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THE FUNCTIONAL EQUATIONS OF UNDISCOUNTED
MARKOV RENEWAL PROGRAMMING*¥

P. J. SCHWEITZER** axD A. FEDERGRUEN***

This paper investigates the solutions to the functional equations that arise inter alia in
Undiscounted Markov Renewal Programming. We show that the solution set is a connected,
though possibily nonconvex set whose members are unique up to n* constants, characterize
n* and show that some of these n* degrees of freedom are locally rather than globally
independent.

Our results generalize those obtained in Romanovsky [20] where another approach is
followed for a special class of discrete time Markov Decision Processes. Basically our
methods involve the set of randomized policies. We first study the sets of pure and
randomized maximal-gain policies, as well as the set of states that are recurrent under some
maximal-gain policy.

I. Introduction. This paper investigates the solution (g, v) to the 2N functional
equations:

g"=k2‘2’(‘,~)épfgr i=L....N (L1)
k u al
" ke | —JEIH;&+/§1P‘J"("J', i=1,...,N, (12)
where
N
LGy = kEK(i)IgFEIPé‘& : (13)

The K(i) are given finite sets and the g/, Pjf, H are given arrays with P\, H} > 0 for
all i, j, k; EJ’L P,.j’.‘ =1, for all i, k. Also we assume property A to be stated below.

For the special cases Hf = P~ 7 with 7} > 0 and H; = §;, the functional equa-
tions arise in Markov Decision Theory with @ = {1, ..., N} as state space, g/ as the
one-step expected reward, P,.j’? the transition probability to state j and T =3 . HF the
expected holding time, when alternative k is chosen in state i (cf. Bellman [2], [3],
Blackwell [4], Howard [11], [12], De Cani [6], Jewell [13], Denardo and Fox [8],
Denardo [7], Derman [9], Schweitzer [21], [22], [23]). The solution to (1.1) and (1.2) is
not unique, although g is uniquely determined. The purpose of this paper is to
characterize

V= {v€ E"| v satisfies (1.2)}.

We show that V' is a connected, though possibly nonconvex, set whose members are
unique up to n* constants, characterize n*, and show that some of these n* degrees of
freedom are locally rather than globally independent.
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Our results generalize those obtained in Romanovsky [20] where another approach
is followed for a special class of discrete time Markov Decision Processes (MDP’s).

Basically our methods involve the set of randomized policies. We first study the sets
Spmg and Sgumc of pure and randomized maximal-gain policies, and characterize the
set R* of states that are recurrent under some maximal gain policy. In §2 we give the
notation and some preliminaries. In §3 we characterize the sets Sgyg and R*. The
properties of V' are studied in §4, while in §5 the n* degrees of freedom are
characterized.

II. Notation and preliminaries. A (stationary) randomized policy f is a tableau [ f;, ]
satisfying f, > 0 and X, c ¢, fi = 1 for all i € Q. In the Markov decision model, f,
denotes the probability that the kth alternative is chosen when entering state i.

We let S, denote the set of all randomized policies and S, the subset of all pure
(nonrandomized) policies, i.e. for f € S,, each f,, =0 or 1. For f € S,, we use the
notation f*=(p,, ..., By) where B, € K(i) denotes the single alternative used in
state i.

Associated with each f € Sz are N-component “reward” vector ¢(f) and “holding
time” vector T(f), and two matrices P(f) and H(f):

9(fi= 2 fudls T(),= 2 fiTH
kEK()

kEK()
P(f)g-=k 2()f,~kP,~,’-‘; H(f),-,~=k 2()fikHJ‘-
eK(i eK(i

Note that P(f) is a stochastic matrix. For any f € S, define the stochastic matrix
II(f) as the Cesaro limit of the sequence {P(f)"},~, and define the fundamental
matrix Z(f) as [I — P(f)+ II(f)]”'. These matrices always exist and have the
following properties (cf. [4], [14]):

I(f) = P(HTI(f) = I(/)P(f) = TI(f)*= T HZ(f) = Z(HT(f),  (2])

(1= P(N)Z() = Z(DI - P(f)] = I~ TI(f), 22)
2()=1+1m 3 a"[P(f) =11, 23)

Denote by n( f) the number of subchains (closed, irreducible sets of states) for P(f).
Then:
n(f)
1(f),= Zl¢i’"(f)ﬂj"'(f), I<ij<N, (24)

where the row vector 7™(f) is the unique equilibrium distribution of P(f) on the mth
subchain C™(f), and ¢,"(f) is the probability of absorption in C™(f), starting from
state i (cf. [7] and [23]). Observe 3, #,"(f) = 1 and =™ (f)P(f) = =" (f).

Let R(H={j| II(f); > 0}, i.e. R(f) is the set of recurrent states for P(f). Note
that the column vector ¢™(f) = P(f)¢™(f) for all m and that the {¢™(f)|m
=1,...,n(f)} are linearly independent. Since any solution to P(f)x = x satisfies
II(f)x = x and the rank of [1 — II(f)] is N — n(f), it easily follows that the solution
set of P(f)x = x is given by:

n(f)
x= 3 a,6"(f) 2.5)

m=1

with aq, . . ., () arbitrary scalars.
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LemMA 2.1. Fix f € Sg. Suppose II(f)b=0 and (I — P(f))x —b=y > 0. Then
(I -TI(f)x— Z()b =z > 0. Also TI(f)y =1I(f)z =0, i.e. in both inequalities the
equality sign holds for each component i € R().

Proor. Multiplying [ — P(f)]x — b > 0 by II(f) > 0 yields 0 =TII(f)[I — P(/)]
x — b), implying that the former inequality is a strict equality for components
i € R(f). Using this and the fact that as a result of (2.3), for j& R(f), Z(f); > 0 for
all i, with Z(f); =0 when i € R(f), we get the desired result by multiplying [/ -
P(f)lx > b by Z(f) and invoking (2.2). »

LEMMA 2.2. For any f € S, any i € R(f) and any k having f, > 0, there exists a
pure policy h that has the properties: (a) hy =1; (b) h, =0 whenever f, =0;

(c) i € R(h) and (d) every subchain of P(h) is contained within a subchain of P(f).

Proor. Let & meet conditions (a) and (b), and assume i is contained within the
subchain C of P(f). In view of (b), we have that every subchain of P(f) is closed
under P(h) as well, so that no subchain of P(h) can intersect two subchains of P(f);
and as a consequence the proof of part (d) reduces to showing that R(h) C R(f). The
latter trivially holds if & = R(f). Otherwise, let I initially be equal to R(f) and define
= Q\F Choose a state 7, €' and a path {7, ..., ,} such that P(f),, >0 for
[=0,...,n—1landt, €T. Such a path clearly ex1sts since ¢, is transient under P(f)
and F 2 R(f). Transfer {tor+- .+ 1,_,) from T to T and define for /=0,...,n—1
h,, = 1 for any r with f,, > 0 and P,’, > 0. Repeat this step until T is empty Flnally,
to ensure property (c), let A 1n1t1ally be equal to {i} and define A = C\A. Next the
following step is performed: Choose a state j € A and an alternative r such that >0
and P; > 0 for some 1 € A, transfer j from A to A, and define &, = 1. Clearly, such a j
and r can be found, since all states in C communicate under P(f). Repeat this step for
the new A and A, until A is empty. This construction shows that under policy 4, state i

can be reached from any state in C\{i}. Together this and the fact that C is closed
under P(h) implies condition (c). ®

In the remainder of this paper, we assume that property A holds.

A: If f is any pure policy and C™(f) is any subchain of P(f), then i € C™(f)
implies H(f), = 0 for j& C™(f), and T cmpy T(); > 0.

This property is satisfied for both the Markov Renewal Programs (MRP’s) with
H = P}r) and the discrete time model with H;{ = §,. Using the previous lemma, one
easily verifies that if property A holds for all pure policies, it holds for all randomized
policies as well.

LEMMA 2.3. (Gain and Relative Value Vectors). Fix f € Sg. The general solution to
the equations

(@ g=P(Ns () v=q(f)-H(Hg+ P(f) (2:6)
is given by
n(f)
=8(f)= 2=l¢,~”'(f)g'"(f), i=l....N, @7)
with
g"(f)=L{="(N), 9(NY/{="(f). T(f))
and

n(f)
v.=Z(f)[9(f) - H(f)gl,+ 2=]am¢im(f)’ i=L...,N, (2:8)

with a,, . . ., a,;, arbitrary scalars.
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ProOF. Note that multiplication of (2.6)(b) by II(f) leads to:

(f)[q(f) - H(f)g] =0. 29)

Using property A, it follows from the proof of lemma 1 of [7] that g(f) is the unique
solution to (2.6)(a) and (2.9). Hence, any solution (g, v) to (2.6) has g = g(f). Using
(2.2) one next verifies by mere insertion that (g = g(f), v = Z(Nlq(f) — H(NHg(NHD
satisfy (2.6). Finally (2.8) follows from (2.5), since (2.6)(b) is a linear system of
equations with Z(f)[q(f) — H(f)g(f)] as a particular solution. &

The unique solution g(f) to (2.6) will be called the gain rate vector, and g™ (f) the
gain rate of the subchain C™(f). A solution v to (2.6) will be called a relative-value
vector and denoted by v(f).

In the remainder, we will refer to the following example:

ExamMpLE 1. N=4, K(I)= KQ2)={1}; KB)= K@) ={],2}; H,.]’? =4, for all
i, j, k.

i k P iI; P, 5 P, i§ P iﬁ ‘I.'k
1 1 0 1 0 0 0
2 1 1 0 0 0 0
3 1 1 0 0 0 g <0
3 2 0 0 1 0 0
4 1 04 04 0.2 0 0
4 2 0.8 0.2 0 0 0

Using (3.1) and theorem 3.1 part (c) one verifies that
V={v*€E*|vf =0} 0} > q;+0f; v} =max[080} +020}; v} ]}.

With 0 = v} = v} we get v} > ¢; and v} = max{0.20}; 0}; so V is nonconvex. Note
furthermore, that for f € Sgyg, if f makes “unwise” decisions in states in Q\R(f),
then there do not necessarily exist additive constants such that v(f) € V (cf. theorem
3 of [22], [25] and our theorem 4.1 part (b)). Take the above example and the pure
policy f*=(1, 1,1, 1) with P(f) unichained, and v(f)=(0 0 g3 02¢3)+ a(1 1 1
1)¢ V for any choice of the additive constant a.

Finally, reference [25] provides examples where the choice of additive constants in
v(f) affects the Policy Iteration Algorithm (PIA) (cf. [6], [8], [13]).

III. Properties of maximal gain policies. In this section we give some properties
of maximal gain policies; some of the notions and properties presented here are
related to results in [15], [16], [17], [18].

First, define the maximal gain rate

g*=suwp g(f), i=1...,N. (.1)
SESk
For any v € V, k € K(i), and f € S, define
k. k _ k k., -
b(v); = ¢; ;H,}g;+§P,~jvj v, i=1...,N,
and

b(v, f),;= kg{(,) fub)f=[q(f)— H(f)g* + P(fjo—v]; i=1...,N.

Since g(f) can be interpreted as the average gain rate vector of f for a MRP with
transition probabilities P¥, one-step expected rewards g, and holding times T}, we
know from Derman [9] that there exists a pure policy that attains the N suprema in
(3.1) simultaneously. Hence g* = max;¢;, g(f);- Accordingly define:

Semc ={f € Sp | 8(f) =g}
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and

Semc = {f € Sk 1 g(f) = g*)-
Finally, let:

wi= max Z(N[g(N-Hg'] =l N

f€ Spm

THEOREM 3.1 (Properties of Maximal-Gain Policies).

(2) | € Spuio if and only if g* = P(f)g* and T Plg(f) — H(f)g*]=0.

(b) The functional equations (1.1) and (1.2) always have the solution g = g*, v = w*.
Hence V is nonempty. Also, there exists a policy f € Spyg such that w* = Z(f)[q(f) —
H(f)g*]

(c) In any solution (g, v) of the functional equations (1.1) and (1.2), g = g*, hence g
and each L(i) is unique.

(d) If f is any policy, and if C is any subchain of P(f), then g = constant, i € C.

() (Cf. (15, p. 16, remark 2]). If v € V, then max,¢ ,, b(v)i =0, for every i.

Let f € Sg.

(1) Suppose that k € L(i) for each (i, k) with f, >0 and that for some
v € V, b(v)f =0 for each (i, k) with i € R(f) and f, > 0. Then f € Sgymq-

(2) Conversely, if f € Sgmg, then for each i=1,..., N, f, >0 implies
k € L(i), and for i € R(f), f, > 0 implies b(v)f =0 for all v E V.

PrOOF. (a) As noted in the proof of lemma 2.3, g(f) is the unique solution to the
equations g = P(f)g and (2.9).

(b) Invoking the above mentioned 1nterpretation of g*, we know from theorem 1 in
Denardo and Fox [8] that g* = maxkz P, g* Consider the dlscrete time decmon
model with K(i)) = L(i) = {k | g* =3, P } P" = P;and §*=¢/ -3, Hjg*.

Note that in this model each policy has g( N < 0. Moreover it follows from part (a)
that g(f) =0 if and only if f € Sgmc- Hence the discrete time model has g* = 0 and,

with Spyc = {f € X/ZK() | 8(f) = % = 0=} Spyc, we have:
max Z(Ng(N)~ HPe*l,= max Z(N[7(N-8'], fori=1L....N.

fE€ Semc

Use theorem 4 of [4] in order to prove the existence of a policy f € Spyg for which
w* = Z(Nlq(f) — H(f)g*], as well as the fact that w* satisfies (1.2).

(c) Fix a solution (g, v) to (1.1) and (1. 2) Using property A, a minor modification
of the proof of lemma 4 of [8], shows that g > g(f) for all f € S, with equahty for any
f° such that f x = | for some k maximizing (1.1) and (1.2). Hence g=g"*

(d) Since g* satisfies (1.1), we have P(f)g* < g* for all f € Sg. The assertion then
follows from lemma 2-a in [8].

(e) The first result follows from the very definition of b(v)*

(1) From the definition of b(v)¥, we have v, — 2 P(Nyo=q(f) —
2 H(f); gj* for i € R(f). Multiplying this equation with II( j)k, and sum-
ming over i, we obtain II( f)[q(f) — H(f)g*] = 0. Use this and g* = P(f)g*
in order to apply part (a).

QIlffe SRMG, g* = P(f)g* follows from part (a). Hence f, > 0 implies
k € L(i) and b(v)! < 0. So b(v, f) <0, for any v € V. Since we know from
part (a) that II(f)b(v, f) =0 for f € Sy, it follows that for j € R(f),
b(v, f); =0, ie. f; >0 implies b(v); =0. &

Next define

R* = {i|i € R(f) for some policy f € Spyg)- (32)
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Next we define, for any i € R*, the set K*(i) as the set of actions which a pure
maximal gain policy that has / among its set of recurrent states could prescribe:

K*(i) = {k € K(i) | there exists a f € Spy, Withi € R(f) and f;, = 1},
i€ER". (33)
Finally, select a randomized policy f* with
k|fs>0}= K, e R, 3.4
(k1 /i >0} = L(i), iEQ\R*. (34
Note that the chain- and periodicity structure of a stochastic matrix P merely depends
upon the index set I ={(i, /)| P; >0} of positive entries, rather than upon the
numerical values of the probabilities [P;] themselves. As a consequence, the chain-
and periodicity structure of a randomized policy f is completely determined by the
sets of alternatives the policy uses (i.e. attributes positive weight to) in each of the
states of §2, rather than by specifying the entire tableau of numerical values [f,].
Hence, let n* = n(f*) and let {R**|a =1,..., n*} denote the set of subchains of
P(f*). The following theorem gives a characterization of the sets R*, {R**|a
=1, ..., n*}, the action sets K*(i), i € {2, the integer n*, and the policy f*:
First note that f* € Sgq, in view of theorem 3.1 part (e).

THEOREM 3.2. (a)
K*(i) = {k € L(i) | there exists a f € Sgyc
withi € R(f)and f, >0}, i€ R*, (3.5)
R*={i€Q|i€ R(f), for some f € Sgpmg)- (3:6)

(b) R(f*)= R*, i.e. the set { f € Sgmg | R(f) = R*} is nonempty.
(c) Any subchain of any f € Sgug is contained within a subchain of P(f*), i.e.

n* = min{n(f) | f € Sgmc» with R(f) = R*}. (3.7)
(d) Let Simc = {f € Srmc | R(f) = R*, n(f) = n*}. All f € S§yg have the same
collection of subchains {R** |« =1, ..., n*}.
(e) For any a, 1 < a < n*, g* = g** (say) for all i € R**.
(f) Let RD, ..., R™ be disjoint sets of states such that
(1) if C is a subchain of some f € Sgyg then C C R® for some k,
1<k<m,
() there exists a f € Sgmg with {RW | k=1,...,m) as its set of
subchains.
Then, m = n* and, after (possible) renumbering, R = R** for a =1, ..., n*.
(g) ForanyvE V,
K*(i)= {k € L(i)|b(v)f=0and 3 Pf= 1}, (3.8)
JER™
iER* a=1,...,n"

Proor. (a) Fix a policy f € Sgumg and a state i € R(f), as well as an alternative
k € L(i) such that f, > 0. Consider a policy h satisfying the conditions (a), (b), (c)
and (d) of lemma 2.2. Then, i € R(h) and k € K*(i), whereas h € Sp,q is verified by
theorem 3.1, part (e). Thus the right-hand side of (3.6) is contained within R*, whereas
the reversed inclusion is immediate. Thus having shown (3.6), it follows that the
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right-hand sides of (3.5) are contained within the sets K*(i), i € R* (whereas the
reversed inclusion is immediate).

(b) We show that all states in R* are recurrent under P(f*), i.e. R(f*)D R*
whereas the reversed inclusion is immediate from the definition of R*. Let i € R*,
and assume that state j can be reached from i under P(f*), ie. there exists
(o=1,...,0,=j)with P(f*),, >0for!/=0,...,n— 1 Verify by complete induc-
tion that for all /=0,...,n—1, i, and i,,, belong to the same subchain of some
maximal gain policy, hence i, can be reached from i,,, under P(f*). Conclude that
state i can be reached from state j, under P(f*), so that i € R(f*).

(c) Assume P(f), for f € Sgpmg, has a subchain C™(f) that intersects say the
subchains R*' and R** of P(f*). Then a policy f** with {k|f%*>0}= {k|

% >0)U (k|f, >0} foralli € C™(f), and {k | f1* >0} = {k | f% > 0} otherwise,
is maximal gain, has R(f**) = R*, and its number of subchains is at most n* — I,
since the states of R*' and R** communicate with each other under P(f**). On the
other hand, {k | f£* >0} = {k | f% > 0}, for all i €Q in view of part (a), so that
P(f**) and P(f*) must have the same chain structure, ie. n(f**)=n* which
contradicts n(f**) < n* - 1.

(d) Note that for all f € Sgyg, Y- C™(f) = R* while each C™(f) (1 < m < n¥)
is contained within some set R** (1 < a < n*).

(e) Use the fact that f* is maximal gain, as well as part (d) of theorem 3.1.

(f) Apply property (1) to conclude R** C R*©), Apply part (c) and property (2) to
conclude R %@ C R** (1 < a < n*).

(@ Fixa €{1,...,n*}, iy € R* . First, let k € K*(i) and f € Spyg, With i € R(f)
and f, = 1 and apply part (e) of theorem 3.1 and part (d) of this theorem, in order to
prove that K*(i) is contained within the set on the right hand side of the equality.
Next, take ko € L(io) such that b(v){° =0 and 3 gas Pio = 1. Define f** such that

o

€ i
Y, = land fi* = fi. forall j # iy, k € K()). ébviousfy, all states in R**\{iy} can
reach state i, under P(f**), whereas state i, can only reach states within R**. We
conclude that iy € R(f**) while f** € Sp\g, as can be verified using part (e) of
theorem 3.1., hence k, € K*(i), thus proving the reversed inclusion. a

REMARK 1. A policy f* as defined by (3.4) may be constructed in the following
way: Fix an enumeration f',...,f* of Spyg. For any i€ R*, let 4,={r|i
€ R(f")}. Consider the following equivalence relation on € = {C™(f") | 1 < r < M;
1< m<n(f)): Let C~C’ if there exists {CP=C,CO, ..., CMW=C"} with
COPeCand CONCHD # @fori=1,...,n— L Let f* satisfy: (1) (k | f% >0}
= U,EAi {k | fx >0} =K*(@i) for i € R*; (2) {k | f% >0} = L(i) for i € Q\R*. The
equivalence classes generated by the above defined relation constitute the subchains
of P(f*) since they are closed under P(f*) and since the states belonging to the same
equivalence class communicate with each other. Note that randomization, by coalesc-
ing subchains, is essential for the recurrency properties: in general, there may fail to
exist a pure maximal gain policy f with R(f) = R*, or which achieves the minimal
number n* of subchains.

A finite procedure for calculating R*, n*, the R** and a f* € S§,; is therefore as
follows: use the PIA to find g* and a v € V. Compute Sp(v) = X%, {k € L(i) | b(v)*
=0} = {f € Sy | f achieves the 2N minima in (1.1) and (1.2)} C Spyg- Note from
part (¢) of theorem 3.1 that for all f € Spy there exists a policy & € Sp(v), such that
both policies coincide on R(f). Conclude that R* = {i|i € R(f), for some
f € Sp(v)} (cf. also [17, algorithm on p. 353-359]). Determine {R** |a =1, ..., n*}
as the equivalence classes of the above defined relation, with respect to the set of
subchains of policies belonging to S,(v) (cf. theorem 3.2 part (g)). Finally, select a
policy f* satisfying (3.4), where the sets K*(i), i € R*, are determined using theorem

3.2 part (g).
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IV. Properties of V. Some basic properties of ¥ are given by:

THEOREM 4.1. (Basic Properties of V). (a) V is closed and unbounded, as v € V
implies v+ a1+ a,g* €V, for any scalars a,, a, (where 1 is the N-vector with all
coordinates unity).

(b) (Maximality of relative values). For any v* € V and f € Sy, it is possible to
choose the n(f) additive constants in v(f) such that v* > v(f) with equality for
components in R(f).

(©) (Cf. [3], [15], [16], [21].) v € V if and only if

v,-=fén§’;c{z(f)[‘](f)“H(f)g*]i+1'[(f)vi}, i=1,...,N. (41

In addition, if v € V, then a policy f € Spyg achieves all N maxima in (4.1) if and only
if it achieves the 2N maxima in (1.1) and (1.2).

ProoF. (a) Immediate to verify.

(b) Choose in (2.8) a,, = (7™ (f), v*). From part (e) of theorem 3.1, it follows that
{k | fx >0} C L(i) for each i, hence v* > q(f) — H(f)g* + P(f)v*, which implies,
using theorem 3.1 part (a), lemma 2.1, (2.4) and (2.8):

v* > Z(f)lq(f) — H(f)g*] + TI(f)o*
n(f)
=Z(Hle(NH - H(NHg*] + 2=lam¢"'(f) =o(f)

with equality for components in R(f).

(c) First assume v € V. In part (b) we proved that for any f € Spyg, v > Z(f)
[q(f)— H(Hg*] + II(f)v, with strict equality for f € Sp(v). Hence, v € V' implies
(4.1) and any policy achieving the 2N maxima in (1.1) and (1.2) achieves all N
maxima in (4.1).

Conversely, if v satisfies (4.1), we define

5= max q,."—gH;gjm;P;uj, i=1,...,N, 42)
and show bothd > vand 6 < v, hence s =v € V.

For any f € Spyg, fix = 1 implies k € L(i) by theorem 3.1 part (e); hence using

(4.1), (2.2) and theorem 3.1 part (a):

8> q(f)— H(f)g*+ P(No>[1+ P(f)Z(NH][q(f) — H(f)eg*] + T(f)v
=Z(f)[q(f)—H(f)g*]+H(f)v, f € Semc:

This implies & > v. Let h denote a pure policy in XY ,L(i), achieving all maxima in
(4.2). Then:

v; < 8, =[q(h) — H(h)g* + P(h)v]; i=1,...,N. (4.3)
Multiply (4.3) with II(#) > 0 in order to get 0 < II(h)[q(h) — H(h)g*] < O, the latter
inequality following from (2.9) and g(h) < g*. Hence h € Spyg, by part (a) of
theorem 3.1.

Using lemma 2.1, (4.3) implies v < Z(h)[q(h) — H(h)g*] + II(h)v. Insert this on the
right-hand side of (4.2) and use II(h)[q(h) — H(h)g*] = 0, to obtain:

8 <[ 1+ P(WZ(h)][g(h) = H(R)g*] + TI(hyo
= Z(h)[q(h) ~ H(h)g*] + (k)0
< max (Z(N[q()~ H(NE* ]+ 1)) = v.



316 P. J. SCHWEITZER AND A. FEDERGRUEN

Finally, if f € Spy achieves the N maxima in (4.1), multiply the resulting equality in
(4.1) with Z(f)~' to show that it achieves the N maxima in (1.2), as well as the N
maxima in (1.1), since f;, = 1 implies kK € L(i). This completes the proof. &

Since for f € Sgyg, [1(f); =0 if j& R*, we have by part (c) of theorem 4.1 that
v € V if and only if

o= max (20g()-HgL+ S U] ieRn @9

JER*

o= max (2Dl - HOE)+ S Mgl iemre @)
JF € Semo JER*

Observe that (4.4) involves only (v; | i € R*) and can be studied in isolation. The

(v | i € Q\R¥*) are uniquely determined via (4.5), for any (v; | i € R*). Define now

VR={(v, | i € R*); v, satisfy (4.4)}. (4.6)

THEOREM 4.2. (a)

vi={@lieR)o> Z(g) - B+ 3 WDy,

JER®
foralli € R*,f € S,,MG}. (47)

Hence, V® is a closed, convex, unbounded, polyhedral set.
(b) V is connected.

Proor. (a) Clearly, V'*® is contained within the polyhedron that is defined in the
right side of (4.7). Conversely fix i € R* and h € Spyg with i € R(h). Then, by
multiplying the inequalities in (4.7) with TI(h) > 0, we obtain v; = Z(h)[q(h) — H(h)
g*li + e re II(h),v;; hence (4.4) holds. The unboundedness of ¥ is proved as in
theorem 4.1.

(b) The assertion follows by showing that for any v, 6 € ¥, the curve {v(A) |A
€ [0, 1]} with parameter representation: v(\); = Av; + (1 = N)5,, i € R* and

o= max [ Z(0la() ~ H(DE)+ S (e,
f€Semc jER*
for i€ R*, connects v with ¢, lies within ¥ as a consequence of (4.5) and part (a), and
is continuous, since all its components are continuous functions of A. &

We already saw that ' may not be convex. The following theorem gives a necessary
and sufficient condition for the convexity of V.

This property is especially important when considering MRPs, where for several
quantities of interest (e.g. the optimal bias vector) variational characterizations may
be obtained of the nature: max,.,[c + Bv] (where ¢ and B are expressions in g/, Pi;.‘
and H,.j'.‘) and the latter is a linear program if and only if ¥ is convex.

THEOREM 4.3. V is convex if and only if for each i € Q — R* there exists an
alternative k(i) € L(i), such that for all v € V:
o= gt =3 Hif0gx+ 3 P¥Op, (4.8)
J J
Moreover, V is convex if and only if it is a polyhedron.

ProOF. We first observe that for any i € R*, there is a h € Spyg, With i € R(h),
hence by part (e) of theorem 3.1 there exists an alternative k(i) € L(i) with b(v)®
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=0, for any v € V. Thus (4.8) always holds for i € R*. Suppose it holds for i € Q\R*
as well. Then the functional equations (1.2) are equivalent to the linear (in)equalities
b(v)f@=0 for i=1,..., N and b(v)* <0 for k € LG)\{k(i)} and i=1,..., N,
Hence V' is a convex polyhedron.

Conversely, suppose V is convex. Assume to the contrary that there exists a state
i € Q\R* and a finite set of v™s in ¥, such that no k € L(i) achieves the maximum
in (1.2) for all v, However, since V is convex, it is immediate to verify that a
k € L(i) achieving the maximum in (1.2) for a positive convex combination © of the
vs, achieves the maximum in (1.2) for each v™. g

REMARK 2. Condition (4.8), hence convexity of ¥, holds trivially if (1) R* =, or
(2) L(i) is a singleton for each i € 2\ R*, or (3) there is only one maximal gain policy
or (4) n* = 1, since in this case v € V' is unique up to a multiple of 1 (cf. remark 3).

For discrete time Markovian decision processes, where Hij’.c = 8,.]., the value iteration
equations take the form:

o(n+1),= max {q/‘ + 3 Pfo(n) j}, 4.9)

with v(0) a given vector.
It is well known that {v(n) — ng*};_, may fail to converge. In a forthcoming paper
[24] it will be shown that there exists an integer J such that

0= fim (o(n +1),= (1 + 1)g?)

exists for all i, with u“*/) = 4 (previous proofs in [5] and [15] are both incorrect; cf.
[24]).

Accordingly, define ¢ as the Cesaro-limit of the sequence {v(n) — ng*}>_,. Ex-
ample 1 with v(0)=[1 0 1 0.6] shows that in general 5& V (v(2n), = 1; v(2n + 1),
=0; v2n),=0; v2n+1),=1; v(n);=1; v(2n),=0.6; v2n+1),=0.8; 5=[05
0.5 10.7]1¢ V).

The relation between ¢ and V is as follows:

THEOREM 4.4. (a) {; |i € R*} € VR,
(b) There exists a vector v € V, such that v < © with equality for components in R*.

Proor. Note that for all i € Q:

(r+1)— k * k,,(r)
U = max K _ o¥ 4 Phy! ,
i ke L(i) [q: 8i % iy }

since for all n sufficiently large the maximizing alternatives in (4.9) belong to L(i) as
observed in [5] and [15].
Since © = (1/J)X7/Z, u®, we obtain by averaging over r =0, ...,J — I:

5>qf—gt+ 2P, i=1,...,Nandk € L(i).
J

Take any f € Spyg to obtain: © > g(f) — g* + P(f)s, and hence, using lemma 2.1:
0 > Z(Hlg(f) — g*1 + II(f)©, with equality for i€ R(f). This implies: & >
maxses, {Z(f)q(f) — g*] + II(f)t} with equality for components in R*. Using
(44) and (4.5) we obtain that the vector v defined by (1) v, =17, i € R* and (2)
oy =maxees,  AZ(NG(f) = g*l; + Z,er- IL(N);0;} for i € Q\R*, belongs to ¥ with
v < ¥ and equality for components in R*. g

V. The n* degrees of freedom in V. In this section we show that the convex
polyhedral set ¥'® has dimension #* and that its elements, and hence V, are fully
determined by n* parameters (y,, . . ., y,.).



318 P. J. SCHWEITZER AND A. FEDERGRUEN

Romanovsky [20] obtained the same result for the functional equations that arise in
discrete time Markov models with g* = ( g*)1. In addition, as our methods involve
the chain structure, a fuller characterization of the parameter space is possible.

The key observation is that any two vectors v% & € V have the property: &, — v?
= constant = y, for i € R**, a=1,..., n*. By fixing v° € V and picking these n*
constants, one thus determines (¢, | i € R*) and hence ¢ by (4.5) in terms of v°.
Hence, by fixing v° and sweeping out all permitted values of y, we sweep out all
vectors © in V. In particular (5.1) below shows that & is a convex piecewise linear
function in y.

THEOREM 5.1.  Let v € V. The following are equivalent:
@Qo+xel,

(b) x; =max,c, [b(o)f +3, Pfx), i=1,...,N,

(© x;=maxseg  [Z()b(v, /) +1(f)x],, i=1,...,N,
(d) there are n* constants y = (y,, . . ., y,) satisfying

Yo IER*a=1... %

Z(f)bo. ), + 2( S 10, P

JER*E

i max , i € Q\R*, G
PM

fe

Ya > Z(f)b(v, f); + 2 ( 2 H(f).;))’p,

JER*E

a=1,...,n% i€R* fESps (52)

PrROOF. (a)e(b): (b) is the requirement that v + x € V.

(a)«(0): Cf. (4.1) and the definition of b(v, f).

(a)=>(d) Take f € SRMG As v, v+ x € V, we have from part (e) of theorem 3.1:
= [q(f) H(j)g + P(f)v] and (v + x), = [q(f) H(j)g* + P(j)(v + x)); for all
i € R* = R(f). Subtraction yields: x, = [P(j)x] = [[I(f)x]; = (7*(f), x) for i € R**,
which proves the first part of (5.1). Moreover this implies the remainder of (d), using
(4.4) and (4.5) and the definition of b(v, f).

(d)=(a): Use (4.4), (4.5) and the definition of b(v, f). 1

Fix v € V. Define the set of allowed constants

Y(v)={y € E™ | y satisfies (5.2)}.
Note that,
Z(f)b(v, f) <0 forall f € Spyc (5.3)

(5.3) follows from lemma 2.1, with x = 0, using b(v, f) < 0 and II(f)b(v, f) =0 (cf.
theorem 3.1 parts (d) and (e)).

Clearly, by (5.3), (5.2) is automatically satisfied for (a, i, f) with ;¢ gea TI(f),; = 1.
We accordingly define:

K@= {(N1iER"fESpe T TN, <1). a=li...m
JER®
and make the partition {1,2,...,n*)=E U F, where E={a|K(a)=0)}, F=
{a] K(@) # B},
For§{=(,f)e K(a), define

#=[2(Hb(w.N], and Ph= T I(f),

JER*E
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Note that ¢ < 0, P > 0, - | Pf =1, P <1 forall a €F, and ¢ € K(a). Then
Y (v) consists of all y E E"™ satlsfymg

Ve > g+ Bg_lﬁjﬁy,,, a € F, t€K(a) (5.4)

In order to show that Y(v) is an n*-dimensional polyhedral set, we need the
following discrete time Markovian model with state space {1, . n*}: Fora € F, let
K(a) be the set of feasible decisions. For ¢ € K(a), let qa and Pf denote the
associated one-step reward and transition probabilities (we already noted that P‘E
>0, 3P =1).

For a € E, add a decision £, to the empty K(a) with g = —1and Pf;} 8,p- Let @
denote the set of pure policies. For ¢ € @, the quantities §(¢), P(<p) H((p) and Z~(q>)
are defined analogously to q(f), P(f), II(f) and Z(f) for f € S,. Also let { g¥} be the
maximal gain vector for the new process. Note that §(¢) < 0 for any ¢ €@, s0 ¥ <0
for all a. Also g¥ = —1 for a € E, since each state a € E is a trapping state for P(g),
for all ¢ € ®@. The following lemma characterizes the subchains of P(¢) on F:

LEMMA 5.2 (Properties of subchains of ﬁ((p) on F) Fix vE€ V. Assume F # Q.
Suppose for some policy ¢ € ®, P(@) has a subchain C C F. Then

(@) C has at least two members,

(b) §(9), is strictly negative for at least one a € C.

ProoOF. (a) Part (a) follows from P f < forany a € Fand §{ € K (a).

(b) Let policy ¢ use action (i(a), f(a)) € K(a) for each a € C. For a € C, define
S(a) = {j | P(f(@))iay >0, for some n=0,1,2,...}. Note that i(a) € S(a) and
that:

a € C,i € S(a) imply P(f(a));> 0 onlyif j € S(a). (5.5)

Now assume to the contrary that for each a € C, 0= §(9), = Z(f(2))b(v, f(2));(y
Since f(a) € Spygs b(v, f(@)) < 0 with equality for components in R(f(a)). Hence,
using (2.3),

0=4(9),

= 5 Z(f(@),q, (v (@),
JER(f(2)

= 2 2 [P(f(o‘))],(a)J b(v, (0‘))
JER(f(@)) n=0

where the interchange of ¥, and lim,,, is justified by the monotone convergence
theorem. Hence:

b(v. f(a)),=0 forj€E S(a), a € C. (5.6)

We now exhibit a policy f° € Spyg With the contradictory properties that R® =
UaEC [R** U S(a)] is closed under P(f°) while every state in R is transient for
P(f).

Consider a policy f* € Sgyg- Define f° as follows:

Initially, for i € R* set {k|f%>0)={k|f%>0). Then for i € S(a) add
{k | f(a)y >0} to {k|f2>0}. Finally, for i € Q\R", set {k|fe>0}=(kE
L(i) | b(v); =0}.

From (5.6), the definition of f* in combination with theorem 3.1 part (e), and the
definition of f° on Q\R? it follows that f{ >0 implies b(v)¥ =0, for all i, hence

fo € Sgmc-
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For i€ R’ (5.5) and the fact that f* € Skyq imply that P(f%), >0 only for
j € RY hence, R? is closed under P(f°).

As 3 g pea II(f(@));(qy > 0, there exists a j&R**, and an integer n > 1, with
P(f(a))iay > 0 and so P(f%, > 0. Hence i(a) € R** is transient under P(f°), since
the subchains of a maximal gain policy are all contained within a single R*# (cf.
theorem 3.2 part (c)).

Now, observe that for each a € C, all states in R** communicate with i(a) € R**
for P( fo), since they communicate with i(a) for P(f*). However, this implies that
each state in U . R** is transient, since a transient state cannot be reached from a
recurrent state.

It remains to be proved that each j € S(a) (a € C) is transient for P(f°):. Fix
Jj € S(a), a € C. Since f(a) is maximal gain, there is a state r € R*#, for some B,
such that P(f(a)); >0, for some m > 1. Hence P(f")] >0. Let n be such that
P(f(@))ay > 0. Finally B € C follows from

P(9)ag> TI(f(@)),0y,= [ P(S(@) TI(f(@)) ]y,
> P(f(a))?(a)jn(f(a))jr> 0

and the fact that C is a subchain if P(g). This implies that r is transient for P( £ and
so is j, since a transient state cannot be reached from a recurrent state.
Together part (b) of lemma 5.2 and the choice of §% = —1 for a € E imply:

gx <0 fora=1,...,n* (5.7)

THEOREM 5.3 (Cf. theorem 3 of [20]). Fix v € V. Given any { y, | a € E} there exist
{ya | « € F} such that the following strict inequalities hold.:

Vo> Gt + le Piys foralla € F, £ € K(a). (5.8)

ProOF. It suffices to show that there exists a solution y° to (5.8) for some
{»?| a € E} since a solution for any { y, | a € E} is then obtained by first adding a
large positive constant to every y,, and then reducing {y, |« € E} to the desired
magnitudes, thereby strengthening the inequalities (5.8).

Since o= —1 and Pfo =1, for a € E, the solution set to (5.8) is not altered by
adding the inequalities y, > gi°+ 35_, P3ys o € E. Now assume to the contrary,
that the solution set of (5.8) is empty. Then for the LP-problem:

min Z subject to

n*
ya+Z>§f+lePfop, a=1,...,n* € K(a),

we have min Z > 0, which according to theorem 2 of [19], implies max,_,  ,.g¥
> 0. This contradicts (5.7). 1

Since the solution set to (5.8) is open, for any y satisfying (5.8), there exists a § > 0,
so that |y — y’| < & implies y" € Y(v). Hence the n* parameters (y,, . . ., ,.) may be
chosen independently over some (finite) region. ¥ and V' ® have exactly n* = |E U F|
degrees of freedom of which |E| are globally independent and |F| are only locally
independent. Examples can be constructed where E (or F) can be empty; e.g. F is
empty if n* = 1. Finally note:

REMARK 3. n* =10 € V is unique up to a multiple of 1.
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