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THE FUNCTIONAL EQUATIONS OF UNDISCOUNTED 
MARKOV RENEWAL PROGRAMMING*t 

P. J. SCHWEITZER** AND A. FEDERGRUEN*** 

This paper investigates the solutions to the functional equations that arise inter alia in 
Undiscounted Markov Renewal Programming. We show that the solution set is a connected, 
though possibily nonconvex set whose members are unique up to n* constants, characterize 
n* and show that some of these n* degrees of freedom are locally rather than globally 
independent. 

Our results generalize those obtained in Romanovsky [20] where another approach is 
followed for a special class of discrete time Markov Decision Processes. Basically our 
methods involve the set of randomized policies. We first study the sets of pure and 
randomized maximal-gain policies, as well as the set of states that are recurrent under some 
maximal-gain policy. 

I. Introduction. This paper investigates the solution (g, v) to the 2N functional 
equations: 

N 

gi k (i) _ g , i- 1 ...N, (1.1) 

N N 

vi max qik I H Jk i =1,...,N, (1.2) 
kGL(i) j=l 

where 

L(i)= k E K(i) g= gj (1.3) 
j=l 

The K(i) are given finite sets and the qk, P., H-i are given arrays with P,J H/J > 0 for 
all i, j, k; 2J= l P, = 1, for all i, k. Also we assume property A to be stated below. 

For the special cases H/. = P,' * with ri > 0 and Hk = &/, the functional equa- 
tions arise in Markov Decision Theory with = { 1, . . ., N } as state space, qk as the 
one-step expected reward, P,J the transition probability to state j and Tk = j H, the 
expected holding time, when alternative k is chosen in state i (cf. Bellman [2], [3], 
Blackwell [4], Howard [11], [12], De Cani [6], Jewell [13], Denardo and Fox [8], 
Denardo [7], Derman [9], Schweitzer [21], [22], [23]). The solution to (1.1) and (1.2) is 
not unique, although g is uniquely determined. The purpose of this paper is to 
characterize 

V= {v E EN I v satisfies (1.2)}. 

We show that V is a connected, though possibly nonconvex, set whose members are 
unique up to n* constants, characterize n*, and show that some of these n* degrees of 
freedom are locally rather than globally independent. 
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EQUATIONS OF UNDISCOUNTED MARKOV RENEWAL PROGRAMMING 

Our results generalize those obtained in Romanovsky [20] where another approach 
is followed for a special class of discrete time Markov Decision Processes (MDP's). 

Basically our methods involve the set of randomized policies. We first study the sets 
SPMG and SRMG of pure and randomized maximal-gain policies, and characterize the 
set R* of states that are recurrent under some maximal gain policy. In ?2 we give the 
notation and some preliminaries. In ?3 we characterize the sets SRMG and R*. The 
properties of V are studied in ?4, while in ?5 the n* degrees of freedom are 
characterized. 

II. Notation and preliminaries. A (stationary) randomized policy f is a tableau [fik] 
satisfying fik > 0 and ZkEK(i) fik = 1 for all i E Q. In the Markov decision model, fik 
denotes the probability that the kth alternative is chosen when entering state i. 

We let SR denote the set of all randomized policies and Sp the subset of all pure 
(nonrandomized) policies, i.e. for f E Sp, each fik = 0 or 1. For f E Sp, we use the 
notation f* = (l,.., ,iN) where f,i E K(i) denotes the single alternative used in 
state i. 

Associated with each f E SR are N-component "reward" vector q(f) and "holding 
time" vector T(f), and two matrices P(f) and H(f): 

q(f)i E fikqik ; T(f)i= E ik Ti; 
kEK(i) k&K(i) 

p(f)j fikPy; H(f)j = fikH 
kEK(i) kEK(i) 

Note that P(f) is a stochastic matrix. For any f E SR, define the stochastic matrix 
II(f) as the Cesaro limit of the sequence {P(f)n} =I and define the fundamental 
matrix Z(f) as [I - P(f) + H(f)]-'. These matrices always exist and have the 
following properties (cf. [4], [14]): 

n(f) = P(f)1(f) = n(f)P(f) = rn(f)2= n(f)Z(f) = z(f)n((), (2.1) 

[I- P(f)]Z(f)= Z(/)[I- P(f)] = I- (f), (2.2) 
00 

Z(f) = I + lim a[P(f)n 
_ (f)]. (2.3) 

all n=l 

Denote by n(f) the number of subchains (closed, irreducible sets of states) for P(J). 
Then: 

n(f) 

nI(f )/= im(f)rim(f), 1 < i,j < N, (2.4) 
m= 1 

where the row vector 7Tm(f) is the unique equilibrium distribution of P(f) on the mth 
subchain Cm(f), and fim(f) is the probability of absorption in Cm(f), starting from 
state i (cf. [7] and [23]). Observe ji Timr(f) 

= 1 and Tm()P(J) = ?m(f). 
Let R() = {j I| (f)jj > 0), i.e. R(f) is the set of recurrent states for P(f). Note 

that the column vector "m (f) = P(f)pm(f) for all m and that the { m(f) m 
= 1, . . ., n(f)} are linearly independent. Since any solution to P(f)x = x satisfies 
II(f)x = x and the rank of [I - HI(J)] is N - n(f), it easily follows that the solution 
set of P(f)x = x is given by: 

n(f) 

x= E amr(f) (2.5) 
m= 1 

with a,, . . ., an(f) arbitrary scalars. 
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LEMMA 2.1. Fix f E SR. Suppose H(f)b = 0 and (I - P(f))x - b = y > 0. Then 
(I - n(f))x - Z(f)b = z > 0. Also H(f)y = H(f)z = 0, i.e. in both inequalities the 

equality sign holds for each component i E R(f). 

PROOF. Multiplying [I - P(f)]x - b > 0 by H(f) > 0 yields 0 = H(f)([I - P(J)] 
x - b), implying that the former inequality is a strict equality for components 
i E R(f). Using this and the fact that as a result of (2.3), for j R(f), Z(f)i > 0 for 
all i, with Z(f)/j = 0 when i E R(f), we get the desired result by multiplying [I - 
P(f)]x > b by Z(f) and invoking (2.2). i 

LEMMA 2.2. For any f E SR, any i E R(f) and any k having fik > 0, there exists a 

pure policy h that has the properties: (a) hik = 1; (b) hjr = 0 whenever fjr = 0; 
(c) i E R(h) and (d) every subchain of P(h) is contained within a subchain of P(f). 

PROOF. Let h meet conditions (a) and (b), and assume i is contained within the 
subchain C of P(f). In view of (b), we have that every subchain of P(f) is closed 
under P(h) as well, so that no subchain of P(h) can intersect two subchains of P(f); 
and as a consequence the proof of part (d) reduces to showing that R(h) C R(f). The 
latter trivially holds if Q = R(f). Otherwise, let I initially be equal to R(f) and define 
F = f\r. Choose a state to E F and a path {to, ... , tn} such that P(f),,,t, > 0 for 
1 = 0, . . ., n - 1 and t, E r. Such a path clearly exists, since to is transient under P(f) 
and Fr R(f). Transfer { to. . ., t,, l} from F to F and define for = 0, ... , n - 1 
ht,r = 1 for any r with ft/, > 0 and Prt,, > 0. Repeat this step until r is empty. Finally, 
to ensure property (c), let A initially be equal to {i} and define A = C\A. Next the 
following step is performed: Choose a statej E A and an alternative r such that fjr > 0 
and Pjt > 0 for some t E A, transfer j from A to A, and define hjr = 1. Clearly, such aj 
and r can be found, since all states in C communicate under P(f). Repeat this step for 
the new A and A, until A is empty. This construction shows that under policy h, state i 
can be reached from any state in C\{ i}. Together this and the fact that C is closed 
under P(h) implies condition (c). i 

In the remainder of this paper, we assume that property A holds. 
A: If f is any pure policy and Cm(f) is any subchain of P(f), then i E Cm(f) 

implies H(f)0. = 0 for j C m(f), and 2Eecm(f) T(f)i > 0. 
This property is satisfied for both the Markov Renewal Programs (MRP's) with 

HiJ = PiJkT' and the discrete time model with HW = 8/. Using the previous lemma, one 
easily verifies that if property A holds for all pure policies, it holds for all randomized 
policies as well. 

LEMMA 2.3. (Gain and Relative Value Vectors). Fix f E SR. The general solution to 
the equations 

(a) g= P(f)g, (b) v= q(f)-H(f)g + P(f)v (2.6) 
is given by 

n(f) 

gi = g(f)= E Pim(f)gm(f), i = 1, ..., N, (2.7) 
m= 1 

with 

gm(f) = ('Tm(f), q(f))/<(rm(f), T(f)) 

and 

n(f) 

vi = Z(f)[q(f) - 
H(f)g],+ 2 amm(f) i = 1, . . .., N (2.8) 

rn-- 

with a, . . , a,n( arbitrary scalars. 
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PROOF. Note that multiplication of (2.6)(b) by HI(f) leads to: 

rI(f)[q(f) - H(f)g] = 0. (2.9) 

Using property A, it follows from the proof of lemma I of [7] that g(f) is the unique 
solution to (2.6)(a) and (2.9). Hence, any solution (g, v) to (2.6) has g = g(f). Using 
(2.2) one next verifies by mere insertion that (g = g(f), v = Z(f)[q(f) - H(f)g(f)]) 
satisfy (2.6). Finally (2.8) follows from (2.5), since (2.6)(b) is a linear system of 
equations with Z(f)[q(f) - H(f)g(f)] as a particular solution. I 

The unique solution g(f) to (2.6) will be called the gain rate vector, and gi'(f) the 
gain rate of the subchain Cm(J). A solution v to (2.6) will be called a relative-value 
vector and denoted by v(f). 

In the remainder, we will refer to the following example: 
EXAMPLE 1. N = 4, K(l) = K(2) = {1}; K(3) = K(4) = {1, 2); Hk = 8q for all 

i,j, k. 

i k PA Pk P 2 P3 4 q 
1 1 0 1 0 0 0 
2 1 0 0 0 0 

3 1 1 0 0 0 q <0 
3 2 0 0 1 0 0 
4 1 0.4 0.4 0.2 0 0 
4 2 0.8 0.2 0 0 0 

Using (3.1) and theorem 3.1 part (c) one verifies that 

V= ({v* E E4 1 v* = v2; v3 > q3 + v*; v* = max[O.8v* + 0.2v3*; vi] }. 

With 0 = v* = v* we get v3 > q3 and v4 = max{O.2v*; 0); so V is nonconvex. Note 
furthermore, that for f E SRMG, if f makes "unwise" decisions in states in 2\R(f), 
then there do not necessarily exist additive constants such that v(f) E V (cf. theorem 
3 of [22], [25] and our theorem 4.1 part (b)). Take the above example and the pure 
policy f# = (1, 1, 1, 1) with P(f) unichained, and v(f) = (0 0 q} 0.2q}) + a(l 1 1 
1) V V for any choice of the additive constant a. 

Finally, reference [25] provides examples where the choice of additive constants in 
v(f) affects the Policy Iteration Algorithm (PIA) (cf. [6], [8], [13]). 

III. Properties of maximal gain policies. In this section we give some properties 
of maximal gain policies; some of the notions and properties presented here are 
related to results in [15], [16], [17], [18]. 

First, define the maximal gain rate 

g*1= sup g(f),, i= l, .. .,N. (3.1) 
f E= SR 

For any v E V, k E K(i), and f e SR, define 

b(v)k = 
qi - 2H HJg + E Pv-Vi i = 1, . . ., N, 

J J 
and 

b(v,f)i= fikb(v)k = [q(f)- H(f)g* + P(f)v- v]i; i- 1,..., N. 
k K(i) 

Since g(f) can be interpreted as the average gain rate vector of f for a MRP with 
transition probabilities Pk, one-step expected rewards qi, and holding times Tk, we 
know from Derman [9] that there exists a pure policy that attains the N suprema in 
(3.1) simultaneously. Hence g* = maxfEs, g(f)i. Accordingly define: 

SPMG = (f E SP g(f)= g*) 
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and 

SRMG= {f SR g(f)= g*}. 

Finally, let: 

w*= max Z(f)[q(f)-H(f)g* ]i, i= 1 ..., N. 
f E SPMG 

THEOREM 3.1 (Properties of Maximal-Gain Policies). 
(a) f E SRMG if and only if g* = P(f)g* and H(f)[q(f) - H(f)g*] = 0. 
(b) The functional equations (1.1) and (1.2) always have the solution g = g*, v = w*. 

Hence V is nonempty. Also, there exists a policy f E SpMG such that w* = Z(f)[q(f) - 

H(f)g*]. 
(c) In any solution (g, v) of the functional equations (1.1) and (1.2), g = g*, hence g 

and each L(i) is unique. 
(d) If f is any policy, and if C is any subchain of P(f), then g* = constant, i E C. 
(e) (Cf. [15, p. 16, remark 2]). If v E V, then maxkEL(i) b(v)k = 0, for every i. 

Letf E SR. 

(1) Suppose that k E L(i) for each (i, k) with f1k > 0 and that for some 
v C V, b(v)k = Ofor each (i, k) with i E R(f) andfik > 0. Then f E SRMG- 

(2) Conversely, if f E SRMG, then for each i = 1, . . ., N, fik > 0 implies 
k E L(i), and for i E R(f), fk > 0 implies b(v)k = Ofor all v E V. 

PROOF. (a) As noted in the proof of lemma 2.3, g(f) is the unique solution to the 
equations g = P(f)g and (2.9). 

(b) Invoking the above mentioned interpretation of g*, we know from theorem 1 in 
Denardo and Fox [8] that g* = maxk21 Pig*. Consider the discrete time decision 
model with K(i) = L(i) = {k I gi* =2j Pog})' P-J = Pij and qi = qi - 

Y H.g* 
Note that in this model each policy has g(f) < 0. Moreover, it follows from part (a) 

that J(f) = 0 if and only if f E SRMG. Hence the discrete time model has g* = 0 and, 
with SPMG = {f C Xf iK(i) | g(f) = * = 0 = }SpM, we have: 

max Z(f)[q(f)- H(f)g*],= max Z(f)[/(f)- g*j], for i = 1,..., N. 
f E SPMG f SPMG 

Use theorem 4 of [4] in order to prove the existence of a policy f E SPMG for which 
w* = Z(f)[q(f) - H(f)g*], as well as the fact that w* satisfies (1.2). 

(c) Fix a solution (g, v) to (1.1) and (1.2). Using property A, a minor modification 
of the proof of lemma 4 of [8], shows that g > g(f) for all f E Sp with equality for any 
f0 such that f/ = 1 for some k maximizing (1.1) and (1.2). Hence g = g*. 

(d) Since g* satisfies (1.1), we have P(f)g* < g* for all f E SR. The assertion then 
follows from lemma 2-a in [8]. 

(e) The first result follows from the very definition of b(v)i 
(1) From the definition of b(v)k, we have vi - j P(f)ivj = q(f)i - 

Ej H(f)Ujgj for i C R(f). Multiplying this equation with I(f)ki and sum- 
ming over i, we obtain Hl(f)[q(f) - H(f)g*] = 0. Use this and g* = P(f)g* 
in order to apply part (a). 

(2) If f E SRMG, g* = P(f)g* follows from part (a). Hence fik > 0 implies 
k E L(i) and b(v)k < 0. So b(v, f) < 0, for any v E V. Since we know from 
part (a) that II(f)b(v, f) = 0 for f E SRMG, it follows that for j E R(f), 
b(v, f)j = 0, i.e. fjk > 0 implies b(v): = 0. * 

Next define 

R* = {i i E R(f) for some policyf E SPMG}. 
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Next we define, for any i E R*, the set K*(i) as the set of actions which a pure 
maximal gain policy that has i among its set of recurrent states could prescribe: 

K*(i) = {k E K(i) I there exists af E SpMG with i E R(f) andfk = 11, 

i ER*. (3.3) 

Finally, select a randomized policy f* with 

k K*(i), iE4*, (k L (i), i E \R* (3.4) 

Note that the chain- and periodicity structure of a stochastic matrix P merely depends 
upon the index set I = {(i,j) j Pij > 0) of positive entries, rather than upon the 
numerical values of the probabilities [Pij] themselves. As a consequence, the chain- 
and periodicity structure of a randomized policy f is completely determined by the 
sets of alternatives the policy uses (i.e. attributes positive weight to) in each of the 
states of Q, rather than by specifying the entire tableau of numerical values [fik]. 

Hence, let n* = n(f*) and let (R* | a = 1, . . . , n*} denote the set of subchains of 

P(f*). The following theorem gives a characterization of the sets R*, {R*' a 
= 1, .. ., n*), the action sets K*(i), i E Q, the integer n*, and the policy f*: 

First note thatf* E SRMG, in view of theorem 3.1 part (e). 

THEOREM 3.2. (a) 

K*(i) = (k E L(i) | there exists a f E SRMG 

with i E R(f) andfik > 0}, i E R*, (3.5) 

R* = {i E i2 | i E R(f), for some f E SRM }. (3.6) 

(b) R(f*) = R*, i.e. the set {f E SRMG I R(f) = R*} is nonempty. 
(c) Any subchain of any f E SRMG is contained within a subchain of P(f*), i.e. 

n* = min{n(f) If SRMG, with R(f) = R*}. (3.7) 

(d) Let SMG MG= {f SRM R(f)= R*, n(f) = n*). All f SRMG have the same 
collection of subchains { R * a = 1, . . . , n* }. 

(e) For any a, 1 < a < n*, g* = g*a (say) for all i E R*a. 
(f) Let R ('), . .. ., R () be disjoint sets of states such that 

(1) if C is a subchain of some f E SRMG then C C R(k) for some k, 
1 < k < m, 

(2) there exists a f E SRMG with {R(k) I k = 1, .. ., m} as its set of 
subchains. 

Then, m = n* and, after (possible) renumbering, R (a)= R* for a = 1, . . . n*. 
(g) For any v E V, 

K*(i)=k E L(i)Ib(v)ik=Oand P = 1 (3.8) 
j E R*a 

i E R*'; = 1, . . .,n*. 

PROOF. (a) Fix a policy f E SRM and a state i E R(J), as well as an alternative 
k E L(i) such that fk > 0. Consider a policy h satisfying the conditions (a), (b), (c) 
and (d) of lemma 2.2. Then, i E R(h) and k E K*(i), whereas h E SPMG is verified by 
theorem 3.1, part (e). Thus the right-hand side of (3.6) is contained within R*, whereas 
the reversed inclusion is immediate. Thus having shown (3.6), it follows that the 
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right-hand sides of (3.5) are contained within the sets K*(i), i E R* (whereas the 
reversed inclusion is immediate). 

(b) We show that all states in R* are recurrent under P(f*), i.e. R(f*) D R* 
whereas the reversed inclusion is immediate from the definition of R*. Let i E R*, 
and assume that state j can be reached from i under P(f*), i.e. there exists 
(io = i, . . , i, = j) with P(f *),i, > 0 for 1 = 0, . . ., n - 1. Verify by complete induc- 
tion that for all 1 = 0, . . ., n - 1, i, and i1+I belong to the same subchain of some 
maximal gain policy, hence i4 can be reached from i1+, under P(f*). Conclude that 
state i can be reached from statej, under P(f*), so that i e R(f*). 

(c) Assume P(f), for f E SRMG, has a subchain Ct(f) that intersects say the 
subchains R*' and R*2 of P(f*). Then a policy f** with {k If* > 0 = {k k 
fk > 0) U {k I fik > 0) for all i E Cm(f), and {k I f* > 0) = {k I f > 0) otherwise, 
is maximal gain, has R(f**)= R*, and its number of subchains is at most n* - 1, 
since the states of R * 1 and R*2 communicate with each other under P(f**). On the 
other hand, k I fi*k* > 0)} = {k f > 0), for all i E Q in view of part (a), so that 
P(f**) and P(f*) must have the same chain structure, i.e. n(f**) = n* which 
contradicts n(f**) < n* - 1. 

(d) Note that for allf E SRMG, U l Cm() = R* while each Cm(f) (1 < m < n*) 
is contained within some set R*" (1 < a < n*). 

(e) Use the fact that f* is maximal gain, as well as part (d) of theorem 3.1. 
(f) Apply property (1) to conclude R*a C R (k(a)). Apply part (c) and property (2) to 

conclude R(k(a)) C R*0 (1 < a < n*). 
(g) Fix a E {1,. . ., n*}, i0 E R*a. First, let k E K*(i) andf E SPMG, with i E R(f) 

and fik = 1 and apply part (e) of theorem 3.1 and part (d) of this theorem, in order to 
prove that K*(i) is contained within the set on the right hand side of the equality. 
Next, take ko E L(io) such that b(v)ko = 0 and IeR*. p~ 0 = 1. Define f** such that 

*oko 
= 1 andJk* =fj*k, for allj io k C K(j). Obviously, all states in R*\{io) can 

reach state io under P(f**), whereas state io can only reach states within R*a. We 
conclude that io E R(f**) while f** * SRMG, as can be verified using part (e) of 
theorem 3.1., hence ko E K*(i), thus proving the reversed inclusion. * 

REMARK 1. A policy f* as defined by (3.4) may be constructed in the following 
way: Fix an enumeration fl,. . . ,fM of SPMG. For any i E R*, let Ai = {r I i 
E R(fr)}. Consider the following equivalence relation on C = {Cm(fr) 1 < r < M; 
1 < m < n(fr)}: Let C- C' if there exists {C(1) = C, C(2), . . ., C() = C'}) with 
C( E c and C?) n C(i+l) + 0 for i = 1, . . ., n - 1. Letf* satisfy: (1) {k I f* > 0) 
= UrEA {k If' >0) = K*(i) for i E R*; (2) {k If|* > 0) = L(i) for i E 2Q\R*. The 
equivalence classes generated by the above defined relation constitute the subchains 
of P(f*) since they are closed under P(f*) and since the states belonging to the same 
equivalence class communicate with each other. Note that randomization, by coalesc- 
ing subchains, is essential for the recurrency properties: in general, there may fail to 
exist a pure maximal gain policy f with R(f) = R*, or which achieves the minimal 
number n* of subchains. 

A finite procedure for calculating R*, n*, the R*a and a * E SRMG is therefore as 
follows: use the PIA to find g* and a v E V. Compute Sp(v) = X[ I{ k E L(i) I b() 
= 0) = {f E Sp I f achieves the 2N minima in (1.1) and (1.2)} C SPMG. Note from 
part (e) of theorem 3.1 that for all f E SPMG there exists a policy h E Sp(v), such that 
both policies coincide on R(f). Conclude that R* = {i Ii E R(f), for some 
f E Sp(v)) (cf. also [17, algorithm on p. 353-359]). Determine {R* |I a = 1, ... , n*} 
as the equivalence classes of the above defined relation, with respect to the set of 
subchains of policies belonging to Sp(v) (cf. theorem 3.2 part (g)). Finally, select a 
policy f* satisfying (3.4), where the sets K*(i), i E R*, are determined using theorem 
3.2 part (g). 
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IV. Properties of V. Some basic properties of V are given by: 

THEOREM 4.1. (Basic Properties of V). (a) V is closed and unbounded, as v E V 

implies v + all + a2g* E V, for any scalars al, a2 (where 1 is the N-vector with all 
coordinates unity). 

(b) (Maximality of relative values). For any v* E V and f E SRMG, it is possible to 
choose the n(f) additive constants in v(f) such that v* > v(f) with equality for 
components in R(f). 

(c) (Cf. [3], [15], [16], [21].) v E V if and only if 

v, = max {Z(f)[q(f) 
- H(f)g*] + I(f)v,}, i = 1, ..., N. (4.1) 

f SpMG 

In addition, if v E V, then a policy f E SPMG achieves all N maxima in (4.1) if and only 
if it achieves the 2N maxima in (1.1) and (1.2). 

PROOF. (a) Immediate to verify. 
(b) Choose in (2.8) am = (rm(f), v*). From part (e) of theorem 3.1, it follows that 

{k I fik > O} C L(i) for each i, hence v* > q(f) - H(f)g* + P(f)v*, which implies, 
using theorem 3.1 part (a), lemma 2.1, (2.4) and (2.8): 

v* > Z(f)[q(f)- H(f)g*] + H(f)v* 
n(f) 

=Z(f)[q(f)- H(f)g*] + E ampim(f) = v(f) 
m= 1 

with equality for components in R(f). 
(c) First assume v E V. In part (b) we proved that for any f E SPMG, v > Z(f) 

[q(f) - H(f)g*] + HI(f)v, with strict equality for f E Sp(v). Hence, v E V implies 
(4.1) and any policy achieving the 2N maxima in (1.1) and (1.2) achieves all N 
maxima in (4.1). 

Conversely, if v satisfies (4.1), we define 

= max qk 
- Hkg* + Pkv, i1,..., N (4.2) 

kGL(i) _ j i ( 

and show both v > v and v < v, hence v = v E V. 
For any f E SPMG, f/k = 1 implies k E L(i) by theorem 3.1 part (e); hence using 

(4.1), (2.2) and theorem 3.1 part (a): 

V > q(f) - H(f)g* + P(f)v > [ I + P(f)Z(f)][q(f) - H(f)g*] + 11(f)v 

= Z(f)[q(f) - H(f)g*] + H(f)v, f E SPMG 

This implies v > v. Let h denote a pure policy in X[ I L(i), achieving all maxima in 
(4.2). Then: 

vi < ,i = [q(h)- H(h)g* + P(h)v]i; i = 1, . . . , N. (4.3) 

Multiply (4.3) with H(h) > 0 in order to get 0 < H1(h)[q(h) - H(h)g*] < 0, the latter 
inequality following from (2.9) and g(h) < g*. Hence h E SPMG, by part (a) of 
theorem 3.1. 

Using lemma 2.1, (4.3) implies v < Z(h)[q(h) - H(h)g*] + H(h)v. Insert this on the 
right-hand side of (4.2) and use HI(h)[q(h) - H(h)g*] = 0, to obtain: 

v [ I + P(h)Z(h)][q(h) - H(h)g* ] + 1(h)v 

= Z(h)[q(h) - H(h)g*] + (h)v 

< max {Z(f)[q(f)- H(f)g*] + n(f)v} = v. 
f E SPMG 
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Finally, if f E SPMG achieves the N maxima in (4.1), multiply the resulting equality in 
(4.1) with Z(f)-l to show that it achieves the N maxima in (1.2), as well as the N 
maxima in (1.1), since fk = 1 implies k E L(i). This completes the proof. I 

Since for f E SRMG, I(f)/ = 0 if j V R*, we have by part (c) of theorem 4.1 that 
v E V if and only if 

v = max (Z(f)[q(f)-H(f)g*]i+ E I(f)vj}, i ER*, (4.4) 
f PMG j SR* J 

v = max {Z(f)[q(f)-H(f)g*]+ E I(f)vj, iE2\R*. (4.5) 
/f r SPMG jj ye R* 

Observe that (4.4) involves only (vi | i E R*) and can be studied in isolation. The 
(vi | i E S2\R*) are uniquely determined via (4.5), for any (vi | i E R*). Define now 

VR = ((v,i i E R*); vi satisfy (4.4)). (4.6) 

THEOREM 4.2. (a) 

VR= (vi i E R*); vi > Z(f)[q(f) - 
H(f)g*], + E rI(f)vj, 

jER* 

for all i E R*, f E SPMG ) (4.7) 

Hence, VR is a closed, convex, unbounded, polyhedral set. 
(b) V is connected. 

PROOF. (a) Clearly, VR is contained within the polyhedron that is defined in the 
right side of (4.7). Conversely fix i E R* and h E SPMG with i E R(h). Then, by 
multiplying the inequalities in (4.7) with 1H(h) > 0, we obtain vi = Z(h)[q(h) - H(h) 
g*]i + 2jeR* H(h),vj; hence (4.4) holds. The unboundedness of V is proved as in 
theorem 4.1. 

(b) The assertion follows by showing that for any v, v E V, the curve {(v(X) I X 
E [0, 1]}) with parameter representation: v(X)i = XAv + (1 - X)vi, i E R* and 

max) (Z(f)[ q(f)- (f)g ], + E II(f)/jv(X)j, fEp SpMG )E* 

for i V R*, connects v with v, lies within V as a consequence of (4.5) and part (a), and 
is continuous, since all its components are continuous functions of X. I 

We already saw that V may not be convex. The following theorem gives a necessary 
and sufficient condition for the convexity of V. 

This property is especially important when considering MRPs, where for several 
quantities of interest (e.g. the optimal bias vector) variational characterizations may 
be obtained of the nature: maxv v[c + Bv] (where c and B are expressions in qk, P,k 
and H/) and the latter is a linear program if and only if V is convex. 

THEOREM 4.3. V is convex if and only if for each i E [ - R* there exists an 
alternative k(i) E L(i), such that for all v E V: 

v, = q (i)- E H )gj + P pJ)vj. (4.8) 

Moreover, V is convex if and only if it is a polyhedron. 

PROOF. We first observe that for any i E R*, there is a h E SPMG, with i E R(h), 
hence by part (e) of theorem 3.1 there exists an alternative k(i) E L(i) with b(v)k) 
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= 0, for any v E V. Thus (4.8) always holds for i E R*. Suppose it holds for i E Q2\R* 
as well. Then the functional equations (1.2) are equivalent to the linear (in)equalities 
b(v)k(0= 0 for i = 1, . . ., N and b(v)k < 0 for k E L(i)\{k(i)) and i = 1, . . ., N. 
Hence V is a convex polyhedron. 

Conversely, suppose V is convex. Assume to the contrary that there exists a state 
i E Q2\R* and a finite set of v(m)'s in V, such that no k E L(i) achieves the maximum 
in (1.2) for all v(m). However, since V is convex, it is immediate to verify that a 
k E L(i) achieving the maximum in (1.2) for a positive convex combination v of the 

(m)s, achieves the maximum in (1.2) for each v(m). I 
REMARK 2. Condition (4.8), hence convexity of V, holds trivially if (1) R* = 0, or 

(2) L(i) is a singleton for each i E Q2\R*, or (3) there is only one maximal gain policy 
or (4) n* = 1, since in this case v C V is unique up to a multiple of 1 (cf. remark 3). 

For discrete time Markovian decision processes, where Hk = i,j, the value iteration 
equations take the form: 

v(n + l1)= max {q+ P~v (n)j (4.9) 
kv +K1i) kKi 

with v(O) a given vector. 
It is well known that { v(n) - ng*) } may fail to converge. In a forthcoming paper 

[24] it will be shown that there exists an integer J such that 

u=r)= lim {v(nJ+ r), - (nJ+ r)gi*} 

exists for all i, with u(r+J)= -u(r) (previous proofs in [5] and [15] are both incorrect; cf. 
[24]). 

Accordingly, define i as the Cesaro-limit of the sequence {v(n) - ng*}=l. Ex- 
ample I with v(0)= [1 0 1 0.6] shows that in general iv V (v(2n)1 = 1; v(2n + 1), 
= 0; v(2n)2 = 0; v(2n + 1)2 = 1; v(n)3 = 1; v(2n)4 = 0.6; v(2n + 1)1 = 0.8; v5 = [0.5 
0.5 1 0.7] V V). 

The relation between v and V is as follows: 

THEOREM 4.4. (a) { i I i E R*)} E VR. 

(b) There exists a vector v E V, such that v < 3 with equality for components in R*. 

PROOF. Note that for all i E Q2: 

ur+ 1)= max {qk -g + pkU(r)} E= - 
e 

j 

since for all n sufficiently large the maximizing alternatives in (4.9) belong to L(i) as 
observed in [5] and [15]. 

Since v3 = (l/J)j-o u(r), we obtain by averaging over r = 0, ..., J - 1: 

i > qik - gi* + Pj, i= 1, . . ., N and k E L(i). 

Take any f E SPMG to obtain: v > q(J) - g* + P(f)v, and hence, using lemma 2.1: 
v > Z(f)[q(f) - g*] + Il(f)fv, with equality for i E R(f). This implies: F > 

maxfes,{Z(f)[q(f) - g*] + H(f)T) with equality for components in R*. Using 
(4.4) and (4.5) we obtain that the vector v defined by (1) vi = v,, i E R* and (2) 
Vi = 

maxfESpMo {Z(f)[q(f) - g*]i + X]jeR* nI(f)gjV} for i E Q\R*, belongs to V with 
v < v and equality for components in R*. I 

V. The n* degrees of freedom in V. In this section we show that the convex 
polyhedral set VR has dimension n* and that its elements, and hence V, are fully 
determined by n* parameters (Yl, . . . ,Y,). 
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Romanovsky [20] obtained the same result for the functional equations that arise in 
discrete time Markov models with g* = (g*)l. In addition, as our methods involve 
the chain structure, a fuller characterization of the parameter space is possible. 

The key observation is that any two vectors v?, v e V have the property: i - v? 
-constant =Ya for i E R*', a = 1, . . ., n*. By fixing v? E V and picking these n* 
constants, one thus determines (i | i E R*) and hence v by (4.5) in terms of v?. 
Hence, by fixing v?, and sweeping out all permitted values of y, we sweep out all 
vectors v in V. In particular (5.1) below shows that v is a convex piecewise linear 
function in y. 

THEOREM 5.1. Let v C V. The following are equivalent: 
(a) v + x E V, 
(b) Xi 

= 
maxkEL(i) [b(v) + j PX i = 1,.. ., N, 

(c) xi = max es[Z(f)b(v, f) + HI(f)x], i = 1, .. , N, 
(d) there are n* constants y = (l, . . , Yn*) satisfying 

JYa iR*, a = 1,...,n*, 

max Z(f)b(v,f)i+ E ( , iQ\R*, 
f 6 SPMG = j f R*'( 

Ya > Z(f)b(v, f)i ,+ ( (/)fJ Y, 
/3 I \ jER* / 

a = 1,...,n*; i E R*a,f e SPMG. (5.2) 

PROOF. (a)=*(b): (b) is the requirement that v + x E V. 
(a)*(c): Cf. (4.1) and the definition of b(v, f). 
(a) (d): Take f E SRMG. As v, v + x E V, we have from part (e) of theorem 3.1: 

vi = [q(f) - H(f)g* + P(f)v]i and (v + x)i= [q(f) - H(f)g* + P(f)(v + x)]i for all 
i E R* = R(f). Subtraction yields: xi = [P(f)x]i = [H(f)x]i = (7"(J), x) for i E R*", 
which proves the first part of (5.1). Moreover, this implies the remainder of (d), using 
(4.4) and (4.5) and the definition of b(v, f). 

(d) =(a): Use (4.4), (4.5) and the definition of b(v, f). I 
Fix v E V. Define the set of allowed constants 

Y(v) = (y E En y satisfies (5.2)}. 

Note that, 

Z(f)b(v, f) < 0 for allf E SPMG. (5.3) 

(5.3) follows from lemma 2.1, with x = 0, using b(v,f) < 0 and H(f)b(v,f) = 0 (cf. 
theorem 3.1 parts (d) and (e)). 

Clearly, by (5.3), (5.2) is automatically satisfied for (a, i, f) with ijeR*a Il(f)i = 1. 
We accordingly define: 

K(a) = (i,f) i E R*,f E SpMo, Z (f) i a= 1,...,, 
r 1e R 

and make the partition {l, 2, . . ., n*}= E U F, where E= {a I K(a)=0}, F= 
{(Ia | K(a) - 0), 

For t = (i, J) E K(a), define 

qc = [Z(f)b(v,f)]i and /B= E I I(f) 
j E R*P 
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Note that :/ < 0, P > 0 20, l = 1, P/ < 1 for all a E F, and ~ E K(a). Then 
Y(v) consists of all y E E* satisfying 

n* 

Ya > q + E ', a EF, E K((a). (5.4) 
=1 

In order to show that Y(v) is an n*-dimensional polyhedral set, we need the 
following discrete time Markovian model with state space {1, . . ., n* }: For a E F, let 
K(a) be the set of feasible decisions. For ~ E K(a), let q, and P., denote the 
associated one-step reward and transition probabilities (we already noted that P/ 

>0, Z J = 1). 
For a E E, add a decision ~0 to the empty K(a) with IJo - 1 and Ph = 5a. Let ?D 

denote the set of pure policies. For m) E 4, the quantities q(9)), P(q9), H(p) and Z(9) 
are defined analogously to q(f), P(J), H(f) and Z(J) forf E Sp. Also let { ga*} be the 
maximal gain vector for the new process. Note that q(9p) < 0 for any .p E 4 , so * < 0 
for all a. Also * = - 1 for a E E, since each state a E E is a trapping state for P(qp), 
for all qp E 1. The following lemma characterizes the subchains of P(Qp) on F: 

LEMMA 5.2 (Properties of subchains of P(p) on F.) Fix v E V. Assume F # 0. 
Suppose for some policy qp E rP, P((p) has a subchain C C F. Then 

(a) C has at least two members, 
(b) q(Q)a is strictly negative for at least one a E C. 

PROOF. (a) Part (a) follows from Pi, < 1 for any a E F and / E K(a). 
(b) Let policy p use action (i(a), f(a)) E K(a) for each a E C. For a E C, define 

S(a) = {j | P(f(a))i(a,) > 0, for some n = 0, 1, 2, . .. }. Note that i(a) E S(a) and 
that: 

a E C, i E S(a) imply P(f(a))ij> 0 only ifj E S(a). (5.5) 

Now assume to the contrary that for each a E C, 0 = q(<p)) = Z(f(a))b(v, f(a))i(a). 
Since f(a) E SPMG, b(v, f(a)) < 0 with equality for components in R(f(a)). Hence, 
using (2.3), 

= 2 Z(f(a)),(1)j b(v, f(a))j 
j R(f(a)) 

= E [P(f(a))]n(a)j b(v,f(a))j 
j R(f(a)) n =0 

where the interchange of n and limaTl is justified by the monotone convergence 
theorem. Hence: 

b(v, f(a))j= 0 forj E S(a), a E C. (5.6) 

We now exhibit a policy f? E SRMG with the contradictory properties that R? = 
U aEc [R* U S(a)] is closed under P(f?) while every state in R? is transient for 
P(fO). 

Consider a policy f* E SRMG. Define fo as follows: 
Initially, for i G R* set {k Ifo > 0) = {k If|* > 0). Then for i E S(a) add 

{k f(a)k >0) to {k f,?k >0). Finally, for i E S2\R?, set { k | f > 0} = k E 

L(i) I b(v)k = 0). 
From (5.6), the definition of f* in combination with theorem 3.1 part (e), and the 

definition of f? on 2\R? it follows that fjo > 0 implies b(v)k = 0, for all i, hence 
fo E SRMG. 
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For i E R?, (5.5) and the fact that f* E SRMG imply that P(f)j > 0 only for 
j E R?; hence, R? is closed under P(f0). 

As SEj R*. H(f(a))i(a)j > 0, there exists a j] R*a, and an integer n > 1, with 
P(f(0a))iu > 0 and so P(f?)a)j > 0. Hence i(a) E R*' is transient under P(f0), since 
the subchains of a maximal gain policy are all contained within a single R* 6 (cf. 
theorem 3.2 part (c)). 

Now, observe that for each a E C, all states in R*` communicate with i(a) E R*' 
for P(f0), since they communicate with i(a) for P(f*). However, this implies that 
each state in U aC R*a is transient, since a transient state cannot be reached from a 
recurrent state. 

It remains to be proved that each j E S(a) (a E C) is transient for P(f?)' Fix 
j E S(a), a E C. Since f(a) is maximal gain, there is a state r E R*", for some /3, 
such that P(f(a))jm > 0, for some m > 1. Hence P(fOJm > 0. Let n be such that 

P(f(a))g,j > 0. Finally ,/ E C follows from 

P (P)., > HI(f(a))i(a)r= [P(f(a))rnI(f(a)) 1i(a)r 

> P(f(a))i{)uI(f(a))jr> 0 

and the fact that C is a subchain if P(<p). This implies that r is transient for P(f?) and 
so is j, since a transient state cannot be reached from a recurrent state. * 

Together part (b) of lemma 5.2 and the choice of qao = - 1 for a E E imply: 

g,*<0 fora= 1,.. .,n*. (5.7) 

THEOREM 5.3 (Cf. theorem 3 of [20]). Fix v E V. Given any { Ya J a E } there exist 

{y, I a E F} such that the following strict inequalities hold: 
n* 

ya > q + 1 Pty1 for all a C F, K EK I(a). (5.8) 
/3=1 

PROOF. It suffices to show that there exists a solution y0 to (5.8) for some 
{y?l a E E) since a solution for any {y \ a E E} is then obtained by first adding a 
large positive constant to every Ya, and then reducing {y a E E) to the desired 
magnitudes, thereby strengthening the inequalities (5.8). 

Since iqo = -1 and P/o = 1, for a E E, the solution set to (5.8) is not altered by 
adding the inequalities Ya > qo + l P/at,:, a E. Now assume to the contrary, 
that the solution set of (5.8) is empty. Then for the LP-problem: 

min Z subject to 
n* 

Ya + Z > qi + P PYg = 1, . . . n n*; ( E K(a), 
fB=1 

we have min Z > 0, which according to theorem 2 of [19], implies maxa= ,... n* 
> 0. This contradicts (5.7). I 

Since the solution set to (5.8) is open, for any y satisfying (5.8), there exists a 8 > 0, 
so that Iy - y' < 8 implies y' E Y(v). Hence the n* parameters (y1 . .. . , y) may be 
chosen independently over some (finite) region. V and VR have exactly n* = IE U FI 
degrees of freedom of which I EI are globally independent and IFI are only locally 
independent. Examples can be constructed where E (or F) can be empty; e.g. F is 
empty if n* = 1. Finally note: 

REMARK 3. n* = 1 = v E V is unique up to a multiple of 1. 
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