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This paper considers undiscounted two-person, zero-sum sequential games 
with finite state and action spaces. Under conditions that guarantee the 
existence of stationary optimal strategies, we present two successive approx- 
imation methods for finding the optimal gain rate, a solution to the optimality 
equation, and for any E > 0, E-optimal policies for both players. 

T HIS PAPER considers two-person, zero-sum stochastic games with 
finite state space = {1, - -, N} and in each state i E 2, two finite 

sets K(i) and L(i) of actions available to player 1 and 2, respectively. The 
state of the system is observed at equidistant epochs. When the system 
is observed to be in state i, the two players choose an action, or a 
randomization of actions out of K(i) and L(i), respectively. When the 
actions k C K(i), 1 E L(i) are chosen in state i, thenP*" ' 0 denotes the 
probability that state j is the next state to be observed ( P- Pki = 1) and 
qi is the one-step expected reward earned by player 1 from player 2. 

If the payoffs are discounted at the interest rate r > 0, the stochastic 
game is called the r-discounted game. The existence of a value and of 
stationary optimal policies in the r-discounted game goes essentially back 
to Shapley [22]; in addition it is easily verified that value-iteration 
converges to the value of the game, in view of the value-iteration operator 
being a contraction mapping on EN, the N-dimensional Euclidean space. 

In the undiscounted version of the game, i.e., when the long run 
average return per unit time is the criterion to be considered, one or both 
players may fail to have optimal stationary policies, as follows from an 
example in Gillette [11]. Both for this model and for the case of more 
general state and action spaces, recurrency conditions with respect to the 
transition probability matrices (tpm's) associated with the stationary 
policies have been obtained under which the existence of a stationary 
pair of equilibrium policies (AEP) is guaranteed (see Federgruen [7], 
Hoffman and Karp [13], Rogers [18], Sobel [23], and Stern [24]). 

So far, very little attention has been paid to the actual computation of 
both the asymptotic average value g * and of a solution v * to the average 
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return optimality equation (see Section 1), under conditions that guar- 
antee the existence of a stationary AEP. 

In view of the fact that the value of (both the discounted and undis- 
counted version of) the game does not necessarily lie within the same 
ordered field as the parameters of the problem (see Bewley and Kohlberg 
[2]) we cannot expect to find a finite algorithm in the sense that it 
involves a finite number of field-operations. 

Two algorithms were given by Hoffman and Karp [13] and Pollatschek 
and Avi-Itzhak [17]. It was shown that the first algorithm converges to a 
stationary AEP, if the tpm of each pure stationary policy pair is uni- 
chained and has no transient states. Although the second algorithm 
seems to compare favorably with the first one, as far as net running time 
and the required number of iterations is concerned, it is still unknown 
under which conditions its convergence is guaranteed. 

In this paper, we provide two successive approximation methods for 
locating optimal policies for both players. In both algorithms, we obtain 
in addition at each step of the iteration procedure, upper and lower 
bounds for the asymptotic average value which coniverge to the latter as 
the number of iteration steps tends to infinity. 

The first algorithm is an adaptation of a "modified" value-iteration 
method as introduced by Bather [1] and as generalized by Hordijk and 
Tijms [14]. Its convergence is guaranteed whenever condition (Hi) below 
is satisfied. 
(Hi): (a) a stationary AEP exists. 

(b) the asymptotic average value g * is independent of the initial 
state of the system. 

The second algorithm is based upon the more elementary value-itera- 
tion method, and may successfully be applied whenever condition (H2) 
below holds: 

(H2): the tpm of each of the pure stationary policy pairs is unichained. 

Note that (H2) = (HI) (see e.g. [7], Theorem 3). Under (H2) we obtain 
in addition lower and upper bounds for the fixed point v * of the optimality 
equation which in this case is unique up to a multiple of 1, where 1 is the 
N-vector with all components unity. 

At each step of the procedure, both methods merely require the 
solution of N relatively small linear programs (the size of which is 
determined by the number of actions in K(i) and L(i), i E 2). Especially 
for large scale systems, i.e., when N >> 1, this compares favorably with 
the techniques used in [13] and [17] which require at each step of the 
procedure the solution of a system of at least N equations. 

One might wish to extend these methods to the more general stochastic 
renewal games-model (SRG) in which the state of the system is not 
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necessarily observed at equidistant epochs. In the SRG-model we make 
the more general assumption that when the actions k E K(i) and 1 E L(i) 
are chosen in state i, the period of time until the next observation of state 
is a random variable with finite and positive expectation TVl (i E S2; k E 
K(i), 1 e L(i)). In the one-player case, this model reduces to a Markov 
renewal program (MRP) (see Denardo and Fox [6] and Jewell [15]). The 
value-iteration methods that were developed for the discrete-time or 
Markov decision problem .(MDP) case, could easily be extended to the 
MRP-model, due to a data-transformation which was introduced in 
Schweitzer [20] and which turns every undiscounted MRP into an equiv- 
alent MDP. In the two-player case, the analog of this data-transforma- 
tion, will generally fail to work. The only exception is provided by the 
case where the expected holding times Tb' (i E 2, k E K(i), 1 L(i)) 
satisfy the separability assumption: 

(SEP)T*" aik/3i1 with atik, /i > 0; i E ?, k E K(i), 1 E L(i). (1) 

This will be shown in the appendix, Section 4. (1) holds e.g. in case the 
transition time between two successive observations of the state of the 
system merely depends upon the current state, possibly in combination 
with the action chosen by one of the two players. Establishing an efficient 
algorithm for the general SRG-case remains, however, an outstanding 
problem. 

In Sections 2 and 3 we present our two methods, and in Section 1 we 
give some notation and preliminaries. 

1. NOTATION AND PRELIMINARIES 

For any finite set A, let 11 A 11 denote the number of elements it contains. 
If A = [At>] is a matrix, let [A I = maxij IAij I and let val A indicate the 
value of the corresponding matrix game. Note that for any pair of 
matrices A, B of equal dimension: 

IvalA -val B cA-Bj. (2) 

(Let (xA, yA) and (xB, yB) be equilibrium pairs of actions in the matrix 
games A and B; the minij (Aij - B) C XB(A - B)yA XBAYA - xBByA 
< val A - val B xAAyB -XABYB xA(A - B)yB < max (A0 - Bj).) 
For all i E S2, and any set of numbers (c*'1 I k E K(i), 1 E L(i)}, [ck'] 
denotes the 11 K(i)jj x 11 L(i)jj matrix, the (k, l)-th entry of which isct'1. 

For all r > 0, let V(r) denote the vector, the ith component of which 
denotes the value of the r-discounted game, with initial state i E S. 
Bewley and Kohlberg [2] recently showed that V(r) may be expressed as 
a real fractional power or Puiseux series in r, for all interest rates r, 
sufficiently close to 0. More specifically, there exists an integer M -:1 
such that: 
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V(r) = g*/ + Mi (k) -k/M (3) 

We call g * the asymptotic average value vector. 
A player's policy is a rule which prescribes for each stage t = 1, 2, .*. 

which (randomized) action to choose, depending upon the current state 
and the entire history of the game up to that stage. A policy is said to be 
stationary if it prescribes actions which depend merely upon the current 
state of the system, regardless of the stage of the game, and its history up 
to this stage. Note that a stationary strategy f(h) for player 1(2) is 
characterized by a tableau [fik]([h i]) satisfying fik : 0 and EkK(i)fik = 

I (hik > 0 and >16L(i)hil = 1), where fik(hil) is the probability that the kth 
(Ith) alternative in K(i) (L(i)) is chosen when entering state i E U2. We let 
F(J) denote the set of all stationary policies for player 1(2). We associate 
with each pair (f, h) E (D x ' a N-component reward vector q(f, h), a 
holding rate vector T(f, h) and a stochastic matrix P(f, h): 

q(f, h)i = XkCK(i) EIEL(i) fikqi"hil; i E i2 

T(f, h)i = >kCK(i) >I9L(i) fikTi"h l; i E 6 (4) 

P(f, h)ij = >kCK(i) EYeL(i) fikP7 hil; i, j E 2 

Finally we define for any pair (f, h) E D x ' the stochastic matrix 
FL(f, h) as the Cesaro limit of the sequence tP'(f, h)})'=1. Since we employ 
the long run average return per unit time criterion, we evaluate any pair 
(4), 4) of (possibly nonstationary) policies for players 1 and 2, by consid- 
ering the gain rate vector g(4), 4): 

g(o, 4)i = lirnm ..(Eo,4 XI=, pi)/(EK,,p 1=1 TI); i E U (5) 

where Pn(Tn) denotes the payoff to player 1 (the length of the period) in 
between the (n - 1)-st and the nth observation of state. E?,, indicates the 
expectation given the players' policies 4) and 4. A number of equivalent 
criteria have been formulated in [4]. g(, 4) equals the limit as t > oo, of 
the expected average cost incurred by time t (see Theorem 7.5 in Ross 
[19]). 

A pair of stationary policies (p* A*) is called an AEP, if and only if for 
every policy pair (0, 4) 

g(), 4*). ' g(q*, 4*) 'ig(4*,4Oi, for all i E t2. (6) 

One easily verifies (see e.g. [2] and [8] that if (f*, h*) is a stationary 
AEP, g(f *, h*) = g*. 

In [8], we showed that a pair of optimality equations arises when 
considering the average return per unit time criterion, and we investigated 
the interdependences between the existence of a stationary AEP and a 
solution to this pair of optimality equations. 
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In the case where gi* = (g*), i E t2, i.e., when the asymptotic average 
value is independent of the initial state (see condition (HI)), this pair of 
optimality equations reduces to the single equation: 

vi + g-=val| qi p ,r i E S2U. (7) 

LEMMA 1 (see Corollary 2.5 in [8]). Assume that gi* = (g*), i E S. Then 
the following statements are equivalent: (I) a(k) = 0, k = 1- . ., M-1 
(see (3)), (II) there exists a stationary AEP, and (III) (7) has a solution 
pair (g, v). 

In addition, under either one of (I), (II) or (HII), any solution pair (g, v) 
has g = g*, and any policy pair (f*, h*) E 1 x ' which satisfies the 
equation (7), i.e., which attains the N equilibria in (7) simultaneously for 
some solution pair (g, v), is an AEP. 

Finally, let V= {u E ENI(g*, v) satisfies (7)3. 

2. A MODIFIED VALUE-ITERATION TECHNIQUE 

Throughout this section, we assume (HI) to hold, which implies in 
view of Lemma 1, the existence of a solution pair (g *, v *) to the optimality 
equation (7). We investigate the behavior of the scheme 

y(n + I)i = val[q" - g * + (1 + r,)-1 Ej Pjk'ly (n)j], i EE (8) 

with y(O) a given N-vector. It follows from the proof of Theorem 2.3 in 
[8] that lim,Oy (n) = a(?), provided that the sequence {rn)}=1 satisfies 

(1-rfr) ... (1-r2) -> , as n -oo (9) 

Z=2(1-rn) ... 1rj)Irjl/M- rjl-T 0 as n-4oo (10) 

where (a(0, g*) is a solution pair to the optimality equation (7). 

LEMMA 2. Conditions (9) and (10) are satisfied for any choice: r" = n-b 

with 0 < b c 1. 

Proof. Note using the mean value theorem that n b-(n-1)b - 1 for 
all n = 1, 2, * and use this inequality in order to verify that: 

(n b- 1) ( (n - 1)b _ 1) (2 b- 1) 2b _ 
(1-rn) * (1-r2) = b 1) b . b C6 - 

which proves (9). Next we apply the mean value theorem to verify that 

ZI=2 (1 - rn) ... (1 - rj) IrjM 
1 - r]L 

n (nb) _(ijb _ 

bM ~ 6 b (j~ 
fr=2 nj 
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n 

bM-ln-b , jb(1-M- )-1 
j=2 

rn 

c bM-ln -b xb(1-M1-)- dx 

bn-b ln(n), if M= 1 
(M - I)-1n-bM-1 otherwise 

which proves (10). 

Remark 1. For the MDP-i.e., one player-case, Lemma 2 indicates a 
larger range of permitted values for b, than the one that was obtained in 
[14] (p. 206 remark) using a different analysis. 

Observe that the sequence {y(n)}n=j cannot be computed in view of g* 
being unknown. We circumvent this numerical difficulty as in White [25], 
i.e., we define the sequences {5 (n)})=i and {G(n)})=1 by: 

y^(n + 1)i = y(n + 1)i -y(n +1)N 

- val[q*" + (1 + rn)-1 ,j PM,/(n)j] - G(n + 1); (11) 

iES2 n=0,1,2,* 

G(n + 1) = val[qi' + (1 + rn)1 ,j PkJ9y(n)j]; (12) 

i E 2; n = 0) 12,* 

where y(O)i = y(O)t - y(O)N; i E S2. 

THEOREM 1. For all n = 1, 2, ... let: 

D(n + 1) = mini{val[qk" + (1 + rn)1 >J PkI9(n)1] 

- (1 + rn)-1y(n)j) (13) 

U(n + 1) = maxi{val[q sj + (1 + rn)1 j P> (n)j 

-(1 + rn)-'y(n)i}. 

(a) Let (f *, h*) be a stationary AEP and for any n = 1, 2, l let (fn, 
hn) E D x ' be any pair of policies which attain the N equilibria to the 
right of (11) simultaneously. Then 

(1) D(n) c G(n) c U(n), n = 1, 2, 
(2) D(n+ 1) ?g(fn,h*)<g* g g(f*,hn)i U(n+ 1); iE 2 

(b) If {rn}) =1 satisfies (9) and (10), then: 

limrn D(n) = lim,OG(n) = limOOU(n) = g* 

lim y(n) = a(?) - (ak)) E V 
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where 1 is the vector all of whose components are unity. 

Proof. (a) (1) Note from (11) that ^(n)N = 0 for all n = 0, 1, 2, .., 

hence D(n) < val[qNV + (1 + rn)1 >jP j)(n)j] = G(n) c U(n). 
(2) The inner inequalities are immediate from the fact that (f*, h*) 

is a stationary AEP. We next prove the most left inequality D(n + 1) c 

g(fn, h*), the proof of g(f *, hn) ' U(n + 1) being analogous. Note that for 
all i E S2: 

D(n + 1) + (1 + rn) - y(n) < val[q' l + (1 + rn)1 >j PV;/y(n)1] 

C q(fn, h*)i + (1 + rn)-1P(fn, h*)y(n)t, 

and multiply both sides of this inequality by FJ(fn, h*) - 0 and sum on i 
E 2. 

(b) Recall that limlnooy(n) = a(?) E V. Next we observe that if v C V 
then so is v + cl for all scalars c. Hence, 

lim, ^(n) = lim,,,y(n) - (y(n)N = a(?) - (ak)l E V 

This in combination with the fact that the "val"-operator is (Lipschitz) 
continuous (see (2)) imply using (7): 

lim1,,D(n) = mini(val[q," + Ej Pk/a.?)] -a?) 

= minig* = (g*) = max-fval[qk" + P/'a,?)] -a") 

= lim,, U(n) 

which together with part (a)(1) completes the proof of (b). 

Remark 2. When taking rn = n-b for some b, with 0 < b 1, the 
approach to the limits in part (b) of the above theorem, exhibits a 
convergence rate which is of the order 

{O(n-blnn), if M= 1 
O(n-bM-), otherwise 

as follows from the proof of Lemma 2 and Theorem 2.3 in [8]. We note 
that the bounds for g* in part (a)(2) generalize the bounds Odoni [16] 
and Hastings [12] obtained for the MDP-case. 

We summarize this section by specifying an algorithm which approxi- 
mates g*, as well as a solution v E V, and which finds for any e> 0, E- 

optimal policies for both players: 

Algorithm 1 

Step 0. Fix a sequence {rn})'1 satisfying (9) and (10), e.g., take r = n-b 
with 0 < b ? 1. Set n = 0, fix y(O) E EN andE > 0. 

Step 1. Calculate y(n + 1), D(n + 1), G(n + 1) and U(n + 1) from y(n), 
using (11), (12) and (13). 
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Step 2. If U(n + 1) - D(n + 1) < edetermine a stationary policy pair (f,n 
hn) which attains the N equilibria to the right of (11) simultane- 
ously; use fn(hn) as an E-optimal policy for player 1(2); G(n + 1) 
as an E-approximation for g* and y(n + 1) as an approximation 
for a solution v E V Otherwise increment n by one and return to 
Step 1. 

3. VALUE-ITERATION; A SUFFICIENT CONDITION FOR 
CONVERGENCE 

In this section, we discuss the asymptotic behavior of the sequence: 

v(n + 1)i = Qv(n)i, i E 2 (14) 

where the operator Q: EN - EN is defined by Qxi = val[q" +> 

P*fxj], i E 2, and where v(O) E EN is a given N-vector. 
Note that the Q operator is monotonic, and satisfies the basic proper- 

ties: 

Q(x + cl) = Qx + cl for all scalars c; x E EN (15) 

(x - y)min 5 (Qx - Qy)ri,n < (Qx - QY)marx c (x - y)max; 

x,yEEN (16) 

where (16) is easily verified by applying the Q-operator to both sides of 
the inequalities y + (x - y)m1inl ? x and x < y + (x - y)maxl, using its 
monotonicity as well as (15). 

Note that v(n)i may be interpreted as the value of the n-stage game 
when starting in state i and given some final amount v(O)j is earned by 
player 1 from player 2, when ending up in state j. 

Whereas we still have lim,.v(n)/n g* (see Bewley and Kohlberg 
[2], Theorem 3.2) the difference {v(n) -ng*})=i does not need to be 
bounded, in sharp contrast to the behavior in the one player-model (see 
Brown [5], Theorem 4.3). 

In fact, Bewley and Kohlberg [3] proved the existence of a number B 
> 0 and a Puiseux series in n, 

W(n) = ng* + Emk.?o0 b(k)nk/M 

such that I v(n) - W(n) I < B log (n + 1), n = 1, 2, 

LEMMA 3. fv(n) - ng*}n'= is bounded under condition (Hi). 

Proof. Note from Lemma 1, that (HI) implies the existence of a solution 
v E V. Next, use (2) in order to conclude that: 

v(n) - ng* - v I C I val[qkl + Ej PtJ7v(n - )] 

-val[q " + Ei PM/(v + (n - 1)g*)]j ' v(n - 1) - (n - 1)g*-v - . 
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It is known from Markov decision theory that even in case {v(n) - 

ng*})= is bounded, the sequence may fail to converge if some of the 
tpm's of the pure stationary policy pairs happen to be periodic (in [21], 
Schweitzer and Federgruen obtained for the MDP-case the necessary 
and sufficient condition for {v(n) - ng*})=1 to converge for all v(O) E 
EN). 

In this section we first apply a data-transformation which turns our 
stochastic game into an equivalent one, in the sense that the two sto- 
chastic games have the same gain rate vector for any stationary pair of 
policies, and hence the same asymptotic average value vector and the 
same set of stationary AEPs. We next analyze the behavior of (14) under 
condition (H2) which is a stronger versioni of (Hi) (see the introduction). 
The data-transformation is analogous to the one employed in Schweitzer 
[20]: 

di, qkl; iE, k E K(i), l E L(i), (17) 

p = T(P*, - Sij) + Sij; i,j E 0, k E K(i), 1 E L(i) (18) 

where 0 < T < 1 and where Sij represents the Kronecker-delta function. 
Verify that PJf-> 0 P = 1, with the gain rate vector of each pair of 
policies in F x T remaining unaltered by the data-transformation. 

In addition, each of the tpm's of the stationary policy pairs in the 
transformed model, has a positive diagonal, which obviously implies 
aperiodicity. Let Q be the value iteration operator in the transformed 
model, and define V as the solution set of its optimality equation (7). 
Finally let {t(n)}n=n = {Qnv(O)}n=i 

LEMMA 4. (a) V= {v E ENI Tv E V}, and (b) If (f*, h*) E D x T satisfy 
the optimality equation (7) in the original [transformed] model for some 
v E V [v E V], then they will satisfy the optimality equation in the 
transformed [original] model for -T1v[T&] as well. 

Proof Consider an arbitrary two-person zero-sum game [ck'"] for some 
i E S2. Then for any constant a and positive number b: 

(i) val[c*j + a] = val[cd"] + a (19) 

(ii) val[bcW"] = bval[ci"] 

with the set of equilibrium pairs of action remaining unaltered, both by 
the translation, and by the (positive) scalar multiplication. Use (19) while 
rewriting (7) as 

O = val[q$j -g + Ej (PiJ - S..)vj, i E or 

O val[q" 9-g* + ij r(P*5"- 6ij)(i-'v1)] i Eij 

Next, we restrict the analysis of the Q-operator on the N-1-dimensional 
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subspace EN = {x E EN XN = 0), considering the following reduction Q 
of the Q-operator: 

Q: EN R EN: x Qx- < QXN> 1. 

Accordingly, define U(n) i-v(n)j - 5(n)N = Qv(n -1) i, i E U. (Note the 
similarity with the reduction in White [25] and of {y(n)} n=i to 
(9(n)} =i in (11)). 

We call a function A(x) on a vector space X, a Lyapunov function with 
origin x* E X, if: 

(1) A(x) is continuous on X (20) 

(2) Al(x) - 0 and A(x)=0 X x=x*. 

We have not been able to obtain a straightforward analysis of the 
behavior of {v(n)})'= or {it(n)}) . However, the study of difference 
equations of the type (14) may be greatly facilitated with the help of 
Lyapunov functions, as is shown by the following lemma. 

LEMMA 5. Let A(x) be a Lyapunov function on a vector space X, with 
origin x*. For n = 2, 3, * .. let An denote the n-fold application of an 
operator A:X-- X i.e., An+lx = A (Anx). Then, 

lim,. A'x = x*, for all x E X, if 

(1) A(Ax) c< A(x), for all x Ei X (21) 

(2) there exists an integer J - 1 such that A(AJx) < A(x), 
for all x # x*. 

Lemma 5 is an immediate adaptation of Theorem 10.4 in Zangwill [26]. 
In the context of Markov decision theory, the use of Lyapunov functions, 
and in particular of Lemma 5, was first pointed out in [9]. 

Now, under (H2), the solution to the optimality equation (7) is unique 
up to a multiple of 1, as was shown in [6], Theorem 3.1, i.e., on EN there 
exists a unique solution v* E V. 

We next observe that both Ai(x) and A2(x) are Lypapunov functions 
on EN with v* as origin, where 

Ai(x) = Iix - v* Ild 

A2(x) = II QX- XIId = II QX XIId, 

with 11 X 11 d = maxi xi - mini xi (see Bather [1]). Al(x) obviously satisfies 
both conditions in (20); A2(x) ? 0 is immediate as well, its continuity on 
EN follows from the continuity of the "val"-operator (see (1)) and 
11 Qx-X 11 d = 0 there exists a scalar g, such that Qx - x = (g) 1 x 
& VfEN4-4X=V*). 
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Note that A2(x) has the advantage of being computable at each point 
x E 

We next recall that in the transformed model, and as a consequence of 
assumption (H2) the tpm's of all stationary policy pairs are unichained, 
and in addition have all diagonal entries strictly positive. In Theorem 4 
of [10], Federgruen, Schweitzer and Tijms showed that this implies the 
following "scrambling-type" condition for all pairs of N-tuples of pure 
policy pairs {(fi, hi);.. *;(fN, hN)} and {(fi', hi');.. *;(fiN', hN')}: 

EZ,N min[P(fN, hN)* .* P(fl, hD)j1j; P(fN, hN)... 'P(f1', hi')J] > 0 

for all il # i2. (22) 

Observe that for all i1, i2 E 2 the expression to the left of the above 
inequality is a continuous function on [XN1 X 4J]2 which can be 
embedded as a compact subset of a Euclidean space. Hence there exists 
a uniform scrambling coefficient a > 0, such that 

Zj_l min[P(fN, hN) ... P(fl, h1) j1; P(fN, hN')... P(fI, h1l)*j > a 

for all il # i2; (fi, hi) and (f1', hi') EC D x T (I=1, * * *, N). (23) 

This enables us to prove the convergence of {V(n)}n'= under (H2). Let 
d(n + 1) [QU(n) - V-(n)]min and u(n + 1) [Qv(n) - (n)]max for all 
n = 0, 1, .* . Define g(n + 1) = [QU(n)]N. 

THEOREM 2. Assume a data transformation (17)-(18) is employed. (a) 
Both Ai(x) and A2(X) satisfy (21) with J = N; hence lim,,,. U(n) = v* for 
all v(O) E EN; (b) d(n) c d(n + 1) c g(n + 1) ' u(n + 1) c u(n) for all 
n = 1, 2, *.. lim, +,, d(n) = lim,. g(n) = lim,. u(n) = g*; and (c) let 
(f*, h*) E D x T be an AEP, and for all n = 1, 2, * .. let (f, hn) (D x 
T be any pair of policies which attain the N equilibria to the right of 
(14) simultaneously. Then l(n + 1) ' g(fn, h*) < g* c g(f*, hn) ' 
u(n + 1). 

Proof. (a) We merely show that Al(x) satisfies (21), the proof for A2(x) 

being analogous. Use (20) to verify that Ai(Qx) = 11Qx - lid = 11 Qx - 

Qv* lid - 11 x-v ld 1= Ai(x). Next we obtain part (2) of condition (21) by 
showing that: 

Ai(QNx) = Ai(QNx) < (1 - a)AI(x), for all x E X (24) 

where the proof of (24) goes along lines with the proof of Theorem 5 in 

[8], using (23). 
(b) The proof of d(n + 1) c m(n + 1) s u(n + 1) is analogous to the 

proof of part (a),(1) in Theorem 1; next note that d(n + 1) = [QU(n)- 

U(nfmin = [Q(Qv(n - 1)) - QU(n - l)]min < [QU(n - 1) - v(n - 1)]min = 
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d(n), where the inequality part follows from (16). The monotonicity of 
(u(n)} n= is shown in complete analogy. 

(c) See proof of Theorem 1 part (a)(2). 

Observe that (24) is stronger than condition (20)(2), since the latter 
does not require the existence of some integer J - 1, for which SUPxEX 
A(A"'x)/A(x) < 1. 

In fact (24) shows that the approach to all of the limits in parts (a) and 
(b) of the above theorem exhibits a geometric rate of convergence, which 
is considerably better than the rates we obtained in Section 2, for 
Algorithm 1 (see Remark 2). In this particular case, it is even possible to 
show (along lines with the proof of Theorem 5 in [10]) that Q is an N- 
step contraction mapping on EN, i.e., 1 QNx - QNY ld (1 - a) II x-Y Ild, 
for all x, y E EN and the latter leads to the following bounds on u*: 

U(nN + r) a - a (1 - a)Nl| v(N) - v(O) l|d ' vi < 

U(nN + r)1 + a'(1 - a) NI v(N) - v(O) Id; (25) 

i E S3; n = 1, 2, *.*.* r = O, *N - *N- 

(for a proof see [10], Theorem 6 part (a)). 
Finally we conclude this section by specifying as in Section 2 an 

algorithm which approximates g* as well as some v & V, and for any E 

> 0, E-optimal policies for both players: 

Algorithm 2 

Step 0. Fix 0< T < 1 and transform the stochastic game into an equivalent 
one with ( Pjk"; p t/) as the parameter set using the transformation 
formulas (17) and (18). Set n = 0; fix v(0) C EN and E > 0. 

Step 1 and Step 2. As in Algorithm 1, merely replacing y(n), D(n), G(n), 
U(n) by O(n), d(n), g(n), and u(n); n = 1, 2, 

Note that in this case (25) may be used as a stopping criterion for 
getting E-approximations for v*. 

4. APPENDIX: ON REDUCING UNDISCOUNTED SRGs TO 
EQUIVALENT UNDISCOUNTED STOCHASTIC GAMES 

In the introduction, we pointed out that in the one-player case, succes- 
sive approximation methods for Markov renewal programs could be 
obtained by transforming the MRP-model into an equivalent undis- 
counted MDP-model. When trying to obtain a similar reduction for the 
SRG-case, thereby establishing an algorithm to solve the undiscounted 
version of this game, it is tempting to consider the natural extension of 
the data-transformation that is used in the one-player case (see [20]): 
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qiq~ i Ei'/ i-- ch; k E K(i), l e L(i) 

PiJ = 6ij + (-/TI ')[PiJ - 85j; i,] E 2; k E K(i); (26) 

I E L(i) 

Tkll1; i E 2; k E K(i); I E L(i). 

with 

O < T c min{1/(1 -Pik'l) i E 2, (27) 

k e K(i), 1 E L(i) with PI'< 1). 

Note that as a consequence of (27) P kJ > 0 and YjP l1 for all i, j E 

52, k E K(i), 1 E L(i) such that it is possible to define a (related) discrete- 
time stochastic game which has {qjl} as its one-step expected rewards 
and {P /5') as its set of one-step transition probabilities. 

We recall from (2.14) in [8] that, under (Hi), the solution of our SRG- 
model reduces to the problem of finding a vector v E EN that satisfies the 
functional equation (see also (7) and Corollary 2.5 in [8]): 

vi = val[q' -g*Tl + >1j PI1 v1j; i E U. (28) 

Lemma 6 below shows that the above proposed reduction method works, 
in case the holding times TVV satisfy the separability assumption (SEP) 
in (1). Let V denote the set of solutions to (28) and let V be the set of 
solutions to the optimality equation in the transformed model. Likewise, 
all other quantities of interest in the transformed model will be marked 
off by a (-)-symbol. 

LEMMA 6. Suppose (Hi) and (SEP) in (1) hold. For each pair of policies 
f E ? and h E ' define f, f E (D and h, h E 1 by: 

fik = fkaik/l>rEK(i) firar; i E 2, k E K(i) 

fik = fk(aik /rEK(i) fr(irl ) ; i s E2, k E K(i) (29) 

hii= hil/3l/XrEL(i) hir/8ir; i E E2, I L(i) 

h11 hil(f8i1) 1/rEL(i) hir(3ir) 1; i E &2, 1 E L(i) 

Then, 

(a) g(f, h)=g(f, h) and g(f, h) =g(f, h) 

i.e., if (f, h) is an AEP in the original [transformed] model, then (f, h) 
[(f, h)] is an AEP in the transformed [original] model. In other words, 
there exists a computationally tractible one-to-one correspondence be- 
tween the sets of stationary AEPs in the two models. 

(b) V={v 6EENITv E V}. 
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Proof We first consider an arbitrary matrix game [ci'1] for some i E 
2, in relationship with its "transformed" version [cl'1/Ti'1]. Assuming 
that val[cl'1] = 0, we prove the following two properties 

val[ci'l/Ti'1] = 0 (30) 

If x* E *f(i) is an optimal action in the original {transformed} matrix 
game, then 

= [Xkaia//Er Xr*a i]kEK(i) 

(31) 
{and x =[Xk*(ai )l/Er Xr*(a?i)l]kEK(i)} 

is an optimal action in the transformed {original} model. A similar one- 
to-one correspondence exists between the sets of optimal actions for 
player 2. 

First, let K(i) = {x E EII1K(i)l I X >_ 0, E K(li) Xh = 1) denote the set of all 
randomized actions available to player 1 in state i. Similarly L(i) = {y 

E E"L (i) y > o 0, EL(i) y, = 1) indicates the set of all randomized actions 
available to player 2 in state i E S2. 

Part (b) then follows by rewriting (28) in a homogeneous way, i.e., 
0 = val[q' -g*Tikl + >j (pi(P -&iU)(f-'v)j], i E 2, invoking (30). The 
proof of part (a) follows from (31) and the observation that in the system 

0 = [Pff, h)-I]g (32) 

O tq( f, h)i -giT( f, h)i + [P( f, h) -I]vj}, i E 2 

the g-part is uniquely determined as g( f, h). 
This leaves us with the proof of (30) and (31). Let (x*, y*) be a pair of 

equilibrium actions in the original matrix game. Then, for all y E Y(i): 

Ek El Xk (C l /afit )yi 

= ((rYrf L)/(r Xr*ari))Xk >9 Xk*Ci' [y1if//>ryrfi [] 
- 0 

where the inequality follows from x* being optimal in the original game. 
Likewise, with y = [yl*/8i1/Eryr*/gir ]lEL(i) we obtain 

Ek El Xk(Ct /aiak/j)yl 1 0 for al x E XC(i) (34) 

such that (30) and (31) follow from the combination of (33) and (34). 

We conclude that g*, v E V and E-optimal policies for both players 
can be computed by applying Algorithm 1 under (HI), or Algorithm 2 
under (H2) to the transformed model and by exploiting the one-to-one 
correspondences exhibited by Lemma 6. Note in addition, that by 
choosing T strictly less than the upperbound in (27) the transformation 
in step 0 of Algorithm 2 becomes superfluous. 

The above described reduction fails, if the expected holding times fail 
to satisfy (SEP). This is due to (30) and (31) breaking down in general, 
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examples of which can easily be constructed. As a consequence, estab- 
lishing an algorithm for the general SRG-case remains an outstanding 
problem. 

REFERENCES 

1. J. BATHER, "Optimal Decision Procedures for Finite Markov Chains, Part 
II," Adu. Appl. Prob. 5, 521-540 (1973). 

2. T. BEWLEY AND E. KOHLBERG, "Ihe Asymptotic TIheory of Stochastic 
Games," Math. Opns. Res. 1, 197-208 (1976). 

3. T. BEWLEY ANI) E. KOHLBERG, "The Asymptotic Solution of a Recursive 
Equation Arising in Stochastic Games," Math. Opns. Res. 1, 321-336 
(1976). 

4. T. BEWLEY AND E. KOHLBERG, "On Stochastic Games with Stationary 
Optimal Strategies," Math. Opns. Res. 3, 104-126 (1978). 

5. B. BROWN, "On the Iterative Method of Dynamic Programming on a Finite 
State Space Discrete Time Markov Process," Ann. Math. Stat. 36, 1279- 
1285 (1965). 

6. E. DENARDO AND B. Fox, "Matichain Markov Renewal P'rograms," SIAM J. 
Appl. Math. 26, 468-487 (1968). 

7. A. FEDERGRUEN, "On N-person Stochastic Games with Denumerable State 
Space," Adv. Appl Prob. 10, 452-472 (1978). 

8. A. FEDERGRUEN, "On the Functional Equations in Undiscounted and Sensi- 
tive Discounted Stochastic Games," Math. Center Report BW 73/77, 1977. 

9. A. FEDERGRUEN AND P. J. SCHWEITZER, "On the UJse of Lyapunov Functions 
in Markov Decision Theory" (forthcoming). 

10. A. FEDERGRUEN, P. J. SCHWEITZER AND H. C. TIJMS, "Contraction Mappings 
Underlying Undiscounted Markov Decision Problems," J. Math. Anal. 
Appl. 65, 711-730 (1978). 

11. D. GILLETTE, "Stochastic Games with Zero Stop Probabilities," in Contri- 
butions to the Theory of Games, Vol. III, pp. 179-188, M. Dresher et al. 
(eds.), Princeton University Press, Princeton, N. J., 1957. 

12. N. HASTINGS, "Bounds on the Gain of a Markov Decision Process," Opns. 
Res. 19, 240-244 (1971). 

13. A. HOFFMAN AND R. KARP, "On Non-terminating Stochastic Games," Mgmt. 
Sci. 12, 359-370 (1966). 

14. A. HORDIJK AND H. TIJMS, "A Modified Form of the Iterative Method of 
Dynamic Programming," Ann. Stat. 3, 203-208 (1975). 

15. W. JEWELL, "Markov Renewal Programming," Opns. Res. 11, 938-971 (1963). 
16. A. ODONI, "On Finding the Maximal Gain for Markov Decision Processes," 

Opns. Res. 17, 857-860 (1969). 
17. M. POLLATSCHEK AND B. AVI-ITZHAK, "Algorithms for Stochastic Games 

with Geometrical Interpretation," Mgmt. Sci. 15, 399-415 (1969). 
18. P. ROGERS, "Nonzero-sum Stochastic Games," Report ORC 69-8, Operations 

Research Center, University of California, Berkeley, 1969. 
19. S. Ross, Applied Probability Models with Optimization Applications, Hol- 

den-Day, San Francisco, 1970. 



Stochastic Game Approximation Methods 809 

20. P. J. SCHWEITZER, "Iterative Solution of the Functional Equations of Undis- 
counted Markov Renewal Programming," J. Math. Anal. Appl. 34, 495- 
501 (1971). 

21. P. J. SCHWEITZER AND A. FEDERGRUEN, "The Asymptotic Behavior of 
Undiscounted Value Iteration in Markov Decision Problems," Math. Opns. 
Res. 2, 360-381 (1978). 

22. L. SHAPLEY, "Stochastic Games," Proc. Natl. Acad. Sci. U.S.A. 39, 1095- 
1100 (1953). 

23. M. SOBEL, "Noncooperative Stochastic Games," Ann. Math. Stat. 42, 1930- 
1935 (1971). 

24. M. STERN, "On Stochastic Games with Limiting Average Payoff," Ph.D. 
dissertation, Department of Mathematics, University of Illinois, Chicago, 
1975. 

25. D. WHITE, "Dynamic Programming, Markov Chains and the Method of 
Successive Approximations," J. Math. Anal. Appl. 6, 373-376 (1963). 

26. W. ZANGWILL, Nonlinear Programming, a Unified Approach, Prentice-Hall, 
Englewood Cliffs, N. J., 1969. 


	Article Contents
	p. 794
	p. 795
	p. 796
	p. 797
	p. 798
	p. 799
	p. 800
	p. 801
	p. 802
	p. 803
	p. 804
	p. 805
	p. 806
	p. 807
	p. 808
	p. 809

	Issue Table of Contents
	Operations Research, Vol. 28, No. 3, Part 2 (May - Jun., 1980), pp. i-vi+633-846
	Front Matter [pp. i-vi]
	Dynamic Loading and Unloading of Liquids into Tanks [pp. 633-649]
	A Method to Overcome the III-Conditioning Problem of Differentiable Penalty Functions [pp. 650-667]
	An Evaluation of Substitute Methods for Derivatives in Unconstrained Optimization [pp. 668-686]
	A Stochastic Allocation Problem [pp. 687-693]
	Approximate Traveling Salesman Algorithms [pp. 694-711]
	Capacity Expansion When Demand is a Birth-Death Random Process [pp. 712-721]
	Duality in the Cent-Dian of a Graph [pp. 722-735]
	An Investment Staging Model for a Bridge Replacement Problem [pp. 736-753]
	A New and Efficient Algorithm for a Class of Portfolio Selection Problems [pp. 754-767]
	Inspection Procedures when Failure Symptoms Are Delayed [pp. 768-776]
	Restricted Bayes Strategies for Programs with Simple Recourse [pp. 777-784]
	Identifying Efficient Vectors: Some Theory and Computational Results [pp. 785-793]
	Successive Approximation Methods in Undiscounted Stochastic Games [pp. 794-809]
	A Characterization of Waiting Time Performance Realizable by Single-Server Queues [pp. 810-821]
	Technical Notes
	Geometric Interpretation of Generalized Lagrangian Multiplier Search Procedures in the Payoff Space [pp. 822-827]
	Some Remarks on Scheduling Nursing Personnel [pp. 828-829]
	Equivalence of the 0-1 Integer Programming Problem to Discrete Generalized and Pure Networks [pp. 829-836]
	A New Norm for Measuring Distance Which Yields Linear Location Problems [pp. 836-844]
	Generalized Efficient Solutions for Sums of Sets [pp. 844-846]

	Back Matter





