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THE ASYMPTOTIC BEHAVIOR OF UNDISCOUNTED 
VALUE ITERATION IN MARKOV DECISION 

PROBLEMS*t 

P. J. SCHWEITZER** AND A. FEDERGRUEN*** 
This paper considers undiscounted Markov Decision Problems. For the general multichain 

case, we obtain necessary and sufficient conditions which guarantee that the maximal total 
expected reward for a planning horizon of n epochs minus n times the long run average 
expected reward has a finite limit as n -* oo for each initial state and each final reward vector. 
In addition, we obtain a characterization of the chain and periodicity structure of the set of 
one-step and J-step maximal gain policies. Finally, we discuss the asymptotic properties of 
the undiscounted value-iteration method. 

1. Introduction. The value-iteration equations for undiscounted Markov Deci- 
sion Processes (MDPs) with finite state- and action space, were first studied by 
Bellman [2] and Howard [6]: 

v(n + 1)i= Qv(n), i = 1,..., N, (1.1) 

where the Q operator is defined by: 

N 

Qxi= max ik + P'xj , i= 1,...,N, (1.2) 
E K(i) 

y i 

and v(O) is a given N-vector. 0 = {1, ..., N) denotes the state space, K(i) the finite 
set of alternatives in state i, q/k the one-step expected reward and P, > 0 the transition 
probability to state j, when alternative k E K(i) is chosen in state i (i = 1, . .., N). 

For all n = 1, 2, . . . and i E 1, v(n)i may be interpreted as the maximal total 
expected reward for a planning horizon of n epochs, when starting at state i and given 
an amount v(O)j is obtained when ending up at stage j. Bellman [2] showed that if 
every PJ is strictly positive, then v(n)i - ng*, n -- oo, the scalar g* being the maximal 
gain rate and Howard [6] conjectured that there generally exist two N-vectors g* and 
v*, such that 

lim v(n) - ng* - v* = 0. (1.3) n--->oo 

Although Brown [3, theorem 4.3] showed that v(n) - ng* is bounded, provided g* is 
taken as the maximal gain rate vector, the limit in (1.3) may not exist for arbitrary 
v(0) if some of the transition probability matrices (tpm's) are periodic. The identifica- 
tion of sufficient conditions for the existence of the limit in (1.3) is of particular 
importance: 

(a) when considering the infinite horizon-model with the average return per unit 
time criterion, as an approximation to the model where the planning horizon is finite 
though large. 

* Received August 4, 1976; revised July 5, 1977. 
AMS 1970 subject classification. Primary 90C40. 
IAOR 1973 subject classification. Main: Markov Decision Programming. Cross Reference: Dynamic 
Programming. 
Key words. Markov Decision Problems; average cost criterion, chain and periodicity structure, asymptotic 
behavior: value-iteration method. 
t This paper is registered as Math. Center report BW 44/76. 
** I.B.M. Thomas J. Watson Research Center and University of Rochester. 
*** Foundation Mathematisch Centrum, Amsterdam. 

360 
Copyright ? 1978, The Institute of Management Sciences 



UNDISCOUNTED VALUE ITERATION IN MARKOV DECISION PROBLEMS 

(b) for the case N > 1, where the value-iteration method is the only practical way 
of locating maximal-gain policies. If the limit in (1.3) exists, then a generalization of 
Odoni [10] shows that any policy achieving the maxima in (1.1) for large n is maximal 
gain. However, if the limit in (1.3) fails to exist, then example 4 in Lanery [7] shows 
that policies achieving the maxima for large n in (1.1) need not be maximal gain. 

Sufficiency conditions for the existence of the limit in (1.3) have been established 
by White [17] and Schweitzer [12], [13] in the unichain case, where g* = g* (say) for 
all i E [. 

Related convergence results for MDPs with compact action spaces, the denumer- 
able and general state space case and for continuous time Markov Decision Processes 
were obtained in respectively Bather [1], Hordijk, Schweitzer and Tijms [5], Tijms [16] 
and Lembersky [8]. 

In this paper we establish the weakest sufficient condition. It holds for the general 
multichain case, and states that the limit in (1.3) exists for every v(O) E EN, if and only 
if there exists a randomized maximal gain policy whose tpm is aperiodic (but not 
necessarily unichained) and has R* = {i E Q 1 i is recurrent for some pure maximal 
gain policy) as its set of recurrent states. 

In addition, we show that in general the sequence {v(n)- ng*})'L is asymptoti- 
cally periodic, i.e. there exists an integer d* (which merely depends upon the chain- 
and periodicity structure of the maximal gain policies), such that 

lim v(nJ + r) - (nJ + r)g* exists for all v(0) E EN (1.4) 

if and only if J is a multiple of d*. 
The sufficiency parts of the above mentioned results were treated in Lanery [7]. 

However, it appears that the proof of proposition 19 in [7] from which the main result 
is derived, is either incomplete or incorrect (Note 1). 

Moreover, our methods use the set of all randomized policies, and involve the 
analysis of the chain- and periodicity structure of the one- and J-step (randomized) 
maximal gain policies (J > 1). This enables a full characterization of the asymptotic 
period. 

In ?2, we give some notation and preliminaries. In ?3, we analyze the periodicity 
structure of the maximal gain policies, while in ?4 the chain- and periodicity-structure 
of the multi-step maximal gain policies is characterized. In ?5, we obtain inter alia the 
above mentioned results with respect to the asymptotic periodicity, and the necessary 
and sufficient condition for the existence of the limit in (1.3) for all v(0) E . 

Finally, we show how the behaviour of the various sequences {v(nJ + r) - (nJ + r). 
gi*} (r = l,. .. J; i = 1,.. , N) interdepends. 

2. Notation and preliminaries. A (stationary) randomized policy f is a tableau 
[fik] satisfying fik > 0 and k eK(o)fik = 1, where fik is the probability that the kth 
alternative is chosen when entering state i. 

We let SR denote the set of all randomized policies, and Sp the set of all pure 
(nonrandomized) policies (i.e. each fik = 0 or 1). Associated with each f E SR, are an 
N-component reward vector q(f) and N x N-matrix P(f): 

q(f)i= Y fikq i; P(f)ij= fjkPJ, 1 < i,j < N. (2.1) 
kEK(i) kEK(i) 

Note that P(f) is a stochastic matrix (P(f), > 0, yj=_ P(f)i = 1; 1 < i,j < N). For 
anyf E SR, we define the stochastic matrix 1n(f) as the Cesaro limit of the sequence 
{ P(f)) 1 , which always exists and has the following properties: 

P(f)n(f) = r(f)= nI(f)P(f). 
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Denote by n(f) the number of subchains (closed, irreducible sets of states) for P(f). 
Then: 

n(f) 

nI(f)= 2 )m(f)srm(f ) (2.3) 
m= 1 

where r7m(J) is the unique equilibrium distribution of P(f) on the mth subchain 

Cm(f), and 7m(f) is the probability of absorption in Cm(f), starting from state i. Let 
R(f) = (j I 1n(f)j > 0}, i.e. R(f) is the set of recurrent states for P(f). 

Let dm(f) > 1 denote the period of Cm(f), and let {Cm' (f) I f/ = 1, .. . dm(f)) 
indicate the set of cyclically moving subsets (c.m.s.) of Cm(f) numbered such that for 
any m = 1, ... , n(f) and f = 1,..., dm(f) (cf. [11]): 

i E Cm't (f) = P(f)i > 0 only ifj E Cm' +3(f) (2.4) 

with the convention that hereafter /8 in Cm' 0(f) is taken modulo dm(f) e.g. Cm' 1+ l(f) 
Cm, I(f) if P- dm(f). 

For all i E Cm(f): 
dm(f) =greatest common divisor (g.c.d.) of {n I P(f)i > 0) 

=g.c.d. {n I there exists a cycle (so = i, s1,..., sn = i) for P(f)} (2.5) 

where (so = i, s, . . ., sn = i) is called a cycle for P(f) if P(f)1s,+, > 0 and if all the sl 
are distinct (I = 0,. . ., n - 1). 

lim pndm(f)+r (f) > 0, for all i E Cm P(f) andj E C m'+r(f) 

(r=1,2,...). (2.6) 
For each f E SR, we define the gain rate vector g(f) = H(f)q(f), such that g(f)i 
represents the long run average expected return per unit time, when the initial state is 
i, and policy f is used. We thus have 

n(f) 

g(f)= 2 mi(f)gm(f), i )E , (2.7) 
m=1 

with 

gm(f) = (rm(f), q(f)), m=l,..., n(f). 

Next define: 

g* = sup g(f)i; i= 1, ..., N. (2.8) 
f E SR 

Since Derman [4] proved the existence of pure policies f which attain the N suprema 
in (2.8) simultaneously, we can define: 

SPMG = {f E Sp I g(f) = g*; SRM = f E SR I g(f)= *} (2.9) 

as the set of all pure, and the set of all randomized, maximal gain policies. 
Finally define R* as the set of states that are recurrent under some maximal gain 

policy: 

R* = {i I i E R(f) for somef E SRMG). 

The following lemma which was proved in Schweitzer and Federgruen [14, theorem 
3.2] provides a basic characterization of this set: 
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LEMMA 2.1. (a) R* = {i I i E R(f) for some f E SPMG}. 
(b) The set {f E SRMG I R(f) = R*} is not empty. 
(c) Define n* = min{n(f) f E SRM wit R(f) = R* and SRMG = (fE SRMGI 

R(f)= R* and n(f)= n*). 
Fix f* E S*MG. Any subchain of any f E SRMG is contained within a subchain of 

P(f*). 
(d) Allf* E SSRMG have the same collection of subchains {R*", a = 1, . . , n*). 
(e) For any a E {1,..., n*}, g*g* (say) for all i E R*a. 
(f) Let R (1), .. ., R (m) be disjoint sets of states such that 

(1) if C is a subchain of some f E SRMG, then C C R (k), for some k, 1 < k < m; 
(2) there exists an f E SRMG, with R (k) I k = 1, .. ., m) as its set of subchains. 
Then m = n* and after renumbering R () = R*, a = 1 . . . , n*. 

Define the operator T by 

Tx= max {qk + P .X i= 1,..., (2.10) 
k L(i) \ j 

where 

L(i)= k E K(i) g,=* PJkgJ}, forall i 2. 

Let Q"(and T") denote the n-fold application of the operator Q(T): 

Qnx = Q(Qn"-x); T"x = T(T"-x); n = 2,3,...and x c E 

(with Q x = Qx and T'x = Tx). 

The basic properties of both operators were studied in Schweitzer and Federgruen 
[15]. In particular, it was shown that the Q operator reduces to T in the following two 
ways: 

for each x E EN, there exists a scalar to(x), such that Q"(x + tg*) (2.11) 
= T'(x + tg*) for n = 1, 2, . . . and t > to(x) (cf. [15, lemma 2.2 part (c)]), 

for each x E EN there exists an integer no(x) such that Q +lx = T(Qnx) (2.12 
= Tn+ l-n(x)Qn(x)x, for all n > no(x) (cf. [3] and [15, lemma 2.2 part (c)]). 

We next consider the functional equation: 

v + g* = Tv. (2.13) 

Let V= {v E EN I v satisfies (2.13)} and define for any v E V: 

N 

b(v)ik 
= q g + P - i, i E 2, k E K(i), 

j=i 

b(v, f)i = kb(v)k = [q(f)- g* + P(f)v- v]i, i E , f E SR. (2.14) 
kEK(i) 

Observe that for all v E V, maxkEL) b(v)k = 0, for all i E S2. Finally, we define for 
any i E R*, the set K*(i) as the set of actions which a pure maximal gain policy that 
has i among its recurrent states, could prescribe: 

K*(i) = {k E K(i) I there exists anf E SPMG, with i E R(f) andfik = 1). (2.15) 

The following lemma gives the necessary and sufficient condition for a policy to be 
maximal gain, characterizes the sets K*(i) and shows that any policy that randomizes 
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among all actions in K*(i), in each of the states in R*, and among all actions in L(i) 
for the states in S - R*, belongs to SRMG: 

LEMMA 2.2. (a) Fix v E V. A policy f E SR is maximal gain (i.e. f E SRMG) if and 
only if 

(1) for all i E , fk > 0= k E L(i), i.e. P(f)g* = g*; 
(2) for all i E R(f),fik > 0= b(v)k = O, i.e. H(f)b(v,f) = 0. 
(b) K*(i) = {k E L(i) I there exists an f E SRMG, with i E R(f), and f,k > 0}, 

i E R*. 
(c) For any v E V, K*(i) (k E L(i) I b(v) = 0 and n jeR*. Pk = 1), for all i 

E R*0, a = 1, n*. 
(d) Define f* E SR such that 

*(i), iE R*, 
(k If >0 } L(i), i GE - R*. 

Then f E SMG. 

PROOF. (a) cf. theorem 3.1, part (a) in [14]. 
(b) Clearly, K*(i) is contained within the set on the right-hand side. Next, fix 

i E R*, k E K(i) and f E SRMG, such that i E R(f) and fik > 0, and use lemma 2.1 in 
[13] in order to show that there exists an h E SPMG, with i E R(h), and hik = 1 as well, 
which proves the reversed inclusion. 

(c) Fix a E (1, . . ., n*, io E R*a. First, let k E K*(i) andf E SRMG, with i E R(f) 
and fk > 0, and apply part (a) of this lemma, and part (c) of lemma 2.1, in order to 
prove that K*(i) is contained within the set on the right-hand side of the equality. 
Next, take ko E L(io) such that b(v)?o = 0 and XjeR. P/o- = 1, and fix f* E SMG 
Define f** such that 

f io= 1, and fj* = fk, for all/j io, k E K(j). 

Use part (d) of lemma 2.1, in order to show that all states in R*\{ io} can reach state 
io under P(f**) whereas state io can only reach states within R*a. We conclude that 
io E R(f**), while f** E SRMG, as can be verified using part (a) of this lemma, thus 
proving the reversed inclusion. 

(d) Cf. remark 1 in [14]. * 
We finally need the following lemma: 

LEMMA 2.3. (a) Fix f', f2 E SR, and let C' and C2 be two subchains of P(fl) and 
P(f2) with period d' and d2 respectively, such that C' n C2 0). Define f3 such that 

{k If2k>0} foralli C2\C1, 

k I > 0} = {k fi > 0}{kIf | > 0} foralliEC'n C2, 

{k fi > 0) otherwise. 

Then 
(1) C' U C2 is a subchain of P(f3), the period d3 of which is a common divisor of d' 

and d2. 
(2) If f, f2 E SRMG, then f3 E SRMG 
(b) For any f E S,, define the set of pure policies Sp(f) = XieS{k I fik > 0). 
Then for all m= 1, . . ., n(f): 

dm(f) = g.c.d. {dr(h) I h E Sp(f), 1 < r < n(h), Cr(h) C C'(f)). 

364 

(2.16) 



UNDISCOUNTED VALUE ITERATION IN MARKOV DECISION PROBLEMS 

PROOF. (a) (1) Show that C' U C2 is a closed and communicating set of states for 

R(f3). The former is immediate; the latter holds since any state in Cl n C2 com- 
municates with C' U C2. Fix i E C' n C2. Since (n I P(f3), > 0) 2 (n I P(fl) 
> 0O u (n i p(f2)n > 0), it follows (cf. (2.5)) that d3 = g.c.d. {n I P(f3) > O0 is a 
common divisor of d' and d2. 

(2) Observe that for each i E S2, f/k > 0 only for k E L(i) since it follows from 
lemma 2.2 part (a) that fi > 0 and f2 > 0 only for k e L(i). Using the fact that 

R(f3) C R(fl) U C2, and applying lemma 2.2 part (a2) one verifies that f3 E SRMG. 
(b) Fix m E (1, .. ., n(f)) and h E Sp(f). Since Cm(f) is closed under any policy 

in Sp(f), P(h) has a subchain Cr(h) C"(f) (1 < r < n(h)). Since P(h)i > 0 only if 
P(f)i > 0, and since i E Cm(f) implies that P(f)'. > 0 only if t is a multiple of dm(f), 
it follows that for i E Cr(h), P(h)t, > 0 only if t is a multiple of dm(f). Thus (2.5) 
implies that the left-hand side of (2.16) is less than or equal to its right-hand side. To 
prove the reversed inequality in (2.16) fix i E Cm(f) and recall from (2.5) that 

dm(f) = g.c.d. {n I there exists a cycle (so = i, ... , = i) of P(f)}. (2.17) 

We next show that 

for each cycle S = {s = i, s,, ..., = i) of P(f), there exists a pure 2.18 
policy h E Sp(f) which has i recurrent and contains the same cycle. ( 

As a consequence, we obtain that each of the elements in the set to the right of 
(2.17) is a multiple of the period of a subchain of a pure policy that lies within Cm(f), 
thus proving the reversed inequality in (2.16) and hence part (b). 

In order to show (2.18), construct the policy h E Sp(f) as follows: Let hsk = 1 for 
any one k such that fsk > 0 and pk, > 0 ( = 0, . . ., n - 1); for j Cm(), let 
hk = 1 for any one k such that jk > 0. If S # Cm(f), let A initially be equal to S, and 
define A = Cm(f)\A. 

Next, the following step is performed: Choose a state j E A and an alternative k 
such that fjk > 0 and P > 0 for some t E A, transfer j from A to A and define hjk = 1. 
Such k and t can always be found since all states in Cm(f) communicate under P(f). 
Repeat this step for the new A and A, until A is empty. This construction shows that S 
is a cycle for P(h), with i E R(h) since i can be reached from any state in Cm(f), and 
Cm(f) is closed under P(h). * 

REMARK 1. The period d3, defined in part (a) of the previous lemma, does not 
necessarily have to be the greatest common divisor of d' and d2. Take 

010 001 
P(f')= 001 and p(f2)= 100 

100 010 

with d' = d2 = 3 and d3 = 1. However, it can be shown that d3 = g.c.d.{dl, d2) does 
hold when P(f') and P(f2) merely differ in one row, the corresponding state being 
recurrent for both chains (cf. part (b)). 

3. The periodicity structure of the policies in SRMG. We first define 

d(a) = min(dm(f) If E SRMG, 1 < m < n(f), cm(f) c R*}), 

a= ,...,n*, (3.1) 

d = min{dm(f) If E SRMG, 1 < m < n(f), i E Cm(f)), 
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i.e. d(a) [di] denotes the minimum of the periods of the subchains of the maximal gain 
policies that lie within R*G [that contain the state i]. Let f* E SMG be defined as in 
lemma 2.2 part (d), i.e. let 

K*(i), i R*, 
{k If* > 0} = L() i R* ik ? 

t(i), i E\R*. 

For each a = 1,. . ., n* and t = 1, . ... , da(f*) let R*a t = Ca t(f*) with the conven- 
tion that hereafter t in R*a't is taken modulo da(f*) (e.g. R*a'= R*' 1 if t = 

da(f*) + 1). 

THEOREM 3.1 (PERIODICITY STRUCTURE) (CF. LEMMA 2.1). (a) da(f*)= d(a), a 
= l,...,n*. 

(b) Fix a E {1, ..., n*). Let h E SRMG and Cm(h) c R*a. Then dm(h) is a multiple 
of d(a). 

(c) d(a)= g.c.d. {dm(f) I f SMG, 1 < m n(f), Cm(f)C R*), a= 

1,..., n*. 
(d) d = d(a) for all i E R*, a = 1, .. ., n*. 
(e) d(a)= min{da(f) fESMG}, a = 1,.. .,n* 
(f) The set SRMG = fE SRMG d (f)= d(a), a 1, ..., n*} is nonempty. 
(g) For each i E R*, say i E R*a' (1 < a < n*; < t < d(a)) and k E K*(i): 

PJ > O?j E R*a't+l 
(h) For each h E SRMG, and i E R(h) n R*at (1 < a < n*; 1 < t t< d(a)) P(h)i > O 

only for j E R*'t+' n R(h). 
(i) Fix h E SRMG, with Cm(h) C R*a (1 < m < n(h); 1 < a < n*). Cm(h) has dm(h) 

/d(a) c.m.s. within each of the sets R**at (1 < t < d(a)). 
(j) All f E SR*M have the same collection of c.m.s. {R** a = 1,. .., n*; t 

= 1,.. . , d(a)). 
(k) Let R (), .. ., R (M) be disjoint sets of states, such that 

(1) If C is a c.m.s. of some subchain of some f E SRMG, then C C R (k) for some k, 
1 < k < M. 

(2) There exists a f E SRMG, with {R(k) k = 1, . . ., M) as its collection of c.m.s. 
Then M = Y. d(a) and there is a one-to-one correspondence between the sets 

{R(k) I K= 1,..., M) and the sets {R*a't I a = 1, .. , n*; t = 1, . . ,d(a)}. 

PROOF. (a),(b) Fix a E {1, .. ., n*} and let h E SRMG, with Cm(h) C R*a (for 
some m, 1 < m < n(h)). Define f** such that 

{k I f* > o} {k i h,k >0} U (k I f*k > 0), foralliE Cm(h), 
ik I 

{k lfk > 0, otherwise. 

It then follows from the definitions of the policy f* and the sets K*(i) (cf. lemma 2.2 
part (b)) that 

K*(i) for i E R*, 
{kf* > } = L(i) for i E 2\R* 

which implies that f* and f** have the same chain- and periodicity structure. In 
particular, d"(f**)= da(f*). On the other hand, applying lemma (2.3), part (a), it 
follows that da(f**) is a divisor of dm(h), hence 

d'(f *) divides d (h), (3.3) 

so that 

d(a) < d'(f*) < min{dm(h) I h E SRMG, 1 < m < n(h), Cm(h) C R*} = d(a). 
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This proves part (a), whereas the combination of part (a) and (3.3) proves part (b). 
(c) Use the fact that d(a) = da(f*); apply lemma (2.3) part (b), and use the 

definition of the sets K*(i). 
(d) Fix i E R*a. Clearly di > d(a) (cf. (3.1) and (3.2)) and use part (a) to show 

di < d(a) as well. 
(e),(f) immediate from part (a). 
(g) Observe that P(f*)ij > 0 j E R*a"t+l (cf. (2.4)) and use lemma 2.2 part (d). 
(h) Use the fact that hik > 0 only for k E K*(i) (cf. lemma 2.2 part (b)) and apply 

part (g). 
(i) Recall from part (b) that d"(h) is a multiple of d(a). Take i E Cm' (h), assume 

i E R*a' (1 < t < d(a)) and fix s E (0,..., d(a) - 1). In view of part (h), we obtain 
for r = 0,..., dm(h)/d(a)- 1: 

p(h)ndm(h)+rd(a)+s> 0 only forj E R*at+s; n = 1, 2,... 

Since limn, P(h)dm(h)+r (a)+s > 0 for all j E Cm' rd(a)+s+ (h) (cf.(2.4)) we conclude 
that Cm' rd()+s+ l(h) C R*a't+s for r = 0, ..., dm(h)/d(a) - 1 which proves part (i). 

(j) Letf E SRMG and fix a E (1, ..., n*. It follows from part (i) that each of the 
sets R*a't(l < t < d(a)) contains exactly one c.m.s. C"'S(f) (for some 1 < s < d(a)) 
of P(f). 

Since R* = d(a " () Ca, 
s U d) Ra,, we conclude that for any 1 < s < d(a): 

Ca,'(f) = R*a't for some t = t(s) 

which proves that all f E S**G have the same collection of c.m.s. 
(k) Apply property (1) to conclude that R*a" R(k(a,t)) for a = , ..., n*; t 

= 1,..., d(a), and apply property (2) and part (i) to conclude 

R(k)C some R*a, k= 1 ...,M. I 

REMARK 2. In [14], a finite procedure was given for calculating R*, n* and each 
R*a after using the Policy Iteration Algorithm to find g* and a v E V. 

Part (a) of the previous theorem shows that this procedure can be extended in order 
to find the d(a), the sets R*'/ and af E SRG in a finite number of calculations, as 
well: 

(1) For each i E R*, determine the sets K*(i) (use lemma 2.2 part (c)). 
(2) Define f* E SR*M by 

K*(i), iER*, 
k{f t>O?}= L(i), i E U\R*. 

Then the cyclically moving subsets of each subchain R*" of P(f*) form the 
{R*a' t}t=. 

Consider the following example: 
EXAMPLE 1. 

i k P k Pk pk pk Pk qik 
1 1 0 0 0 0 0 
2 1 0 0 1 0 0 q < 0 

2 0 0 0 1 0 0 
3 1 1 0 0 0 0 
4 1 0 0 0 0 1 0 
5 1 0 0 1 0 0 0 

2 0 1 0 0 0 q 0 
3 1 0 0 0 0 0 
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Table I lists the six pure policies, ti 
(whatever the specific value of q', q 2): g: 
and V=(x 5X)IxI<X 
= (2, 3, 4,5); since d(1) - 1, R*l, l = ( 1). 

f 
fI 

f2 
f3 
f4 
f5 
f6 

(1 , ,1,2 

(1, 2, 1, 1, 1) 
(1, 2, 1, 1, 2) 

(1, 2, 1, 1, 3) 

n(f) 
2 

2 
2 
2 
2 

heir subchains and periods. Observe that 

1F* 
= (0, 0, 0, 0, 0); K(i) = L(i) for all i E 

13 x4=x5}, n* =2, R* = I (); R*2 

TABLE I 

C'l(f) 
(1) 

{ 1) 
('1 
(1) 
{ 1} 
(11 

C2(fl 
(2,3) 
(2, 3) 
{2, 3} 

(2, 3, 4, 5) 
(2,4, 5) 

Next, consider the following cases: 

cae 1 
q2 

cs q2 q5 SPMG 
I 0 0 {f',f2,fV,4,f5,f) 

2 < 0 0 {ff4, f5, f6} 
3 0 < 0 {f'f1,f3, ,f4,f6} 
4 < 0 < 0 { f4,f6} 

Define f * E- SR as in lemma 2.2 part (d): 

1 
0 

p(ff*) =0 

0 
0 

0 
p(ff*) =0 

0 
0 

0 
0 
1 
0 
x 

0 
0 

0 
0 

0 0 
x x 
0 0 
0 0 
xO0 

case 1 

0 
x 
0 
0 
1 

0 
x 
0 
0 
0 

0 
0 
0 
1 
0 

1 
0 
0 
0 
0 

0 
0 
0 

0 

1 
0 
0 
0 
0 

case 3 

di(f) 
I 

I 
I 
I 
I 
I 

K*(2) 

(1,2) 

(2) 

(1, 2) 

(2) 

00 0 
00 1 
10 0 
00 0 
x x0 

case 2 

00 0 
0 01 
10 0 
00 0 
0 10 

case 4 

d2(f) 
2 
2 
2 
4 
3 

K*(5) 

(1,2) 

(1, 2) 

(i) 

0 
0 
0 
1 
0 

0 
0 
0 
1 
0 

In case 1, P(f*) is aperiodic and d(2) = 1 = g.c.d.(f2, 2, 2, 4, 3) (cf. theorem 3. 1(a), 
(c)). In case 2, P(f*) is aperiodic and d(2) = 1 = g.c.d. ( 4, 31 (cf. theorem 3. 1(a), (c)). 
In case 3, P(f *) has R *2 periodic with d(2) = 2 = g.c.d. (2, 2, 2, 4) (cf. theorem 
3. 1(a), (c)). 

R* = (2, 5); R *2, 2 =(3, 4). 
In case 4, P(ff*) has R *2 periodic with d(2) = 4 = g.c.d. (4) (cf. theorem 3.1(a), (c)). 

R *2, 1=(2}; R *2 2 =(4); R *2 3 =( 5}; R *2, 4 =(3). 

Thus randomization is essential for both the recurrency properties and the periodicity 
structure: it plays the indispensable role of coalescing subchains and of decreasing 
periods. In general, there may fail to exist a pure maximal gain policy f with 
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R(f) = R*, or which achieves the minimal number n* of subchains, or which achieves 
the minimal period in every subchain. For instance, case 1 of example 1 with state 1 
and actions 1 and 3 in state 5 omitted, shows that 

(a) all pure (maximal gain) policies have periodic tpm's, while a randomized 

(maximal gain) policy is aperiodic. 
(b) none of the pure (maximal gain) policies has R* as its recurrent set, although a 

randomized (maximal gain) policy does. 
Observe that while d(a) = g.c.d. {dm(f) If E SPMG, 1 m < n(f), Cm(f) R*C } 

for all a = 1, .. ., n* (cf. part (a) of theorem 3.1), we may have 

di = g.c.d. {dm(f) f E SRMG, 1 < m < n(f), i E Cm(f)} 

< g.c.d. {d(f) f E SMG, 1 < m < n(f), i E C(f))}. 

(Take case 1 of example 1, and i = 3.) 

4. The multi-step policies. Fix an integer J > 2, and observe from (1.2) that 

Q xi= m (i q + EPitx) QJxi 
5GE K(i) 

where K(i)= (f', ..., fJ ) I f',...,f E Sp ), 

=qi- q(f')i + P(f')q(f2)i + + [P(f') . P(fJ-1)]q(fJ), 

i E [2, ~ = (fl, .. ., f )E (i), 

P; = P(f') ... P(fJ)i; 1 < i,j < N and 

= (f' f... ) E K(i). (4.1) 

Let Q = QJ, and define a related "J-step"-MDP, denoted by a tilde, with Q2 as its 
state space, K(i) as the (finite) set of alternatives in state i E 2, q/ as the one-step 
expected reward and P/. as the transition probability to state j, when alternative 
l E K(i) is chosen when entering state i. 

Let SR denote the set of all (stationary) randomized policies with respect to the 
above defined MDP, and observe that 

J 

SR= X X SR. 
iE Q r= 

In complete analogy to the definitions given in ?2, we define the operator T, the 
sets Sp, SPMG , SM , S S, R* R*, R* , V, the integers n*, d(a), d, and 
for each~ E SR, the quantities q(,), P/(), H), ( g(), (Q), d(), dm(p), and for each i E 2, 
the set L(i). 

Observe that a "J-step policy" , E SR is specified by NJ "one-step" policies 
({r Ir = 1, . . ., J; i= 1, . . ., N) such that policy 4 uses "action" ("'', 2,'', 
... ., ')E K(i) while in state i E Q: 

q((P)i = 
q(l' i)i + P(pl'i)q(2")2') + .. + [p(,) . P(J-l'i)] q(pJ' i 

P()i = P(l) 
' 

P(Ji)ij, i ,j E . 

The following theorem characterizes the "J-step" maximal gain policies and shows 
how their chain- and periodicity structure are connected with the corresponding ones 
in our original MDP. 
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First, define for any 4 E SR: 

Tr, i(W) = ({j I p(l,i) ... P(r,' )i > ?}) E , i , r = 1,..., J, 

T?"'() ={i}, iE 2. (4.2) 

THEOREM 4.1. Fix J > 2. Then 
(a) g* = Jg* and (, I there exists f E SRG such that )r' =f ffor all r = 1, .. .J; 

i= 1,... , N} CSRMG. 
(b) Fix i E 2. Let 4 = (f ',..., f) E K(i). The following statements are equivalent: 
(1) E L(i). 
(2) fk= l kE L(i). 

fj = 1 =k L(j) for 2 < r < J and allj such that P(f ) ... P(fr-~)i > 0. 

(c) V is an n*-dimensional subset of the n*-dimensional set V. 

(d) Fix v E V. Then , E SRMG if and only if 

jk+'' > 0=k E L(i), for allj E Tri((), i E S, r = 0, ..., J- 1, 

b(v, r+l'')j =O forallj E Tr i(), i E R(), r = ..., J- 1. (4.3) 

(e) Fix f SRMG, and take 4 E SR such that =f for all i E 2, r= 1 . . .,J. 
Then 

(1) R(?) = R*. 
(2) The collection of subchains of P(f) is given by: 

(U R *a 'r+l a=l,.., n;r= , ...,g.c.d.(J, d(a)) . (4.4) 
k=- 

(3) Each of the R*'' (a = 1,. ., n*; t = 1, .. ., d(a)) is a cyclically moving subset 

of P(). 
(f) R*= R*. 

(g) R* = 1,.., n*} = (UJ R*a,r+kJ a , ...,n*; r = 1, . . ., g.c.d. 
(J, d(a))} i.e. n =2- g.c.d;(J, d(a)) > n*. 

(h) {R*al } = {R*a't}; i.e. fix a E (1,..., n*}; then d(f) = d(a)/g.c. d. (J, d(a)) 
for all R*3 C R*a. 

PROOF. (a) Let 4 E SRMG. Observe that 

v(nJ) = Qv((n - 1)J) > q(4) + Pt(O)v((n - 1)J) 

>[I+ 
* * 

+ pn"-l(()]q(() 
+ 

p"n()v(O). 

Hence, 

v(nJ) Hn(4)q() 
g* = lim n > g*/J. (4.5) n---o nJ J 

Next, let f E SRMG, and define 4 E SR, such that )r L = f for all i E 2, r = 1,..., J; 
observe that 

g* > g() = inm i ()() 
n--oo n k-O k-O 

n-I nJ- 1 

=nlmm n Pk(f)[I + +PJ-(f)]q(f) 
= 

nllm n p 
k-n O ...urnn- k=p(f)kq(f) 

= J((f)q(f))= Jg* 

which together with (4.5) proves part (a). 
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(b) Recall that g* > P(f)g* for anyf E SR. If E L(i), then, for each r = 1,..., J 

P(f) ... p(fr )g, < gi 

= P 'g = P(fl) . * * (fr)[ (fr+) ... P(fJ)g*]i 
J 

< p(f) ... p(fr )g*. 

Hence, P(f') ... p(fr)g* = g*. When r = 1, this implies g* = . P(f')jg* and 
when r > 2, this implies that [P(fr)g*]j = gj for all j such that P(f'). * P(fr'-l)y 
>0. 

(c) Fix v* E V, and i E S2, take f = (f',... ,fJ) E L(i) and observe from part (b) 
that 

i* > q(f')i - gi* + [ P(f)v* ] 

q(f2)j _ g* + [p(f2)v*]j, for allj such that P(fl) > 0. 

v > q(ft )j 
- g + [P(fJ )v* ]j for allj such that P(f') ... P(fJ-l') > 0. 

Insert the J inequalities successively into each other and conclude that 

v*> , + V PvJ- Jg,*, forallE L (i) 

where the equality sign holds for ( = (f1, .. ,fJ) iff 

b(v*,fl)i = 0, 

b(v*, f = for all such that > 0; r = f f > 0; 2,..., J. (4.6) 

We conclude that 

v + i*=max EL({) P t + vj} = Tv foralli E ,orv*EV. 

Hence V C V. The dimensions of V and V follow from theorem 5.5 in [13]. 
(d) Apply lemma 2.2 part (a) to the "J-step" MDP, and use the fact that v E V (cf. 

part (c)), in order to show that e E SRMG iff 

> 0 > E L(i) for all i ES , 

b (v, )i = 0 for all i E R (Q). (4.7) 

Use part (b), (4.6) and (4.2) in order to prove that (4.7) is equivalent to (4.3). 
(e) Fix a E 1, . . ., n*) and r, t E {1, .. ., d(a)} such that t = r + kJ (modulo 

d(a)) for some k = 1, 2,.... It then follows from theorem 3.1 part (j) and (2.5) that 
P()nd()+j > 0 for all n sufficiently large, i R*" r and j E r* '. Since P(4() 
= P(f, it follows that P()d() +k > 0, for all n sufficiently large, i E R* and 

E R*"' t which shows that all the states in each of the sets in (4.4) communicate with 
each other for P(<). In addition, we observe, using theorem 3.1 part (g) that each of 
the sets in (4.4) is closed under P(O) as well which proves that all of these sets are 
subchains of P(O), and R(O) D R*. We complete the proof of parts (e) (1) and (2), by 
showing the reversed inclusion R(?) C R*, merely noting that for all i E 2\R*, 

ri(O)ii= lim () lim P(f)= O. n--*oo n--oo 
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We next fix a E {1,..., n*), t E {1, . . , d(a)) and a state i E R*"'. Observe 
from theorem 3.1 part (j) that R*a' is a cyclically moving subset of P(f) and use (2.4) 
and (2.6) in order to show 

P(f)n > 0=> P(f)j > 0 for all n sufficiently large, and allj E R* t, 

P(f)n > 0> P(f)n. =0 for all n = 1, 2, . . . andj - R*'t. (4.8) 

Note, using P(4) = P(f)J that (4.8) holds for P(q) as well and conclude that each of 
the R*'a' is a cyclically moving subset of P(p), thus proving part (e) (3). 

(f), (g) and (h) Fix 4 E SRMc and let C be a subchain of P(4). Define 

T= u. U Tr'(P) 
iEC r=l 

(cf. (4.2)) and observe that 

C= U TJi'(+), 
iEC 

hence 

C C T. (4.9) 
For eachj E T, let Aj = ((r, i) 1 < r < J, i E C andj E Tr i(,)). 

Next fix v E V, and define f E SR such that 

U {kj^ t >IO} forjET, 
{k Ifjk > ) = 

iE 

(k E L(j) I b(v)=0} forj T. 

Use part (d) in order to show that for all i E 52: b(v,f)i = 0 and fk > 0 only for 
k E L(i), hence f E SM via lemma (2.2) part (a). Since T is closed, and the states in 
T communicate with each other for P(f), we conclude that T is a subchain of P(f). 
This implies using lemma 2.1 part (c) that 

C C T CR* (for onea, 1 < a<n*) (4.10) 
which proves R* c R* and hence part (f), the reversed inclusion R* D R* following 
from part (e) (1). 

Next, fix i E C. We then have in view of (4.10) that i E R*t (for some t, 
1 < t < d(a)). Use the fact that T C R*0, and theorem 3.1 part (g) in order to show 
successively that 

Tri() CR*a '+r for r= ,..., J. 

In particular, we obtain that 

{ I P ()ij > 0} = TTJi() C R*a't+J so that 

j I pk co (4.11) 
C = { P(). > 0 for some k = 1, 2,.. . } C U R* t+ 

k= l 

which together with part (e) (2) proves part (g), using lemma 2.1 part (f). 
Finally, a repeated application of (4.11) shows that 

P()n > 0= P (q).= 0 for all j R*', and all n = 1, 2,... 

which in view of (2.6) shows that each of the cyclically moving subsets of each of the 
policies in SRMG lies within one R* *. This, in combination with part (e) (3), proves 
part (h), using theorem 3.1 part (k). I 
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REMARK 3. It is well known from Markov Chain Theory that the chain structure 
of the Jth power of a single stochastic matrix P(f) is related to the chain structure of 
P(f) in the following way: 

(a) the states that are transient (recurrent) for P(f) are transient (recurrent) for 

P(f). 
(b) One obtains the subchains of PJ(f) as follows: for each subchain Cm(f) 

(m = 1, . . ., n(f)), partition the collection of cyclically moving subsets (Ctm'(f) I t 
= 1, .. ., dm(f)} (where the numbering of the c.m.s. satisfies (2.4)) into g.c.d. 
{J, dm(f)} subcollections, such that 

(1) each of the subcollections contains exactly dm(f)/g.c.d. {J, dm(f)} c.m.s. 
(2) the rank numbers of the c.m.s. within the same subcollection differ by a 

multiple of g.c.d. {J, dm(f)} (modulo dm(f)). 
(c) the collection of all the c.m.s. of P(f) and the one of PJ(f) coincide. Parts (f), 

(g) and (h) of the previous theorem show that the same correspondence holds with 
respect to the chain structure of the set of "one-step" maximal gain policies, and the 
one of the set of "J-step" maximal gain policies. 

Consider, for instance, the "2-step" MDP in example 1: 

TABLE 2 

case J n* R*I d(l) jR*1 R*2 d(2) R*2,1 R*2,2 

3 2 3 (1) 1 {1) (2,5) 1 (2,5) - 

4 2 3 (1) 1 {1) (2,5) 2 (2) (5) 
3 4 3 (1) 1 1) (2, 5 1 {2, 5} 
4 4 5 (1) I 1 I (1) {2)} 1 {2} 

R*3 d(3) R*3 1 R*3 2 R*4 d(4) R*4,1 jR*5 d(5) R*5, 

{3,4) 1 {3,4} I _ _ I _ I _ _ I _ I 

{3,4) 2 ({3 {4 - - - - 

(3,4) 1 (3,4} - 4- - - - 

(4) 1 (4} {5} 1 {5} {3} 1 ({3) 

(Verify that n*=2 = = g.c.d. {J, d(a)} and that d(a) = d(2)/g.c.d. {J, d(2)} for 
a = 2, . . . , *.) 

Define d* = least common multiple (l.c.m.) of {d(a) I 1,. . ., n*). 
The following corollary will be needed for the analysis of the asymptotic behavior 

of v(n): 

COROLLARY 4.2. Let J = d*. Then 
(a) R* y= 1, . . . *}={R* a =,...,n*; t= 1, . . ., d(a)}. 
(b) n* = n* d(a). 
(c) d(y)= for all y = 1,..., n*. 

5. The asymptotic behavior of v(n). In this section we study the asymptotic 
behavior of v(n). We show that {v(nJ + r) - (nJ + r)g*}n=l converges for every final 
reward vector v(0) if and only if J is a multiple of d*, and as a consequence that 
{v(n) - ng*}n) converges for every vector v(0) if and only if there exists an 
aperiodic randomized maximal gain policy that has R* as its set of recurrent states. 

THEOREM 5.1. (a) {v(n) - ng* } is bounded. 
(b) (cf. Lanery [7, proposition 7].) If f E SRMG, and C is a subchain of P(f) with 

period d, then lim,n,[v(nd + r) - (nd + r)g*], exists for all i E C, r = , .. ., d- 
and v(O) E EN. 
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(c) limn__,[v(nd(a) + r) - (nd(a) + r)g*]i exists for all i E R*", a = 1, .. ., n*, 
r = 1, . . ., d(a) and v(O)E EN. 

(d) limnoo[v(nd* + r)- (nd* + r)g*]i exists for all i E f, r = 1,..., d* and all 
v(O) E EN. 

PROOF. (a) cf. Brown [3, corollary 4.3] and Schweitzer and Federgruen [15, 
remark 1]. 

(b) Note that 

v(n + i)i > q(f)i + P(f)v(n)i, i E C. 

(n + l)g,* = g* + nP(f)g*, i E C, 

since f E SRMc (cf. lemma 2.2, part (a)). 

* = q(f)- g* + P(f)v*, i E C, for any v* E V. 

Fix v* E V, let e(n)= v(n)- ng* - v*, and subtract the above equalities from the 
inequality, in order to get e(n + l)i > P(f)e(n),, i E C, and by induction 

e(md + nd + r) > P(f)mde(nd + r)1, i E C. (5.1) 

It follows from part (a) that each of the sequences {v(nd + r)i - (nd + r)g*}) = 
and hence {e(nd + r)i} 1, i E C, has at least one limit point. For all i E C, let xi 
and yi be two limit points of the sequence {e(nd + r)i} ),i. Consider (sub)sequences 
{nk}) - and {mk } = of the sequence of positive integers, such that limk_, e(nkd + 
r)i = x, i E C, and limk,o e(mkd + nkd + r)i = yi, i E C. Replace in (5.1) n and m by 
nk and mk, and let k tend to infinity, in order to conclude 

Yi > Sijxj, i E C, (5.2) 
jEc 

where Fi = limno P(f)nd; i,j E C. Multiply (5.2) by X > 0 to get ey > _TX. Since x 
and y are arbitrary limit points, we have the reversed inequality FTx > Fry as well, 
hence eFx = Ty. As a consequence, (5.2) becomes 

yi > E VyijY, i E C. 
jec 

Multiply these inequalities by r > 0, and note S,i > 0, for all i E C (cf. (2.6)), to 
conclude that 

Yi=[Y]i, i EC. 

Thus, 

Yi = ~Yi = Fxi = xi for all i E C 

which proves that { e(nd + r)i} , has exactly one limit point, for all i E C. 
(c) Take f* as in lemma (2.2) part (d), and apply part (b), using theorem 3.1 part 

(a). 
(d) It suffices to prove that limn,o[Q ndv(O) - nd*g*] exists for all v(0), because 

then 

lim [v(nd* + r) - (nd* + r)g*] = lim [Qnv(r) 
- nd*g*] - rg* 

will also exist for all v(0) and all r= 1, .. ., d*. 
Define Q = Qd and consider the d*-step MDP, as described in ?4. Note v(nd*)- 

nd*g* = Qnv(O)- ng* (cf. theorem 4.1 part (a)). Fix v(0) and define 

xi= lim inf [ Qv(0) -ng*],; Xi = lim sup [ v(0) - ng"* ],, 
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From part (a), it follows that - oo < x < Xi < oo for all i. Observe, using (2.12) 
that for all n sufficiently large 

[ Qn+ v(0)- (n + l)g* ]i= [ Qv(O)- (n + 1)g* ]= [ T[ Qnv(0)- ng* -g* ] 

= max tI -g* + P[J[ "v(0)-ng*] }, i EQ2. (5.3) 
tE L( i) j 

Fix i E 2, take (sub)sequences { nk,} k (with limk, nk = oo) such that 

lim [Qnv(O)-- ng] 
k--*oo *1 

exists and limk,, [Q"k+v(O) - (nk + l)g*]i = xi (or Xi resp.). Replace n by nk in 

(5.3), and let k tend to infinity in order to conclude 

xi< max /- 4* + /;Xj, i EU. (5.4) EL(i) . j 

xi > max - g,* + E Pxj, i E US. (5.5) 
EEL (i) . j 

If 4 achieves the N maxima in (5.4), we have 

q(g+) - g* + P())x < x < X < q(+) - g* + P(O)X (5.6) 

or 

0 x- x < P(<)(X-x), 

whence we get, by iterating this inequality 

0 < x - x < Hn()(X - x). 

We complete the proof of showing X - x = 0 by demonstrating that (X - x)i = 0 for 
all i E R(,). Multiply the right inequality in (5.6) by H()) > 0, noting that 4 has 
support on X En L(i), in order to get 

0 < fl()[q(+) - g*] = g(+)-g* < 0, 

where the last inequality follows from (2.8). Hence + E SR,M and R(/)) C R* = R* 
(cf. theorem 4.1 part (f)) which proves (X - x)i = 0, i E R(O), since part (c) shows that 
(X - x)i = 0 for all i E R*. I 

We next show that the sequences {v(nJ + r) - (nJ + r)g*}) I do not converge for 
all final reward vectors v(0), unless J is a multiple of d*. However, we first need the 
following lemma. 

LEMMA 5.2. Define Q = Qd, and consider the corresponding "d*-step" MDP. Let 
T, V be defined as in ?4, and fix v E V. 

(a) For all v E V, we have i = v + x, where there are n* constants {ya' \ a 
= 1,... , n*; t = 1, ..., d(a)) with the convention that the superscript t in y't is taken 
modulo d(a), such that for all a E (1, .. ., n*}, and t E (1,..., d(a)}: 

xi = 
y t for all i E R* t, (5.7) 

(Tmv),= vi + mg* +ya*+m forall iER*',t; m = 0, 1, 2,.... (5.8) 

(b) v E V can be chosen such that all the y" are distinct. 

PROOF. (a) Observe, using theorem 4.1 part (c) that v E V, and use theorem 5.1 of 
Schweitzer and Federgruen [14] in order to show (5.7). 
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Next, take f E SR,M and observe, using lemma (2.2) part (a) that 

Tm% > q(f)+ P(f)Tm-= , m ,..., d*. (5.9) 

Using the fact that v E V and inserting the d* inequalities in (5.9) successively into 
each other, we obtain 

+ d*g*= Tv > Td >[I + * * * + p(f)d-~]q(f) + P(f)d. (5.10) 

By multiplying (5.10) with II(f) > 0, we conclude strict equality for all components 
i E R*. It next follows from (5.9) that 

Td i = 
[q(f)+ P(f)Td*- lv ] for alli E R*, 

and more generally that 

[Tk3]i=[q(f)+P(f)Tk -1]i forallk= ,...,d*and 

i E {iI P(f)~-k > 0 for somej E R*} = R*, (5.11) 

where the last equality follows from R(f)= R*. 
We next prove (5.8) for m = 0, .. ., d*. It then follows that (5.8) holds for any 

value of m, since for all n = 1, 2, . . . and m = 1,..., d* 

Tnd* + mi = Tm(Tnd*V)i = Tm (v + nd*g*) = nd*gi* + T"mi 

= nd*gi* + vi + mg,* + ya,"+m = Vi + (nd* + m)g* +ya,t+nd*+m 

for all i E R*a " 
(1 < a < n*; 1 < t < d(a)). First observe that (5.8) holds for m = 0. 

Next assume it holds for m = k, with 0 < k < d*. It then follows that (5.8) holds for 
m = k + 1, as well since, using (5.11), and theorem 3.1 part (g) 

(Tk +V)i= [q(f) + P(f)Tkv ]i 

=q(f),+ 2 P(f)j{vj + kgj* +yat+k+l} 
jER*a,t+l 

= 0 + vi + (k + l)gi* +ya't+k+l 

(b) It follows from theorem 5.5 in Schweitzer and Federgruen [14] that the n* 
parameters {ya a = 1, . ... , n*; t = 1, ..., d(a)} may be chosen independently 
over some (finite) region in E"*. 

THEOREM 5.3. (a) Fix a E {1,...,n*}, i G R*a, J > 1, and r E , ..., J - 1); 
lim_,o v(nJ + r)i - (nJ + r)gi* exists for all v(O) only if J is a multiple of di = d(a). 

(b) Fix J > 1 and r E {0, . ., J - 1); lim", v(nJ + r) - (nJ + r)g* exists for all 
v(O) E EN only if J is a multiple of d*. 

PROOF. (a) Fix v E V, and choose v E V as in part (b) of the previous lemma. 
Pick X large enough that Q"(v + Xg*) = Tn( + Xg*), for n = 1, 2, ... (cf. (2.11)). 
Finally, let i E R*1't (1 < t < d(a)). Observe that v + Xg* E V, and apply lemma 5.2 
part (a) in order to show 

Q (,,, + Xg*)i= r ( + Xg*)i= Xgi* + vi + (nJ + r)g* + yt+n+r. 

Hence, 

0Qn+r(V + Xg*)i- (nJ + r)gi* = vi + Xg* + y t+J+r. 
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Since lim,,_ Q+ (vi + Xg*), - (nJ + r)g* exists and since the yG'" (a = 1,..., n*; 
t = 1,..., d(a)) are chosen to be distinct, we must have t + nJ + r (modulo d(a)) 
= y (say) for all n large enough, which implies that J is a multiple of d(a). 

(b) Since lim,oo[v(nJ + r) - (nJ + r)g*]i exists for all i E R* and v(0) EN, it 
follows from part (a) that J must be a multiple of the d(a) (a = 1, ..., n*) hence J is 
a multiple of d*. 

Combining theorem 5.1 parts (c) and (d), with theorem 5.3, we obtain our main 
result. 

THEOREM 5.4. (a) Fix a E {1, ..., n*), i E R*", and two integers J and r. Then 

lim,,_ v(nJ + r)i - (nJ + r)g* exists for all v(O) E EN if and only if J is a multiple of 
d(a)= d,. 

(b) lim_,, v(nJ + r) - (nJ + r)g* exists for all v(O) EN if and only if J is a 

multiple of d*. 

REMARK 4. The following conditions are equivalent statements of the necessary 
and sufficient condition for the convergence of {v(n)- ng*),} , for all v(0) EE. 

(I) d* = 1. 
(II) There exists an aperiodic randomized maximal gain policyf, with R(f) = R*. 

(III) Each state i E R* lies within an aperiodic subchain of some randomized 
maximal gain policy. 

(IV) For each a E {,..., n*) there exists a randomized maximal gain policy 
which has an aperiodic subchain within R*a. 

(Observe that (I) = (II) as a result of theorem 3.1 part (a), (II) = (III) and (III) 
=(IV) are immediate, while (IV) (I) is immediate from (3.1)). 

We note that in (II), (III) and (IV) the adjective "randomized" cannot be replaced 
by "pure"; in fact, the modification of example 1, case 1 where K(5)= {1, 2} shows 
that d* = 1 can occur, with all of the pure policies being periodic. 

Moreover, example 1, case 3 and 4 show that the addition "with R(f)= R*" in (II) 
is indispensable: f6 is an aperiodic maximal gain policy, however, with R(f6) c R*. 

Finally example 1, case 3, with d* = 2, shows that limn,, v(n)- ng* fails to exist 
for some v(0) E5 (take v(0) = [2q2 q2 0 0 q2], observe that v(2n + 1)= [2q5 0 q2 q2 

0] and v(2n) = [2q5 q5 0 0 q2]. Note that v(0) E V\ V and cf. theorem 5.3). 

THEOREM 5.5. The following conditions are sufficient for the existence of 
limnoo[v(n) 

- ng*] for all v(O) E EN 

(I) All of the transition probabilities are strictly positive. 

Pik >O, foralli, j E , and k EK(i) 

(cf. Bellman [2], Brown [3]). 
(II) For all v(O) E EN, there exists an aperiodic f E Sp, and an integer no, such that 

v(n + 1) = q(f) + P(f)v(n), for all n > no 

(cf. Morton [9]). 
(III) There exists a state s and an integer v > 1, such that 

P(f') ... P(f' )is> 0 for allf, f2 .. , f' E Sp; i E Q 

(cf. White [17]). 
(IV) Every f E Sp is aperiodic (cf. Schweitzer [12] and [13]). 
(V) Every f E SPMG is aperiodic (cf. Schweitzer [12] and [13]). 

(VI) For each i E R*, there exists a pure maximal gain policy f, such that state i is 
recurrent and aperiodic for P(f). 

377 



P. J. SCHWEITZER AND A. FEDERGRUEN 

(VII) Every pure maximal gain policy has a unichained tpm, and at least one of them 
is aperiodic. 

PROOF. (I) (III) =(IV) (V) =(VI) where the last implication follows from 
lemma (2.1) part (a). 

(VI) di = 1 for all i E R* =d* = d(a) = 1 for all a = 1, ..., n* (cf. theorem 3.1. 
part (c)). The sufficiency of (II) follows from the fact that after no iterations the policy 
space may be reduced to snew = {f) which satisfies (IV). 

(VII) = n* = 1, since the subchains of any two tpm's must intersect, and in addition 
d* = d() = 1 as a consequence of theorem 3.2. I 

We have seen that for arbitrary J > 1, and some fixed v(0) the sequences v(nJ + 
r)i - (nJ + r)gi*} ) may fail to converge for some (or all) i E 2 and for some (or all) 
r= {0, 1l, ... ,J-l. 

However, the various sequences interdepend as far as their asymptotic behaviour is 
concerned. 

We conclude this section by exhibiting the various ways in which this interdepen- 
dence occurs. However we first need the following lemma. 

LEMMA 5.6. Fix f E SRMG. Then 

lim [v(n + 1), 
- 

q(f)i - P(f)v(n)i] = O, for all i E R(f). 

PROOF. Use the fact that for all i E 2, fik > 0 only for k E L(i) (cf. lemma 2.2 part 
(a)(l)) in order to show that 

v(n + 1) - (n + l)g* > q(f)- g* + P(f)[v(n)- ng*]. (5.12) 

By multiplying (5.12) with Il(f), we obtain 

H(f)(v(n + 1) - (n + 1)g*) > 11(f)(v(n)- ng*). 

Observing from theorem 5.1 part (a) that H(f)(v(n) - ng*) is bounded in n, we 
conclude the existence of L = limn,, (f)(v(n) - ng*). Define 

6(n)= v(n + 1)- q(f)- P(f)v(n) 

and note that S(n) > 0 for all n (cf. (1.1)). Then 

lim H(f)8(n) = lim {(f)[v(n + 1)- (n + 1)g*] n ---} o n---* oo 

- r(f)(q(f) - g*)- I(f)(v(n) - ng*)) 

= L-L=O , 
which proves the lemma using 6(n) > 0 and the fact that H(f) > 0 with H(f)/ > 0 for 
allj E R(f). 

THEOREM 5.7. (a) Fix a E (1,. .., n*}; limn,,o v(n), - ng* exists either for all 
i E R*a or for none of them. 

(b) Fix J > 1 and i E R*a't (1 <a < n*; 1 < t < d(a)). Assume limn ,o v(nJ + 
r)i- (nJ + r)g* exists for some integer r. Then 

00 

lim v(nJ + r + s)j- (nJ + r + s)g* exists for allj E U R* "t+kJ-s 
n---oo k=1 

(s=1,2,...). (5.13) 

(c) Fix J > 1, and a E { 1, .. ., n*). limn,o v(nJ + r)i - (nJ + r)g* exists for all 
r = 1, .. ., J, either for all i E R*a or for none of them. 
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(d) Fix J > 1, ro (, ..., J} and a E {1,..., n*}. If limn, v(nJ + ro)i - 

(nJ + ro)g* exists for all i E R*", then limn_, v(nJ + r)i - (nJ + r)g* exists for all 
i E R* and all r = 1, 2, . . .. 

(e) Fix i E R. Assume lim ,,o v(nJ + r)i - (nJ + r)g*, and limn_, v(nJ2 + s)i - 
(nj2+ s)gi* exist for all rE{1, ... , J1} and s E (1,...,J2). Let 3 = g.c.d. 
(J', J2}. Then limn,, v(nJ3 + t)i - (nJ3 + t)g* exists for all t = 1,..., J3, and 
hence, if in addition i E R*a (for some 1 < a < n*) then limn, v(nJ3 + t) - (nJ3 + 
t)g* exists for all t = 1, .. ., 3 and all j E R*". 

(f) Fix i E R*a (1 a < n*) and J > 1. Assume limn,o v(nJ + r)i - (nJ + r)g* 
exists for all r = 1,..., J. Let J = g.c.d. J, d(a)). Then lim_ v(nJ + s) - (nJ + 
s)g* exists for all s = 1,...,J and all j E R*. 

(g) Fix J > 1. If limn,oo v(nJ + r) - (nJ + r)g* exists for all i E R* and some 
r E {1,..., J), then limn_o v(nJ + r)i - (nJ + r)g* exists for all i E 2 and all r 
=1,2,.... 

PROOF. (a) Assume limn_ v(n)t - ng* exists for some t E R*". Define 

xi= lim inf [v(n)- ng*; Xi= lim sup [v(n)- ng*], 

and observe that - oo < xi < Xi < oo as a result of theorem 5.1 part (a). Fix i E R*", 
pick c > 0 and apply lemma 5.6 with f* E S*MG in order to show that there exists an 
integer n(c), such that for all n > n(e) 

q(f*)- g*i + P(f*)[v(n) - ng*]i< v(n + 1)-- (n + l)g* 

< q(f *),- g* + P(f*)[v(n) - ng* i+ E. (5.14) 

Take (sub)sequences {nk)},' (with limko nk = oo) such that limk_.[v(n) - nkg*] 
exists and 

lim v(nk + l),- (nk + 1)gi = xi (or Xi). 
k- oo 

Replace n by nk in (5.14) and let k tend to infinity in order to conclude 

q(f*) - g + P(f*)xi ( xi < Xi < q(f*) g + P(f*)X, + E, 

or 

0 < Xi - xi < P(f*)(X- x), for all i E R*a, 

whence we get by iterating this inequality 
0 < Xi - x < (7"(f*), X- x), i E R*a. (5.15) 

Multiply this inequality by II(f*) > 0 in order to conclude strict equality on the right 
of (5.15), thus proving Xi - x, = X, - x = 0, for all i E R*. 

(b) Without loss of generality, we take r = 0. Define Q = QJ and consider the 
J-step MDP, as defined in ?4. Let f* be defined as in lemma 2.2 part (d), and let 
R(s) = U k=R*a' t+J- for s = 1, 2,.... Observe that v(nJ)i - nJg*, = [Qnv(o)] - 

ng* (cf. theorem 4.1 part (a)). Apply part (a) of this theorem to the J-step MDP, and 
use theorem 4.1 part (g) in order to obtain that v(nJ), - nJg* exists for all i E R(0), 
thus proving (5.13) for s = 0. Assume (5.13) holds for s = S. Note, using theorem 3.1 
part (f) that for all i E R(S + 1), P(f*)ij > 0 only forj E R(S). It then follows from 
lemma 5.6 that for all i E R(S + 1) 

lim v(nJ + S + 1),- (nJ + S + )g =q(f*)- g + P( 
j E (S) 
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where 
x = lim v(nJ + S)- (nJ + S)g,*, for all i E R(S), 

which proves part (b) by complete induction. 
(c) Assume lim_ ,oo v(nJ + r) - (nJ + r)gj* exists for all r= 1, . ., J and j 

ER*a' (1 < t < d(a)). Take iE R*"'" (1 < u < d(a)) and sE 1, . . ., J). Then 
lim,,o v(nJ + s) - (nJ + s)g* exists as a result of part (b). 

(d) Take i E R*l, (1 < t < d(a)) and r E 1, . . ., J); lim oo v(nJ + r)i - (nJ + 
r)g* exists as a result of part (b). 

(e) Let p = J'/J3 and p2 = J2/J3. Fix t E (1, . . , J3}, and define a(n) 
= v(nJ3 + t)i - (nJ3 + t)g*. Observe that A(m) = limn,, a(np2 + m) exists for all 

m = 1,..., p2, just as A = limn_ ooa(np') exists. Observe that there exist two integers 
a, /, > 1 such that ap' - /p2 = 1, as a consequence of pl and p2 being relatively 
prime. Since 

A(m)= lim a[(kp + m)p2+m] = lim a[(kp2 + am )] A, 
k--) oo k->oo 

for all m = 1,... ,p2, it follows that limn_oo a(n) exists, thus proving the first 

assertion, whereas the second one follows immediately from part (c). 
(f) Use part (e) with J1 = J and J2 = d(a) (cf. theorem 5.1 part (c)). 
(g) It follows from part (c) that limn_,, v(nJ + r)i - (nJ + r)g)* exists for all i E R* 

and all r E {1,..., J) whereas convergence on Q\R* is deduced, using the proof of 
theorem 5.1 part (d). i 

REMARK 5. The following statements illustrate the degree of interdependence with 
respect to the asymptotic behavior of the N sequences v(n)i - ng*) (i E 2), and may 
be proved using the above theorem, merely verifying all possible combinations. 

(a) limn,, v(n)i - ng* cannot exist for all values of i, but one (cf. Schweitzer [13, 
theorem 1 part (3)]). 

(b) If limn, o v(n)i - ng* exists for all values of i except two, then these two special 
states comprise one R*", with d(a)= 2. Moreover, for every randomized maximal 
gain policy, these two states either form a periodic subchain, or are both transient. 

(c) If limn_, v(n) - ng*i exists for all values of i except three, then either the three 
states comprise one R*" with d(a) = 2 or 3, or else two of them comprise one R*" 
with d(a) = 2, and the third one lies in 2 - R*, having positive probability to reach 
*a R*. 

The generalization of theorem 5.4 for the case of one fixed v(0) is 

THEOREM 5.8. (a) Fix v(O), and a E {1,. .., n*). There exists an integer JOG > 1, 

dependent upon v(O), such that limn ^[v(nJ + r)- (nJ + r)g*]i exists for all i E R*a 
and some r if and only if the integer J > 1 is a multiple of Jo0. If this condition is met, 
the limit exists for all r. The integer d(a) is a multiple of J0. If d(a) > 2, then there 
exist choices of v(O) such that Joa < d(a) can occur. 

(b) Fix v(O) and define the integer J?= 1.c.m.{J" | I < a < n*) which depends 
upon v(O). Then limn,o v(nJ + r)- (nJ + r)g* exists for some r if and only if the 

integer J > 1 is a multiple of J?. If this condition is met, the limit exists for all r. The 
integer d* is a multiple of J?. If d* > 2, then there exist choices of v(O) such that 
J? < d* can occur. 

PROOF. (a) Let 

Joa = g.c.d. {J > 1 I lim [v(nJ + r)i - (nJ + r)g] ( 
n--*g.e.d.(J> I o ~m (5.16) 

exists for all i ER*}. 

Observe that Jo? can be obtained as the g.c.d. of a finite number of integers and apply 
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theorem 5.7 part (e) to conclude that J0o belongs to the set to the right of (5.16), thus 
proving the first assertion. The second and third assertions follow from theorem 5.7 
part (d) and theorem 5.1 part (c), whereas the last one may be verified by choosing 

v(O) = v + tg* with v E V and t sufficiently large that 

Q"(v(O)) = T"(v(O)) for n = 1, 2, ... , (5.17) 
so Joa= 1. 

(b) Observe from part (a) that limn_o [v(nJ + r)i - (nJ + r)g*] exists for all 
i E R*, and some r if and only if J is a multiple of J?, and apply part (g) of theorem 
5.7 to verify the first two assertions. The third assertion follows from theorem 5.1 part 
(d) whereas the existence of v(0) with J? = 1 may be verified by choosing v(0) as in 
(5.17). * 

Note 1. More specifically the following argument was used in (VII-64) and 
(VII-75). 

max max {f'-fj}= max {f,-fj} k=1, ..., K i,jEAk < i,j n 

where f is an n-vector and the (Ak, k= 1, ..., K) constitute a partition of 
{1,... ,n}. 

The assertions (VII-64) and (VII-75) are repeatedly used in the remainder of the 
proof. 
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