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DENUMERABLE UNDISCOUNTED SEMI-MARKOV 
DECISION PROCESSES WITH UNBOUNDED REWARDS* 

A. FEDERGRUEN,t P. J. SCHWEITZER$ AND H. C. TIJMS? 

This paper establishes the existence of a solution to the optimality equations in undis- 
counted semi-Markov decision models with countable state space, under conditions generaliz- 
ing the hitherto obtained results. In particular, we merely require the existence of a finite set of 
states in which every pair of states can reach each other via some stationary policy, instead of 
the traditional and restrictive assumption that every stationary policy has a single irreducible 
set of states. A replacement model and an inventory model illustrate why this extension is 
essential. Our approach differs fundamentally from classical approaches; we convert the 
optimality equations into a form suitable for the application of a fixed point theorem. 

1. Introduction. This paper establishes conditions for the existence of a solution 
to the countable set of functional equations 

v*= sup r(i,a)- g*T(i,a) + pij(a)vj*, iE l. (1) 
aeA(i) j I 

These equations arise in undiscounted Markov Renewal Programs (MRPs) with a 
denumerable state space. Here, at epochs beginning with epoch 0, a system is observed 
to be in one of the states of a denumerable state space I and is subsequently controlled 
by choosing an action. For any state i E I, the set A (i) denotes the set of pure actions 
available in state i. When choosing action a E A (i) in state i, the following two 
consequences are incurred, regardless of the decision epoch at which this action is 
taken or the previous history of the system: 

(i) An immediate expected reward r(i, a) is incurred. 
(ii) The state of the system at the next decision epoch is j E with probability p,(a); 

the expected holding time in state i is denoted by Tr(i, a) < oo. Observe that Ej ,p.(a) 
- 1 for all i, a. 

Establishing the existence of a solution to the functional equations (1) is essential for 
proving the existence of a stationary policy which is optimal under the strong average 
return per unit time criterion (cf. ?2): 

(i) with bounded one-step rewards, i.e., in case jr(i, a)j < M for some M > 0 and all 
i E I, a E A (i), Ross [22, Theorem 7.6] exhibits that any policy which chooses for all 
i E I an action achieving the supremum at the right hand side of (1), is average return 
optimal (in the strong sense); 

(ii) with unbounded one-step expected rewards Federgruen et al. [11] showed that the 
existence of an average return optimal policy follows from the existence of a solution 
to the optimality equation (1) provided this solution satisfies some additional regularity 
condition (cf. Assumption 5). 
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It is well known that an average return optimal policy does not need to exist; several 
examples have been given of the occurrence of possible irregularities (cf., e.g., Ross 
[22], Fisher and Ross [15]). Federgruen et al. [11], generalizing the hitherto obtained 
results, established a rather complete theory for this denumerable state semi-Markov 
decision model with unbounded one-step expected rewards under the unichainedness 
assumption where the transition probability matrices (tpm's) of the stationary policies 
each have a single ergodic set. In fact this assumption of all transition probability 
matrices being unichained is common to the entire literature on the denumerable state 
space model with the exception of some of the results in Hordijk [17] (cf., e.g., 
Theorem 11.8) and Wijngaard [33]. 

In this paper we extend the existence conditions for a solution to the optimality 
equation (1) to systems satisfying a recurrency condition which is substantially weaker 
than the above mentioned unichainedness assumption: we require the existence of a 
finite set of states in which every pair of states can reach each other via some policy 
(the assumption extends the communicatingness condition in finite MRPs, as intro- 
duced by Bather [1]). Similarly, our results include Hordijk's [17] communicating 
systems with bounded parameters, as special cases. The additional conditions needed 
are similar to the additional conditions employed in Federgruen et al. [11]. Roughly 
speaking we require (i) the one step expected rewards to be bounded from above 
though not necessarily from below; (ii) the existence of a finite set of states such that 
the supremum over all stationary policies of the expected time, as well as the total 
absolute rewards until the first visit to this set is finite for every starting state; (iii) the 
expectation of the value of these suprema in the state adopted at the first transition is 
continuous in the action taken in the starting state. ((iii) is trivially met in models with 
finite action spaces.) 

Similar conditions were recently obtained in Deppe [3] to prove the existence of 
policies which are optimal in the weak sense (cf. ?2). 

The new conditions thus encompass a number of hitherto intractable models. 
EXAMPLE 1. We consider the Blast Furnaces problem, discussed by Stengos and 

Thomas [31] as well as Stengos [30, Chapter 5]. One has n identical pieces of 
equipment which, from time to time, will need overhauling, either because they have 
failed during operation or to prevent such a failure. A piece of equipment which has 
completed its last overhaul i periods ago will survive the next period with probability 
pi. An overhaul takes Ll periods of time. When m pieces of equipment (1 < m < n) are 
overhauled, the loss of revenue to the system is given by a convex function c(m). In 
[31] no operating costs are considered; although multichain policies may occur (as 
explained below) the absence of operating costs allows for a restriction of the action 
sets which excludes such policies. In fact the restricted model in [31] has a bounded 
cost structure, and can easily be shown to satisfy the simultaneous Doeblin condition 
which implies the existence of a bounded solution to the optimality equation (cf. 
Hordijk [17] and Federgruen and Tijms [8]). In the presence of an operating cost 
function h(i) (for each piece of equipment) where i denotes the age of the piece since 
its last overhaul, the above restriction of the policy space cannot be applied. In fact 
multichain policies may even be optimal and to our knowledge only the conditions in 
this paper can be used to verify the existence of a solution to the optimality equations 
as well as the existence of a stationary optimal policy. Appendix 1 verifies Assump- 
tions 1-5 for the special case n = 2. 

EXAMPLE 2. Silver [28], Silver and Thompstone [29] and Federgruen et al. [9] 
consider a continuous review multi-item inventory system where the demand processes 
for the items are independent compound Poisson processes (the demand size is a 
nonnegative, integer random variable). There is a major setup cost associated with a 
replenishment of the family. For each individual item included in the replenishment, 
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an item specific (minor) setup cost is added. In addition, the cost structure consists of 
holding-, shortage- and variable replenishment costs. Excess demands are backlogged 
and every order has a fixed lead time. The solution methods in [9], [28] and [29] 
decompose the coordinated control problem into single-item problems for each item in 
the family. Each single-item problem has "normal" replenishment opportunities (at the 

major setup cost) occurring at the demand epochs for this item and "special" 
replenishment opportunities (at reduced setup costs) at epochs generated by a Poisson 
process approximating the superposition of the ordering processes triggered by other 
items. 

At replenishment opportunities, the system may not be left with more than L units 
short (say), or with a positive net inventory position = (inventory on hand) + 
(outstanding orders) - (backlog) of more than U units (say). 

For these single item models, conditions 1-5 for the existence of a stationary 
optimal policy are easily verified with a convenient choice of the set K (see Appen- 
dix 2). 

In addition, the approach taken to prove the existence of a solution to the optimality 
equation (1) is altogether different from the approaches in the models where uni- 
chainedness is assumed. There the existence of a solution to (1) is obtained from the 
limiting behavior of the total maximal discounted return vector, as the discount factor 
tends to one (cf. [4], [8], [10], [17], [18], [22] and [32]), using a technique introduced by 
Taylor [32] and Ross [22]. Here, we convert the equation into a form suitable for the 
application of the Tychonoff fixed point theorem which is a generalization of the 
well-known Brouwer fixed point theorem (cf. [7]). The same approach has been used in 
Federgruen and Schweitzer [13] to establish a simple existence proof for a solution to 
the optimality (vector) equations that arise in the general model with finite state and 
action spaces, where the maximal gain rate vector may have unequal components. 
Finally, our approach enables a (partial) characterization of the optimality equation's 
solution set. 

We conclude this introduction by pointing out the plan of the paper. In ?2 we give 
some notation and preliminary results. In ?3 the existence of a solution to optimality 
equation (1) is obtained; also, the solution set of (1) is characterized. 

2. Preliminaries and notation. We first make the following assumption with 
respect to the parameters and action sets in our model: 

ASSUMPTION 1 (cf. [11]). (a) For any i 
E I, the set A (i) is a compact metric set; (b) 

for any i 
E I, r(i, a) is upper-semicontinuous on A (i) and r(i, a) and, for all j 

E I, pij(a) 
are continuous on A (i); (c) there is a number E > 0 such that r(i, a) > e for all i E I and 
a E A (i). 

With respect to the one-step expected rewards, we assume upper-semicontinuity 
rather than the more conventional continuity assumption to include, e.g., "cost or 
reward structures" with fixed components. 

We next introduce some familiar notions. For n = 0, . . . denote by X, and an the 
state and the action at the nth decision epoch (the Oth decision epoch is at time 0). A 
policy Tt for controlling the system is any measurable rule which for each n specifies 
which action to choose at the nth decision epoch given the current state Xn and the 
sequence (X0, a0 , . . . , a_ -I) of past states and actions where the actions chosen 
may be randomized. A policy ir is called memoryless when the actions chosen are 
independent of the history of the system except for the present state. Define 9 as the 
class of all stochastic matrices P = (p',), i, j E I such that for any i E I the elements of 
the ith row of P can be represented by 

P= f i Pi / (a)7 i(da) for all j E I 
yA i 
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for some probability distribution rvi(.) on A (i). Then any memoryless policy 'T can be 
represented by some sequence (PI, P2, . . .) in 6 such that the ith row of P, gives the 
probability distribution of the state at the nth decision epoch when the current state at 
the (n - l)st decision epoch is i and policy 7T is used. Define F = Xi,A (i); for any 
f E F, let P(f) be the stochastic matrix whose (i, j)th element is pi.(f(i)), i, j E I and 
for n = 1,2, . . . denote by the stochastic matrix Pn(f) = (p/n(f)) the n-fold matrix 
product of P(f) with itself. For n > 1, let in)(f) = {p/(f)+ .. + pJ(f))/n. It is 
well known from Markov chain theory (cf. Chung [2]) that the sequence {?r,( )(f)})l 
has a limit %7r(f) (say), for all i, j E I. A memoryless policy R = (P, P2, . . . ) is called 
randomized stationary when P, = 4 for all n > 1 for some EG ?P, and is denoted by 

(X0). In the special case where Pn = P(f) for all n > 1 and some f E F, the policy is 
called (pure) stationary and denoted by f( o), since prescribing the single action 

f(i) E A (i) whenever in state i. Observe that under any (randomized) stationary policy 
the process {(X})'= is a Markov chain. A policy R* is called average optimal in the 
strong sense when 

ER2,'E=or(Xk,ak) I Xo= i} ER {7=or(Xk ,axk) Xo i 
lim inf im(2) 
n--*o ER{r,k=OT(Xk,ak) XO i} noo ER {k[=OT(Xk ak)i X= i} ( 

for all i E I and policies R, where ER denotes the expectation under policy R. 
Especially when a solution to the optimality equation cannot be established, one 

often considers the weak variant of criterion (2) where the lim inf or the lim sup is used 
on both sides of the inequality in (2). However, the relations (2)-(4) in Flynn [16] show 
that these criteria are essentially weaker than the criterion (2). 

In either sense, it is well known that an average return optimal policy does not need 
to exist even under very strong regularity conditions (cf. [4], [8], [10]-[12], [17]-[19], 
[24], [32] and [33]). In general we can only state that for a fixed initial state we may 
restrict ourselves to the memoryless policies (cf. Derman and Strauch [5]). 

We now introduce our main assumption. First, for any stochastic process {X,)}=L 
and A C I, define N(A)= infn > 1 I X,, EA} where N(A) = oo if Xn A for all 
n > 1, i.e., N(A) denotes the number of transitions until the first visit to the set A. Also 
for any A C I, and 4 E P , define for i E I, and n > 1 the taboo probability 

Ap() = Prob(0){Xn =j, Xk A for 1 < k < n - 1 Xo = i}. (3) 

Observe that the expected first passage time from state i to set A under policy (Xo) 
4 E 9 is given by: 

def 

IiA(4) -E( {N(A) Xo= i} = 1 + AP (4')- (4) 
n=1 j]4A 

(For A = {j},j E I, we use the shorthand notation /ij().) A state i E I is said to reach 
state j E I if for some f E F, p/n(f) > 0 for some n > 0. A state i E I is called positive 
recurrent under P(f) if fii(f) < oo. 

ASSUMPTION 2. (a) There is a finite set K such that for any i E I the quantities u*(i) 
and y*(i), i E I, are finite where 

N(K)-1 

u*(i) = sup Ef(o) T(Xk ,ak)X = i < oo, i I, (5) 
fEF k= - 

N(K)-- 1 

y*(i) = sup Ef(o) 2 r(Xk ,ak)l IXo = i < oo, i E I. (6) 
f{F kk0= 
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(b) Let K* = (i E K I i is positive recurrent under some P(f), f E F)}. Then all states 
in K* can reach each other. 

(Note that u*(i) and y*(i) are not assumed to be bounded in i, e.g., u*(i) = i is 
acceptable. This permits us to handle unbounded rewards. The subsequent analysis 
shows that when identifying a set K satisfying assumptions 2(a) and 3(a) below, only 
states that are positive recurrent under some stationary policy need to be included in 
this set; in other words, we can always choose K = K*. In practical applications, 
however, it may be easier to verify (5) and (6) when including in the set K some states 
that are nonrecurrent under every stationary policy.) 

As pointed out in the introduction, Assumption 2(b) constitutes the main extension 
of our existence conditions as compared to the unichainedness assumption in [11] 
as well as the vast majority of the literature. Our condition is related to the 
"communicatingness" condition in Bather [1] for models with finite state spaces. This 
condition calls for the existence of a (randomized) policy under which all states are 
recurrent (cf. also [27]). In fact, under Assumptions 1-2, the policies in F generate a 
collection of Markov chains, embedded on visits to K*, which constitutes a communi- 
cating system in the sense of Bather [1], cf. Lemma 3 part (b) below. Assumptions 1-2 
also imply that the MRP is K-communicative in Wijngaard's sense [33] (the latter is 
one of the existence conditions in [33]; we are unaware of examples where this 
property, which applies to Markov renewal processes embedded on visits to K, is 
directly verifiable). Hordijk [17] uses communicatingness conditions which are stronger 
than the one in [33]; cf. Deppe [3, p. 111] for a discussion of the relationships between 
the latter. 

By Assumption 2(a) and the fact that r(i,a) > e for all i, a, we have 

m*(i) = sup iK (f) < oc for all i c I. (7) 
feF 

LEMMA 1. Let Assumptions 1-2 hold: (a) Fix E '0P. Let C be an irreducible set of 
states under ,(??). The states of C are positive recurrent under 4(? ) and C n K = C n 
K* = 0. In particular, the set K* is not empty. 

(b) There exists a randomized stationary policy *(o) , 4* E 9 under which the Markov 
chain { X,} n= has a single irreducible set of states. The set contains K* and consists of 
positive recurrent states. 

PROOF. (a) In view of [11, (7) and Theorem 3] we have m*(i) = suPaA( {1 + 

Ej,:Kpij(a)m*(j)} 
for all i E I. In particular, 1 + 2jeKPi(tp(i))m*(j) < m*(i). This 

and the finiteness of K show that every irreducible set of states under 4(? ) is positive 
recurrent (cf. Hordijk [17, p. 53] and Chung [2, Theorem 3, p. 47]). (b) In view of 
assumption 2(b) there exists for each ordered pair (i, j) with i, j E K*, a stationary 
policy f(?O) under which i reaches j. Take 4i* as a finite mixture of { f(() I i, j E K*}. 
Let C be a closed irreducible set of states under A*(X). In view of Part (a), 
C n K* # 0. This, together with the fact that all states in K* reach each other under 
k*(??), proves part (b) of the lemma. * 

We now fix a policy xp*( ) satisfying the properties in Lemma 1. This policy will 
play a crucial role in the verification of the existence of a solution to the optimality 
equation. To complete our list of assumptions, an additional requirement has to be 
imposed on the reward structure. This assumption is trivially satisfied in most applica- 
tions. 

ASSUMPTION 3. 

def 
M= sup r(i,a) < oo. (8) 

iG 1,aEA(i) 
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To prepare the analysis in the following section we now introduce a data- 
transformation due to Schweitzer [26] which turns our semi-Markov decision model 
into an equivalent "pure" Markov decision model (MDP) with the same state space I, 
action sets A (i), i E I and with 

f(i,a) = r(i,a)/T(i,a); i E I, a E A(i); (9) 

Pj(a) = -(pi(a) - i)/rT(i,a) + 8 y; i, j E I, a E A (i); (10) 

as the one-step expected rewards and transition probabilities. (8. represents the 
Kronecker delta, i.e., 8j = 1 if i = j and 0 otherwise.) The parameter r is chosen such 

def 
that 0 < < rmin inf,a(i,a)/(l -pii(a)), (with Tmin > c in view of Assumption 1), 
so as to ensure that ii(a) > 0 for all i E I, a E A (i). (The nonnegativity of fPi(a), i =j, 
is automatically satisfied.) Note that for all i E I,? (i, -) and ly(.), j E I, are respec- 
tively upper semicontinuous and continuous on A (i). Observe, in addition, that all 
stationary policies have aperiodic Markov chains in the transformed model since 
p,(a) > 0 for all i E I, a E A (i). Finally, all quantities of interest in the transformed 
model will be denoted by a ~. 

The following lemma proves inter alia that the average return optimality equation in 
the transformed model reads 

vi.= sup F(i,a)-g+ (a)E (11) 
a EA(i) j 

LEMMA 2. Let Assumptions 1-2 hold. 
(a) If { g, v) is a solution to (1) with Ejpo.(a)vj continuous on A (i), for all i E I, then 

{g, - 1v} is a solution to (11); conversely, if { g,v) is a solution to (11) with jiy(a)v 
continuous on A (i) for all i E I, then { g, v) is a solution to (1). 

(b) For any measurable function h(i, a) > 0, i E I, a E A (i) with 

def ~ N(K)- I 

qT(i) = sup E) 2 h(Xk ,ak) X = i < oo, i E I, (12) 
fE=F k=O 

we have 

idef su N(K)-E 

j(i) = sup E) E( h (Xk,ak)/(X,ak)IXO=i < -'(i)+, i E I, 
feF k=O 

for some constant y > 0. 
(c) For all 4 E @6, (??) has the same sets of irreducible states both in the original and 

the transformed model. All of these sets are positive recurrent in both models; in particular 

(i) K* -{ i E K | i is positive recurrent under some P (f ), f E F }, 

(ii) in both models, 4A*(X) has a single irreducible set of states which is positive 
recurrent and contains K*. 

PROOF. (a) cf. the proof of Theorem 2.1 in Federgruen and Tijms [8]. 
(b) By results from positive dynamic programming (cf. Schal [24] and [11, Lemma 

2]): 

/(i)-= max() ( h(i,a) + ]2 pij(a)l}, i E I, 
aEA(i) j q4K 
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or equivalently 

0 > h(i,a) + , (pij(a)- 8U.)71(j); 
j*K 

0Divide both inequalities by (i,a)+ > to obtain: 

Divide both inequalities by r(i, a) > 0 to obtain: 

i 4 K, a E A (i), and 

iEIK, aEA(i). 

h (i, a) 0 > 
T(ia) +-j E ,a) (Pi (a)- Sij) + 8y' (j) - rT (i); 

Th(i, a^ ) , J K T T (i) a) )( 0 > 
(i,) -'y ,(i,) 

~(a) 
- 

0) +8i () 
-,i,) 

' 

Since K is finite and r(i, a) > e for all (i, a) it follows that for some finite constant y, 

h(i, a) 
'r(i,a) K 

for all iEI, a A(i) (13) 

where SiK =1 if i E K and 0 otherwise. By repeated iteration of this inequality and 
since ' > 0 one concludes that for all i E I and f E F (cf. (3)): 

h(i,f(i)) 00 h(j,f(j)) 

* 
) 

=+ nK I 4 (K , p (f(j)) 

and hence -r (i) + y > E(i), i E I. 
(c) Fix ? E = 9. Since for i $ j, pij(a) > O0p=-j(a) > 0, a E A (i) we have that C is an 

irreducible set in the original model <=>C is an irreducible set in the transformed 
model. 

Next fix an irreducible set C of 4(??). In view of Lemma 1, C is positive recurrent in 
the original model. In view of (5) and [11, Lemma 2] 

N(K)- I 

E,() T (Xk ,ak) Xo= i < oo, 
k=0) 

In particular, 

N(K n C)- 

k=O 

1 ) 

T(Xk ,ak) Xo = i < o, 

i I. 

i E C. 

To show that C is positive recurrent in the transformed model as well, consider an 
MDP with C as state space, and 4 as the single tpm, and apply [11, Theorem 2] to 
verify that 3io e K n C such that (12) holds with K = {i0}, h = -r and I = C. Next 
apply part (b) of this lemma to conclude that jS(4) < oo for all j E C. I 

Choosing h(i,a) = r(i,a) and Ir(i,a)|, i E I, a E A(i), respectively, in part (b) of the 
above lemma we have the existence of a constant y > 0 such that 

sup tl,K(f) < T -u*(i) + y, 
f EF 

sup PiK(f) < T y*(i) + y, 
f<F 

f N(K)- X } 

PiK(f) = Ef(oo) E (Xk,ak)l XO = i , 
k=0 

i E I, 

i E I, where 

i E I, f E F. 

i K,a EA (i), 

ie K, a A (i). 

(14) 
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In the next section we prove the existence of a solution to the optimality equation (1) 
by exhibiting a convex compact subset of E ??= Xi,E, (with E the set of real 
numbers), which is mapped into itself by the value-iteration operator (cf. (22)). The 
boundary of this subset is defined by the numbers 

def 
z*(i) = sup K*(f), 

fEF 
i E I and 

i EI, j EK*, 
f N({j))- 1 

P' -E (oo) 2 (I r(ka) I +M) XO = i 

where 

Mde f 1m is an upper bound on F(i, a) = r(i, a)/r(i, a), EII, aEA(i). (15) 

We conclude this section by proving the finiteness of the numbers {z*(i), pj. i E I, 
j K*}. 

LEMMA 3. Let Assumptions 1-3 hold. For any upper-semicontinuous and nonnegative 
function h(i,a), i E I, a E A(i) with i(i) < oo, i E I (cf. (12)) we have for some constant 
c >0: 

h(i,a) 
(a) /*(i)= sup h(i,a) 

aEA(i) Ti, a) 
+ E fi(a)q *(j) < T (i) + < , 

j f K* 

(16) 
where 

def N(K*)-1 
q*(i) = sup E Xoo) 

fEF k=O 

(b) =* (i, *(i)) + i(*(i)) < T-(~1(i) + c, 

where 

def [Nj({ - h(Xk,a)Xo = i; 
%' = E"*( k ( ) xo =( 

iEI, jEK* 

iEI, jEK* 

and h(i, 4*(i)) = E,*(o,h(i,a); r(i, *(i))= E,*(,)r(i,a) and 

pj(4*(i)) = E,.,) ( i(a); i, j EI. 

(c) In particular there exists a constant c > 0 such that 

z*(i) = sup { 1+ 2 pij(a)z*(j)) < r-u*(i) + c < oo, 
aEA(i) jer/K* J 

P = rIF(i,,*(i))I + M + E fit(W*(i))p* 
t#j 

i I, 

(17) 

< T-l(y*(i) + Mu*(i)) + c, i I, j EK*. 

PROOF. (a) We first prove the inequality for 7q*(i) in (16). The functional equation 
for 7/*(.) then follows by applying a result from positive dynamic programming, see 
Schal [25] and [11, Lemma 2]. Note that for i E K*, 7q*(i) < j(i) + maxjEK\K,+*(U). 

iEI 

h(Xk,ak) 

T (Xk ,ak) i} 
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Hence it suffices to prove the existence of a constant c > 0 with 

rq*(i) < T-I'7(i) + c < oo, i E I\K*. (18) 

Note that the value of rl*(-) on I\ K* remains unchanged when replacing the states in 
K* by an aggregated state oo, and when making this state absorbing under every 
policy in F. In this new model, let h(i, a)/r(i, a) be the one-step expected reward when 
choosing action a in state i. Every policy in F has { o } as its single irreducible set of 
states, cf. Lemma 1 part (a) and Lemma 2, part (c), so that Assumptions 1 and 2 in 
[11] are met. In view of [11, Theorem 2] there exists a number c > 0 such that for any 
f E F a state Sf E K exists for which 

f{NXk)-l hXak) E k=0 T(Xk, ,ak) 
=i < T (i) + c, i E I\K*. 

k= r(Xk,ak) J 

It follows from relation (19) in [11] that sf is recurrent under f(Y). Hence, sf= 00 for 
all f E F, which completes the proof of (18). 

(b) Fix j E K*. Consider a MDP with P as the single Markov chain: 

P(4*)ik i & j 
Pik= /jk k=j, 

i.e., P has {j} as its single irreducible set of states. 
Let h(i,4*(i))/r(i,4*(i)) be the one-step expected reward in state i. The remainder 

of the proof is analogous to part (a). 
(c) Part (c) follows from part (b), by the choices h(i,a)= r(i,a) and h(i,a)= 

Ir(i,a)l + Mr(i,a), i E I and a E A(i), as well as the definition of u*(i), y*(i), i E I 
(cf. Assumption 2). , 

3. The average return optimality equation. In this section we prove the existence 
of a solution to the optimality equation (11) for the transformed model. In view of 
Lemma 2, part (a) this proves the existence of a solution to the optimality equation in 
the original model as well. We first define a bounding function; cf. Lippman [19]: 

def 
*(i)= maxp +z*(i). 

Note from Lemma 3 part (c) that a constant c > 0 exists such that 

1 < ,t*(i) < - ly*(i) + T- '(M + l)u*(i) + 2c, all i E I. (19) 

Let E = XiEIE, with Ei the real line, be endowed with the Euclidean product 
topology. For any L > 0, note that 

def 
V(L) = {x E E ? 

Ixil < Lm*(i), for all i E I} (20) 

is compact (in the product topology; see Tychonoff's theorem, Theorem 19 on p. 166 
in Royden [23]). We finally need the following assumption, which is analogous to [11, 
Assumption 3]. 

ASSUMPTION 4. For any i E I, Ej po.(a)tu*(j) is continuous on A (i). 
Using (10), and Assumption I one easily verifies 

for any i E I, ? pi-(a)p*(j) is continuous on A (i). (21) 
jEZI 
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Note in view of (19) that the finiteness Ejpii=-(a)~*(j) for all i E I, a E A (i) follows, 
since constants, c,-y I, 2 exist such that 

ty(a)i*(j) X< y(a)[r- I*(j) + T- (M l1)u*(j) + 2c] 
y X 

< T (i) + Y2 + [-(M + I)u*(i) + (M + l)yl + 2c] 

+ Aij(a)[T '*(j)+ -(M + )u*(j)], 

the last inequality following from (13). Observe, in addition, that Assumption 4 is 
trivially satisfied in models with finite action spaces. 

def 
On V* = Ur>0V(r), we define the following two (value iteration) operators: 

Tx, = sup { F(i,a) + Epy(a)xj}, i E I; and (22) 
a EA(i) j 

Qxi = Txi - Txi*, i E I, where i* is some fixed state in K*. (23) 

Note that for x E V*, 

i(a)Il xj f sup I.*(j)- 'llxjI I l(a)z*(j) < oo 
j fjEI j 

so that the expressions between { } in (22) are well defined. In addition, for any 
i E I, Ej-tij(a)xj is continuous in a E A (i) in view of Assumption 4, 1xj . < 

{suplei*(l)- l[1[} ,u*(j),j e I and Royden [23, Proposition 18, p. 232]. This, together 
with the upper-semicontinuity of F(i, .) on A (i), i E I and the compactness of the sets 
A (i), i E I (cf. Assumption 2) imply that the supremum in (22) may be replaced by a 
maximum; see Royden [23, Proposition 10, p. 161]. 

Our analysis is based on the construction of a compact, convex subset of E ?? which 
is closed for the Q-operator. Define R* = maxij eK*p/1 and recall (15) for the definition 
of M. Define (cf. Lemma 3 and Assumptions 1-3): 

D = x I x j-x1 > -p, i E I,j E K*}, (24) 

D2 = (x E V* I Txi < xi x+ M, i E I}, (25) 

D3 = {xIx, - x < (M + 2R*)z*(i), i E I\K*,j E K*}, (26) 

D4= (xlxi=0). 

Finally, let D = D1 n D2 n D3 A D4. 

THEOREM 1. Let Assumptions 1-3 hold. 
(a) T maps D, n D2 A D3 into itself; 
(b) D is a nonempty, convex compact subset of V(M + 2R*); 
(c) Q is a continuous operator on D and maps D into itself. 

PROOF. (a) (I) if x E D,l D2 n D3, show Tx E DI as follows: 
Fix E K* and i E I\{j}. Note that 

Txi > r(i,4*(i)) + f(4,*(i))xi + 2 Pit(%*(i))xt 
Insert xj> xj 
- for t Txj 
- M (in view of x 

Insert x, > x;-p,* for t 7 jand xj > Txj-M (in view of x E D1 A D2) and conclude 
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using (17): 

Tx,i > r(i,4*(i) + x - P it(*(i))p 
t:#j 

> - (i)) -M + Tx - it(4 *(i))P* =--P, + Tx+ . 

(II) If x E- D, n D2 show Tx E D2 as follows: Let I E E ' be the vector all of whose 
components are unity. It follows from the monotonicity of the T-operator that 
T2x < T(x + M 1) = Tx + M 1 thus showing that Tx satisfies the inequalities in the 
definition of D2. We now show Tx E V*. Let x E V(c) for some c > 0. In view of (25), 
Txi/l*(i) < xi/A*(i) + M/pt*(i) < c + M since ,*(i) > 1, i E I. To establish that 
{ Txj/1t*(i), i E I } is uniformly bounded from below as well, note in view of (24) that 
x, > -p,* + xi*. Hence for all i E I, and a E A(i), Txi > r(i, a) - y i(a)pj** + xi*. 
This implies 

Txi > r(i, r *(i))- PAj(4*(i))Pj** + xi* 
J/ 

> { ?(i, ,(i))l + S fij(b (i))pJi} + x, i I. (27) 

In view of (17) there exists a constant M1 such that 

Pi* = I(i,'*(i))l + M + 2 pf(*(i))pj*i 

> |r(i4,*(i)) + 2 pii(4*(i))p**+ MI? 
jeI 

Insert this inequality into (27) to conclude for all i E I that Txi > - p*i* + Ml + xi* 
and hence in view of L*(i) > 1, i E I, Txi/pl*(i) > -(+ 1 + |xi*, + MIl), i E I. 

(III) If x E D, n D2 n D3, show Tx E D3 as follows: Fix i E I\K* and j E K*. 
Note that 

Tx = max {r(i,a) + ti(a)x,+ x tt(a)x,}. (28) 

Let a* achieve the maximum in (28) and insert for t a K*, in view of x E D3, 
xt < (M + 2R*)z*(t) + [max,ieKxi] 

Txi < F(i,a*) + [ maxx/] + (M + 2R*) it(a*)z*(t). (29) iGEK* I Pi 

Next let 1 E K* and conclude from repeated substitutions of the inequality Txj 
> r(1j, *())- M + yt(-t *(j))Tx, that 

N(({I })- I1 

Txj > -E ) 2 (r(Xk,ak)|+ M) Xo=j + xI 
k=O 

- p, + x, > - R* +[ min xl. I 1GK* 

Finally, subtract this inequality from (29) to conclude, using maxE,=K*Xl - minlE K*Xl 

< R* (in view of x E Dl): 

Tx, - Txj < (M + 2R*) + + 2R 2*) 2 it(a*)z*(t) 
t e K* 

< (M + 2R*) max 1 + At(a)z*( ) = (M + 2R*)z*(i). 
aEA() A Ai 
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(b) 0 E D, hence D # 0. We next show that 

DI n D3 n D4 C V(M + 2R*), (30) 

thus showing that D is a subset of a compact space. From (24) with j = i* we obtain 

-p,*i* < xi for all i E I, and from (26) with j = i* we get: 

xi < (M + 2R*)z*(i), i a K* whereas for i E K* the upperbound xi < p**, < 
R*lL*(i) follows from (24) with i = i* and j = i. 

The upper and lower bounds on the components of x establish (30), cf. (19). Hence 
to prove compactness of D, we merely have to show its closedness. Take a sequence 
{x("))}=L in D with lim",_,x(") = x*. One immediately verifies x* E D, n D3 n D4 
and hence x* E V(M + 2R*) in view of (30). To show x* E D2 we first need 

lim Tx(i)-= lim sup {r (i,a) + Aj(a)xn) = Tx*, i E I. (31) n-- oo n--> ooa E A () i J 

(Note that the functions within { } are upper-semicontinuous on A (i) for all n > 1, use 

(21), x(n) E V(M + 2R*), Royden [23, Proposition 18, p. 232] and Schal [25, Proposi- 
tion 10.1]). 

Since convergence in DT is pointwise, we obtain for any i E I, x* + M > 

lim,nox/() + M > limnooTx n) = Tx,*, hence x* E D2. Finally, the convexity of D 
follows from the convexity of Di, i = 1, . . ., 4: D1 D3,D4 are polyhedral sets, and D2 
is convex since V* is convex, and in view of the inequality 

T(\x + (1 - X)y) < XTx + (1 - X)Ty, 0 < X < 1. 

(c) We fix x E D and first show Qx E D. (I) Qx E D1, since for all j E K*, i =# j: 
Qxi - Qxj = Tx - TXj > - p in view of part (a). 

(II) Qx E D2 since T( Qx) = T(Tx - (Tx)i* l) = T2x - (Tx)i* l. Insert T2x < Tx + 

M 1 (in view of Tx E D2, cf. part (a)): 

T(Qx) < Tx-(Tx),*l + Ml = Qx + Ml, so Qx E D2. 

(III) Qx E D3 since for all i E K*, j E K*: 

Qxi - Qxj = Txi - Txj < (M + 2R*)z*(i) 

in view of part (a). (IV) Qx E D4 since (Qx)i* = 0. The continuity of the Q-operator 
follows immediately from the continuity of the T-operator. Since convergence in E o is 
pointwise, the latter results from (31). I 

In view of Theorem 1, an extension of Brouwer's fixed point theorem to infinite 
dimensional vector spaces establishes the existence of a fixed point of the operator Q 
on D and hence the existence of a solution to the optimality equation. 

THEOREM 2 (MAIN THEOREM). Let Assumptions 1-4 hold. 

(a) The Q-operator has a fixed point { vi I i E I } on D. 
(b) There exists a constant g* and a vector {vi,i E I} with sup?jEIvjl/l*(j) < oo 

satisfying the optimality equation (11). 

PROOF. (a) We note that E X is a locally convex linear topological space. By parts 
(b) and (c) of the previous theorem D is a compact convex subset of E?? and Q is a 
continuous operator mapping D into itself. Invoke Tychonoff's fixed point theorem 

def 
(cf. Dugundji [7, Theorem 2.2, p. 414]). (b) Use part (a) with g* = (Tv*)i*. I 

In view of Lemma 2, we conclude that under Assumptions 1-4, the optimality 
equation (1) of the original model has a solution as well. Existence of a solution to the 
optimality equation (11) is in itself insufficient for the existence of an optimal 
stationary policy as is exhibited by the example in Fisher and Ross [15] which satisfies 
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our Assumptions 1-4 and where no stationary policy dominates within the class of all 
stationary policies. Only in case the optimality equation (1) has a solution which is 
bounded in the LO-norm, is optimality guaranteed of any policy which, for every i, 
prescribes an action maximizing the right-hand side of (1). Hence an additional 
assumption is required (cf. also Robinson [20] and [21]). From here we follow the 
analysis in [11] by imposing an analogous version of Assumption 4 ibid. First for any 
f E F, define the substochastic matrix P(f) as a truncation of the matrix P(f) in the 
original model. 

Ap(f | P(f)ij for i E I, j E K, 
/(f)ij 0 for i e 1, j K. 

ASSUMPTION 5. For any f E F, lim,noP"(f)4* = 0 where Pn(f) denotes the n-fold 
matrix product of the substochastic matrix P(f) with itself. 

(In view of (19) Assumption 5 may be verified when replacing the function p* by 
u* + y*.) The following theorem follows from the proof of Theorem 5 in [11]. 

THEOREM 3. Suppose that Assumptions 1-5 hold. A solution {g; vi i E I} to the 

optimality equation (1) exists. Choose any stationary policy f(??) such that the action f(i) 
maximizes the right side of (1) for this solution and all i E I. Then policy f(??) is average 
optimal (in the strong sense) and g is uniquely determined as the maximal gain rate. 

Observe that whereas g is uniquely determined by (1) (under the additional Assump- 
tion 5), the v-function never is: note that if (g,v) is a solution to (1), then so is 

(g, v + c 1) for any scalar c. [11] showed for unichained models that the solution to the 

optimality equation is in fact unique up to this additive constant for the v-vector, 
under the following strengthening of Assumption 5. 

N(K)- 

ASSUMPTION 5'. supfEFEoo, { E *(Xk) I X =i} < 
k=O 

(Assumption 5' requires the supremum over all stationary policies of the total reward 
until the first visit to K to be finite for every starting state, given that ,u*(i) represents 
the one step reward in state i. Again, Assumtion 5' may be verified by replacing the 
"one-step reward" function /t* by u* + y*, cf. (19).) 

In our models where (even optimal) policies may have multiple irreducible sets of 
states, the solution space is more complex as follows from the following 2-state 

example (cf. also [27] where it is shown that the solution set may even be nonconvex). 
EXAMPLE 2. I = { 1,2}; A (i)= {0,1}, i= 1,2. 

i a pl,(a) pi2(a) r(i,a) states 1 and 2 reach each other: 
1 0 1 0 0 {(g, v)g= 0 andv - 21 < 1} 

1 0 1 - I is the solution set to (1). 
2 0 0 1 0 

1 1 0 - 1 

The following theorem provides a partial characterization of the solution set of the 
optimality equation (11). (We refer to [14] for a proof.) In particular it points out that 
the solution set of (1) is bounded in the quasi-norm sp[x] = supixi//u*(i) - 

inf,xi/,u*(i). This represents a direct generalization of the results in Bather [1]. 

THEOREM 4. Let Assumptions 1-4, 5' hold. Every solution { g, vi I i E I } of (11) with 
v E V* satisfies v E D1 n D2 n D3. Moreover v* = v - (v,*)l E D and v* is a fixed 
point of Q. 
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Appendix 1. In this appendix we verify Assumptions 1-4 for the model described 
in Example 1. To simplify the notation, we take n = 2 and assume that the h(-) 
function is bounded and as in [30] and [31], that the probabilities {pi,i > 0) are 
nonincreasing in i > 0. As a slight generalization of [31] we assume pi < 1 for 
i > L2 > 0. In fact the conditions in this paper for the existence of a stationary optimal 
policy can be verified for a general nondecreasing h(i) function which is bounded by 
some polynomial in i. 

I = R2 where R = {- L, -LI + 1,... }; here i E R indicates for i > 0, the num- 
ber of periods since the last overhaul and for - Ll < i < - 1, iI equals the number of 
periods to go until the completion of the current overhaul. A (i, j) = B(i) X B(j) for all 
i, j E 1 where B(i) = {0, 1 ) if i > 0 and B(i) = {0} if i < 0. (Here the alternative a = 1 
[0] represents a decision to [not to] overhaul.) If alternative 1 is chosen for some 
component, its age in the next period is - L1 + 1; if a component fails, its age in the 
next period is - LI. In view of the finiteness of the action sets, Assumptions 1 and 4 
are trivially met; since all costs are nonnegative, Assumption 3 is met as well. To verify 
Assumption 2, we choose K = {- L1, . . ., L2}2. Note that for (i, j) E I\K, there is 
under any policy a probability of at least (1 - PL2)2 of being in K at the end of the first 
period, either because of failure or a decision to overhaul one or both of them. This 
implies that the simultaneous Doeblin condition is satisfied with respect to K, and 
hence (5) and (6) are satisfied (cf. Hordijk [17, Theorem 11.3], or [10, Theorem 2.2]), 
with supiu*(i) < oo, supy*(i) < oo. Hence supiu*(i) < oo, cf. (17). 

Next, note that all states in K reach each other under the policy which never 
overhauls. Thus, the optimality equation (1) has a solution which is bounded since 
supi/x*(i) < oo. The existence of a stationary optimal policy then follows from Ross 
[22, Theorem 7.6]. (Note however, as in Stengos [30, p. 85] that multichain policies 
exist. Consider, e.g., the extremely conservative policy which overhauls as soon as a 
piece of equipment reaches age L2, which may even be optimal for some h(-) 

def 
functions. This policy has L = LI + L2 subchains Ck, k = 0, .. ., L - 1 where Ck 
= {(i,j)l -Li < i,j < L2- 1 and i-j = k (modulo L)}.) 

Appendix 2. In a single item system in [9], [28] and [29] demands occur at epochs 
generated by a Poisson process with rate X. The demand sizes are independent positive 
random variables with common discrete probability distribution {((j), j > 0). There 
are two types of ordering opportunities. "Normal" (high-cost) opportunities occur at 
the demand epochs whereas special opportunities (at low cost) occur at epochs 
generated by a Poisson process with rate /,, assumed to be independent of the demand 
process. 

Demand epochs and "special" replenishment opportunities representing the decision 
epochs, the state space is given by X = ((i, z) I i integer; z = 0, 1}. Here state (i, 0)[(i, 1)] 
corresponds to the situation where a demand [special replenishment opportunity] has 
just occurred leaving a net inventory position (= (inventory on hand) + (outstanding 
orders) - (backlog)) of i units. At each decision epoch we specify the decision I as the 
inventory position just after a possible replenishment. There are holding costs at a 
nonnegative rate h(i) when the inventory on hand equals i, and a rate h(- i) for a 
backlog of i units. We assume h(i) = 0(limi) for some m > 0. 

Without loss of generality we assume the existence of integers L < 0 and U > 0 such 
that the action sets A (x) can be restricted to A (i, 0) = A (i, 1) = { 11 max(i, L) < l < U; 
r = 0, 1 ) for i < U and A(i,0) = A(i, 1) = (i} for i > U. Assumptions 1, 3 and 4 are 
trivially met since all A (x) are finite and the one-step rewards r(., .) < 0. To prove the 
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existence of a solution to the optimality equation, it thus suffices to verify Assumption 
2. Let K= ((i,r)| L < 

i 
< U; r = 0,1}. Note from [9, (2.2)] that r(x,1)= O(lIm+ '). 

Part (a) of Assumption 2 being trivial for starting states x = (i, r) with i < U, we 
consider the case i > U. Since replenishments are avoided as long as the net inventory 
position exceeds U, the expected time until reaching the set K is bounded from above 
by (XA(0))- (i - U) < oo and the expected absolute reward by an expression which is 

i 
u+ (K(O0)) -lO(lm+ 1)= O(lm+ 2) < oo. Hence 

1I*(i, r)= O(im+2); all i,r. (Al) 

To verify part (b) of Assumption 2, fix y0 = (i, r) 
E 

K*, let fo E F be a policy under 
which y0 is recurrent and let C be the ergodic subchain (under f0o()) which contains 

y?. Letj* = min{j > 0 1p+(j) > 0) and note, that if y? = (i, 0), i < U - j*. This follows 
from the fact that in every recurrent predecessor state (il, r1) of y? (under fo(o)) we 
either have i1 > i + j* and i1 < U or a replenishment is prescribed which increases the 
net inventory position to a level / < U and enables transitions at the next decision 

epoch to states (i, 0) with 0 < - j* < U - j* only. Finally fix x? E K and let S(x?) be 
the set of states in K that can be reached from x? when avoiding replenishments. If 
S(x?) 

n 
C # 0, it is easy to construct a rule f under which y0 can be reached from x?. 

Otherwise select a state (i*,r*) E S(x0) with i* < i and construct f' as follows: 

f?(x), x e C , 

i i+j* < U, for x=(i*,r*) if yo=(i,0), 

i, for x=(i* ,r*) if y 0= (i, 1), 
max(L, j), for all other x = (j, ). 

Note that yO can be reached from (i*,r*) and (i*,r*) 
E 

S(x? ) can be reached from 
x? under f1. 

Finally, to prove the existence of an optimal stationary strategy, one verifies 
Assumption (5) via its stronger version (5'). The verification of Assumption 5' is 
identical to the verification of Assumption 2(a) using (A1). Note that some of the 

policies have multiple subchains. 
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