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This paper considers general (single facility) queueing systems with exponential service times, dealing with a finite number 
J of distinct customer classes. Performance of the system, as measured by the vector of steady state expected sojourn 
times of the customer classes (the performance vector) may be controlled by adopting an appropriate preemptive priority 
discipline. We show that the performance space, the set of performance vectors which are achievable under some 
preemptive work conserving rule, is a polyhedron described by 2J - 1 (in)equalities. The special structure of this 
polyhedron nevertheless allows for efficient procedures to minimize any separable convex function of the performance 
vector. Linear objectives are shown to be minimized by absolute priority rules, thus generalizing a well known result for 
M/M/ 1 systems. We also show that each point in the performance space may be achieved by a specific randomization 
of at most J + 1 absolute priority rules. 

Queueing models are increasingly used for the 
analysis and design of complex production 

and service systems in which different classes of users 
(or "customers") compete for a limited number of 
shared resources (or "servers"). It is often possible to 
classify the customers in a finite number of distinct 
classes and to apply a specific type of preferential 
treatment to one class at the expense of others. Such 
schemes are referred to as priority queueing systems. 

Examples include production facilities which man- 
ufacture batch orders for a number of distinct products 
with the same equipment and/or operators. Often, 
different service level requirements and/or holding 
cost rates apply to different items, so that significantly 
different economic consequences result from the de- 
lays or sojourn times experienced by the various items. 
In modern telecommunication systems, heteroge- 
neous data types (e.g., interactive messages, computer 
outputs, file transfers, facsimile, etc.) compete with 
voice for the limited availability of shared transmis- 
sion equipment, e.g., buses in a local area network or 
frequency bands in a satellite channel. Appropriate 
priority systems need to be designed to achieve an 
optimal tradeoff between (the economic consequences 
of) the delays encountered by the different traffic 
types. In other systems, the objective is to achieve an 

equitable scheduling procedure of the different cus- 
tomer types for access to the shared resource(s). 

When designing such priority systems, it is natural 
to think in terms of minimizing some cost function 
with respect to the vector of (average) delays experi- 
enced by the different customer classes. Most of the 
literature on priority queueing systems is concerned 
with the performance analysis of a specific priority 
rule in a given queueing model. Surprisingly, little 
attention has been given to the design of queueing 
disciplines which minimize well stated and realistic 
cost functions. 

Performance of the system, as measured by the 
vector of steady state expected waiting times of 
the customer classes (the performance vector), may 
be controlled by adopting an appropriate priority 
discipline. 

(Since in systems with service preemptions a cus- 
tomer may experience several waiting periods, we 
define this waiting time as the cumulative amount of 
time spent in the system while not being served.) We 
consider the class of all preemptive and strongly work 
conserving rules; see Section 1 for a precise definition. 

Our main results are the following: we first charac- 
terize the performance space, the set of achiev- 
able performance vectors. The latter is shown to be 
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described by a simple polyhedron provided the follow- 
ing two conditions are satisfied: 

(a) a work conservation law applies; 
(b) let A*(S) denote the long-run expected amount 

of work in the system when only the collection 
S C E is served; A *( ) viewed as a set of functions 
in S, is supermodular, i.e., the marginal increase 
resulting from the addition of a new class of 
customers to an existing system is at least as large 
as when the same class is added to a system dealing 
with only a subset of its current customer base. 

We show that the first condition holds in systems 
with general arrival processes and exponential service 
times; supermodularity of A*( * ) holds in very general 
single server systems as well as in many important 
multiserver models. 

Under the above conditions, the performance space 
is, in fact, a polyhedron. We show that even though 
this polyhedron needs to be described by 2J - 1 
constraints, its very special structure allows for effi- 
cient algorithms to minimize system wide per- 
formance measures expressed as separable convex 
functions of the performance vector over the perform- 
ance space. We also show that each vector in the 
performance space may be achieved by an appropri- 
ately constructed randomization of absolute priority 
rules. In addition, the special structure explains 
the optimality of absolute priority rules for linear 
objectives, a result well known for a number of 
simple queueing models (see Fife 1965, Smith 1956, 
Kleinrock 1976 and Gelenbe and Mitrani 1980). 

Coffman and Mitrani (1980) characterized the per- 
formance space of multiclass M/M/1 systems, with 
preemptions allowed. Gelenbe and Mitrani achieved 
the same for nonpreemptive M/G/ 1 systems. Mitrani 
(1982) characterized the performance space for 
M/G/1 systems in which the service time of each 
customer is known upon arrival. (A partial character- 
ization can be found in Kleinrock, Muntz and Hsu 
1971.) Federgruen and Groenevelt (1 986b) discuss the 
characterization and control of achievable perform- 
ance in nonpreemptive systems. Results similar to ours 
are obtained for M/G/c systems. 

It is worth pointing out that the above mentioned 
special polyhedral structure of the performance space 
consists of it being the base (of the independence 
polytope) of a so-called polymatroid (cf. Edmonds 
1970, Welsh 1976), a generalization of the more fa- 
miliar matroids. 

Section 1 defines the class of work conserving rules 
and derives a conservation law. The performance 

space is characterized in Section 2. Section 3 describes 
general classes of queueing systems in which the 
crucial supermodularity property of A * is satisfied. 
Efficient optimization methods for system wide 
performance measures are described in Section 4. 

1. Work Conserving Rules and a Conservation 
Law 

We consider general queueing models with one or 
several identical servers. The service times of the cus- 
tomers in a given class j E I1, ... , J I are assumed to 
be independent and exponentially distributed with 
parameter ,uj. A customer with service time V is 
viewed as consisting of V work units. When a cus- 
tomer arrives, only his class is known but not the 
actual service time. Throughout this paper, we restrict 
ourselves to the class R of work conserving priority 
rules defined as follows. 

Definition. A priority discipline is work conserving if 

(a) no server is free when a customer is in the queue; 
(b) the discipline does not affect the amount of service 

time given to a customer or the arrival time of 
any customer; 

(c) priorities are assigned on the basis of the history 
of the process, and the time elapsed since the last 
epoch at which the system became empty. 

Conditions (a) and (b) are standard, see e.g., 
Heyman and Sobel (1982, p. 418). Condition (c) is 
similar to one stated in Gelenbe and Mitrani and 
appears to be the most general, easily describable 
restriction under which the existence of long-run av- 
erages of waiting times may be verified, i.e., under 
which the performance vector is properly defined. 

A work conservation law describes an identity sat- 
isfied by any (achievable) performance vector associ- 
ated with a work conserving rule. As pointed out in 
the Introduction, such a law provides a key tool in the 
characterization of the performance space. For a given 
priority rule, let 

Wnj =waiting time of the nth customer of class j 
(j= 1, . .., J, n -> 1); 

A(t) = work in the system at time t (t : 0); 
Kj =the number of times the nth customer in 

class j is preempted from service (n > 1; j - 

nk = the length of the kth service interruption of 
the nth customer in class j (k, n > 1; j = 
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vik = the remaining work required by the nth cus- 
tomer in class j at the beginning of the kth 
service interruption (k, n > 1; j = 1, . . ., J); 

Snj= the total amount of time spent in the waiting 
room by the work units of the nth customer in 
class j after the service process is initiated = 

ZKOI Vjnkljnk(n ,> l, j= 1, .,J)- 
Dnj= the initial delay experienced by the nth cus- 

tomer in class j. 
Vni = the service time of the nth customer in class j. 

The following conservation law and its proof are 
similar to those of Heyman and Sobel (Theorem 11- 
14). The first proof of this type was given by Schrage 
(1970) for G/G/1 queues; see Heyman and Sobel for 
a review of the literature on conservation laws. 

Lemma 1. (Conservation Law for Preemptive Sys- 
tems). Consider a c-server system and a given work 
conserving rule. For each class j, assume the long-run 
average arrival rate Xj exists and let pj = Xj/lAj. When 
c > 1, assume Aj = A for all] = 1, ..., J. Suppose, in 
addition, that 

E{lim- Dn =lim- z EDnjD* 
N oo N }n=l N-? N=l 

(jm 1, 1 de J 

and 

E{lim- ESj lim N ESn1-S* 
N*oo= Nn=l N--coN n=l 

Then 

(a) A *, the long-run average work in the system, exists 
and is independent of the priority rule 

E{lim -f A(t) dt} 
T >oo T o 

= E{lim - fT AFIFO(t) dt = A*; 
T--ooTo 

and 
N 

(b) lim- EWnj = Wj* 
N--oo Nn=1 

exists for all]j E E and satisfies 

pj Wi*-=A*. (1) 
j= 

Proof. Note that 
00 

ESnj = Prob{Vjnk > 0? 
k=1 

*E[vk ink >0?] E[ljk I lnk > ?] 

j Prob{vi >01 ? E[llk Vjk > 0] 
k=l 

(The first equality follows from the properties of work 
conserving priority rules and the exponentiality of the 
service time distributions; the next to the last equality 
follows from the monotone convergence theorem.) 
Thus, 

S i 1o 
Lk k 

l 
Kj nk] (3) 

An application of the well known H = lG identity 
(see e.g., (11-51) in Heyman and Sobel or HIeyman 
and Stidham 1980) as in the proof of Ieyman and 
Sobel's conservation laws (Theorems 11- 13 and 

1-14) establishes part (a)s as wes the identity Ao* = 

srJ=i [ptD,* + dtriut+ )os/g(h2]e Substitution of(2), the 
definitions of D,* and S*", and the identity W111 = 
Dn1 + S#5 IJ + Vn1 establish Pi J = p1D7 + XJyS7 + 
X1//,.tJ and hence part (b). 

The assumed existence of long-run averages for the 
expectation of the quantities {Dny and {Sny1 is easily 
verified in models in which all customers arrve ac- 
cording to independent (stationary) renewal processes, 
cf. Whitt (1982) and Wolff (1984). (Verification may 
be more tedious in other models.) 

2. Characterization of the Performance Space 

The conservation law permits us to derive necessary 
conditions for achievability of a performance vector 
under the conditions of Lemma. 1. Let 
A*(S) =sthe long-run average work in the system for 

customers in the collection of classes S when 
given absolute preemptive priority above 
customers in other classes (= the long-run 
average work in system when admitting only 
customers in the collection of classes S), 
S CE. 
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W*(S) = the long-run average sojourn time for cus- 
tomers in class j E S in a FIFO system 
admitting only customers in the collection 
of classes S, S C E. 

Theorem 1 (Necessary Conditions for Achievability). 
If under the conditions of Lemma 1, a vector W 
represents an achievable performance vector corre- 
sponding with a (preemptive) work conserving rule R, 
then 

E pjWja pj pWj*(S)= A *(S), S CE, (4) 
jes jes 

and 
J J 

Epj Wj- PJ WJ* (E) = A *(E). (5) 
J=I j=1 

In addition, each of the lower bounds in (4) is tight. 

Proof. The proof of Theorem 1 1-14 in Heyman and 
Sobel shows that 

XPi Wi=-AR(S), SCE, 
jcs 

where AR(S) is the long-run average work in the 
system corresponding to all customers in any of the 
classes of S under rule R. Clearly AR(S) > A*(S) with 
equality, e.g., for any rule assigning absolute (preemp- 
tive) priority to customers in S above customers in 
other classes while breaking ties in accordance with 
FIFO. This proves (4) and the fact that the lower 
bounds in (4) are tight. Equation 5 follows from 
Lemma 1. 

Absolute priority rules rank the classes in a given 
sequence and determine priorities on the basis of class 
ranks only (breaking ties according to FHFO). 

Corollary 1 (Characterization of Absolute Priority 
Rules). Under the conditions of Lemma 1, consider 
an absolute preemptive priority rule R. Assume (with- 
out loss of generality) that the classes are numbered 
in descending sequence of their priorities (i.e., class 1 
has top priority and class J has lowest priority). The 
corresponding performance vector is the unique solu- 
tion to the triangular system of linear equations 

E pj Wj = A*({1 ..., 1}), 1 = 1, .. . J. (6) 
j=l 

Proof. Fix 1, 1 < 1 J. Let AR be the long-run average 
work-in-system under rule R for customers in the 
collection { 1, ... , 1. Note that under rule R customers 
in {1, ..., 1 receive absolute (preemptive) priority 

above all other customers. Thus A, = A*({ I, ... 1). 
Finally, it follows from the proof of Theorem 11-14 
in Heyman and Sobel that E' I pj Wj = AR 

Let 7* = {W E IM : W satisfies (4) and (5)}. 
Subtracting the inequalities (4) from (5) we obtain 
the following alternative representation of 7*: Let 
b*(S) = A*(E) - A(*(E\S). Then 

7*= {W W J: Wsatisfies (5) and 

X pj Wj < b*(S), S C E. (7) 
jcs 

Theorem 2 specifies a general assumption under which 
(4) and (5) represent sufficient (as well as necessary) 
conditions for the achievability of a performance vec- 
tor under a preemptive rule. In other words, a general 
condition is given under which Y* represents the 
performance space. 

A set function h: 2E __ ? is called nondecreasing if 
h(T) S h(S) whenever T C S, and supermodular 
(submodular) if h(S U {Ij }) - h(S) > (<) h(T u { j }) 
- h(T) for all T C S and j $ S. (In other words, a set 
function is supermodular if the marginal increase 
resulting from the addition of a new class of customers 
to an existing system is at least as large as when the 
same class is added to a system dealing with only a 
subset of its current customer base.) For a given set 
function h: 2E __ J , a polyhedron X = {x E R J 

EjEs xj - h(S), S C E} is called (the independence 
polytope of) a polymatroid provided h(0) = 0 and 
h(.) is nondecreasing and submodular, and X* 
x n {x I E J>=I xj = h(E)} is called the base of X. 

Let X C I +J be the polyhedron described by the 
inequalities 

,Xxj A b*(S), S C E, (8) 
jcs 

and let 

X*=Xn {X EI xj = b*(E)}* (9) 
jeEs 

Theorem 2. Under the conditions of Lemma 1, as- 
sume A*(S) is supermodular in S C E. Then 

(a) X* is the base of a polymatroid. 
(b) 7* is the performance space. 

Proof. (a) Clearly, b*(/) = A*(E) - A*(E) = 0. 
Monotonicity of b*(.) is straightforward from 
its definition. Since A*(.) is supermodular, we 
have for i 4 S and T c S, b*(S U { j -) 
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b*(S) = A*(E\S) - A*(E\S\{jl) - A*(E\T) - 

A*(E\ T\{j }) = b*(T U {j ) - b*(T). This verifies 
the submodularity of b*(.). 

Thus, the polyhedron X* is the base of a polyma- 
troid and the vector x = (P1 WI, . . ., pi WJ) corre- 
sponding to any achievable performance vector is 
contained in this base. 

(b) It remains to be shown that for all x E X*, the 
vector (xi /Pi, X2/P2, .. , XJ/Pi) represents an achiev- 
able performance vector. It follows from Corollary 1 
that the performance vector W of each of the J! 
absolute priority rules is an extreme point of 2*, and 
hence, (p1 W1, . . ., pi WJ) is an extreme point of X*. 

Conversely, let x* be an extreme point of X*. There 
exists a linear objective ,f=1 cjXj which attains its 
maximum over X* in x*. Moreover, since X* is the 
base of a polymatroid it follows from Edmonds that 
x* may be constructed with the following greedy 
procedure: assume (without loss of generality, after 
possible renumbering) that c, , c2 , . .. . CJ; 

Step 0. Set xi to its maximum feasible value, i.e., 
xi :=bb*({l); l:=2; 

Step 1. Given fixed values for x, . . . , x-,1, set xi at 
its maximum feasible value, i.e., xi b*({l, .. ., l) 
->2 xi. 

Step 2. If 1 = J, terminate, otherwise, 1: = 1+ 1 and 
return to Step 1. 

The resulting vector W= (x*l/pi,.. , X*/pI) clearly 
satisfies (6). Since the solution of (6) is unique, it 
follows that W is the performance vector of an abso- 
lute priority rule. Thus, all extreme points of 2* are 
performance vectors of absolute priority rules. Since 
each point in 7f* may be written as a convex combi- 
nation of extreme points, it is the performance vector 
of an appropriate randomization of absolute priority 
rules. 

We conclude that under the conditions of Theorem 
2 the performance space is a polyhedron described by 
2' - 1 constraints. It would appear that this large 
number of constraints precludes the existence of effi- 
cient algorithms to optimize linear-let alone nonlin- 
ear-system wide performance measures of ( W1, . .... 
WJ). However, since X* is the base of a polymatroid, 
efficient algorithms exist, nevertheless, to minimize 
any separable convex system-performance measure. 
(Some nonseparable cases can be handled as well, 
see Federgruen and Groenevelt 1986a.) Section 4 
describes two general algorithms as well as efficient 
implementations for M/M/c systems. 

As pointed out in the previous proof, each achiev- 
able performance vector in 7" corresponds to an 

appropriate randomization of absolute priority rules. 
In view of Caratheodory's theorem (see e.g., Theorem 
2.1.6 in Bazaraa and Shetty 1979), at most J + 1 
distinct absolute priority rules need to be involved in 
the randomization; these absolute priority rules and 
the required randomization probabilities are obtained 
by solving a linear program; see Bazaraa and Shetty. 

Section 3 describes general classes of queueing sys- 
tems in which the crucial supermodularity condition 
for A * is satisfied. 

3. Supermodularity of the Long-run Average 
Work in System A* 

Federgruen and Groenevelt (1987) show that the long- 
run average work in system A*( * ) is supermodular in 
general single server systems. We thus conclude the 
following. 

Corollary 2. Consider a single server system under the 
conditions of Lemma 1. Assume that the arrival pro- 
cesses of the customer classes are independent of the 
state of the system, have countably many arrivals on 
each sample path, but are otherwise arbitrary. X* is 
the base of a polymatroid and W'* is the performance 
space. 

To date, the only model in which A* may be eval- 
uated in closed form is the model with Poisson ar- 
rivals. Observe that in a single server system where 
different classes may have different (though exponen- 
tial) service time distributions, the expected waiting 
time component in Wj* (S) is given by the long-run 
expected waiting time in a (single class) M/G/ 1 queue 
with hyperexponential service times. Thus, from the 
well known Pollaczek-Khintchine formula 

Wj* (S)= E j/t,2 * (1 Ai/y +j-l 
I 

jE=S jE=S 

Hence, in view of (4), 

A*(S) = E j/ + ( j/,) 
jES jES 

(>2 x,2K) ( ) 
jE=S jE=S 

(, j/t,2 I 
(1E j/t,j 

'E=s j C=s 

In multiserver systems, counterexamples may be 
constructed where A* fails to be supermodular, see 
Federgruen and Groenevelt (1985). (It remains, 
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however, an open question whether such counterex- 
amples exist when all service times have the same 
exponential distribution.) As a general rule, super- 
modularity has only been established for systems 
where all service times are deterministically identical 
(cf. ibid.). It, therefore, appears that for systems with 
exponential service times, a separate analysis is re- 
quired for each specific model. To date, the only such 
model in which A* may be evaluated exactly (or in 
which closed form approximation formulas have been 
derived) is the model with Poisson arrivals. Below we 
show that in this model A *, in addition to being 
supermodular, is a so-called generalized symmetric 
function. The special (generalized symmetric) struc- 
ture is exploited in Section 4 to obtain efficient imple- 
mentations for algorithms optimizing system wide 
performance measures. We first need the following 
definition. 

Definition 2. A set function h(.) defined on 2E is 
generalized symmetric if h(S) = f( , jes ai), S C E, 
where a = (a,, .. ., aj) is a positive vector. 

Generalized symmetric functions were first intro- 
duced in Groenevelt (1985) and Federgruen and 
Groenevelt (1986a). They generalize symmetric set 
functions where a 1, i.e., h(S) f( I S I), see e.g., 
Lawler and Martel (1982) and Topkis (1982). One 
easily verifies the following lemma. 

Lemma 2. A generalized symmetric set function h(.) 
with h(S) = f(E ies ai) (S C E), f(O) = 0, and f 
nondecreasing and concave satisfies the properties: 

(i) h(0) = 0; 
(ii) h is nondecreasing; 
(iii) h is supermodular. 

In multiserver systems, a work conservation law 
only applies when all customers have identical expo- 
nential service time distributions; see Lemma 1. As- 
suming, in addition, that all customer classes arrive 
according to a Poisson process, Wj* (S)(j E S) is given 
by the expected sojourn time in a standard M/M/c 
model. Hence, from Gross and Harris (1974, eq. 
(3.17), p. 99), 

c-i- 

IC~ = XJ*C~\def c! (c - 

s) 
Wj* (S) = W* (S) -(1+ E 

I * C p(S) 

(t4c - p(S)))-' + i-' (j E S) 

where p (S) = s? pj. Moreover, from (4) 

A*(S) = p(S)W*(S). 

Theorem 3. Consider an MIMIc model with J classes 
of customers arriving according to independent 
Poisson processes and with all service times exponen- 
tially distributed with parameter ,t. Then A*(S) is 
generalized symmetric and supermodular. 

Proof. Clearly, A*(S) = p(S) W*(S) is generalized 
symmetric since it depends on S only through p(S). 
Let L*(S) be the expected long-run average number 
of customers in queue. It follows from Little's theorem 
that p(S) W*(S) - (1/t) * L*(S) which is convex and 
nondecreasing in p(S), as shown by Grassmann 
(1983); see also Lee and Cohen (1983). Supermodu- 
larity of A *(.) follows from Lemma 2. 

4. Efficient Algorithms to Solve the Performance 
Maximization Problem 

Assume that we wish to minimize a system 
wide performance measure Ej (Wj), stated as a 
separable convex function of the performance vector 
W. Apply the transformation of variables xj =Wjlpj, 
and define gj(xj) = -f (pjxj) (j E E). It follows from 
Theorem 2 that the performance maximization prob- 
lem is equivalent to: 

maximize E g1 (xi) 
JEE 

subject to x E X* (10) 

where, for general single server systems and for the 
standard M/M/c model, X* is the base of a polyma- 
troid; see Theorems 2 and 3 and Corollary 2. 

Several algorithms to solve problem (10) for general 
polymatroids are available in the literature, and in this 
section we show how two such algorithms, the Greedy 
Algorithm (Girlich and Kowaljow 1981, Federgruen 
and Groenevelt 1986a), and the Decomposition Al- 
gorithm (Groenevelt 1985a) may be implemented ef- 
ficiently when b* is generalized symmetric (as is the 
case in models with Poisson arrivals, see Section 3). 

The Greedy Algorithm is extremely easy to state 
and program. Its number of iterations, however, grows 
linearly with the value of b*(E) (for fixed J) and 
may be very large. The algorithm is therefore only 
pseudopolynomial. The Decomposition Algorithm, 
on the other hand, is fully polynomial, i.e., its com- 
plexity is (largely) independent of the values of the 
parameters, see below; it is, however, more elaborate 
and for a fixed value of b*(E), its complexity increases 
faster (by an order of magnitude) with the number of 
customer classes than the complexity of the Greedy 
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Algorithm. Thus, neither one of the two procedures 
dominates under all circumstances. 

The Greedy Algorithm can be formulated as fol- 
lows: (Let u' be the ith unit vector in 1RJ*) 

Greedy Algorithm 

{initialization} 
choose a stepsize e > 0; 
set x 0; 
initialize the permutation (i1, . . i, i>) of 1, . . .,J 

so that 

g,, (Xi, + E) -g1 (Xi,,) > gik (Xik + ) gik-(Xik) 

1 sl<k J; 

{main loop) 
n *-- 0; 
repeat 

n+-n+ 1; 
whilex+E. u- EXdo 
begin 

X -X + E . uin 

update the permutation (i1, ...,i) 
end; 

until n = J; 

The Greedy Algorithm is guaranteed to produce an 
optimal solution to problem (10) if we assume that 
the values b*(S) (S C E) are integer multiples of e; 
see Federgruen and Groenevelt (1986a). For models 
with Poisson arrivals, assuming that all arrival and 
service rates are rational, this will be the case for a 
small enough rational e. 

Let K denote the effort (measured in terms of ele- 
mentary operations) required for a single evaluation 
of the while-condition in the Greedy Algorithm (mem- 
bership test). Under the standard assumption that an 
evaluation of gj can be performed in constant time, 
the complexity of the Greedy Algorithm is easily seen 
to be O((J + b*(E)/E)(K + log J)). The next lemma 
provides the foundation for an efficient implementa- 
tion of the membership tests for generalized symmet- 
ric polymatroids, i.e., when b*(.) is generalized 
symmetric. 

Note thatA*(*) is generalized symmetric if and only 
if b*(.) is generalized symmetric. Using Theorem 3, 
one easily verifies that b*( * ) satisfies the conditions in 
Lemma 3 for the multiserver model with Poisson 
arrivals. 

Lemma 3 (Membership Test for Generalized Sym- 
metric Polymatroids). Let b*(.) be generalized sym- 

metric, i.e., b*(S) =f( X ies ai)for some positive vector 
a E RJ and some concave, nondecreasing function 
f(.) with f(O) = 0. Then x E RJ satisfies (8) if and 
only if 

k 

,xj, < b*({jl,.., jk}) k = 1, '.,J (I11) 
1= 1 

holds for some permutation (ji, * , jJ) of I 1, * , 

that satisfies 

xj , / a., >, xjk/lajk I < k s, J. ( 12) 

Proof. See Federgruen and Groenevelt (1986a, 
Lemma 9). 

Hence, for generalized symmetric polymatroids 
the membership test can be performed in O(J) time 
once the components of x have been arranged in the 
proper sequence. Maintaining a second permutation 
(jl, ..., ji) satisfying (12) throughout execution 
of the main loop requires only O(log J) time per 
iteration, so the complexity of the entire algorithm 
is 0((J + b*(E)/E)log J). 

For single server models with nonidentical mean 
service times, membership may be tested directly 
by verifying whether all of the (2J - 1) constraints 

iEs xi < b*(S) (S C E) are satisfied. This approach 
is tractable as long as the number of customer classes 
is not too large (say J 6 10). Alternatively, the poly- 
nomial membership test in Grotschel, Lovasz and 
Schrijver (1981) (which applies to general submodular 
functions) may be employed. (This procedure employs 
the ellipsoid method and its implementation is there- 
fore somewhat cumbersome. It remains an open ques- 
tion whether a simple combinatorial test, as in Lemma 
3, could be applied to the Poisson arrivals model.) 

An alternative to the Greedy Algorithm is the De- 
composition Algorithm described in Groenevelt 
(1985a). 

Decomposition Algorithm 

1. Let y be a solution to the single constraint problem 
maximize i jEE gj (Xi ) 

subject to > jeE Xi= b*(E); 
2. Find a maximal element z of 

X, = {x: x satisfies (8) and xj < yj, j C EE; 
3. Determine El = U {S C E: (8) is tight w.r.t. z and 

SI; E2 --E\ E, ; 
4. If El = E then go to Step 8, otherwise continue 

with Step 5; 
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5. Use the Decomposition Algorithm recursively to 
find a solution y' of the problem 
maximize E jeE, gj (xj) 
subjectto jijesxj 6 b*(S), SC El 

Ej.EE,xj = b*(Ei); 
6. Use the Decomposition Algorithm recursively to 

find a solution y2 of the problem 
maximize E j E, gj (x) 
subject to 
EjJesXj <b*(SUE1)-b*(El), SCE2 
E jeE2 XE 6 b*(E) - b*(EI); 

7. Set yj -y forj E E1, yj y,2forj E E2; 
8. Stop: y is an optimal solution. 

Since E1 and E2 are disjoint, it follows that the total 
number of times that Steps 1 to 4 are executed is at 
most 2 J - 1. Several alternatives may be available for 
the solution of the single constraint problem in Step 
1: if the functions gj can be written as 

gj (t) =i Cj Gt C , j= 1,.. 

then O(J log J) algorithms exist; see Groenevelt, 
1985b, Section 4.5. If the functions gj are differentia- 
ble, algorithms in Zipkin (1980) can be used. Finally, 
the discrete algorithm of Frederickson and Johnson 
(1982) can be used to find an optimal solution in 
O(J * log(b*(E)/E)), with e chosen small enough as 
before. 

Groenevelt (1985a) shows that Steps 2 and 3 may 
be implemented with the following procedure. 

General Implementation Procedure for Steps 2 
and 3 of the Decomposition Algorithm: 

2a. Th-0; 
2b. forj*--toJdo 

begin 
find 

2= min{b*(SU {j})-X,esz: 

TCSC{1, ..., j-1 (13) 

and let S' be the largest subset for which this 
minimum is assumed; 

if 2 > yj then zj -yj 
else begin zj -; T- S' U I j I end; 

end; 
3. E--T; 

When b*(.) is generalized symmetric as is the case 
in the multi-server model with Poisson arrivals, see 
Theorem 3, Steps 2 and 3 of the Decomposition 
Algorithm may in fact be implemented by the follow- 

ing O( J * log J) procedure, see Groenevelt (1 985b, 
Procedure 1): 

Steps 2 and 3 of the Decomposition Algorithm for 
Generalized Symmetric Polymatroids 

2a. Determine a permutation (Ij, . .. , jJ) of 1, .., 
J} for which 
y>,/a,j, >, y,k/Ia,k, I < I < k <, J. 

2b. forl -ltoJdo 
if yj, < b*({ ji, . . . , Zjk 

then Zj, -y, 
else begin k' - 1; 

zj,*- b*({ji, ... , i1) - k-l' Zik end; 
3. El { Ij, ...,jk' }; E2 -- Ik'+1, . . . , jJ} 

Since Steps 1 to 4 are executed at most 2 J - 1 times 
(as explained previously), the total time spent in (the 
implementation of) Steps 2 and 3 of the Decomposi- 
tion Algorithm is O(J2log J). 

For single server models with nonidentical mean 
service times, the minima in the "General Implemen- 
tation Procedure for Steps 2 and 3" may be computed 
directly, by evaluating the expression within brackets 
in (13) for all relevant sets S. This requires at most 
2J - 1 evaluations of the set function b*(.) in every 
execution of Steps 2 and 3, which is tractable as long 
as the number of customer classes is not too large. 
Alternatively, for large values of J, a polynomial pro- 
cedure in Grotschel, Lovasz and Schrijver may be 
employed. (This procedure is a variant of their above 
discussed membership test.) 
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