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n most dynamic planning problems, one observes that an optimal decision at any given stage 
Idepends on limited information, i.e. information pertaining to a limited set of adjacent or 
nearby stages. This holds in particular for planning problems over time, where an optimal 
decision in a given period depends on information related to a limited future time horizon, a 
so-called forecast horizon, only. In this paper we identify a general class of dynamic programs 
in which an efficient forward algorithm can be designed to solve the problem and to identify 
minimal forecast horizons. Such a procedure specifies necessary and sufficient conditions for a 
stage to arise as a forecast horizon. This class of dynamic programs includes the single-item 
dynamic lot-sizing model with general concave costs, both with and without backlogging, to 
which special attention is given. 
(Minimal Forecast Horizons; Fast Solution and Detection; Applications to Lotsizing) 

1. Introduction 
In most dynamic planning problems, one observes that 
an optimal decision at any given stage depends on lim- 
ited information, i.e. information pertaining to a limited 
set of adjacent or nearby stages. This holds in particular 
for planning problems over time (or space), where an 
optimal decision in a given period (at a given point) 
depends on information related to a limited future time 
(space) horizon, a so-called forecast horizon, only. 

In this paper we identify a general class of dynamic 
programs in which an efficient forward algorithm can 
be designed to solve the problem and to identify minimal 
forecast horizons. Such a procedure specifies necessary 
and sufficient conditions for a stage to arise as a forecast 
horizon. A forecast horizon procedure allows for the 
determination of optimal decisions when accurate in- 
formation is available over a limited time or space ho- 

rizon only. This class of dynamic programs includes the 
single-item dynamic lot-sizing model with general con- 
cave costs, both with and without backlogging, to which 
special attention is given in ??3 and 4. We thus gen- 
eralize earlier detection procedures of minimal forecast 
horizons, obtained under (fixed-plus) linear cost struc- 
tures, see Federgruen and Tzur (1994, 1993), and ref- 
erences therein. In ?5 we mention several other prob- 
lems that belong to the above class of dynamic pro- 
grams. These include scheduling, equipment 
replacement, bond refunding, molecular biology, geol- 
ogy, and speech recognition problems. 

It is well known that every deterministic dynamic 
program can be represented as a shortest path problem 
in an acyclic network. A shortest path is fully charac- 
terized by identifying for every node in the network, 
its optimal predecessor node. It is therefore useful to 
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characterize for any pair of nodes i, j its associated dif- 
ference function, comparing the optimal cost of reaching 
any node in the network with i rather than j as its last 
predecessor. The class of dynamic programs treated in 
this paper consists of those in which all difference func- 
tions can be expressed as functions of a single appro- 
priately chosen node-indicator. In the next section 

(?2) we develop a general algorithm, GENFOR, to solve 
this class of dynamic programs and to detect minimal 
forecast horizons. 

Assuming that the number of roots of the difference 
functions is uniformly bounded in n, the number of 
nodes in the network, the GENFOR algorithm requires 
0 (n2) determinations of roots of difference functions 
and 0 (n2 log *n) additional operations. (log *n is a func- 
tion which grows exceedingly slowly with n; 
log*n c 3 for n c 3,814,279; see ?2 for a precise defi- 
nition.) Recall that standard shortest path methods have 
similar complexity (O(n2)) while incapable of finding 
minimal forecast horizons. When all difference functions 
have at most two roots, the complexity reduces to 0 (n 2 ) 

determinations of roots of difference functions and 
0(n2) additional operations. Similarly, if all difference 
functions have at most a single root (are all non- 
decreasing or all nonincreasing), the complexity bounds 
reduce to 0(n log n) (O(n)) only. Last, but not least, 
the complexity is 0(n) if a uniform upper bound M 
prevails for the length of individual arcs on an optimal 
path (i.e. arc (i, j) is part of the optimal path only if j 
- i < M). We exhibit several important models with 
this property. Standard shortest path methods can of 
course be adapted to exploit such upper bounds on the 
length of individual arcs in the optimal path as well, 
but this adaptation requires up-front knowledge of the 
upper bound M. The GENFOR algorithm, on the other 
hand, reduces automatically to a linear time algorithm 
without any adaptation or up-front knowledge of an 
upper bound M. 

Our paper does not address conditions for the exis- 
tence of forecast horizons; it develops efficient algo- 
rithms to find minimal forecast horizons whenever they 
exist. We refer to Bean and Smith (1984), McKenzie 
(1976), Bean and Smith (1993) and the references 
therein for important work establishing existence con- 
ditions for forecast horizons in general dynamic pro- 
grams. We postpone our literature review of forecast 

horizon results for dynamic lot-sizing models to ??3 
and 4. Our work is motivated by recent algorithms in 
the Computer Science literature for dynamic programs 
of special structure, in particular Galil and Giancarlo 

(1989). 
Forward algorithms, capable of detecting minimal 

forecast horizons, are related to on-line algorithms, to 
which an increasing amount of attention is being paid; 
see Karp (1992) for a recent survey. These are algo- 
rithms in which at each stage of a dynamic planning 
process, a decision needs to be made on the sole basis 
of information (parameters) that pertain to the current 
stage only; examples are bin packing problems in which 
when a new object is to be packed, only information 
about its parameters (size, dimensions) is available and 
no information about any objects to be packed in the 
near future. The focus in designing and analyzing such 
algorithms is in characterizing their competitive ratio, 
defined as the maximum over all possible input se- 
quences or expected value over assumed patterns of 
input sequences of the ratio between the cost incurred 
by the on-line algorithm and the cost incurred by an 
optimal off-line algorithm. 

The approach taken in this paper is to adopt an in- 
termediate, and in many settings, more realistic view 
between the two extremes adhered to by on-line algo- 
rithms (i.e. no future information) and standard off- 
line algorithms (i.e. complete information about the fu- 
ture). The view adopted here is that at any stage of the 
planning process information is available about a limited 
future horizon of (say m) stages, thus allowing for the 
execution of m iterations of the forward algorithm with 
the verification of whether a forecast horizon of length 
less than or equal to m prevails. If so, initial decisions 
can be made without any loss of optimality in spite of 
the limited amount of future information. In summary, 
the focus here is in answering the question: "how much 
of the future needs to be known or forecasted" rather 
than the central question addressed in connection with 
on-line algorithms: "how much is it worth to know the 
complete future as opposed to lacking any future in- 
formation?" Our experience with forecast horizons in 
dynamic lot-sizing models with linear or fixed plus linear 
cost structures is that minimal forecast horizons are very 
short indeed (including no more than two or three order 
cycles); see Federgruen and Tzur (1994) for details. 
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2. Dynamic Programs with a Single 
Indicator for the Future 

Consider a given deterministic dynamic program and 
assume it can be represented as a shortest path problem 
in an acyclic network with node set 1 = { 0, 1, . . n } 
We assume that an arc exists between every pair of 
nodes (i, j) with i < j with a cost value c(i, j). (c(i, j) 
may be infinite if the transition from i to j is infeasible.) 

Most dynamic programming models assume that all 
arc costs { c(i,j): 0 ? i < j n } are known upfront. In 
many practical settings, information about these cost 
values is however obtained progressively as the plan- 
ning process proceeds. Examples include the produc- 
tion / inventory planning problems discussed in ??3 and 
4; these planning models are used in practice in con- 
junction with a forecasting system which at any point 
in time generates estimates of cost and sales volumes 
over a relatively short forecast interval only. The stan- 
dard view of full parameter information until stage n 
being available upfront, is therefore inappropriate in 
these settings. 

In general, we need to specify how much information 
about "future" parameters is available as the planning 
process proceeds. To this end, we introduce a nested 
sequence of information sets: 

0(o) C 0(l) C 0(2) c - - - c 0(n) = 0*. 

The set 0(t) consists of all information available when 
reaching node t. This set may contain past and future 
parameter values as well as structural information, e.g. 
the specific functional form of current and future cost 
components. To indicate that a specific parameter or 
functional relationship is known upon reaching node 
t, we will say that it can be viewed as the outcome of 
a mapping from the information set 0(t). 

DEFINITION 1. A quantity c is said to be 0-measurable 
with respect to an information set 0 c 0* if c = c(D) i.e., 
c can be viewed as the outcome of a mapping from O 
into DR. 

Let 4 denote the set of all real-valued functions de- 
fined on the real line. 

DEFINITION 2. A function f E 4 is said to be H-mea- 
surable with respect to an information set 0 c 0* if f can 
be viewed as the outcome of a mapping iA from 0 to 4, 
i.e., f= =(0). 

We assume that every arc cost c(i, j) is 0(j)-measur- 
able (1 ? i < j ? n). In other words we merely assume 
that upon reaching stage j the costs on all arcs entering 
node j are known. We use the following notation. Let 

F(t) = the cost of the shortest path from node 0 to 
node t; (t E RI). 
The shortest path is clearly characterized by specifying 
for any node t in RI its optimal predecessor node 1(t). 
(If several nodes arise as optimal predecessor nodes, 
we apply an arbitrary rule to break ties and identify 
1(t).) Thus, let 

F(k, t) = the cost of the shortest path from node 0 
to node t, using node k as the predecessor of t; (1 ? k 
< t ? n). 

The values {F(t): t = 1, . .. . n} clearly satisfy the 

recursion 

F(t) = min F(k, t) = min {F(k) + c(k, t)}. 
k<t k<t 

For certain applications, we need a generalization of 
this recursion where 

F(t) = min {E(k) + c(k, t)} (1) 
k?t 

with E(k) an arbitrary 0(k) -measurable quantity. In this 
generalization we may need quantities c(t, t), again 
assumed to be 0(t)-measurable. Examples include the 
dynamic program required to solve lot-sizing models 
with backlogging, as described in ?4, as well as many 
problems in the computer science literature, for example 
the modified edit distance problem discussed in ?5. We 
henceforth consider this generalized recursion while 
continuing to refer to it as a shortest path problem. 

When determining which of a given pair of nodes k 
and 1 (k < 1 E FE) is preferred as the best node preceding 
node t E RJ, it is useful to consider the difference function 
AkRI N D defined by: 

LAk,1(t) = F(k, t) - F(l, t), t E NI. 

We consider the class of dynamic programs in which 
the nodes in NI can be characterized by a single indicator 
X: N-- DR such that all difference functions Ak,l(*) can 
be written in the form 

ZAk,l(t) = 6k,l(X(t)) (2) 

where the function bk,l( (-) is 0(l)-measurable and X (t) 
is 0 (t) -measurable. In other words, upon reaching node 
1, for any future node t > 1, the difference function 
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AUk, ( t) can be evaluated given the single value X (t). In 
particular, upon reaching node 1 and given the single 
indicator value X (t), it can be determined whether node 
1 is to be preferred to node k as the predecessor of any 
"future" node t. For example, in many of the produc- 
tion / inventory planning problems discussed in ??3 and 
4, the difference functions can be written as in (2) with 
X(t) = D(t), the cumulative demand up to time t; in 
others, this representation can be achieved with X (t) 
= C(t), an aggregate indicator which depends on the 
variable order cost rate at time t, and the backlogging 
rate up to that time. There are many planning problems 
in molecular biology and computer science, for example 
the modified edit distance problem discussed in ?5, in 
which X (t) = t arises as the indicator. 

In ?2.1 we describe a list-based solution method 
which determines for every node t an optimal prede- 
cessor l(t). In ?2.2 we show that this algorithm can be 
used, with a minor modification, for the identification 
of minimal forecast horizons. The algorithm's com- 
plexity is analyzed in ?2.3. 

2.1. A List-based Solution Method 
While generally applicable, our proposed list-based so- 
lution method is computationally competitive to standard 
shortest path algorithms if the difference functions sat- 
isfy the following condition. 

CONDITION (C). All difference functions bk,l are 
continuous and there exists an integer R ? 1 such that 
all difference functions bk,l( * ) have at most R roots, or 
bk,l(X (t)) = 0 for all X (t). (A root is a point where the 
difference function equals zero and changes signs.) 

Several articles have recently appeared in the Com- 
puter Science literature, describing efficient algorithms 
for the solution of dynamic programs in which all dif- 
ference functions are increasing, or in which all are de- 
creasing. These two cases are usually referred to as con- 
cave and convex dynamic programs, respectively. Note 
that in both cases, condition (C) applies with R = 1, see 
for example Hirshberg and Larmore (1987), Wilber 
(1988), Aggarwal et al. (1987), Galil and Giancarlo 
(1989) and Miller and Myers (1988). See Park (1992, 
Chapter 2) for many more recent examples. In standard 
dynamic lot-sizing models with fixed-plus-linear order 
and linear holding costs, one observes that all difference 
functions are monotone, but some may be increasing 

while others are decreasing, see Federgruen and Tzur 
(1991). In other words, Condition (C) with R = 1 con- 
tinues to apply. 

If all difference functions are polynomials in X (t), of 
uniformly bounded degree R, Condition (C) clearly ap- 
plies as well; more generally, this applies when the dif- 
ference functions are given as piecewise combinations 
of convex and concave functions with a uniformly 
bounded number of pieces, s. (It is easily verified that 
(C) applies with R ? 2s.) We note that most numerical 
approximation methods for nonlinear functions employ 
piecewise polynomial representations, e.g. splines. 

Thus, for any pair of nodes k < 1 let Gr(k, 1) denote 
the rth smallest root of the difference function bk,l( * ), 

with the convention that bk,l(X) ?0 for x ? G1 (k, 1). (If 
necessary, set G1(k, 1) = -cx .) Note that with this con- 
vention, bk,l(X) ? 0 (i.e. 1 dominates k as a predecessor 
of any node t with X (t) = x) if x lies between the two 
roots Gr(k, 1) and Gr+l(k, 1) with r odd. 

The list-based algorithm is a forward procedure with 
one iteration associated with each node. The algorithm 
constructs in the jth iteration an ordered list of nodes 
Q(j) = (i1, ..., iM,) and an associated ordered set of 
critical indicator-values 

G(j) = (-cx = g(l) < g(2) 

< ... < g(m + 1)=+ ) 

with the following interpretation: 
DEFINITION 3. Fix 0 c j ? n. Let Q(j) = (i1, . . . ,,) 

and 

G(j) = (-oo = g(1) < g(2) 

< ... < g(m + 1)=+ 1). 

Node ik is an optimal predecessor node, among nodes 
0, .. ., j, for any later node t > j with an indicator value 

x.= X(t) E [g(k), g(k + 1)] (k = 1, ... .,m). 

This definition assumes that, for any node j, no re- 
strictions on the possible values of X (t) for t > j arise 
from the information contained in the set 0(j). The al- 
gorithm is modified to reflect any such restrictions by 
eliminating from the list Q( j) any node ik if 0(j) implies 
that X(t) E [g(k), g(k + 1)] is not possible for any t 
> j, see Remark 1 below. 

We note that the same node index may appear mul- 
tiple times in the list Q(]j). For every j ? 0 the lists Q( j) 
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and G (j) provide a complete characterization of which 
of the nodes 0, . . . , j arises as an optimal predecessor 
node for any potential later node t > j. In particular, 
we have the following interpretation: { i1, . . / in, } = { 0 
? 1 ? j: there exists a node t > j with a potential indi- 
cator-value x = X(t) with F(l, t) < F(i, t), i = O, 
. .. , j, i # 1 }. As will be shown below, g(k) is a root 
of the difference function bi3k-l k for all k = 2, . . ., m. 

Note that, since X ( j) is 0(j) -measurable, it is known 
upon reaching node j. We therefore assume that X ( j) 
is known at the beginning of the jth iteration, enabl- 
ing us to identify an index k such that X ( j) E [g(k), 
g(k + 1)] and hence ik = 1(j) by Definition 3. The re- 
mainder of the jth iteration consists of updating the 
lists Q((j - 1) = { i1, ... i11, } and 

G(j- 1) = (-cx =g(l)<g(2) 

< .*. < g(m + 1) = +oo) 

obtained in the (] - 1)st iteration as follows. Consider 
a given (say the kth, 1 < k < m) element in the list 

Q(j - 1). Let Rk < R denote the number of roots of the 
difference function bik,j(-) and let G, = Gl(ik, j), 1 = 1, 
. . . , Rk. (Set GRk+1 = +c1 .) The following observations 
follow directly from Definition 3 and the numbering 
convention for the roots of the difference functions: 

X(t) = x E U {([g(k), g(k + 1)] n [G,, Gl+1]): 

1 ? Rk and 1 is odd } = 

F(j, t) ? F(i, t), i = O, . . . ']i (3a) 

X(t) = x E [g(k), g(k + 1)]\U {[GI, GI+1]: 

1 ? Rk and 1 is odd } ==* 

F(ik, t) ? F(i, t), i = O,... / j. (3b) 

(If x E [GI, GI+1] with 1 odd, node j dominates node ik 

as a last predecessor, and if x E [g(k), g(k + 1)] as well, 
node ik dominates every other node 0, . . ., j - 1, thus 
verifying (3a). Likewise, if 

x E [g(k), g(k + 1)]\[G,, GI+1] 

for 1 odd, ik dominates all nodes 0, j. - 1, as well 
as node j.) 

Thus, (3) fully characterizes for all t > j with g(k) 
< x = X(t) ? g(k + 1) which of the indices 0, . . . j 

minimizes { F(i, t), i = 0, . . . ,/j}. A full characterization, 
for all x, can be obtained by applying (3) sequentially 
to all k = 1, . . ., m. Each such application invokes de- 
termining the union of the intersections of pairs of in- 
tervals; the kth determination could potentially be sped 
up by keeping track of intervals on which j is dominated 
by one of the periods ii, . . ., ik/ as determined in the 
first (k - 1) applications of (3). In general, this fails to 
pay off; see however the case R = 2 below. On the other 
hand, it is worthwhile to update a value UP such that 
for all x ? UP, j has been shown to be dominated. In 
particular, if Rk is even, it follows from (3) that j is 
dominated for all x ? GRk SO that UP can be reduced to 
GRk (if UP> GRk). 

We thus obtain the algorithm below, which employs 
the following conventions and procedures: Q'ld and Gold 

represent the Q and G lists at the beginning of an iter- 
ation. New elements of the updated lists are written 
into Qnew and Gnew. iold(k) and inew(k) represent the kth 
element in the lists Q old and Qnew, respectively. 

NEXT represents the next position to be filled in 
Q new ( .); LAST = I 

Qold I. As explained above, UP is the 
largest value of x that still needs to be considered at the 
current iteration. We use an n X R matrix MR(-, *) to 
store in each iteration j the (at most) R roots of the 
difference functions biod(k),(*) for all iold(k), k = FIRST, 
. . ., LAST. 

Procedures 
INSERT (j, NEXT, x): if inew(NEXT-1) ]j then 

begin inew(NEXT):= j gnew(NEXT): = x, NEXT:= 
NEXT + 1 end. 

MOVEALL (NEXT, k): while gold(k+l) < x do 
inew(NEXT):=iold(k); gnew(NEXT):=gold(k); 

k:=k+l; NEXT:=NEXT+l end g new (NEXT): = . 

Each iteration starts with the execution of Step 1. In- 
put to the jth iteration is the information set 0 (j). Recall 
that 0(j) contains all c(i, 1) and all bij() for 0 ? i ? 1 
c j, as well as X(I) and E(I), 1= 1, .. . 

Algorithm GENERAL 
Step 0: (Initialization) 
F(k):=0; iAnew(S):=; gnew(X)T=-2; gnew(2):.= ; j:=?; 

k:=l; LAST:=1; NEXT:=2. 
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Step 1: 
j:= j+1; 
l (j):= it, such that gnew ( nl ) < X( j) < gnew (m + 1 ), rn 
= 1,.. ,LAST; 
F(j):= E(I ((j)) + c(I ((j), j); 
If ] = n then STOP. 

Step 2: 
LAST: = NEXT-1; 
for 1:=1,LAST do begin iold(l): =inew(l); gold(l):=gnew(l); 

end 
NEXT:=1; UP:=cxD; 

Step 3: 
if ( i 

old (k) 7/ i(oldI) for all 1 < k) 
then begin Compute the roots G1, G2, . GRk of 

biold(k),j(x) and store them in MR(-, *); GRk+1 = x; end 
else get the roots G1, G2, . . . GRk of biold(k),j(x) from 
MR (., ); 

if ((Rk is even) and (GRk < UP)) then UP = GRk. 

p:= min {l?l<Rk+l: G > gold(k)}. 

Step 4: 
If (p is odd) then INSERT(iold(k), NEXT, gold(k)); 

otherwise INSERT (j, NEXT, gold (k)); 
if (GC1 > gold(k + 1)) then go to Step 5. 
gold(k):=GGp; p:= p +1; Repeat step 4. 

Step 5: 

k:=k+l; 
if gold(k) > UP then begin MOVEALL(NEXT, k); go to 
Step 1 end. 
go to Step 3. 

At the beginning of iteration j the algorithm generates 
1(j) and F(j) as outputs, from which the shortest path 
from node 0 to node j (and its cost function) can be 
determined. 

REMARK 1. As mentioned above, for any j = 1,..., 
n, the information contained in 0(j) \ (j - 1 ) may imply 
some new restrictions for the feasible region X of future 
index values. In such cases the jth iteration needs to 
start with determining for k = FIRST, . . ., LAST the 
intersection of X and the interval [g(k), g(k + 1)], elim- 
inating ik and g(k) from the list if this intersection is 
empty. As a result, ik-1 is now associated with the in- 
terval [g(k - 1), g(k + 1)] of the previous list; observe 
that ik-1 continues to be the optimal predecessor 

node among { 0, . . . , j } for any feasible value X (t) 
E [g(k - 1), g(k + 1)]. For example, if X(t) = t, it is 
known upon reaching node 1 (i.e., it is part of the in- 
formation set 0(l)) that X(t) is an integer >1 for all t 
> 1. Thus, ik can 'be eliminated from Q(j) if no such 
integer is contained in [g(k), g(k + 1 )]. In the examples 
where X (t) = D ( t) (the cumulative demand for an item 
up to period t), it is known upon reaching node 1 that 
X (t) 2 D(l) for all t > 1 if the demand in every period 
is nonnegative; this allows for the elimination of all 
nodes ik E Q with g(k + 1) ? D(l), and replacement of 
g ( k) by D (l) for the (at most unique) element ik with 
g(k) < D(l) ? g(k + 1). With this modification of the 
algorithm GENERAL, a revised definition of the list Q 
applies: 

DEFINITION 3'. Fix 0 c j ? n. Let Q(j) = (i1, . . ., i111) 
and 

G(j) = (-cx = g(1) < g(2) 

< . .. < g(m + 1) =+ 1 ). 

[g(k), g(k + 1)] has a nonempty intersection with X, 
the feasible region of future indicator values (as specified 
by 0(j)) and node ik is an optimal predecessor node, 
among nodes 0, . . . j, for any later node t > j with a 
feasible indicator value 

x = X(t) E [g(k), g(k + 1)] (k = 1,. .., m). 

2.2. Detecting Minimal Forecast Horizons 
A minor modification of algorithm GENERAL allows 
for the detection of a minimal forecast horizon. A node 
L is called a forecast horizon if the optimal path from 
node 0 to any node t > L goes through node 1 (for any 
possible arc costs { Crs: s > L }). Such a node 1 is referred 
to as a planning horizon. A node L* = min{L: L is a 
forecast horizon } is the minimal forecast horizon. 

We assume for the sake of notational simplicity, that 
1(j), the optimal last predecessor of node j, is unique 
for all j = 1, . . ., n. This assumption implies that a 
unique optimal path exists to every node j = 1, . . ., n. 
Almost all of the existing literature on forecast horizons 
employs a similar assumption on the existence of a 
unique shortest path, throughout. It is easy to extend 
our results to the general case where multiple finite ho- 
rizon optimal solutions may exist, see Federgruen and 
Tzur (1994). Let 
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q(j) = the first node after node 0 

on the optimal path to (j = 1, . ..,); 

q(0) = 0. 

We first derive the necessary and sufficient condition 
for a node j to be a forecast horizon. 

THEOREM 1. Fix j = 1, . . ., n. Let Q(j) {il, i2, 

. . , i,,, }. Node j is a forecast horizon if and only if 

0 < q* q(i1) = q(i2) = * * * = q(inl). (4) 

If (4) holds, then q* is a planning horizon. 

PROOF. Assume first that (4) holds. Consider the 
optimal path to a given node t > j, let t - denote the 
first node on this path with t- > j, and p c j its pre- 
decessor. Clearly, p E Q(j) since p is an optimal last 
predecessor among nodes 0, . . . , j for t -. We conclude 
that the optimal path to node t goes through q(p) = q*. 
Arc (0, q *) is therefore an optimal initial arc, regardless 
of the arc costs { c(k, 1): j < 1 } ? O(j). Therefore j is a 
forecast horizon and q * the associated planning horizon. 

Conversely, assume that (4) fails to hold but that 
node j is a forecast horizon nevertheless. This implies 
that the optimal initial arc is independent of any arc 
costs { c(k, 1): j < 1 } . Thus, assume arc (0, r) (for some 
r ? 1) is the initial arc on the optimal path to every 
potential future node t > j. Since (4) fails to hold, there 
exists an element ik E Q( j) with q(ik) * r. By definition 
3 (or its more general version 3'), there exists an un- 
known feasible future indicator value X (j + 1) E (g(k), 
g ( k + 1 )) for which ik is the predecessor of node 
(j + 1) on the optimal path to node (j + 1), and 
arc (0, q(ik)) * (0, r) is the initial arc on this path, a 
contradiction. CI 

Theorem 1 suggests an extremely simple procedure 
for the detection of a minimal forecast horizon and its 
associated planning horizon. Note that 

j if l (j)=O0, q(j) if(=0 (j= 1, .. .,n) (5) 
q ( q(l(j)) otherwise. 

Algorithm GENERAL is thus easily adapted to allow 
for the detection of a minimal forecast horizon. Having 
computed and stored the values q(1), . . . , q(j - 1), 
q (j) is easily computed via (5). Thus, to verify whether 
node j is a forecast horizon, it suffices to conclude the 

jth iteration with a test of whether (4) holds or not. 
This can be done efficiently by keeping track of the 
multiplicity of each distinct q-value among all q-values 
associated with nodes which appear in Q, and by testing 
at the end of the jth iteration whether the multiplicity 
of q(i1) equals the number of (distinct) nodes in the 
prevailing list Q. The multiplicities of the q-values only 
need to be updated when a node is deleted or added to 
the list Q. There are at most 2n such deletions and ad- 
ditions of (distinct) nodes in n iterations and the update 
associated with an addition (deletion) consists of in- 
creasing (decreasing) the multiplicity of a single q-value 
by one. We conclude that the forecast horizon test can 
be performed in each of the first n iterations, with a 
total of 0 (n) elementary operations in addition to those 
required by the algorithm GENERAL, see below. We 
refer to Algorithm GENERAL combined with the fore- 
cast horizon test in each iteration (including the nec- 
essary updates of the q-values) as algorithm GENFOR. 

In the case of multiple finite horizon optimal solutions, 
q(j) represents a set of optimal first nodes. In this case 
j is a forecast horizon if and only if the q-sets associated 
with the elements in Q(j) have a common element. Ver- 
ifying this condition can again be done in 0(n) time, 
see Federgruen and Tzur (1994) for details. 

In some settings it is required or desired to obtain a 
planning horizon which is at least as large as a prespeci- 
fied number of nodes. As in Federgruen and Tzur 
(1994), we refer to such a planning horizon as the sta- 
bility horizon. The above procedure is easily adjusted: 
Define 

the first node after node s 

on the optimal path to node j, 

~~~~I j= s+ 1, n...,n 

o0 otherwise. 

Clearly q0(j) = q(j) for all j = 1, . . ., n. In analogy 
to (5) we obtain: 

q(j\fi if l(j) < s (j = s + 1, ,n), 

q (I1 ((j)) otherwise. 

Thus, (5) with q(.) replaced by qs(.) represents the 
necessary and sufficient condition for a node j to be the 
minimal forecast horizon associated with a stability ho- 
rizon s. 
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2.3. Complexity Analysis 
We now discuss the complexity of algorithm GENERAL. 
We confine ourselves to the case where no restrictions 
on the possible values of X (t) for t > 1 arise from the 
information contained in the set 0(1). The complexity 
analysis can be appropriately adjusted in the alternative 
case. A single call to the INSERT procedure requires a 
constant number of elementary operations. The jth it- 
eration requires, in the worst case, calculation of up to 
R roots of j difference functions 6 and 0 (R I Q( j-1 ) I) 
additional elementary operations. (Note that Step 3 is 
repeated at most I Q(j - 1) I times and an execution of 
Step 3 is followed by at most R consecutive executions 
of Step 4.) The total complexity of the algorithm is 
therefore 0(R E I 2Q(j - 1)1) elementary operations 
and 0(n2R) computations of roots of difference func- 
tions. (Efficient procedures for the calculation of roots 
of a general non-linear function can be found e.g. in 
Leavenworth (1960) and Muller (1956), see also IMSL 
(1991) and Conte and De Boor (1972) for a reference 
text.) We now derive an upper bound for the list size. 

DEFINITION 4. A substring (ill, . . . , ilp) of (i,. . . 

i,..) is called alternating if it consists of a pair of nodes a 
and b such that (ill, . . . , ilp) = (a, b, a, b, *) for 
some pair of nodes 1 ? a, b ? j. 

LEMMA 1. Fix j ? n. The ordered set Q( j) = (i1, 

i,) contains no alternating substrings of length R + 2. 

PROOF. Consider a substring (ill, . . . , ilp) = (a, b, 

a, b, * * * ) for some pair of nodes a, b. Every consecutive 
pair of nodes Ilrl ilr+l in the substring is associated with 
a pair of intervals 

[g(lr), g(lr + 1)] and [g(lr+l), g(lr+l + 1)] 

such that 6a,b (if a < b) or bb,a (if b < a) is negative on 
one of the two intervals and positive on the other, since 
in the former lr dominates as a last predecessor node 
and in the latter lr+1. By the continuity of 6 (see condition 
(C)) it follows that 6 has a root in between these inter- 
vals. It follows that every consecutive pair of elements 

( i1r, i r+l ) is associated with a distinct root of the difference 
function ba,b (or 6b,a). The maximum alternating sub- 
string is therefore of length R + 1. C] 

It follows from Lemma 1 that for some function XR( 

IQ(i)I ' XR(j + 1), the maximum length of a string 
with up to j + 1 distinct elements where no consecutive 

pair of elements is identical and no alternating substring 
of length R + 2 exists. Such strings were first introduced 
by Davenport and Schinzel (1965) and are since referred 
to as Davenport-Schinzel sequences. Davenport and 
Schinzel showed that X2 (j) ? 2 j- 1 (see also Theorem 
5.2 in Tzur (1992)). Example 1 shows that this bound 
is tight. 

EXAMPLE 1. Consider the following string, containing 

j distinct elements: 

(1,2,3,..., j-2,j- 1,j,j - 1, j-2, ... 3,2, 1). 

No two consecutive elements in this string are identical, 
there are no alternating substrings of length 4 and the 
length of the string is 2 j- 1. 

Szemeredi (1974) proved that for a given R, XR(j) 
= 0(j log* j) where log*j = min { k: expk( 1) >j } with 
exp1(x) = ex and expk(x) = exp expk1(x) and where 
the constant factor depends on R. Note that log* j ? 2 
for j < 15 < ee and log* j ? 3 for j ? 3,814,279 < eee. 

In other words, log* j < 3 for all practical purposes. 
Sharir (1987) proved that for general values of R, 

XR(j) = 0(ja( jc ) 0o(j()R-3)) where ae(j) denotes the inverse 
Ackermann function, an extremely slowly growing 
function defined as follows: 

Al(m) = 2`l?1; Ak+l(1) = Ak(2); 

Ak+l(m + 1) = Ak(Ak+l(m)). 

Its functional inverse c(n) = min{k: n < Ak(k)}. For 
astronomically large values of n it is a tighter bound 
than that of Szemeredi. Hart and Sharir (1986) showed 
that XR(j)/ j goes to infinity, i.e., XR(j) * 0(j). We thus 
conclude: 

THEOREM 2. Assume Condition (C) holds for some 
given integer R. 

(a) Algorithm GENERAL solves the shortest path 
problem. 

(b) For R > 2 the algorithm requires 0(n2 log* n) el- 
ementanr operations and 0(n2) computations of roots of 
difference functions 3. 

(c) For R = 2 the algorithm requires 0 (n 2) elementary 
operations and 0(n2) computations of roots of difference 
funictiolns a. 

PROOF. Immediate from the above explanations. C] 
For R = 2, Algorithm GENERAL may be sped up by 

exploiting the following observation: Let Q(j - 1) = { i1, 
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. . ., i4 } with associated critical values g( 1), 

... , g(m). Once a value G1 (G2) is identified as a root 
G1(i1, j) (G2(il, j)) for some 1 < 1 < m, we know that 
node j cannot arise as an optimal last predecessor node 
(among the first j nodes) for any future horizon t with 
X (t) = x < GC or x > G2. Thus, having characterized 
optimal predecessor nodes (among nodes 0, . . ., j) 
for all x < g(k + 1) for some k (1 ? k < m), we know 
that node j can arise as the optimal last predecessor 
node only for 

LOW(k) = max{G1 (ii, j): =1, .. ., k} <x < 

UP(k) = min{G2(il, j): 1 = 1, ..., k}. 

The update procedure can thus be terminated as soon 
as LOW(k) > UP(k). Clearly, 

LOW(k + 1 ) = min { LOW(k), Gl (ik+l, j) } and 

UP(k + 1) = min { UP(k), G2(ik+l, i) }, 

allowing for easy updates of the LOW and UP values. 
The reader is referred to Tzur (1992, Chapter 5) for a 
formal description of the resulting variant of Algorithm 
GENERAL. 

For R = 1, the algorithm may be modified so as 
to require only 0(n log n) elementary operations and 
0 (n log n) computations of single root difference func- 
tions 3. Note that in this case, by Lemma 1 no node can 
appear more than once in the list; in particular, I Q( j) 
? X,(j + 1) = j + 1. To update Q(j - 1) in the jth iter- 
ation, it thus suffices to find the single interval [g, -] 
(if any) in which node j dominates over nodes 0, . . . 
j - 1 as a last predecessor node. Algorithm GENERAL 
has complexity 0 (n 2 ) even when R = 1. In the Appendix 
we describe how the algorithm can be modified to 
achieve a complexity of 0(n log n). We thus obtain: 

PROPOSITION 1. Assume Condition (C) applies with 
R = 1. 
- (a) Algorithm GENERAL, modified by replacing Steps 
2-5 by the procedure SRUP in the Appendix, solves the 
dynamic programming model and requires 0(n log n) de- 
terminations of roots of difference functions and 0(n log 
n) additional elementary operations. 

(b) If all difference functions 3k,l( * ) are nondecreasing 
(nonincreasing), algorithm GENERAL may be modified 
to require 0(n) determinations of roots of difference func- 
tions and 0(n) additional elementary operations. 

PROOF. See the Appendix. 
Finally, it is worth noting that the complexity of the 

algorithm consists of 0(n) determinations of roots and 
0(n) additional operations if the number of distinct 
nodes in the list can be shown to be uniformly bounded 
in n. 

COROLLARY 1. Assume Condition (C) appliesforsome 
integer R. Assume that for all nodes t (t = 1, . . . , n) an 
optimal path from node 0 exists in which no arc (i, j) is 
employed with j - i > M, for some constant integer M 
2 1. Algorithm GENERAL requires 0(n) determinations 
of roots and 0(n) additional operations. 

The condition of Corollary 1 can often easily be ver- 
ified. We do this in ??3 and 4 for the lot-sizing models 
discussed there, proving a uniform bound for order cy- 
cles, merely assuming that certain marginal cost values 
and demand parameters are uniformly bounded from 
above or below. Our numerical experience with lot-siz- 
ing models indicates that the list size is very small. Ob- 
serve also that no upfront bound for R or the maximum 
list size are needed when running the algorithm. 

3. Dynamic Lot-sizing Models 
Without Backlogging: General 
Concave Order and Holding Cost 
Functions 

In ??3 and 4 we discuss dynamic lot-sizing models 
without and with backlogging, respectively. We show 
how these models can be represented as dynamic pro- 
grams with a single-indicator of the future, thus allow- 
ing for the application of Algorithm GENFOR. 

The dynamic lot sizing model is one of the most fre- 
quently employed deterministic single item inventory 
planning models. The basic model was introduced by 
Wagner and Whitin (1958). It specifies a study horizon 
divided into finitely many (say n) periods each with a 
known demand which must be satisfied. An unlimited 
amount may be ordered (produced) in each period. In 
the basic model without backlogging, the cost structure 
consists of fixed-plus-linear order (or production) costs 
and holding costs. Order costs thus consist of a fixed 
component incurred whenever an order is placed, and 
a variable component proportional to the order size. 
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The holding costs are assumed to be proportional with 
the end-of-the-period inventory level. All parameters, 
i.e. demands, setup costs, variable replenishment and 
holding cost rates may differ from period to period. 
Wagner and Whitin (1958) developed an 0(n2) shortest 
path algorithm to solve the problem. 

New solution methods, with complexity 0(n log n), 

were recently developed for the basic problem by Ag- 
garwal and Park (1993), Federgruen and Tzur (1991), 
and Wagelmans et al. (1992). Federgruen and Tzur 
(1994) also showed how, with a slight modification of 
their algorithm, minimal forecast horizons can be de- 
tected. 

In this section we discuss dynamic lot-sizing models 
without backlogging in which the order and holding 
costs are described by general concave functions of the 
order quantity and inventory level. This cost structure 
allows for the modeling of general economies of scale 
as they apply to production, order and inventory costs, 
e.g., economies of scale due to quantity discounts. 

We note that the basic structural properties of an op- 
timal strategy, as employed in the basic model, continue 
to hold under general concave cost structures. More 
specifically, a zero inventory ordering policy in which 
an order is placed in period i only if the ending inventory 
of period i - 1 is zero, remains optimal, see Zangwill 
(1968) and Denardo (1982). A zero-inventory ordering 
strategy is completely determined by the specification 
of 1(t), the last period with zero ending inventory pre- 
ceding any given horizon t (t = 1, . . . , n). On the basis 
of this property, the Wagner-Whitin shortest path al- 
gorithm has been directly generalized to handle general 
concave cost functions, see Zangwill (1969) and Den- 
ardo (1982). In this section we show how the frame- 
work developed in ?2 can be applied to the dynamic 
lot-sizing model with general concave cost functions. 
The resulting list-based algorithms are a generalization 
of the 0(n log n) solution method by Federgruen and 
Tzur (1991), for the basic model. The main advantage 
of these algorithms is their ability to detect minimal 
forecast horizons, if they exist, in the presence of general 
nonlinear (concave) cost functions. In the voluminous 
literature on forecast horizon for lot-sizing models, 
Bensoussan et al. (1991) make the most general cost 
assumptions to date, but restrict themselves to piecewise 
linear (concave) functions only. If the number of pieces 

required to describe the one-period cost function is 
bounded, the complexity of their algorithm is 0(n3). 

In ?3.1 we discuss models without backlogging in 
which every period's order cost function is piecewise 
linear (concave) and the holding cost function is arbi- 
trary (concave). In ?3.2 we generalize the model to al- 
low for general concave order cost functions. 

3.1. Lot-sizing Models Without Backlogging: 
Piecewise Linear Concave Order Cost and 
Arbitrary Concave Holding Cost Functions 

We use the following notation: For all i = 1, . . . , n, let 
di = demand in period i; we assume without loss of 

generality that di 2 0; 
D ( i) = E k= dk represents the cumulative demand in 

periods 1, . . . , 
We initially assume that the order cost functions are 
fixed-plus-linear and discuss the generalization to gen- 
eral piecewise linear concave functions at the end of 
this subsection. Thus, 

Ki= setup cost in period i; 
ci= variable per unit order cost in period i; 
hi (Ii) = holding cost in period i when its ending in- 

ventory equals Ii (assume, without loss of generality, 
that the h ( * ) functions are normalized such that hi (0) 
= 0. We also assume that the h(*) functions are non- 
decreasing.) 

As in ?2, let 
F(t) = minimum total cost in periods 1, . .. , tl 
F(l, t) = minimum total cost in periods 1, ... , t given 

that the last period with zero ending inventory (prior 
to t) is I (I < t). 

Thus, F(t) represents the cost of a shortest path from 
node 0 to node t in a network with node set RJ 
= { 0, . . . , n } and with c(l, t), the cost of arc (1, t), the 
total order and holding costs in periods 1 + 1, . . . , t, if 
the ending inventory in periods 1 and t both equal zero 
(and nowhere in between). One can easily verify that 

F(l, t) = F(l) + K1+1 + cj+?(D(t) 

- D(l)) + I hr(D(t) -D(r)). (6) 
r=l+1 

Thus, F(t) = min1<, F(1, t). (7) 
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For all k < 1, 

Sk,l(t) = F(k, t) - F(l, t) = F(k) - F(l) + Kk+1 

- K1+1 + cl+D(l)- Ck+lD(k) 

+ (Ck+1-cj+j)D(t) + E h,(D(t)-D(r)). 
r=k+l 

We specify the information sets 0(t) as follows: 

0(0) ={K1, cl} and 

0(t) = 0(t - 1) U {dt, ht(*), Kt+1, ct+1} 

fort= ,...,n. 

In other words, upon reaching node t (which corre- 
sponds with the end of period t), both that period's 
demand and its inventory cost function are known, as 
well as the cost of any order to be placed at the begin- 
ning of period t + 1. If a dynamic lot-sizing model is to 
be solved with a study horizon of n periods, this assumes 
that at the beginning of period 1, all information in 0 (n) 
is known. The implication of this knowledge base is 
that at the beginning of period 1, n iterations of the 
algorithm GENFOR can be executed; if in the course of 
these n iterations a (no) minimal forecast horizon is 
detected, this therefore implies that the corresponding 
(no) planning horizon can be identified at the beginning 
of period 1. Furthermore, the common practice of de- 
termining lot sizes on the basis of a rolling horizon of 
n periods means that at the end of every period j (j = 1, 
2, *.. ) the information set 0 (j + n) is known, allowing 
for the execution of iterations j + 1, . . ., + n of the 
algorithm. 

We observe that the difference functions depend on 
t only via D(t), i.e., D(t) is the single-indicator of the 
future of the dynamic program (7). In other words, the 
difference functions can be written as in (2) with X (t) 
= D(t) E 0(t), as follows: 

Ak,l(t) = bk,l(D(t)) where 

bk,l(x) = A(k, 1) + (Ck+1 - Cl+l)X 

+ I hr(x-D(r)) and 
r=k+1 

A(k, 1) = F(k) - F(l) + Kk+1 -K+1 

+ cl+D(l)- Ck+j D(k). (8) 

We note that all bk,l ( ) functions are 0 (1) -measurable; 
moreover, they are concave since all hr( ) functions are 
(r = 1, . . ., n). This implies in particular that the 3(*) 
functions have at most two roots, i.e. Condition (C) is 
satisfied with R = 2. 

Since one-period demands are assumed to be non- 
negative, it follows that for all t > 1, X(t) = D(t) 
? D(l). In other words, the information contained in 
the set 0(l) implies a restriction on possible values of 
future indicators. Our procedures below are based on 
this observation. 

Thus, for any pair of periods 0 ? k < l ? n let 

G1(k, 1) < G2(k, 1) denote the two roots 

of the function bk,l( *) on the half line [D(l), oo) 

if two such roots exist. (9a) 

If 3k,l( * ) has a single root r* on the half line [D(l), oo) 
we distinguish between the following two cases in de- 
fining G1(k, 1) and G2(k, 1): 

G1(k, 1) = D(l) and G2(k, 1) = r* 

if bk,l(D(l)) ? 0, (9b) 

G1(k, 1) = r* and G2(k, 1) = oo 

if bk,l(D(l)) < 0. (9c) 

Finally, if bk,l(D(t)) 2 0 for all D(t) ? D(l), we define 

G1(k, 1) = D(l) and G2(k, 1) = oo. (9d) 

If 3k,l(*) < 0 throughout, then 

G1(k, 1) = G2(k, 1) = oo. (9e) 

Since for this model Condition (C) is satisfied with R 
= 2, we have in view of Theorem 2(c): 

THEOREM 3. The algorithm GENFOR solves the lot- 
sizing problem (7), and detects a minimal forecast horizon. 
It consists of the computation of (at most two) roots of at 
most 0(n 2) difference functions and 0(n 2) additional el- 
ementary operations. 

Note that since the difference functions are con- 
cave, roots can be determined, e.g., by a simple binary 
search procedure, starting with the prevailing interval 
[LOW, UP], see ?2. 
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Theorem 3 characterizes the complexity of the algo- 
rithm GENFOR under fully general holding cost func- 
tions, and arbitrary order cost and demand parameters. 
Corollary 1 shows however that the algorithm has linear 
complexity only, if the list size is uniformly bounded. 
In ?3.2 we show this (in a more general setting) under 
mild conditions with respect to the cost functions and 
parameter values. For the models considered here, this 
implies the following proposition: Assume all demands 
are rational, hence integer after appropriate scaling. For 
any real-valued function 0(x), let V+ k(x) denote the 
right-hand derivative of the function (whenever it ex- 
ists), i.e., 

V7+ (X) = lim 0(x + h) - 0(x) 
140 h 

Recall that for every concave function, the right-hand 
derivative exists everywhere (see Rockafellar 1970). 

PROPOSITION 2. Assume there exists an integer M 
> 1, and uniform bounds h*, K*, c* and c* such that 
(di + ? * ? + di+M) 2 1, ci c*, Ki ? K*, ci c c* and 
limx V+hi (x) 2 h* > O for all i = 1, . . ., n. 

(a) The size of the list Q is bounded from above by 

(K* W - c*) ) 

(b) The algorithm requires 0(n) operations. 

Piecewise Linear Concave Order Cost Functions. 
Assume now that for all i = 1, . .. , n, ci(x), the cost 
of an order of size x in period i is given by a piecewise 
linear function, described via Pi pieces. In Federgruen 
and Tzur (1992) we show that any model with piece- 
wise linear order cost functions can be transformed into 
an equivalent model with fixed-plus-linear order cost 
functions only. The transformation consists of substi- 
tuting each period i by a sequence of Pi periods (i, 1), 

(i, Pi) with appropriately chosen cost functions 
and parameters. 

Let Pmax denote the maximum number of pieces re- 
quired to represent the order cost functions. An optimal 
schedule can thus be determined, and a minimal forecast 
horizon can be detected for the general model (7P), via 
0(n2 Pmax) elementary operations and as many com- 
putations of roots of (nonlinear) functions, by applying 
Algorithm GENFOR to the equivalent model. Under 

the condition stated in Proposition 1 the complexity is 
O(nPmax). 

Bensoussan et al. (1991) recently developed a pro- 
cedure to detect a maximal planning horizon for a given 
forecast horizon, for the special case of the model con- 
sidered here, where all holding cost functions are piece- 
wise linear (concave), just as the order cost functions. 
The complexity of their procedure is 

O (n 3Hmax log2( 1 + Hmax)+ n 2Hmax log2( 1 + Pmax) 

+ n 2Pmax log2(1 + Hmax) + n Pmax log2(1 + Pmax)) 

where Hmax denotes the maximum number of pieces 
required to describe the holding cost functions. Our 
procedure can be transformed to one detecting a max- 
imal planning horizon for a given forecast horizon, 
increasing the complexity by a factor 0 (log P,o,) 
= 0 (log (n Pmax)). Conversely, the procedure in Ben- 
soussan et al. (1991) can be transformed to one detecting 
minimal forecast horizons, increasing the complexity 
by a factor 0(log n). 

3.2. Models Without Backlogging: General 
Concave Order Cost Functions 

In this subsection we generalize the model of the pre- 
vious subsection to allow for general concave order cost 
functions. Thus, let ci (x) = cost of placing an order of 
size x in period i, (i = 1, . . . , n). (We assume, without 
loss of generality, that the cost functions are normalized 
such that ci (0) = 0. We also assume that c(*) is a non- 
decreasing function.) 

We continue to use the same notation for the holding 
cost functions and demand parameters. We specify the 
information sets 0( ) as before, except that ct is now 
interpreted as a function rather than a scalar. Note that 
expression (6) for the function F(1, t) continues to apply, 
provided once again that cl+? (*) is now interpreted as 
a function. Once again, the difference functions depend 
on t only via D(t), i.e., X (t) = D(t) E O(t) is the single- 
indicator of the future of the dynamic program (7): 

Ak,l(t) = 6k,l(D(t)) where 

bk,l(x) = F(k) - F(l) + Ck+1(X -D(k)) 

-cl+(x - D(l)) + E hr(x - D(r)). (10) 
r=k+l 
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As before, 6k,l ( * ) is 0 (l) -measurable. Observe, however, 
that bk,l( () may now fail to be concave since the term 
-cl,,(x - D(l)) is convex. This implies that the differ- 
ence function may have more than two roots, i.e., R 
> 2 may occur. The following example, adapted from 
Bensoussan et al. (1991) shows that the difference 
functions may in fact have an infinite number of roots. 

EXAMPLE 2. Let n = 2; d1 0; h1(&) = h2(.) = 0; 

c1(x) = 1 -eX; and c2(x) = 1-e -x(1 + 0.5 sin x). It 
is easily verified that c1 ( * ) and c2(*) are concave, and 
Cl(0) = C2(0) = 0. Note that 61,2(x) = 0.5e-xsinxwhich 
has infinitely many roots. 

In the remainder of this subsection we assume that 
Condition (C) applies. Note that if all one-period cost 
functions are (concave and) polynomials of uniformly 
bounded degree R, the same can be shown to hold for 
all difference functions, hence the difference functions 
have at most R roots. Condition (C) clearly continues 
to apply when all one-period cost functions are de- 
scribed as piecewise combinations of polynomials of 
uniformly bounded degree, with a uniformly bounded 
number of pieces. Alternatively, Condition (C) contin- 
ues to apply if holding cost functions of the above type 
are combined with order cost functions which are ra- 
tional, i.e. ratios of two polynomials, of uniformly 
bounded degree. Even more generally, all one-period 
cost functions may be chosen as linear combinations of 
an arbitrary so-called Tchebycheff system. A Tcheby- 
cheff system is a set of N continuous functions u1, 

UN defined on a closed interval [a, b] such that 
every function of the form w (x) = E NI=, aiui (x) equals 
zero for at most N zeros. This condition can be verified 
by evaluating the sign of certain determinants, see Karlin 
and Studden (1966) for an extensive discussion of such 
systems and many examples. We conclude from theo- 
rem 2: 

COROLLARY 3. The Algorithm GENFOR solves the 
dynamic lot-sizing model with general concave one-period 
cost functions which satisfy Condition (C) for some integer 
R, and detects a minimal forecast horizon. Its complexity 
consists of 0(n2 log* n) elementary operations and 0(n2) 
computations of roots of the difference functions 3. 

Corollary 3 characterizes the complexity of the al- 
gorithm under fully arbitrary holding cost functions and 
demand parameters, and general order cost functions. 
The complexity of each iteration is proportional with 
the list size Q. As discussed in ?2, the worst case list 
size is 0 (n log* n). Below we show that the list size is 
in fact uniformly bounded under mild conditions with 
respect to the cost functions and demand parameters. 
As before assume all demands are rational, hence integer 
after appropriate scaling. 

PROPOSITION 3. Assume there exists an integer M 
2 1, and uniform bounds h*, K*, c* and c* such that 
(di + + di+m) ? 1, lim., V+hi (x) ? h*, c* 
? limX pa V+Ci(X) 2 C* > 0, and ci(O+) limxso ci(x) 
? K* for all i = 1, . . ., n. 

(a) There exists an optimal solution in which every re- 
plenishment interval, i.e., interval between two consec- 
utive order periods, is of length ? T= [K* + (c* -c* 
h* + M. 

(b) The size of the set Q is uniformly bounded by 
O(T log* T) where the constant factor is a function of R 
only. 

(c) The algorithm requires 0(n) operations. 

PROOF. (a) Consider an arbitrary period t, let j + 1 
with t - M c j + 1 ? t denote the last period prior to t 
with dj+1 ? 1 and let 0 < i < j- [K* + (c* -c*)]h*. 
Let Fi,j(t) denote the minimum cost in periods 1, . . ., t 
if periods i and j are the last two periods prior to period 
t with zero ending inventory. Then, 

= I { hr(D(t)-D(r))-hr(D(j)- D(r)) } 
r=i+l 

+ ci+i(D(t) - D(i)) - ci+1(D(j) - D(i)) - cj+1(D(t) - D(j)) 

2 h*(j - i)(D(t) - D(j)) + c*(D(t) - D(j))- c*(D(t) - D(j))-K* 

= [D(t) - D(j)][h*(j - i) - (c* - c*)] - K* > K* -K* = 0, 
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where the second inequality follows from the concavity 
of the c( () and h (.) functions and the last inequality 
from (j - i)h* > K* + (c* - c*) and D(t) - D(j) 2 dj+l 
2 1. Thus, if i < t - T, it cannot be optimal to use 
[i + 1, t] as a last replenishment interval and hence it 
cannot be optimal to use it as a replenishment interval 
altogether. 

(b) and (c): By part (a) there can be at most T distinct 
periods in any list Q which by Szemeredi (1974) is 
therefore bounded by O(T log* T) with a constant 
which depends on R only. D 

4. Dynamic Lot-sizing Models with 
Backlogging and General 
Concave Cost Functions 

In this section we consider models with backlogging, 
allowing for general concave holding, order and back- 
logging cost functions. In models with backlogging, the 
cost structure consists of order and holding costs, as 
well as backlogging costs which are functions of the 
period's ending backlog size. Zangwill (1969) showed 
that it is optimal to place a single order between any 
pair of periods with zero starting inventory, and de- 
veloped an O(n3) algorithm on the basis of this prop- 
erty. The algorithm determines a shortest path on a net- 
work with n nodes and multiple arcs connecting every 
pair of nodes. Aggarwal and Park (1993) recently ob- 
tained an 0(n2) solution method. As far as a detection 
procedure for forecast horizons is concerned, no such 
procedures have been obtained that allow for the vari- 
able order, holding and backlogging costs to be repre- 
sented by nonlinear functions. 

We show in ?4.1 how the general algorithm of ?2 
can be used to obtain an 0 (n 2) solution method which 
allows for the detection of minimal forecast horizons. 
The method is applicable when holding costs are given 
by arbitrary concave functions, order costs are piecewise 
linear (and concave) and backlogging costs are fixed- 
plus-linear. Models with piecewise linear order costs 
are first transformed into equivalent models with fixed- 
plus-linear order costs employing a transformation 
similar to the one described in ?3.1. Fixed-plus-linear 
order costs are the only ones to allow for a decompo- 
sition of the planning problem into a pair of generalized 

shortest path problems on networks with n nodes and 
a single arc connecting every pair of nodes. This obser- 
vation is due to Zangwill (1969) and is also the basis 
of the solution method for the basic model with back- 
logging (i.e., when order costs are fixed-plus-linear, 
holding and backlogging costs are linear) in Federgruen 
and Tzur (1993). 

The restriction to fixed-plus-linear backlogging costs 
is necessary to obtain difference functions for the second 
of the two dynamic programs, which depend on the 
horizon length via a single indicator only (in particular, 
the characteristic C( t), see below). 

To conclude our discussion on dynamic lot-sizing 
models with general concave costs, we refer to Feder- 
gruen and Tzur (1992) for a simple forward algorithm 
for the general model, allowing for arbitrary concave 
one-period cost functions throughout, which requires 
O ( n2) operations and computations of roots of single 
variable functions. However, this method doesn't allow 
for the detection of minimal forecast horizons. 

The cost structure in models with backlogging is de- 
scribed by a triple of one-period cost functions: 

ci (x) = cost of placing an order of size x in period i 
(i = 11 * , n); 

hi (x) = cost of carrying x units of inventory at the 
end of period i (i = 1, . . ., n); 

hi(x) = cost of a backlog of size x at the end of 
period i (similar to hi(*), we assume that the hi-(*) 
functions are nondecreasing). 

We assume again, without loss of generality, that di 
2 0. 

4.1. An O(n2) Solution Method Allowing for the 
Detection of Minimal Forecast Horizons 

Assume now that the functions ci ( * ) are piecewise lin- 
ear, and hi ( ) fixed-plus-linear. We first transform the 
model into an equivalent model with fixed-plus-linear 
order costs only. Again, the transformation consists of 
substituting each period i by a sequence of Pi periods 
(i, 1 ), . .. , (i, Pi) with the same holding cost functions, 
order cost and demand parameters as in ?3.1. and with 
appropriately chosen backlogging cost functions, see 
Federgruen and Tzur (1992). 

The equivalency between the original and trans- 
formed model is again easily established. In the re- 
mainder of this subsection we assume therefore, without 
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loss of generality, that the order functions ci ( * ) are fixed- 
plus-linear, i.e., ci (x) = Ki + ci x for x > 0 and ci (0) = 0. 

Let F1 (t) = minimum cost for satisfying demands in 
periods 1, . . ., t from production in these periods, and 
F2( t) = minimum cost for satisfying demands in periods 
1, . . ., t from production in these periods, given that a 
final setup occurs in period t and starting inventory in 
period t is nonpositive. 

The functions F1(*) and F2 (.) satisfy the following 
pair of recursions: 

F1 (t) = min {F2(k) + Ck(D(t) - D(k)) 
k:l<k<t 

t-1 

+ I h,(D(t) - D(r)) t = 1, ... , n, (11) 
r=k 

F1(0) = 0, 

rt-l1 
F2(t) = min F1(k) + E [Lr + hr(D(r) - D(k))] 

k:O<k<t r=k+1 

+ Kt + ct[D(t) - D(k)]}, t = 1, . . . , n. (12) 

Equations (11) and (12) are both generalized shortest 
path problems of type (1) with E(k) = F2(k) in (11) 
and E (k) = F1 (k) in ( 12 ). (One easily verifies that both 
F1 (k) and F2(k) are O(k) -measurable.) 

One easily verifies that the difference functions 
/k,l(t) associated with (11) are of the form Ak,1(t) 
= bk,l(X (t)) with X (t) = D(t) and with all bk,l(* ) function 
0(1)-measurable (k < I < t). Similarly, the difference 
functions 'Ab2 (t) associated with (12) are of the form 

Ak,A(t) 
= 

F2(k)-Fl(l) 
+ E [Lr + hrD(r)] 

r=k+l 

- (rYi hr)D(k) + (YI hr)D(l) 
r=k+l r=l+1 

-ct(D(k) - D(l)) 

- F1(k) - F1(l) + E [Lr + hrD(r)] 
r=k+l 

k I 

+ I hrD(k) 
- 

hrD(l) 
r=l r=1 

+ C(t)(D(I) - D(k)) 

where C(t) = Ct + Z t-z hr. (C( t) represents the per unit 
cost of satisfying demand in the first period via pro- 
duction in the tth period.) In other words, Ak,1(t) 

= 6k,(C(t)) with C(t) E 0(t) and 6k,l(* ) is 0()-measur- 
able. 

The difference functions for ( 11 ) are concave in X ( t) 
= D(t), i.e., for this recursion Condition (C) is satisfied 
with R = 2. The difference functions for (12) are linear 
and nondecreasing in X (t) = C( t). We conclude that 
both dynamic programs (11) and (12) can be solved, 
respectively, by the algorithm GENERAL, as long as 
the cost values are computed in the sequence 

F2(1), Fl(l), F2(2), F1(2), . . . , F2(n), F1(n), 

i.e., the jth iteration of the algorithm for (12) is followed 
by the j th iteration of the algorithm for (11), which is 
followed by the (j + 1)st iteration for (12), etcetera. 
Let {Q(j),j = 1, ..., n} and {W(j),j = 1, .. ., n} 
denote the lists generated by GENERAL for (11) and 
(12) respectively. These lists have the following inter- 
pretations: Q(j) = { 1 < I < j: I is the optimal last order 
period for some horizon t 2 j with a potential cumulative 
demand D 2 D(j)} . W( j) = {1 < i? < j: i1 is an optimal 
last period with zero starting inventory (given that a 
final setup occurs in period j and the starting inventory 
in period j is nonpositive) for some horizon t 2 j with 
an appropriate backlogged procurement cost rate C }I. 

A minimal forecast horizon can be detected for both 
dynamic programs separately, by appending the test (4) 
to each iteration. This, however, may fail to generate a 
meaningful forecast horizon L and an associated plan- 
ning horizon I in the sense that in every scenario t > L, 
it is optimal to have period I be the first period after 
period 0 with zero ending inventory. It is this quantity 
which determines the lot-size for the first I periods, the 
immediate decisions to be implemented. 

A first complication is due to period 0 arising as an 
optimal last period with zero ending inventory for any 
future period t, if the variable order cost in that period, 
or some of the backlogging cost rates in periods n + 1, 
. . . , t are sufficiently negative. In other words, without 
any restriction on the parameter values, no planning 
horizons can ever occur. We therefore assume that a 
constant C* exists such that C(t) 2 C* for all t. (As 
discussed in ?2, any such restriction on future index- 
values is easily incorporated in the algorithm.) 
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We now discuss how a meaningful minimal forecast 
horizon can be detected. Let l(t) and z(t) denote the 
period k which achieves the minimum in (1 1) and (12) 
respectively. That is, 1(t) is the last order period in the 
optimal schedule for periods 1, . . . , t, and z (t) is the 
last period with zero ending inventory in the optimal 
schedule for 1, . . . , t which places an order in period 
t. (As in ?2.3 we assume without loss of generality that 
both (11) and (12) have a unique optimal solution.) 
Also, for t = 1, ... , n consider the optimal schedule for 
periods 1, . . ., t (assuming all demands over this ho- 
rizon need to be satisfied from production in these pe- 
riods). Let 

0 if under this schedule, no period 

j = 1, . . ., t - 1 has zero-ending 

s ( t) = inventory, 

the first period (after 0) 

with zero-ending inventory otherwise. 

The values s(t) can be computed via the recursion 

s(t) = s(z(lt)) (t = 1, ..., n). 

Let Q(j) = {i1, . . ., ip} and W(j) = {m1, . . . , mq}. A 
period j is a forecast horizon with associated planning 
horizon s* if and only if the following two conditions 
are satisfied: 

s(z(i1)) = s(z(i2)) = = s(z(ip)) = s* > 1, (13) 

s(m1) = s(m2) = = s(mI) = s * 1. (14) 

(The proof of these necessary and sufficient conditions 
is analogous to that given in Federgruen and Tzur 
(1993).) We refer to the pair of algorithms GENERAL 
for ( 11 ) and ( 12), combined with the pair of tests ( 13) 
and ( 14) at the end of their jth iteration, as the algorithm 
GENBACK. We conclude: 

THEOREM 4. (a)Algorithm GENBACK solves and finds 
minimal forecast horizons in the dynamic lot sizing model 
with arbitrary concave holding cost functions, piecewise 
linear order cost functions, and fixed - plus-linear backlog- 
ging cost functions in (Pto) = O(n 2PMax) time. 

(b) Algorithm GENBACK has complexity O(Ptot) 
= O(nPmax) if an integer M ? 1, and constants h*, h*, 
K*, c* and c* exist such that (di + * * * + di+M) > 1, 

limX>O V+h (x) 2 h*, hi ? h*,, Ki < K*, and c* < ci 
< c*,forall i = 1, ...,n. 

5. Additional Examples 
In Federgruen and Tzur (1992) we describe a number 
of additional planning models which can be formulated 
as generalized shortest path problems of type (1) with 
difference functions of type (2), thus allowing for al- 
gorithm GENFOR to be used as a solution method and 
a means toward detecting minimal forecast horizons. 
These include a scheduling problem discussed below, 
as well as machine replacement, bond refunding prob- 
lems and modified edit distance problems; the latter arise 
in many applications, e.g. in the context of sequence 
comparison in molecular biology (to identify similarities 
in the acid sequences of proteins or to identify RNA 
secondary structure; see e.g., Waterman (1984) and 
Waterman and Smith (1986) in geology (e.g., Smith 
and Waterman 1980) and in speech recognition (Kruskal 
and Sankoff 1983). Here we confine ourselves to the 
scheduling and modified edit distance problems. 

5.1. A Scheduling Problem 
A given number of items (say n) is to be processed on 
a single machine during a given period of time (a shift, 
day, week, etc.). The items are to be processed in a 
given sequence (perhaps a First Come First Serve se- 
quence). The processing of the items starts after a ma- 
chine setup; completed items, however, are not made 
available until the next setup. In other words, to make 
the items available to downstream activities (such as 
shipping), a setup delay of S time units is incurred. A 
batch includes the items completed between consecutive 
setups. The flow time of an item (= time spent in the 
system) coincides with the completion time of the batch 
in which the item is processed; thus, all items in a batch 
have the same flow time. 

Assuming that n, the total number of jobs to be pro- 
cessed, is known in advance, the problem is to find the 
collection of batches that partition the set of items in a 
dynamic environment, such that the sum of the jobs' 
flow times is minimized. In a dynamic environment, we 
may at any stage of the process have knowledge of the 
processing times of only few (say m) subsequent jobs. 
Coffman et al. (1990) studied the problem in a static 
environment (i.e., one where all items' processing times 
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are known in advance), and where the sequence to 
process the items is to be determined as well. 

It is clearly optimal to complete (start) a batch when 
the last (first) job in the batch is completed (started), 
i.e., an optimal schedule has no idle times. The problem 
can thus be represented as a shortest path problem on 
an acyclic network with a set of nodes N = { 0, . . ., n } 
and arcs (i, j) for all 0 c i < j < n. A path which uses 
arc (i, j) corresponds with a schedule which employs 
the batch {i+ 1, ... ,j3. 

Define c(i, j) as the contribution of jobs i + 1, . . ., j 
to the flow times of all jobs. Let pi = the processing 
time of job i and X (i) = 1K=1 pi = cumulative processing 
time of the first i jobs. 

Assume O(O) = {n} andOl(l) = O(l - 1)U {pi}, 1 = 1, 
...,n. 
Note that a batch { i + 1, . , j } contributes (S + X ( j) 

-X (i)) to jobs i + 1, .. ., n and nothing to jobs 1, . . ., 
i. Thus, c(i, j) = (n - i)(S + X( j) - X(i)). For any k 
< I the difference function Ak,l(t) thus takes the form: 

/Ak,l(t) = F(k) - F(l) + k * X (k) -I X (l) 

+ n * (X(l) -X(k)) + (I- k)S 

+ (I - k)X(t). (15) 

In other words, Ak,l (t) = 6k,l(X(t)) where X(t) is O(t)- 
measurable, and where bk,l(.) is H (I) -measurable, and 
linear and nondecreasing in the single indicator X (t). 
It follows from Proposition 1(b) that algorithm GEN- 
FOR (modified by the procedure SRUP) can be used to 
solve the problem and to detect minimal forecast ho- 
rizons in 0(n) time only. (Note that the root of the 
linear function Aki ( * ) can be computed in constant time; 
see (15).) The ability to detect minimal forecast horizons 
allows for the determination of optimal initial batches, 
even when only some processing times of future jobs 
are known. 

5.2. The Modified Edit Distance Problem 
The modified edit distance problem is defined as fol- 
lows: given two strings of letters in an alphabet 1, x 
= (xl, .., xvI) and y = (y', . .. , y,,), the modified edit 
distance of x and y is the minimal cost of an edit sequence 
that changes x into y. The edit sequence consists of op- 
erations of the form delete, insert, and substitute. A 
deletion consists of deleting a substring from the string 

x; an insertion consists of adding a substring of y to an 
adjacent substring; a substitution consists of substituting 
xi by yj at a cost s (xi, yj). In the above mentioned ap- 
plications the deletion cost of a string x11, . . . , Xk is of 
the form: 

w del(1, k) f '(Xl, xl,1) 

+ f (Xk, Xk+l)+ g(k - 1). (16) 

This cost consists of charges for breaking the string be- 
fore x1+1 and after Xk plus an additional cost which is a 
function of the length of the gap. The cost of inserting 
a substring (yl+,? . . . , yi) to an existing string is given 
by wins(l, i) which is of the same structure as (16). 

To compute the modified edit distance, the following 
dynamic programming equations are used, see, e.g., 
Galil and Giancarlo (1989) or Park (1992). Let D(i, j) 
= the minimum cost of changing the string xl, . .. , Xi 
into the string yi, . .. ., yi 

D(i, j) = min{D(i- 1, j-1) 

+ s(xj, yi), E(i, j), F(i, j)} where (17) 

E(i, j) = min {D(i, k) + wdel(k, j)}, (18) 
O'k'j-1 

F(i, j) = min {D(l, j) + wins(1, i)}, (19) 
0'l'i-1 

with initial conditions: 

D(i, 0) = wins(O, i), 1 < i < m, and 

D(0, j) = Wdel(0, j), 1 < j < n. 

The first alternative in (17) consists of transferring 
(xl, . . . , xj_1) into (yl, . . ., yi-1) and then substituting 
xj by yi; the second alternative consists of deleting string 
(Xk+l, ..., xj) from the end of x and transforming 
(xl, ..., Xk) to (yl, . . . , yi) (see (18)); the third al- 
ternative consists of transforming (xl, . . ., xj) into 
(y', . . . , yl) and inserting the string (yl+?, . . . , yi) at the 
end, see (19). Notice that the computation of D(i, j) 
reduces to the computation of E(i, j) and F(i, j). The 
computation of a row of E and of a column of F are 
each equivalent to the following problem: 

E(j) = min {D(k) + w(k, j)}, j = 1, ... , n (20) 
O?k?j-1 

where w(*, *) = wdel(*, *) or Wins(., *) and D(k) is 
easily computable from E (k). This is a generalized 
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shortest path problem of type (1). Its difference func- 
tions are given by: 

Ak,l(t) = D(k) - D(l) + w(k, t) - w(l, t). (21) 

Since w ( *, * ) is of the form ( 16), the difference function 
zAk,l(t) is of the form bk,l(X(t)) with X(t) = t, i.e. the 
difference function depends on a single indicator X (t) 
= t. Algorithm GENFOR may thus be used; if the func- 
tion g(.) in (16) is convex (concave), it follows that 
the difference functions are monotonically nondecreas- 
ing (nonincreasing); the complexity of the algorithm 
thus reduces to 0 ( n) computations of roots of difference 
functions and 0(n) additional operations. The actual 
time to compute a root depends on the function g(*); 
since the roots needs to be determined up to the nearest 
integer only, the computation can always be performed 
by a binary search on the integers { 0, . . , n } in log n 
time, resulting in an overall complexity of O(n log n). 

Eppstein (1990) considers the generalization where 
breakpoints cl, . . . , cs are given such that the function 
g( * ) is concave on (0, cl), convex on (cl, c2), etc. Under 
this structure, condition (C) is satisfied with R = LC5J 
+ 1 since there is at most one root t with t - 1> cs and 
since there are at most L Cs] integer points in [1, cs + 1] 
where the function changes signs. 

Determination of minimal forecast horizons is essen- 
tial in some of the above applications (e.g., speech rec- 
ognition) where the elements of the string become 
known progressively; the detection of minimal forecast 
horizons allows us to implement optimal initial edits 
prior to observing the entire string (message, speech).' 

' We would like to thank Dan Bienstock for introducing us to the 
literature on Davenport-Schinzel sequences as well as the referees of 
this paper for many insightful comments. 

Appendix. An O(n log n) Algorithm for 
the Case of a Single Root 
To achieve the complexity of 0(ii log ii) for our method when R 
= 1, it is necessary to do all updates within a single pair of arrays Q 
and G, as opposed to the two pairs { Qnew, Gnew } and Q oId, GIld }, 

employed by GENERAL. (Recall that the mere transfer of the updated 
values in Qnew and Gnew to Q Id and GoId in Step 2, involves 0(n2) 

operations by itself.) We number the elements of Q(*) and G(*) as 
FIRST, FIRST + 1, ..., LAST for appropriate values of FIRST and 
LAST. 

The update of the lists in the jth iteration starts with the determi- 
nation of an index p (if any) with 

[g(p), g(p t 1i)J n [g, gJ 7= o. 

This is achieved by a procedure POSITION (see Step 1 in the algorithm 
below) which applies a binary search on the range of indices FIRST, 
FIRST + 1, . , LAST. This procedure terminates in O (log I Q(j - 1) 1) 
= O(log j) iterations either with an appropriate index p or the con- 
clusion that Q( j) = Q( j - 1). In the former case, the remaining update 
consists of eliminating from the list nodes currently in positions p 
+ 1, ... , p and those in positions p + 1, . .. , - -1 for appropriate 
values of p and ff. Recall that if a node in the Ith position is to be 
eliminated with I < p or I > p, then so do all intermediate nodes; 
otherwise j would dominate in (part of) [g(p), g(p + 1)] as well as 
[g(l), g(l + 1 )] but ilot in between, implying that node j would need 
to appear more than once in the list. The elimination of nodes in 
positions I < p (I ? p) is terminated as soon as one is found for which 
G(i,, j), the root of the difference equation bi,,j is > g(l) (<g(l + 1)). 
(If this difference equation fails to have a root, node j dominates il, 
i.e. bi,,j(x) > 0 throughout and il can thus be eliminated; the alternative 
where bi,,j(x) < 0 throughout violates the fact that node j dominates 
in part or all of the interval [g(p), g(p + 1)].) 

To delete nodes and insert node j into the list we employ three 
procedures: 

DELUP (P): this procedure deletes the record with index p, in- 
cremenits the record indices { FIRST, . . , p - 1I} by one and sets FIRST 

FIRST + 1; 
DELDOWN (p): this procedure deletes the record with index p 

+ 1, decreases the record indices { p + 2, . .. , LAST } by one and sets 
LAST:= LAST - 1. 

INSERT (j, p): this procedure reduces the record indices { FIRST, 
. . , p ) by onie, sets FIRST := FIRST - 1 and puts period j in a record 

with index p. 
If the list Q were maintained as a simple array, then 0(n) fetch- 

and-store operations would be required in every application of the 
DELUP, DELDOWN and INSERT procedures. This would affect the 
asymptotic complexity even though in most computer systems such 
fetch-and-store operations are considerably cheaper than elementary 
arithmetic operations. The problem may be overcome by maintaining 
the list Q as a balanced binary tree see e.g. Tarjan (1983). The work 
required to maintain and access such a tree is 0(ii log ii) only. 

In line with the earlier convention, we set G(i, j) = -oo (+oo) if 

bi,j(*) has no root and is positive (negative). 
The algorithm for updating the list in a given iteration j can thus 

be described as follows: 

Single Root Update Procedure (SRUP) 
a:= FIRST; b:=LAST; 
Step 1: Proceduire POSITION(j) 
If (b 2 a) then k:= L(a+b)/2j; otherwise stop. 
Compute G(ik, j), the single root of bik,j (if any). 
If (no root exists and bik,j (g(k)) < 0) then stop. 

(j is always dominated by ik and Q(j) = Q(j - 1).) 
If (no root exists and bik,j(g(k)) > 0) then p:= k; (G(ip, j) =-c); go 
to Step 2. 

(j dominates over 0,. . . ,j-1 in [g(k), g(k + 1)].) 
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If (G(ik, j) < g(k) and 6j,,j(g(k+1)) < 0) then b:= k-1; repeat Step 
1. 

(Node j does not dominate for x E [G(ik, j), 0o); the search for p 
can be confined to the indices a, a+1, . . . k-1.) 

If (G(ik, j) 2 g(k+l) and 6j,,j(g(k)) < 0) then a:= k+1; repeat Step 
1. 

(Node j does not dominate for x E (-oo, G(ik, j)]; the search for 
p can be confined to the indices k+, b.) 

p:= k; 
(In all other cases either (i) G(ik, j) < g(k + 1) and 6j,,j(g(k+1)) 
> 0, or (ii) G(ik, j) > g(k) and 6ji,j(g(k)) > 0, so that j dominates 
in all or part of [g(k), g(k+l)].) 

If (6j,,j(g(k+1)) < 0) then begin p:= k; g(k):= G(ik, j) end 
If (6&,,j(g(k)) < 0) then begin INSERT(j, p); g(p):=G(ik,j); go to Step 

3 end 
p:= p-i; 

Step 2: 
Unless already determined, compute G(ip, j), the single root of bip,j; 

If (G(ip, j) < g(p)) then begin DELUP(p); if (p > FIRST) then repeat 
Step 2; 

otherwise INSERT(j, p); g(p):= -oo; end 
otherwise begin x:= G(ip, j); INSERT(j, p); g(p):= x; end 
if (pT = k) then stop. 

Step 3: 
Compute G(ip+l, j), the single root of 6jP+,,j. 

If (G(ip+1, j) > g(p+2)) then begin DELDOWN(p); if (p < LAST) 
then repeat Step 3; 

otherwise, stop. end 

g(p+l):= G(ip+ll j). 

PROOF OF PROPOSITION 1. (a) Step 1 of SRUP (the procedure 
POSITION) is repeated at most log I Q(j - i) I < log j times. In each 
execution of this procedure, a single root is determined and a bounded 
number of additional operations is required. Note that a given node 
is deleted at most once in the course of the algorithm. Thus the total 
number of executions of Steps 2 and 3 is at most n, and the amount 
of work required in each execution is 0(log n) (given that the list is 
maintained as a balanced binary tree). 

(b) Assume all difference functions are nondecreasing. (The proof 
for the case where they are all non-increasing is identical.) Assume 
node j enters the list (in the jth iteration). Let Q(j -1 ) = { i1, . . .. 
im } . We prove that j enters the list at its bottom. This implies that the 
POSITION procedure (Step 1 in SRUP) can be eliminated and that 
a simple list suffices to do all deletions and insertions throughout the 
algorithm with 0(n) determinations of roots of difference functions 
and 0(n) additional operations. 

Let G(in,, j) be the single root of bi.,j(- ). (If 6j.,j(x) 2 0 for all x, 
set G(im j) = -oo; if 3i., j(x) < 0 for all x, j QQ(j).) Let x? > max { G((im 
j), g(m) }. By the definitions of Q(j - 1) and x?, i4 dominates every 
ik E Q(j - 1)\ {im} on [x?, oo). Also, since the difference functions 
are nondecreasing, if j enters the list it dominates im, on [x?, oo). 
Therefore dominates every element of Q(j - 1) on [x?, oo), implying 
that it enters the list at its bottom. O 
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