of uncertainty. Analytical solutions are often not available for options with
path-dependent payoffs and other exotic options.

In this paper we provide a survey of recent numerical methods for pricing
derivative securities. Section 2 focuses on standard American options on a
single underlying asset. Section 3 briefly treats barrier and lookback options.
Options on multiple assets are covered in Section 4. New computational
results are also presented.

2 American Options on a Single Underlying
Asset

In the standard model for pricing options, the price of the underlying security
is assumed to follow a lognormal process. To fix notation, suppose that the
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price of the underlying asset is S; at time t. Then S, satisfies
48, = S{{u — 8)dt + odWy], (2.1)

where W; is a standard Brownian motion process. The parameter p is the
expected return of the asset, § is the dividend rate, and o is the volatility of
the asset price, which are all taken o be constant. In the standard model
money can be invested in a risk-free asset which has a constant interest rate
r. For an overview of this model in particular, and derivatives in general,
see the textbooks by Cox & Rubinstein (1985), Hull {1993), Stoll & Whaley
(1993), and Jarrow & Turnbull (1996).

We first consider a European call option with maturity T and strike price
K. This means that its payoff at expiration is (Sr — K)*.! The value of the
European call option at time 0 can be written as

CE(Sy) = E*[e7T(Sr — K} (2.2)

where E* denotes the expectation relative to the risk-neutral process for S,
ie., where r replaces x in (2.1). This risk-neutral valuation approach was
pioneered by Cox & Ross (1976); its theoretical foundations are identified
and characterized in the seminal papers of Harrison & Kreps (1979) and
Harrison & Pliska (1981). The solution to (2.2) was first derived in Black &
Scholes (1973) and Merton (1973) and is given by

CF(Sy) = SoN(dy) — e TK N(dy) (2.3)
with
_ In(S/K)+(r+3cHT
dy = i (2.4)
n — L2
ds 1 (S‘J/K)(:/(% 29T =dy — oVT (2.5)

where N(-} denotes the standard normal cumulative distribution. This so-
lution is considered closed-form because the cumulative normal digtribution
is easily computed. See Abramowitz & Stegun (1972) or Moro (1995) for
methods to approximate the cumulative normal distribution.?

1The operator x* denotes max(z, 0).
*Moro (1995) proposes the approximation

05+3(3 7 paz2/1+ 5% biz®) when 0< 2 < 1.87
N 16
N = 41— (Sh et/ Dig dir') when 1.87 < z < 6
1 when z > 6

where ap = 0.398042270991, a; = 0.020133760596, a; = 0.002046756074, b;
0.217134277847, by = 0.018576112465, by = 0.000643163695, cp = 1.398247031184, ¢

il
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An Americon call option with maturity 7 and strike price K can be ex-
ercised at any time at or prior to maturity. Its payoff is (S, — K)T if it is
exercised at time 7 < T'. The value of the American call option at time 0 can
be written as

C(Sp) = mex E*[e™" (S, — K}*] (2.6)

where the max is over all stopping times v < 7. For a rigorous jugtification of
(2.6) as the appropriate pricing formula, see Bensoussan (1984) and Karatzas

(1988). Finding the optimal stopping policy is equivalent to determining

the points (%, S;} for which early exercise is optimal. The boundary which

separates the early exercise region from the continuation region is the optimal
exercise boundary. Analytical solutions in the case of call options with discrete

dividends were derived in Roll (1977), Geske (1979}, and Whaley {1981)..
Early work in the non-dividend American put case is given in Johnson (1983)

and Blomeyer (1986).

The literature concerning the numerical solution of equation (2.6) is vast.
Major approaches include binomial {or lattice) methods, techniques based on
solving partial differential equations, integral equations, variational inequali-
ties, Monte Carlo simulation, and others.*

The binomial method for the valuation of American options was introduced
by Cox, Ross, & Rubinstein {1979). Trinomial methods have been proposed
in Parkinson (1977) and Boyle (1988) and further analyzed in Omberg {1988).
Other gencralizations and variations of the binomial approach are given in
Rendleman & Bartter (1979), Jarrow & Rudd {1983), Hull & White (1988),
Amin (1991), Trigeorgis (1991), Tian (1993}, and Leisen & Reimer (1995).5
Implementation improvements are given in Kim & Byun (1994) and Cur-
ran (1995). Applications to computing price derivatives appear in Pelsser

—0.360040248231, ¢ = 0.022719786588, dy = 1.460954518699, d; = —0.305459640162,
dp = 0.038611796258, and dg = ~0.003787400686. Moro (1995) shows that this approxi-
mation, properly implemented, is faster and more accurate than previous methods. Proper
implementation includes using multiplication rather than exponentiation wherever possi-
ble. For example, rather than computing z = az* + bz? + ¢ using the power function, it is
more efficient to compute y = ¢ * z and then z = (ay + by + ¢

3The payoff of a put option is (K — 8,)F if it is exercised at time 7 < 7. McDonald
& Schroder (1990) and Chesney & Gibson {1995) derive an interesting put-call symmetry
result. They show that in the standard model {geometric Brownian motion setting), the
value of an American call option with parameters 5, K, r, 8, T is related to the value of
an American put option by

C(8,K,r,8,T) = P(K,8,6,r,T). (2.7)

Thus, the American put price equals the American call price with the identification of
parameters: S — K, K —» 8,7 — §, and & — 7.

“A comparison of some early methods is given in Geske & Shastri {1985).

5There is also a large literature on lattice methods with alternative specifications of
the stochastic process and for pricing interest rate sensitive securities. See, e.g., Nelson &
Ramaswany (1990), Hull & White (1994a, 1994b), Tian (1992, 1994), Amin {1995), Amin
& Bodurtha (1995), and Li et al. (1995).
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& Vorst (1994). A convergence proof for these types of lattice methods for
pricing American options is provided in Amin & Khanna {1994). The con-
vergence of the optimal exercise boundary is proved in Lamberton (1993).
Convergence retes for European option pricing are given in Leisen & Reimer
(1995). Empirical convergence rate evidence for American option pricing is
provided in Broadie & Detemple (1996). Analytical convergence rate bounds
for American option pricing using binomial methods are derived in Lamberton
(1995).

Black & Scholes (1973) and Merton {1973) showed that the price of any
contingent claim, in particular a call option, must satisfy what is now called
the Black-Scholes fundamental partial differential equation (PDE):

ac(s,t) o0(St) 1 , ,8°C(S, )

o ST g S g
subject to the appropriate boundery conditions. For an American option
some of the boundary conditions are related to the early exercise event. Fi-
nite difference methods for the numerical solution of this PDE and its asso-
ciated boundary conditions in the American option case were introduced in
Schwartz (1977) and Brennan & Schwartz (1977, 1978). Convergence of the
Brennan--Schwartz method is proved in Jaillet, Lamberton, & Lapeyre (1990)
and Zhang (1997). Related numerical approaches include Courtadon (1982)
and Hull & White (1990). The quadratic method of MacMillan (1986) and
Barone-Adesi & Whaley (1987) and the method of lines of Carr & Faguet
(1995) are based on exact solutions to approximations of the Black-Scholes
PDE.

Geske & Johnson (1984) present an exact analytical solution for the Amer-
ican option pricing problem. They write the continuous option price as the
sum of prices of simpler options which can be exercised only at discrete points
in time. However, their formula is an infinite series involving multidimensiona)
cumulative normals (that can only be evaluated approximately by numerical
methods) and an unknown exercise boundary (which must also be determined
numerically). In the same paper, Geske & Johnson (1984) introduced the
method of Richardson extrapolation to the option pricing problem. Richard-
son extrapolation has also been used in Breen (1991), Bunch & Johnson
{(1992), Ho, Stapleton, & Subrahmanyam (1994), Huang, Subrahmanyam,
& Yu (1995), and Carr & Faguet (1995). For an extensive treatment of
Richardson extrapolation see Marchuk & Shaidurov (1983). Other extrapo-
lation techniques (see, e.g., Press et al. 1992) have not been extensively tested
in this context.

Jaillet, Lamberton, & Lapeyre (1990) introduced the variational inequal-
ity approach to American option pricing. A discretization of this formmula-
tion leads to a linear complementarity problem (LCP) which can be solved
by linear programming-type methods (see Cottle, Pang, & Stone (1992) for
& complete treatment of LCPs). Numerical results with this approach are

—rC(S, ) =0 (28)
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given in Dempster (1994). For an overview of differential equations and vari-
ational inequality approaches to option pricing, see the textbook by Wilmott,
Dewynne, & Howison (1993).

McKean (1965) first derived an integral representation of the option price.
Kim (1990), Jacka (1991), and Carr, Jarrow, & Myneni (1992) derive an
alternate integral representation which expresses the value of the American
option as the value of the corresponding Furopean option plus an integral
which represents the present value of the gains from early exercise:

T
C(So) = OF(S0) = [_ 6806~ N(ds(So, Bus ) = 1K™ N(da(So, Buy )l

(2.9)
where CF(S;) is the corresponding European call option value, B, is the
optimal exercise boundary, and

1
ds(So, Bs,5) = ;7—"8"[10?;(30/30 +(r— 8 +30%)s]
d4(SU: Bsu S) = d3(807 BS'I S) - O-'\/E'

This representation can be used to solve for the optimal exercise boundary
(see, e.g., Kim 1990). Numerical results using equation (2.9) are given in Kim
(1994) and Huang, Subrahmanyam, & Yu (1995).

2.1 Ewvaluation criteria for numerical methods

Numerical solution procedures can be compared on many dimensions. Impor-
tant factors to consider when evaluating and choosing a solution algorithm
include:

e Numerical accuracy

Computation speed

Error bounds or error estimates

Algorithm complexity

Flexibility

Availability of price derivatives (the ‘Greeks’)

Memory/storage requirements

Accuracy and speed are often the most important of these factors. The
accuracy of a method can be measured in many ways, including average
or worst-case error measures. Speed requirements vary depending on the
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intended application. Are answers required in real-time? How many securities
need to be priced? Do implied parameters (e.g., implied volatility) need to be
computed? For example, algorithims used to generate daily risk reports may

have less stringent speed requirements than those used in a real-time trading
support systemn.

Meany other factors are important in the design and implementation of
numerical algorithms for security pricing. Since numerical methods generate
only approximate answers, error estimates or exact error bounds are highly
desirable. Although algorithm implementation seems Lke a one-time cost,
in many real applications the solution procedures are continually modified
and updated, e.g., to incorporate algorithm enhancements or to extend the
algorithm to price new securities. For this reason, simple and straightforward
algorithms are highly preferred to more complicated, difficult to implement
methods. Similarly, flexible algorithms, ie., those which are easily adapted
to new securities, are desirable. In the options context, the ‘Greeks’ are often
as important to compute as the prices themselves. Hence, those algorithms
which generste price derivatives as a by-product of the pricing calculation are
desirable. Finally, computer memory and disk storage requirements can be
important considerations in choosing an algorithm. (One reasonable, though
not very elegant, approach to American option pricing is to precompute a
large table of suitably parameterized option prices. Then the pricing proce-
dure involves only table lookup and ioterpolation.)

We begin our analysis by giving a brief description of lattice methods
and the approximation procedures proposed in Broadie & Detemple (1996).
We then present performance results for several methods which quantify the
speed-accuracy tradeoff.

2.2 Lattice methods *

The idea of binomial {and other lattice) methods is to discretize the rigk-
neutral process specified in equation (2.1) and then to use dynamic program-
ming to solve for the option price. A three-step tree is illustrated in Figure 1.

In the Cox, Ross, & Rubinstein (1979) binomial method, the stock price
parameters are set to u = e"m, d = 1/u, where At = T/n, and 7 is the
number of time steps between time 0 and T. The probability of an upmove
s set to p = ("™ — d)/(u — d). With these choices, the binomial process
converges to the geometric Brownian motion model as n — oco. The choice
of ud = 1 is not only convenient, but it reduces the number of numerical
computations required. Other binomial variants use slightly different values
for these parameters.

The dynamic programming routine is initialized by setting the call option
price to Cr(Sr) = (Sr— K)* at each of the terminal nodes. For example, at
the top-right node in Figure 1, Cr(u39) is set to (u3S—K)*. At the previous
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S

Figure 1: Binomial tree iilustration for n = 3

node corresponding to stock price u2S at time T' — Af, the call option value
Crr_ai{u?9) is set to

max{(u28 — K)*, e 2 (pCr(uS) + (1 — p)Cr(vdS))}. (2.10)

That is, the American call value is the maximum of the immediate exgrc.ise
value and the present value of continuing. The call values at the remaining
nodes are determined in a similar recursive fashion.

Figure 2 shows the binomial price as a function of th'e number of tlm‘e
steps.S The well-known ‘oscillatory convergence’ of the bmorma:I r{:lethod is
evident in the figure. This has led many practitioners to use a variation of the
binomial method where the n- and (n + 1)-step binomial prices are averaged.
We term this the ‘binomial average’ method. ‘

Broadie & Detemple (1996) suggest two modifications to the binomial
method. In the first modification, the Black-Scholes for_mula repl'aces th‘e
usual ‘continuation value’ at the time step just before option r_natu_}"lty. Tl}ls
method is termed BBS (for binomial with a Black-Scholes m.odlﬁcatlon). F}g—
ure 3 shows the BBS price as a function of the nuirber of time‘steps. Notice
that the error is substantially reduced for the same number of time steps and
the convergence to the frue value is smoother. The smoother convergitfaince
suggests that Richardson extrapolation may be useful. The second IIlOdl. ca-
tion adds Richardson extrapolation to the BBS method,. and we refer to it as
the BBSR method. In particular, the BBSR method with n steps computes
the BBS prices corresponding to m = n/2 steps (say Cr,) and n steps (say

C,) and then sets the BBSR price to ' = 20, — Up,.

6The parameters for this American call option are S = 105, K = 100, » = 0.05, 6 == 0.02,
¢ = 0.30, and T = 0.2. The true value of this option is 8.679.
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2.3 LBA and LUBA methods

Broadie & Detemple (1996) propose two approximation methods based on
lower and upper bounds for the American option price. The lower bound is
based on easily computable ‘capped call’ option values.” Then capped call
option values are used in a different way to generate an approximation to the
optimal exercise boundary. Unlike other pricing procedures, this approximate
boundary (which is shown to lie uniformly below the optimal boundary) can
be computed without recursion. An upper bound is then derived by substi-
tuting this approximate boundary in the integral equation (2.9).

The payoff of & capped call option with cap L is
(min{St, L) - K)+

if it is exercised at time t < T. Under the policy ‘exercise at the cap’,
the current value of the capped option, denoted Cy(S;, L), can be written
explicitly (in terms of univariate cumulative normals). Since the ‘exercise at
the cap’ policy is a feasible but suboptimal strategy for the American option,
Co (S, L) provides a simple lower bound on the American option price C{S;).*
A good lower bound is given by solving the univariate optimization problem:

max Co{So, L).

The lower bound approximation, LBA, is given by multiplying the lower
bound by a weight A > 1.

The optimal exercise boundary can be approximated by the following pro-
cedure. Define the derivative of the capped call option value with respect to
the constant cap L, evaluated as 5, approaches L from below:

i) = gy 57

An explicit formula for D{L,t} is available. Define L] to be the solution to
D(L,t) =0.

Note that this equation does not have to be solved recursively and it can
be solved wery fast for any given t. The function L; lies below the optimal
exercise boundary By for all ¢ € [0, T]. Using L in place of B in equation (2.9)
leads to an upper bound for the American option value. LUBA, the lower
and upper bound approximation, is a convex combination of these lower and
upper bounds. Details are given in Broadie & Detemple (1996).

7See Broadie & Detemple {1995a) for a discussion of capped call options.
8Similar ideas were independently proposed in Omberg (1987) and Bjerksund & Stens-
land (1992). We thank D. Lamberton for pointing cut the latter reference to us.
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2.4 Performance results

"To compare the performance of different methods, we foll

ow the procedure
in Broadie & Detemple {1996). We frst choose & large test set of options hy

randomly selecting parameters from a pre-determined distribution which is
of practical interest. Then for each method we price the test set of options
and compute speed and error measures. Speed is measured by the number
of option prices computed per second.’® Two error measures are computed.
First, root-mean-squared (RMS) relative error is defined by:

N I R
RMS = m§ei

where e; = Ié'i —C;|/C; is the absolute relative error, C; is the ‘true’ American
option value (estimated by a 15,000-step binomial tree), Ci is the estimated
option value, and the index i refers to the ith option in the test set. To
make relative error meaningful, the summation is taken over options in the
dataset satisfying C; > 0.50. Qut of a sample of 5,000 options, m = 4,592
satisfied this criterion. Second, the ‘maximum’ relative error is defined to be
observation e; such that 99.5% of the sample observations are below ;. We
do not take the largest observation, because estimating the maximum of a
distribution is very difficult.?

We test the binomial method with the original Cox, Ross, & Rubinstein
(1979) parameters (Binom CRR) and with the parameters suggested in Hull
& White (1988, footnote 4) modified o account for dividends {(Binom HW).
We also test the ‘binomial average’ method, the BBSR method, and the
I.BA and LUBA methods. The speed versus RMS-error results are shown in
Figure 4.1 The binomial CRR and HW methods perform almost identically.
For 200 time steps, their RMS-ersor is about 0.1%, or about one cent on &
$16 option. This confirms the result in the folkiore that using 200 binomial
bime steps produces ‘penny accuracy.” The binomial average method performs
nsignificantly better than the standard binomial method. Apparently, the
tain in accuracy is just about offset by the doubling of the work to compute
brices at i and n + 1 time steps. The BBSR method performs significantly

®The distribution of parameters for the test is: ¢ is distributed uniformly between 0.1
ind 0.6; T is, with probability 0.75, uniform between 0.1 and 1.0 years and, with probability
.25, uniform between 1.0 and 5.0 years; K = 100, $j is uniform betwsen 70 and 130; &
s uniform between 0.0 and 0.10; r is, with probability 0.8, uniform between 0.0 and 0.10
ind, with probability .2, equal to 0.0. Finally, each parameter is selected independently
f the others. Note that relative errors do not change if Sy and K are scaled by the same
actor, i.e., only the ratio S /K is of interest.

'®The computations were done on a PC with a 133-MHz Pentium processor.

11We found that the sample maximum varies so widely within subsamples as to be an
nreliable tool for comparing various methods. Results using the 99.5 percentile of the
bservations seem to be much less sensitive to the random test set used.

1?Numbers next to each methed indicate the number of time steps.
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better than the other binomial methods in this speed-error tradeoff. Better
still are the LBA and LUBA methods. The LUBA method has an RMS-error
of about 0.02% (less than a 1000-step binomial tree) and a speed of over 1000
options per second {faster than a 50-step binomial tree).

The computational effort {work) with the standard binomial method in-
creases as O(n?). Figure 4 shows the interesting result that RMS-error de-
creases approximately lfinearly with the number of time steps. Herce, the
binomial error decreases as O(1/+v/work).!* Leisen & Reimer (1995) show an-
alytically that the binomial method has order one (1..e., hnea‘r) convergence
for European options.™ They also suggest an interesting modification of the
binomial method which appears to have order two convergence for Europ_ean
options and order one convergence (with a smaller constant) for American
options. -

Figure 5 shows the tradeoff between computation speed and the maximum
error (recall that the ‘maximum’ error is defined as the 99.5 percent.lle of
the ordered absolute relative errors). The ranking of the methods is the
same, however, the maximum error is approximately five times larger than
the RMS-error for each method.

Comparative results of several other methods are given in Broadie.& De-
temple (1998). Of the other methods tested, only the met%lod of lines of
Carr & Faguet (1995) has an RMS-error of 0.1% or less. AltSchhha (1995)
and AitSahlia & Lai (1996) describe a pricing method for Amerlca.n. options
which uses a continuity correction technique for estimating t.hfz 01:;1;513:11&1 ex-
ercise boundary. Their method also appears to be very promising. Recent
methods represent orders of magnitude improvement over c.earher‘ approache_s
in terms of speed and/or accuracy. The BBSR method is 2 simple modi-
fication of the binomial method which is simple to program afnd performs
very well. The LUBA method is the only method .tested which also pro-
vides upper and lower bounds. The binomial method is very easy to program
and the algorithm can easily be adapted to many alternative contract spec-
ifications. All of the methods tested can generate prices as well as price
derivatives. Finally, the storage requirements of the tested methods are min-
imal. .

The determination of a closed-form solution for the optimal stopping bound-
ary and the corresponding American option price remains an open ques-
tion. However, we conclude from these recent results that fr?m a numerical
viewpoint, the single asset American option pricing problem m‘tke standard
mode! is essentially solved. Many challenges remain for t-h.e pricing ?f path-
dependent options, multi-asset options, interest-rate sensitive securities, and

is i i i ith simulation methods!
13This ig also the convergence rate typically associated wit .
14They also show that the same order of convergence holds for the'parameters psed in
the Cox, Ross, & Rubinstein (1979), Jarrow & Rudd (1983), and Tian (1993) binomial
variants. o
137t was not tested because it has not yet been extended to handle dividends.




Speed

Speed

Llivadle ana Jetemple

163

104

103

102

10t

10-4 103 10-2 ' 10+ I - HI!O0

RMS Relative Error

Figure 4: Speed vs. RMS relative error

105

104

102

102L

10!

104 10-3 10-2 10-1 | 100

Max Relative Error

Figure 5: Speed vs. ‘Maximum’ relative error

Numerical Metnods Ior Fricing Dervative Securities ao

optious in more general models {e.g., non-constant volatility). Some of these
issues are explored briefly in the next two sections.

3 Barrier and Lookback Options

Capped call options are one example of barrier options — options whose payoff
depends on the value of the underlying asset relative to a barrier level. Knock-
in options are another example. These options have a zero payoff, unless
the underlying asset price crosses a pre-determined barrier which makes the
option come ‘alive.” Barrier options are treated in Rubinstein & Reiner (1991)
and Rich (1994}. For an overview of these and other types of exotic options,
see Jarrow (1995) and Nelken (1995).

Cox & Rubinstein (1985) describe a straightforward modification of the
binomial method for pricing certain barrier options. Broadie & Detemple
(1993) and Boyle & Lau {1994) first pointed out the slow convergence of the
binomial method for pricing barrier options. For a comparable number of
time steps, the binomial pricing error for barrier options can be two orders of
magnitude larger than for standard options.

Boyle & Lau (1994) identify the cause of the problem and suggest a re-
markably simple and effective solution. As the number of time steps in the
binomial method changes, the placement of the barrier relative to the layers
of nodes of the tree changes. They recommend choosing the number of time
steps n so that there is a layer of nodes at or just beyond the barrier. These
‘good values’ of » can easily be determined in advance of the pricing compu-
tation. Their results show that these choices for n restore the original error
properties of the binomial method.

Numerical pricing of barrier options is also studied in Derman, Kani, Er-
gener & Bardhan (1995), and in Ritchken (1995). Derman et al. (1995} sug-
gest an interpolation scheme for improving the pricing error of lattice methods
applied to barrier options. This approach is especially useful when the volatil-
ity of the underlying asset is not constant. Ritchken {1995) suggests using
a trinomial procedure, where the trinomial ‘stretch’ parameter is chosen so
that the barrier coincides with a layer of nodes.

The payoff of a lookback call option is (S ~ minge<r S;) and a lookback
put is (maxocicr S: — S7). Analytical solutions have been given for European
versions of these options in the standard model (see, e.g., Goldman, Sosin, &
Gatto (1979) and Conze & Viswanathan (1991)). Numerical techniques must
be used for American lookbacks, to handle discrete dividends, when volatility
is not constant, or for other variations of the standard model. The standard
binomial approach does not apply to the case of lookbacks because of the
path-dependent payoif.

Babbs (1992) and Cheuk & Vorst (1994) suggest a clever change of nu-
meraire so that a version of the binomial method is again applicable. Hull
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& White (1993) resolve the path dependency by the standard technique of
adding an additional state variable. This adds an extra dimension to the
binomial method, which considerably increases its computation time. The
resulting method, however, is very flexible. Kat {1995) offers a summary and
comparison of these approaches.

For many path-dependent option contracts, the payoff does not depend on
the continuous price path, but rather it depends on the price of the underly-
ing asset at discrete points in time. For barrier options, it is often the case
that the barrier-crossing event can only be triggered at specific dates or times.
For lookback options, the maximum or minimum price might be determined
at daily closings, for example. The implications of ignoring the difference
between continuous and discrete monitoring is discussed in Flesaker (1992),
Chance (1994), and Kat & Verdonk (1995). Numerical methods and analyti-
cal approximations for discrete path-dependent options are given in Broadie,
Glassermean, & Kou (1995, 1996) and Levy & Mantion (1995)

4 Methods for Multiple State Variables

Options on multiple assets (‘rainbow options’) are being traded with increas-
ing frequency. For example, in 1994 the New VYork Mercantile Exchange
began trading options on crack spreads (e.g., the difference between unleaded
gasoline and crude oil futures prices, or the difference between heating oil
and crude oil futures prices). Other examples include options on the maxi-
mum of two or more asset prices, dual-strike options, and portfolio or basket
options.'®

In the multi-asset context, the standard model is a straightfbrward gener-
alization of (2.1):

. L4 .
dSt = Si[(us — 6;)dt + o dWH, (4.1)
where S} is the price of asset i at time ¢ and where the W' are standard
Brownian motion processes {i = 1,...,n) and the correlation between W*

and W7 is pij- With a constant rate of interest r, the risk-neutral form of
(4.1) is given by replacing each u; by r.

Multinomial approaches to pricing options with two or more state variables
are given in Boyle (1988), Boyle, Evnine, & Gibbs (1989}, Madan, Milne,
& Shefrin (1989), Cheyette (1990), He (1990), Kamrad & Ritchken (1991),
and Rubinstein (1994). The basic idea of the multinomial approaches is the
same as in the single asset case, namely, to discretize the risk-neutral process
specified in equation (4.1) and then to use dynamic programming to solve for

the option price. A tree with four branches per node in the two-asset cage is
illustrated in Figure 6.

18 Closed-form solutions for some European multi-asset options are given in Boyle (1993).
Properties of American option prices and optimal exercise boundaries are investigated in
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Figure 6: Evolution of a two-dimensional binomial tree {4-branch method)

Boyle, Evnine, & Gibbs {1989), hereafter BEG, proposed a general lat-
tice method to price contingent claims on & assets. The BEG method has
four branches per node in the two-asset case, and 2* branches per node in
the k-asset case. For the two-asset case, the node (5%, 5%) is connected to
(u:8', 49 S%) with probability pu,, to (418, dsS?) with probability pg, to
(d18%,up§?) with probability pg., and to (4,8, dyS?) with probability pgg.
As in the single-asset case, u; = 27iVAE gnd di = 1ju; for i = 1,2. The
transition probabilities are defined by

1
Pu = —(1+p+\/At(i/i+3)>
4 oL 02
1
Pug = —(l—p+vﬂt(ﬂ—ﬁ>)
4 o, 03
P = 1(1—p+\/m(—ﬂ+ﬁ)>
4 1 2
Pag = *1“(1+.0—VA‘~‘(£+3“2" ),
4 1 (o))

where v; =7 — 6; — %crf, for i = 1,2, and p = p5. For the test results which
follow, we refer to this BEG approach as the ‘4-Branch’ method.

Boyle {1988} proposed a lattice method in the two-asset case which has
five branches per node, where the additional branch represents a horizonta)
move, i.e., a transition from (S, 5%) to the same node (S',5%) one time-
period later. Kamrad & Ritchken (1991) proposed a general lattice method
for k assets. In the case of two assets, their method has five branches per
node. Like the trinomial method in the single asset case, their method has

Broadie & Detemple (1997) in the multi-asset context.
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Figure 7: Speed vs. RMS relative error for European call options on the
maximum of two assets

an additional ‘stretch’ parameter, denoted A\. When X\ = 1, the Kamrad and
Ritchken method reduces to the BEG method. In the two asset case, Kamrad
and Ritchken recommend using A = 1.11803, and for the test results Wthh
follow, we refer to this as the ‘5-Branch’ method.

To compare the performancerof the 4-Branch and the 5-Branch methods,
we price European max-options on two assets. The payoff of the max-option
is (max(S}, S3)—K)*. We test the methods in the European case because the
true price can be determined by the analytical formula given in Johnson (1981,
1987} and Stulz (1982). We chose a test set of 5,000 options by randomly
selecting parameters from a pre-determined distribution.!” Then for each

method we price the test set of options and compute the usual speed and
RMS-error measures. The results are shown in Figure 7.!8

For both methods, Figure 7 shows that the RMS-error decreases approx-

""The distribution of parameters for the test is: o; is distributed uniformly between 0.1
and 0.8; T is, with probability 0.75, uniform between 0.1 and 1.0 years and, with probability
0.25, uniform between 1.0 and 5.0 years; K == 100, §% is uniform between 70 and 130; &
is uniform between 0.0 and 0.10; r is, with probability 0.8, uniform between 0.0 and 0.10
and, with probability 0.2, equsl to 0.0, p follows a triangular distribution between —1 and
1 (i = 1,2, where apphcable) Finally, each parameter is selected independently of the
others.

¥Numbers next o each method indicate the number of time steps.

Numerical Methods for Pricing Derivative Securities 59

imately linearly with the number of time steps. The RMS-error in the two-
asset case is comparable to the single-asset case with the same number of time
steps.’® However, the computational effort with both two-asset methods in-
creases as O(n?). With current computing technology, these lattice methods
are practical for problems of at most three or four dimensions. For higher
dimensions, the computation time and the memory/storage requirements be-
come prohibitive,

4.1 Simulation methods

To overcome the ‘curse of dimensionality’ of current lattice methods, recent
work has focused on simulation-based approaches. The convergence rate of
Monte Carlo simulation methods is typically independent of the number of
state variables, and so this approach should be increasingly attractive as the
dimension of the problem grows. The simulation approach was introduced to
finance in Boyle (1977). For a recent survey see Boyle, Broadie, & Glasserman
(1995).

‘While the simulation approach has been used extensively to price European-
style contingent claims, only recently have there been attempts to extend the
method to price American-style claims. The first attempt to price Amer-
ican options using simulation is given in Tilley (1993). This effort created
considerable interest by demonstrating the potential practicality of using sim-
ulation in this context. More recent. developments are given in Barraquand
& Martineau (1995) and Broadie & Glasserman (1995).
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1 Introduction

The overwhelming majority of traded options a
their valuation, even in the standard case of a
underlying asset, remains a topic of active researct
the nature of the solution which reguires the de
exercise strategy as well as the value of the optior
option, which can only be exercised at its expirati
the celebrated Black-Scholes formula (Black & S¢
financial model.

Due to a lack of closed—form solutions to Amer
lems, a vast array of approximation schemes has b
& Detemple article in this volume provides a sum
results. The present article is a detailed account,
conducted with numerical schemes including th
Fapguet 1996. It is organized as follows: Section
Scholes model, Section 3 presents the approximat
4 concludes with some benchmark comparisons. :

2 The Standard Model

The prototypical definition of an American optioig
its holder the right to buy {call option) or sell (
underlying security {e.g. stock) at a pre-arranges
exercised at any time before an expiration date’
option can be exercised at the expiration date or

In the standard model, also called the Black-S
(Black & Scholes 1973, Merton 1973), the mark?
underlying security, labelled the stock, and a 1]
bond. This market is populated by equally in
incur transaction cost, among other simplifying:
an amount 3 in the bond will evolve according 1

ag, = rjdi,
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