A NEW SPECIFICATION OF THE MULTICHAIN POLICY ITERATION ALGORITHM IN UND
A FEDERGRUEN; D SPREEN

Management Science (pre-1986); Dec 1980; 26, 12; ABI/INFORM Global

pg. 1211

MANAGEMENT SCIENCE
Yol. 26, No. 12, December 1980
Printed in U.S.A.

A NEW SPECIFICATION OF THE MULTICHAIN POLICY
ITERATION ALGORITHM IN UNDISCOUNTED
MARKOV RENEWAL PROGRAMS*

A. FEDERGRUENT anp D. SPREEN}

We consider the Policy Iteration Algorithm for undiscounted Markov Renewal Programs.
Previous specifications of the policy evaluation part of this algorithm all required the analysis
of the chain structure for each policy generated. The purpose of this paper is to provide a
unique specification of the value vectors as well as an anticycling rule which avoids parsing
the transition probability matrices into their subchains.

(DYNAMIC PROGRAMMING-MARKOYV, FINITE STATE; DYNAMIC PROGRAM-
MING-SEMI-MARKOV)

1. Introduction and Summary

We consider a Markov Renewal Program (MRP) with &= {1,..., N} as state
space and K (i) as the finite set of alternatives in state i (1 < i < N). Let ¢/ denote the
one-step expected reward and PJ‘ >0 the transition probabxhty to state j, when
alternative k € K(i) is used in state i (3;P; = 1). Fmally, > > 0 denotes the expected
conditional holding time, when altemative k is used in state i, given j is the next state
of the system. For two N-component vectors x, y, x > y implies x; > y; and x # y. For
any subset S C @, let S =Q\S, and let | S| denote the cardinality of S.

A stationary policy § assigns to each state i € Q, a single alternative (i) € K(i) to be
used whenever the system is in state i. Associated with each stationary policy are the
N-component reward vector g(8), and two N X N matrices P(8) and H(8):

q9(8),= 4" P(8)y= P} H(8);= Hj"= Pi® (1<i,j<N)

The nth power of P(8), P"(8), is defined recursively by P"(8)= P"~'(8). P(8) for
n > 1 and P%8) = I Let TI(8) denote the Cesiro limit of the sequence {P"(8)}5-,
R@®)={ jIII(B) > 0} represents the set of recurrent states under P(8) and n(8)
denotes the number of subchains (closed, irreducible sets of states) of P(8) (cf.
Denardo and Fox [5}). For a pohcy 1, the system of 2N equations:

g=P(n)g M
v=gq(n)— H(n)g+ P(n)v 2

has the vector g = g(n) uniquely determined, whereas the vector v is determined up to
n(n) additive constants, one per subchain, by (cf. lemma 1 in [5])

n(n)

o= Z(m[q(n) - H(me],+ zl"m‘l"’"(ﬂ), ieq, O]

* Accepted by Bennett L. Fox, former Departmental Editor; received February 6. 1980. This paper has
been with the authors 2 months for 1 revision.
tColumbia University.
$Rheinisch-Westfalische Technische Hochschule, Aachen, West Germany.
1211

0025-1909/80/26]2/1211501 25
Copyright © 1980, The Institute of M

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1212 A. FEDERGRUEN AND D. SPREEN

with ay, ..., a,,, arbitrary scalars. The Policy Iteration Algorithm (PIA) for mul-
tichain MRPs is given by (cf. [5], [8], [9]):

Step 0: Fix a stationary policy 8.

Step 1: (Policy evaluation) Specify a particular solution (g,) to the system (1), (2)
with 3 = 6.

Step 2: (Policy improvement) Define:

b(go) = g ~ X Hjg + 2 Py = v
J J
T(g) = [k € K(i)|k maximizes 3, Pfg, overk € K(i)],
J
D;(gv)={k €T{(g)|k maximizes b(g,v)* overk €T(g)}.

Determine a new policy # as follows: for i=1,..., N, set «(i)=8(i) if 8(i)) €
D;(g,v) and otherwise set 7 (i) equal to some arbitrary element of D,(g,v). If # =6,
terminate; otherwise, replace § by « and go to step 1.

Examples are known where “unwise” choices of the additive constants cause the
PIA to cycle (cf. e.g. Example I in [10]). To prevent cycling, the following rules have
been proposed in the literature:

Rule A.1: (cf. Howard [8], Denardo and Fox [5], Jewell {9]). Set v(8), =0 for the
smallest (largest) i within each subchain of P(§).

Rule A.2: (cf. Blackwell [2]). Choose ¢(8) such that II(8)uv(8) = 0.

Note that Rule A.2 could implicitly be imposed by adding a third vector-equation

w=—c+ P(q)w 4

to (1) and (2) as can be verified by multiplying both sides of (4) with II(5). The system
(1), (2), (4) is in fact used in the policy evaluation step of the PIA which determines the
more selective bias-optimal policies in discrete-time Markov decision processes (cf.
Veinott [12]; an equation similar to (4) is used in the corresponding algorithm for
MRP’s, see Derardo [4]).

Both rules A.1 and A.2 are special cases of a general anti-cycling rule exhibited in
{10]:

Rule A: for any two policies 8 and # that have a common subchain C and select
identical alternatives in all states belonging to C, the relative vectors v(8) and v(7) are
chosen such that v(8); = v(%); for all states i belonging to C.

Rule A (including the two special cases A.l and A.2) gives the appearance of
requiring the determination of the subchains for each policy generated by the PIA.
Efficient algorithms for parsing a stochastic matrix P into its subchains can be found
in Fox and Landi {7] and Denardo [3], and require 0}{(7, M| P; > 0}] operations (cf. [3,
Chapter 11, Theorem 13]). Moreover, the classical treatment of the multichain PIA
suggests a need for determining the chain structure at each policy evaluation step as
well.

The purpose of this paper is to specify the policy evaluation step in PIA, and in
particular to reformulate the anticycling rule A, so as to avoid parsing the matrices
P(8), 8 €A, into their subchains.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

THE MULTICHAIN POLICY ITERATION ALGORITHM 1213

We first need the following notation. For any policy § and subset § C &, the
reaching set of S under P(S) consists of the states i for which 3, cP"(5); > 0 for
some n > 0. For any pair of policies 8, # and a relative value vector 0(8), let
Y(8,7) = q(w) — H(m)g(8) + P(m)v(8) — v(8). Let S(8,7) = {i| Y(8,7); > 0} and let
T(8,) be the reaching set of S(8,7) under P(x).

We conclude this section by stating a modified formulation of the policy evaluation
step:

(a) Enter with a policy . If = is the first policy generated, go to step (b). Otherwise,
let 8 be the previous policy. If P(xr)g(8) = g(8) go to step (c); otherwise, proceed.

(b) Solve system (1), (2) with = by using the modified Gaussian elimination
procedure (§3). Exit to the policy improvement step.

(c) Apply the Reaching Set Finder (§2) to compute the set T(§,#) as well as to
verify whether it has a closed set under P(=%). If T(8,«) has a closed set under P(7) go
to step (b). Otherwise, proceed.

(d) Solve a subsystem of (2) with n = @, g replaced by g(8) and v, replaced by v(8);
for i €T(8,7), to obtain [v(n);|i € T(§,m)}. Set v(w); = v(8), for i ET(8,7) and
g(m) = g(3).

The above specification of the policy evaluation step avoids parsing the matrices
P(8), 6 €4, into their subchains. In iterations which require an execution of step (c),
two tests need to be performed requiring at most [|S(8,7)| + 1] Boolean operations.
Finally, iterations in which step (d) is executed, require the solution of a system of
|T(8,)| equations and unknowns, as opposed to the traditional version of the policy
evaluation step in which (1) and (2), a system of 2N equations, must be solved.

2. The Modified Policy Evaluation Step

Step (c) of the modified policy evaluation step requires two tests, both of which
involve the determination of the reaching set of some subset S of Q. This set can be
found by considering the network (G, V') with the set of nodes G = {i|i € S}U {0}
and the set of arcs ¥ defined by:

P(8),.j>0 forj#O;iEf;

(i j) € Ve _
SiesP(8), >0 forj=0;i€S.

Finally, let ail arc lengths be equal to 0.

The Reaching Set Finder

The reaching set of S adds to S those nodes in § for which a path to node 0 exists,
i.e., for which the shortest path to node 0 has length 0. Consequently, this set can be
obtained by applying Dijkstra’s algorithm (cf. {6}) to the above network, the number of
required operations being bounded by || or 1/2[|S] + 1]% Moreover, since all arc
lengths equal 0, Dijkstra’s algorithin requires Boolean operations only.

Let = be the successor policy of & in the improvement part of the PIA. We
distinguish between the following two cases:

Cl. (i) P(=)g(8) > g(8) or (i) P(w)g(8) = g(d) and T(8,7) contains a closed set
under P(w).

C2. P(w)g(8)= g(8) and T(8,) does not contain a closed set under P(7).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1214 A. FEDERGRUEN AND D. SPREEN

Before stating the following theorem we observe

LEmMMA 1. Let 6,7 EA.

(a) T(8,7) has a closed set under P(w) if and only if the reaching set of T (8,) under
P(m) is a strict subset of Q.

(b) Any closed set of T(8,7) under P(w) intersects S(8,m).

Proor. (a) To verify the if part (the reverse implication being immediate) note
that the states in T(§,) that do not reach T'(§,7) constitute a closed set under P().

(b) Immediate from the fact that every state in 7(8,w) has access to S(8,7).
Q.E.D. ‘

We conclude from part (a) that verification of C, or C,, as required in step (c) of
our algorithm, can be achieved via the Reaching Set Finder as well, requiring
1/2(]T(8,)| + 1)* Boolean operations at the most. Part (b) of the above lemma
indicates that under C,(ii), as opposed to C,, the second test quantity vector Y(8,7)
has a strictly positive component for some state(s) € R(«). The following theorem
proves that the distinction between C, and C, thus discriminates between the cases
g(m) > g(8) and g(=) = g(d).

THEOREM 1. Let = be the successor policy of 8 in the improvement step of PIA.

(a) Suppose C, holds. Then g(w) > g(8).

(b) Suppose C, holds. Then g(m) = g(8). Moreover, under C,, there exists a (unigue)
relative value vector v(w) with o(w); = v(8); for i ET(8,w). This vector can be found by
solving a subsystem of (2) with 8 = w, g replaced by g(&) and v; replaced by v(8); for
i €T(8, 7). Finally, v(m); > v(8); for i € T(8,).

Proor. (a) Consider first the case P(7)g(8) > g(8). Assuming to the contrary that
g(m) = g(8), leads to the contradiction g(6) < P(7)g(8) = P(m)g(7) = g(w). Assume
next that (i) holds. Note first that Y(8,7) > 0. Assume to the contrary that g(w)
= g(d). In view of (2) and II(7)P(w) = II(#) we have:

0 < (=) Y(8,7) = (=) q(=) — H(w)g(8) + (P(w) — I)v(7)]
= I(w)[P(m) = I][6(7) — 0(8)] =0-0=0
so Y(8,7), =0 for i € R(m).
In view of part (b) of Lemma 1, Y(8,#); = 0 for some i € S(8,) thus contradicting
the definition of S(8, 7).
(b) Under C,, T(8,n) gm and hence [g(8);,v(8);|i € R(w)] satisfy:
g = P(m)g, i € R(7),
v =q(m), — H(w)g; + P(m)t;, i € R(w).

The g-part of this system being uniquely determined as g, = g(=);,i € R(), it follows
that

8(8)=g(m), IER(m). &)

Since g(8)= P(=)g(8), we have g(8) = P"(w)g(d) by repeated substitutions, and
hence, taking the Cesiro limit, g(8) = II(#)g(8) = II(w)g(w) = g(x), the middle equal-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

THE MULTICHAIN POLICY ITERATION ALGORITHM 1215

ity following from (5), and the proof of the last equality being identical to the proof of
the first equality. We thus proved the first assertion. Next, consider the system (1), (2)
for 1 =«. From Lemma 1(a), T(8,7) is closed under P(w), so that the equations
corresponding to the states in T(8,7) form a subsystem of (1), (2). Moreover, since
a(i) = 8(i) for i €T(8,7), { g(8);»v(8);|i ET(S,)} satisfies this subsystem. Inserting
v; = v(8); for i ET(8,7) and g = g(8) = g(=) in the remaining equations of (2), we
observe that the remaining values [v; i € T(8,n)] are uniquely determined in view of
o(m) =[P(™lije . m being transient, i.e., / — Q(7) being invertible. Finally equa-
tion (3.3) in [10] shows v(w) — v(8) =X (P"(m)Y(8,7) thereby proving the last
assertion. Q.E.D.

ExampLE. Let €= {1,2},K(1) = {1}, K(2) = {1,2,3)}. The following table specifies
the parameters:

Let 8% (k=1,2,3) be the policy which selects alternative k in state 2. Note that
T(5',8%) = T(5',6% = {2} contains a closed set under P(8°) but not under P(52).
Verify that g(5%) = g(8") and g(8%) > g(8").

TABLE
i kP P4
1 1 1 0 0
2 1 1 0 0
2 2 1 0 1
2 3 0 1 i

We next discuss the algorithmic implications of this theorem. Under C1, an arbitrary
solution to the system (1), (2) suffices, since g(w) > g(8) excludes the possibility of
cycling back to 8. Traditionally, the literature suggested specifying a particular solution
to this system, by adding an extra linear constraint on the v-components in each of the
subchains of P(w) (cf. rules A.l1 and A.2). This procedure, once again, has the
disady intage of having to determine the chain structure of P(w). Instead, however,
since we are merely interested in an arbitrary solution, a modified Gaussian elimina-
tion procedure is presented in section 3 (this corresponds to the determination of a
{1}-pseudo inverse matrix, cf. [1, Chapter 1, §2}).

Under C2, part (b) of the above theorem shows that g() and a relative value vector
v(wr) can be obtained by solving a transient subsystem of (2) with |7(8,)| equations.
Moreover, this relative value vector v(w) > v(8), thereby excluding the possibility of
cycling back to & under C2 as well. Note finally, that the choice of the relative value
vector under C2 corresponds to rule A, whereas under Cl1 a potential deviation from
rule A is “unharmful,” in view of the strict inequality g(xr) > g(8).

3. A Modified Gaussian Elimination Procedure

This section describes how a solution to the system (1), (2) can be obtained without
an a priori investigation of the chain structure of P(n). Our procedure is a modifica-
tion of the Gaussian elimination procedure for solving systems of linear equations.
Recall that the Gaussian elimination procedure applied to the matrix (I — P()),

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1216 A. FEDERGRUEN AND D. SPREEN

7 €A, generates a lower triangular matrix L(n) and a permutation matrix F(n) such
that L()[{ — P(m)]F(n) is an upper triangular matrix, i.e.,

L)t = PeaFen) = [24.22]

where @, is an (N — n(n)) X (N — n(n))-upper triangular matrix and Q, is an (N —
n(n)) X n(n)-matrix. We use the shorthand notation F(n)[I/}=J for I,J CL, if
F(n)e(I) = e(J) where e(I),e(J) represent the characteristic vectors of 1,J, i.e.,

1 fiel
= ,
e(h); [0 otherwise.

We next present our modified Gaussian elimination procedure for solving the system
1, @).
Modified Gaussian elimination procedure

Step 1. Apply the Gaussian elimination procedure to the matrix [— P(n)),
and determine the lower triangle matrix L(7). Store the set of indices 8 =

Fm{N —n(m)+1,..., N}] representing the components appearing in the last n(n)
columns at the complellon of the Gaussian ehmmation procedure.

Step 2. Compute [-]— L(n)H(n) and [q(,)]— L(n)g(n), HY and ¢V repre-
senting the first (N — n(n))-rows and H? and ¢@ represenllng the last n(n) rows.
Define g = F(5)"'g and & = F(y)"'c and partition © = [—] 5" representing the
first N — n(y) components.

Step 3. Solve the N X N system

Saaty

Step 4. Assign arbitrary values for the components of £ and solve the triangular

(N = n(n)) X (N = n(x)) system Q,v'" = ¢'V — HMg — 0,5 to determine the re-
maining components of ¢.

THEOREM 2. Let 7 €EA.

(a) For any choice of values {v;,i € 8}, i.e., for any choice of the ‘components of
the system (1), (2) is uniquely determined.

(b) Determination of the set 8 and decomposition of the system (1), (2) into two

subsystems of N and N —~ n(x) equations respectively can be achieved via the modified
Gaussian procedure.

PrOOF. Rewrite (1), (2) as

1— P(n) 0 g|_ 0 .
H(n) I-P(n)HvJ‘[q(n)}’

L(m) 0
0 L(m)

premultiply with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

THE MULTICHAIN POLICY ITERATION ALGORITHM 1217

and insert
Fam) o |[F@) o
0 F(n) 0 F(n)*'
to obtain !
[0,10 0 1 g
070 — =[0] 6)
HO Q.;Q;J 5| | L(mgm)
H® 0:0

We first verify that the system

2]
H® 79

determines g uniquely. Assume to the contrary that two solutions g and g’ exist. (6)
then shows that both for g and ', a vector T exists satisfying (6) and hence (2). This
contradicts the fact that every solution pair (g, v) to (1), (2) has g = g(x). The validity
of the remaining steps in the modified elimination procedure follow immediately from
(6). In particular part (a) of this theorem follows by writing the second part of the
system (6) as Qo' = — HWg — 0,5 + ¢ with Q, an upper triangular and
nonsingular matrix.!

!We wish to thank Eric Denardo as well as the Associate Editor, Martin Puterman, for many useful
comments and suggestions. .

References

1. BEN-ISRAEL, A. AND GREVILLE, T., Generalized inverses; theory and applications, Wiley, New York, 1974.

2. BLACKWELL, D., “Discrete Dynamic Programming,” Ann. Math. Statist., Vol. 33 (1962), pp. 719-726.

3. DeNaRrDo, E,, D)rnaltlic Programming: Thecry and Application, Prentice-Hall, Englewood Cliffs, N.J.
(forthcoming).

4, , “Markov Renewal Programs with Small Interest Rates,” Amer. Math. Statist., Vol. 42 (1971),
pp. 477-496.

5. AND Fox, B., “Multichain Markov Renewal Programs,” SIAM J. Appl. Math., Vol. 16 (1968),
pp. 468-487.

6. DuxsTra, E,, “A Note on Two Problems in Connection with Graphs,” Numer. Math., Vol. 1 (1959),
pp. 269-271.

7. Fox, B. aND LanD1, D., “An algorithm for Identifying the Ergodic Subchains and Transient States of a
Stochastic Matrix,” Comm. ACM, Vol. 11 (1968), pp. 619-621.

8. HowaRD, R., Dynamic Programming and Markov Processes, Wiley, New York, 1960.

9. JEWELL, W,, “Markov Renewal Programming,” Operations Res., Vol. 11 (1963), pp. 938-972.

10. ScHWEMZER, P. J. AND FEDERGRUEN, A., “Foolproof Convergence in Multichain Policy Iteration,” J.
Math. Anal. Appl., Vol. 64 (1978), pp. 360-368.

AND . “Functional Equations of Undiscounted Markov Renewal Programming.” Math.
Operations Res., Vol. 3 (1978), pp. 308-322.

12. VEmortT, A. F,, Jr,, “Discrete Dynamic Programming with Sensitive Discount Optimality Criteria,”
Ann. Math. Statist., Vol. 40 (1969), pp. 1635-1660.

.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

