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This paper considers an MIG/c queueing system serving a finite number (J) of distinct 
customer classes. Performance of the system, as measured by the vector of steady-state expected 
waiting times of the customer classes (the performance vector), may be controlled by adopting 
an appropriate priority discipline. 

We show that the performance space, the set of performance vectors which are achievable 
under some nonpreemptive work conserving priority rule, is a polyhedron described by 2J - 1 
inequalities. The special (polymatroidal) structure of this polyhedron, nevertheless, allows for 
efficient (O(J2 log J)) procedures to minimize any convex (separable) function of the perfor- 
mance vector. 

Linear objectives are shown to be minimized by absolute priority rules, thus generalizing a 
well-known result for MI G/l systems. We also show that each point in the performance space 
may be achieved by a unique, generalized dynamic priority rule, specified by J - 1 parameters, 
which may be determined by the recursive solution of J - 1 single variable quadratic equations. 
This class of rules contains the absolute priority rules and the (pure) dynamic rules as special 
cases. Our results are accurate up to one, extremely accurate, approximation and completely 
exact for MIGI 1 and MIMIc systems as well as in heavy traffic. 
(QUEUEING SYSTEMS; NONPREEMPTIVE PRIORITY RULES; CUSTOMER 
CLASSES) 

1. Introduction and Summary 

Queueing models are increasingly used for the analysis and design of complex pro- 
duction and service systems in which different classes of users (or "customers") com- 
pete for a limited number of shared resources (or "servers"). It is often possible to 
classify the customers in a finite number of distinct classes and to apply a specific type 
of preferential treatment to one class at the expense of others. Such schemes are referred 
to as priority queueing systems. 

Examples include production facilities which manufacture batch orders for a number 
of distinct products with the same equipment and/or operators. Often, different service 
level requirements and/or holding cost rates apply to different items, so that signifi- 
cantly different economic consequences result from the delays or sojourn times experi- 
enced by the various items. In modem telecommunication systems, heterogeneous data 
types (e.g., interactive messages, computer outputs, file transfers, facsimile, etc.) com- 
pete with voice for the limited availability of shared transmission equipment, e.g., buses 
in a local area network or frequency bands in a satellite channel. Appropriate priority 
systems need to be designed to achieve an optimal trade-off between (the economic 
consequences of) the delays encountered by the different traffic types. In other systems, 
the objective is to achieve an equitable scheduling procedure of the different customer 
types for access to the shared resource(s). 
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When designing such priority systems, it is natural to think in terms of minimizing 
some cost function with respect to the vector of (average) delays experienced by the 
different customer classes. Most of the literature on priority queueing systems is con- 
cerned with the performance analysis of a specific priority rule in a given queueing 
model. Surprisingly little attention has been given to the design of queueing disciplines 
which minimize well-stated and realistic cost functions. 

The MIGIc queueing system (with Poisson arrivals, independent service times with 
an arbitrary probability distribution, and a pool of identical servers) is arguably the 
most commonly used multi-server model. This paper considers an MIGIc queueing 
system serving a finite number of distinct customer classes E = { 1, . . ., J}. Perfor- 
mance of the system, as measured by the vector of steady-state expected waiting times 
of the customer classes (the performance vector), may be controlled by adopting an 
appropriate priority discipline. We consider the class of all nonpre-emptive and 
strongly work conserving rules; see ?2 for a precise definition. 

Exact evaluation of the performance vector of even a simple priority rule like FIFO is 
not possible in the general MIGIc model. However, various approximation methods 
exist some of which are extremely accurate, see Tijms (1985) for a survey. Our results 
are accurate up to one such approximation (which is exact for MIGI 1 and MIMIc 
and asymptotically exact for heavy traffic systems). 

The main results are the following: we characterize the performance space, the set of 
performance vectors which are achievable under some (nonpreemptive) work conserv- 
ing rule. The latter is shown to be a polyhedral set in RJ described by 2J - 1 (in)equal- 
ities. Normally this characterization would preclude tractability of any kind of optimi- 
zation (or trade-off analysis) over the performance space for all but very small values of 
J. Fortunately the performance space is a polyhedron of a very special structure: up to a 
simple scaling transformation the polyhedron is the base (of the independence poly- 
tope) of a so-called polymatroid (cf. e.g., Edmonds 1970, Welsh 1976). This result 
allows for efficient algorithms to minimize system-wide performance measures ex- 
pressed as convex functions of the performance vector. Additional structure may be 
brought to bear to obtain efficient implementations of these algorithms requiring no 
more than O(J2 log J + Jx) operations where x is the time needed to solve a certain 
type of single variable (nonlinear) equation. (For an important class of objective func- 
tions x = O(J), so the computational bound reduces to 0(J2 log J).) 

In addition, the polymatroidal structure explains the optimality of absolute priority 
rules for linear objectives, a result well-known for the single server case (see Gelenbe 
and Mitrani 1980, Fife 1965, Smith 1956 and Kleinrock 1976). An absolute priority 
rule ranks the classes in a given sequence and determines priorities on the basis of class 
ranks only (breaking ties on a FIFO basis). 

In addition to characterizing the performance space and reviewing algorithms to 
optimize performance measures over this space, we address the issue of synthesis: for a 
given achievable performance vector specify a simple priority discipline under which 
this vector may be achieved. 

While a randomization of absolute priority rules can easily be constructed to corre- 
spond with any given achievable performance vector, such randomizations may be 
hard to implement and exhibit large variances in the long-run waiting times. Instead we 
show that the synthesis problem may be resolved using a slight generalization of the 
dynamic (Jackson 1960) or delay dependent (Kleinrock 1976) scheduling rules where a 
customer's priority is proportional to his time spent in queue, the proportionality 
constant being class dependent. 

The above results are only partially extendable to more general models in systems 
with general (non-Poisson) arrival streams. The performance space remains contained 
within a polyhedral set of-the above described type. A counterexample shows however 
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that the performance space may be a strict (as of yet uncharacterized) subset of this 
polyhedron. 

Federgruen and Groenevelt (1986) discuss the characterization and control of 
achievable performance in preemptive systems. Results similar to ours are obtained for 
systems with general arrival processes but exponential service times. Gelenbe and 
Mitrani (1980) characterized the performance space for the single server case, i.e., for 
nonpreemptive M/G/ 1 systems. Mitrani (1982) achieved the same in M/ G/ systems 
in which the service time of each customer is known upon his arrival and where this 
information may be used in assigning priorities. (A partial characterization of this case 
can already be found in Kleinrock et al. 1971.) 

The synthesis problem in multiclass MIMI 1 models with processor sharing was 
addressed by Fayolle et al. (1978) and Mitrani and Hine (1971). Generalizations of 
Kleinrock's delay dependent priority rules have been investigated by Kleinrock and 
Finkelstein (1967), Netterman and Adiri (1979), and Bagchi and Sullivan (1985). Our 
synthesis algorithm modifies and generalizes a procedure in Wood and Sargent (1984). 

In ?2 we give notation and some preliminary results. The performance space is 
characterized in ?3; we conclude that section with a brief review of optimization algo- 
rithms for system wide performance measures. ?4 gives a synthesis algorithm deter- 
mining a dynamic priority rule for each achievable performance vector. In ?5 we 
discuss possible generalizations of our results. 

2. Notation and Preliminaries 
We first introduce some notation and assumptions. The customer classes arrive to 

the system according to independent Poisson processes; Xj denotes the arrival rate of 
classj, j E E. The service times of the customers in a given classj E E are assumed to be 
independent and identically distributed as a random variable Vj with finite second 
moment. Let pj = XjEVj, j E E. When a customer arrives, only his class is known but 
not his actual service time. 

A rule R is called strongly work conserving if 
(WI) no server is free when a customer is in the queue; 
(W2) the discipline does not affect the amount of service time given to a customer or 

the arrival time of any customer; 
(W3) priorities are assigned on the basis of the history of the process and the time 

elapsed since the last epoch at which the system became empty. 
Let R be the class of rules satisfying (W1)-(W3). Conditions (WI) and (W2) are 

standard, see e.g. Heyman and Sobel (1982). Condition (W3) iS similar to one stated in 
Gelenbe and Mitrani (1980) and appears to be the most general, easily describable 
restriction under which the existence of long-run averages of waiting times can be 
verified, i.e., under which the performance vector is properly defined. (The statement 
on p. 432 in Heyman and Sobel (1982) that conditions (WI) and (W2) are sufficient, 
appears incorrect.) 

To ensure that the work-in-system process is (stochastically) independent of the 
priority rule used we need the following restriction: 

(C) if c > 1, assume all customers have the same service time distribution. 
A key tool in the characterization of the performance space is provided by the 

following work conservation law which is due to Heyman and Sobel (1982), generaliz- 
ing a proof in Schrage (1970) for G/G/I queues. (This work conservation law applies 
in fact for systems with far more general arrival processes, see ?5.) For a given priority 
rule in R, let 

Wj= delay of the nth customer of class j (j E E; n > 1), 
A(t) = work in system at time t (t > 0), 
AFIFO(t) = work in system at time t, under FIFO (t > 0). 
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LEMMA 1 (Work conservation law). Assume J pi/c < 1 and condition (C). Fix 
a rule R E R. 

(a) There are numbers W*, j E E such that 

1N 
lim - z Wn=W (w.p.1), j= 1,...,J. 

N-o-o N n=I 
WP ) 

(b) The long-run average work in system A* exists and is independent of the priority 
rule: 

irT TC 
lim -J A(t)dt = lim -j AFIFO(t)dt = A* w.p.1. (1) 
T--"OC T T-1.0 T 

(C) ZJ= pjW* = A* - I 
ZJ=j XjEV5. 

PROOF. (a) The system is regenerative under any rule in R, with ends of busy 
cycles as regeneration points: The condition Zj pj/c < 1 guarantees that the length of a 
busy cycle has a finite expectation, see Wolff (1984) or Whitt (1982). Part (a) now 
follows from a standard application of the renewal reward theorem. 

(b) The existence of the long run average may be verified as in part (a); the inde- 
pendence with respect to the adopted priority rule follows from (WI), (W2) and the 
service time assumptions. 

(c) See Theorem 1 1-13 in Heyman and Sobel (1982) the proof of which is based on 
an application of the H = XG identify, cf. ibid. and Heyman and Stidham (1980). d 

Next define for all S C E and R E R, A %(S) and W( (S) as the long-run average work 
in system and the long run average waiting time under rule R for customers in the 
collection of classes S. Also, let 

A*(S) = inf {A%(S): R E R}, SCE. 

The following lemma shows that A *(S) is achieved by any rule which assigns absolute 
priority to S-customers above all other classes. In particular, A *(S) may be achieved by 
lumping all S-customers in a single "class" and all other customers in a second "class" 
giving head-of-the-line priority to the S-customers and breaking ties according to FIFO, 
otherwise. We refer to this discipline as the S-priority rule. Let W*(S) denote the 
long-run average waiting time for S-customers under this rule. 

LEMMA 2. Assume condition (C) holds. 
def 

(a) Let VO d the initial delay an arbitrary customer experiences (if any) until the 
first epoch at which a server becomes available for service. The distribution of VO is 
independent of the rule R E R, and E(VO) < oo. 

(b) A *(S) is achieved by any rule in R which assigns absolute priority to customers 
in the collection of classes S over all other classes, S C E. 

(c) Consider an absolute priority rule R and assume the classes are numbered such 
that under rule R, class i has priority over class j iff i > j. Then, simultaneously, 
At({l, *.. , J)) = A*({l, . . J), I = 1, . . J. 

PROOF. (a) We distinguish between two cases: 
(i) the single server case, c = 1: Let (Vo I j) denote the residual service time of the 

customer in service (at an arbitrary epoch), given a customer of class j E E is being 
served. Also, let pj = steady-state probability of a customer of class j being served, j E E. 
Clearly, Vo is a mixture of the (Vo0 j)-distributions with {pj3, j = 1, . . ., J} as the 
mixing probabilities. It thus suffices to show that the distributions of all (V0 I j) variables 
as well as {rpj, j E E } are independent of the rule R E R. The former follows from 
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Green (1982) who also showed that E(Vo I j) - 2 (EV )/EVj; pj = pj (independent of 
R E R) follows from an application of Little's law. Note, finally that 

J 

EV0= 2 XjEV2. (2) 
j=1 

(ii) the multiserver case, c > 1: immediate from condition (C). 
(b) Let AR(S; t) be the work in systems due to S-customers, at time t and under rule 

R. We distinguish between the same two cases as in part (a). 
(i) The {AR (S; t), t> 0 } process has jumps whenever S-customers arrive. These 

arrival epochs and the sizes of the jumps (the customers' service times) are independent 
of the priority rule in view of(W2). In addition AR (S; t) decreases at rate 1 whenever an 
S-customer is served. We conclude that AR(S; t) is minimized (simultaneously for all t 
> 0 and on each sample path) by giving absolute priority to S-customers whenever 
possible. Moreover, the distribution of AR(S; t) is independent of the relative priorities 
assigned among S-customers. Consider thus a rule R which determines these relative 
priorities according to FIFO. Let WJ(R)[Nj(R)] denote the expected steady state 
waiting time [number of customers] in queue for customers in classj and under rule R. 
As before we obtain using part (a) that 

Wj(R) = E(VO) + z N1(R)E(VI) = E(Vo) + z X1W1(R)E(V1) 
IGS lGS 

= E(Vo)+ z p1WI(R), jES, 
leS 

invoking Little's law. Since z jES pj < 1 this system of equations has the unique solution 

Wj(R) = W*(S) = E(V0)/[1 - z Pl]. (3) 
lGS 

It follows from the proof of Lemma 1 (c) that 

AR(S) = z pjWj(R) + 2 XjE(V3) 
jES jES 

= ( z ppj)W*(S) + 2 XjE(Vj). (4) 
jES jES 

Thus, At (S) is identical for all rules R giving absolute priority to customers in S above 
all other customers. 

(ii) As in the single-server case, one easily verifies that AR(S; t) is minimized (simul- 
taneously for all t and on every sample path) by assigning absolute priority to S-cus- 
tomers (whenever possible). Note that priorities need only to be determined at service 
completion epochs at which c - 1 servers remain busy. The state of the system at such 
epochs is described by the queue lengths for all classes j E F and the elapsed service 
times of the c - 1 busy servers. In view of condition (C), the distribution of the 
continuation of the {AR(S; t) } process (given the current state of the system) is only 
dependent on whether a customer in S or in E\S is given priority; it does not depend on 
the specific customer in S or in E\S to be granted priority. The distribution of the 
{AR(S; t) } process is thus independent of the relative priorities assigned to customers 
in S and in E\S. 

(c) Immediate from part (b). o 

We conclude this section with a number of definitions. A set function h: 2 F R is 
called nondecreasing if h( T) ? h(S) whenever TC S, and supermodular (submodular) 
if h(SU { j})-h(S)-(-) h(TU { j})-h(T) for all TC Sand ji S. 

DEFINITION 1. Letf be a real valued function. Let ae C RJ be a vector of positive 
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weights. The set function h: 2 E R defined by h (S) = f( z jGs aj) is called generalized 
symmetric. 

One easily verifies that a generalized symmetric set function is nondecreasing iff is 
nondecreasing, and supermodular (submodular) iff is convex (concave). For a given 
set function h: 2E R, a polyhedron X = {x E RJ: z jesxj_h(S), SC E} is called the 
(independence polytope) of a polymatroid provided h (0) = 0 and h(* ) is nondecreas- 
ing and submodular (cf., e.g., Edmonds 1970, Welsh 1976). 

3. The Performance Space 

In this section we characterize the performance space. 

THEOREM 1 (Necessary conditions for achievability). Assume condition (C) holds. 
If a vector W represents an achievable performance vector corresponding with a rule R 

E R, then 

pjWj _( pj)W*(S) = A*(S) -2 XjE(V2j), (5) 
jES jES jES 

J J J 

p P1W.= ( p1)W*(E) =A*(E) - z XjE(V2). (6) 
j=I j=I j= 

Each of the lower bounds in (5) is tight. 

PROOF. The proof of Theorem 11-13 in Heyman and Sobel (1982) shows for any S 
C E, that 

z pjWj = A%(S) - z XjE(V2) > A*(S) -2 XjE(V2). 
jeS jES jES 

Strict equality holds for the S-priority rule (see Lemma 2). Under the latter rule, Wj 
= W*(S), j E S. This proves (5) and (together with Lemma 1) (6). E 

Let W * = { W E RJ: W satisfies (5) and (6) }. Subtracting the inequalities (5) from 
(6) we obtain the following alternative representation of W *: Let 

b(S)= A *(E)- A *(E\ S) - 12 XjE(V2j), SCE. (7) 
jGS 

Thus, 

W = {WE RJ: W> 0 satisfies (6) and the inequalities pjWj _< b*(S), S C E}. 
jES 

(8) 
We state the following assumption: 

Assumption (A). A *( ( ) is a supermodular set function. 
This assumption clearly holds in the single server model: substitute (3) into (4) to 

conclude 

A*(S) = (2: pj)E(Vo)/[1 - z Pl] + 2 z XjE(V2) (9) 
j(=- S IE S jGS 

with E(Vo) independent of S C E, see (2). Note that the first term in (9) is in fact a 
generalized symmetric, nondecreasing and supermodular set function, with f(x) 
= E(Vo)x/(I - x) and aj = pj, j E E. (It follows that b*( * ) is generalized symmetric 
nondecreasing and submodular.) Likewise in the multiserver case with exponential 
service times (MIMIc) we have (see Gross and Harris 1974, p. 194) W*(S) = E(VO)l 
[1 - C-1 .Ee-s pi], and hence (as in the proof of Lemma 2) 

A*(S) = (E pD)E(VO)/[1 - c-1 , Pi] + 2 , XiE(Vi). (10) 
jES leS jES 
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The first term in (10) is again a generalized symmetric nondecreasing and supermodu- 
lar set function, so that b*(S) is generalized symmetric, nondecreasing and submodular 
in this case as well. (The derivation of (10) is analogous to that of (9), see the proof of 
Lemma 2.) 

For multiserver models with a deterministic service time distribution, it has been 
shown in Federgruen and Groenevelt (1987, Theorem 2) that the A * (.) function is 
supermodular, i.e., Assumption (A) holds. It is, however, unknown whether the super- 
modularity property holds for multiserver models with general (nondeterministic and 
nonexponential) service time distributions. (Federgruen and Groenevelt 1987 provide 
a counterexample, however with deterministic interarrival times rather than Poisson 
arrivals.) In fact, for this most general case, no exact expressions for W* (S) are known; 
even the expected delay under FIFO cannot be exactly evaluated. For the latter an 
approximation formula does, however, exist, derived independently by a number of 
authors (Lee and Longton 1957, Krampe et al. 1973, Maaloe 1973, Stoyan 1976, 
Nozaki and Ross 1978, Hokstad 1978 and Tijms et al. 1981) under different approxi- 
mation assumptions: 

WFIFO = 
(EVj)cB/[ - p] (11) 

where p = EJ? Pj, V is the service time random variable (common to all classes under 
condition (C) and B is the probability of delay in the MIMIc system with the same 
expected service time. The approximation formula is exact in heavy traffic (see Boxma 
et al. 1979) as well as in the MI G/ and MIMIc cases. Most importantly, empirical 
studies have shown that the relative approximation errors are very small indeed, see 
Tijms et al. (1981), Seelen et al. (1985), Seelen and Tijms (1985), Van Hoorn (1984) 
and Groenevelt et al. (1984). In the remainder we use: 

Assumption (A'). When c > 1, and when all servers are busy, the intervals between 
consecutive service completion are independent of the queue size and distributed 
as V/c. 

Assumption (A') is one of several under which approximation formulae (11) for the 
expected waiting times WFIFO may be derived, see, e.g., Tijms et al. (1981). Moreover, 
under (A'), Assumption (A) holds. Assumption (A') holds of course exactly in single- 
server systems and in MIMIc queues. On the basis of the same assumption, one easily 
derives the approximation formula 

W(S) = (N)Bc 1/[1 - Pl], 

and hence 

A *(S) =( Zp) ,(EV Bc-1/l I - c1 z pl] + ( z Xj)EV2 (12) 
EIS 2EV EIS jES 

Note that the first term to the right of ( 12) is again generalized symmetric, nondecreas- 
ing and supermodular. Employing formula (12) this yields a generalized symmetric, 
nondecreasing and submodular b*(* ) function. 

Theorem 2 below shows that W* is in fact the performance space (up to approxima- 
tion (A)). 

THEOREM 2. Let condition (C) and Assumption (A) hold. 
(a) X* - {x ERJ: x2 0, z jEsXj-< b*(S), SCEJand 4j=l xj = b*(E)} is the base 

of a polymatroid. 
(b) The performance vector of any absolute priority rule is an extreme point of 
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W *; conversely, each extreme point of W * is the performance vector of an absolute 
priority rule. 

(c) W * is the performance space. 

PROOF. (a) It is easily shown that A *(* ) is nondecreasing. (The proof is analogous 
to that of Federgruen and Groenevelt 1985, Lemma 1.) In view of (A) and (7), it 
follows that b*( * ) is nondecreasing and submodular with b*(0) = 0. 

(b) The proof of part (B) is analogous to that of Theorem 2 in Federgruen and 
Groenevelt ( 1 987b). 

(c) We conclude from part (b) that each point in W * is the performance vector of 
an appropriate randomization of absolute priority rules. U 

Optimization of System Performance Measures 
The performance space is thus a polyhedron described by 2' - 1 inequalities. Nor- 

mally this would preclude (for any but the smallest values of J), tractability of any 
algorithm optimizing a system performance measure which is expressed as a linear (let 
alone a nonlinear) function of the performance vector. 

However, since X* is the base of a polymatroid (see Theorem 2(a)) it follows that 
simple polynomial (or pseudopolynomial) algorithms exist to minimize any convex 
separable function f(W) = 2 jfj(Wj). (Certain nonseparable cases can be handled as 
well, see Federgruen and Groenevelt 1986.) 

As a direct corollary to Theorem 2 (Corollary 1 below) we obtain that the minimum 
of any linear objective 2J=i ccjWj is achieved by an absolute priority rule which gives 
(absolute) priority to a customer in class i if and only if ci/pi < cj/pj (i, j E E). 
Minimization of a linear cost objective thus reduces to the ranking of the ratios { cj/pj: 
j E E} which requires O(J log J) time only. 

COROLLARY 1. Assume assumption (A) and conditions (C) hold. Consider the 
cost objective 2J=i cjWj (cj 2 0, j E E) and assume that the customer classes are 
numbered such that c1 /Pi p c2/p2 ?2 * ... * c2 /pJ. The absolute priority rule which (at 
each service completion) assigns priority to a waiting customer of the lowest indexed 
class minimizes the cost objective among all work conserving priority rules. 

PROOF. Let xj = pjWj (j E E). With this substitution of variables, our minimiza- 
tion problem may be formulated as min 3 jEE (cj/ pj)xj s.t. x E X*. Since X* is the base 
of a polymatroid (Theorem 2(a)) it follows from Edmonds' (1970) famous result that 
an optimal extreme point for this linear program may be obtained by the greedy 
procedure: 

Step 0. (Since xj has the largest coefficient in the objective function) set xj to its 
maximum feasible value, i.e., xj = b*({J}); 1 = J - 1. 

Step 1. Given fixed values for xl,,, . .., xJ, (and since x1 has the next largest 
coefficient in the objective function) set xi to its maximum feasible value, i.e., 

J 

xI: = b*({l, ... ., NJ)- I xi = b*({l,5.. ., NJ) -b*({l + 1, .. * * N}). 
i=l+l 

Each extreme point of X* is the performance vector of an absolute priority rule, see 
Theorem 2(b); moreover, the specific extreme point constructed by the greedy proce- 
dure, is obtained by a lexicographic maximization of (xj, xj-I, ... , x i) and hence of 
(WJ, WJ-l, ..., WI) and must therefore correspond with the absolute priority rule 
which assigns priority to a customer in class i over one in class i if i < j. U 

We note that optimality of an absolute priority rule for linear objectives (determined 
by a simple ranking of the ratios { cjl pj: j E E} ) has been shown for a number of special 
cases (see Fife 1965, Smith 1956, Kleinrock 1976, and Gelenbe and Mitrani 1980). 
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More generally, Theorem 2 (b) establishes that an absolute priority rule is optimal for 
any concave (or even quasi-concave) objective f(W1, ..., WJ), since such objectives 
achieve their maximum in an extreme point of X*. 

For convex system performance measures, the simplest polynomial algorithm is the 
so-called decomposition algorithm, see Groenevelt ( 1985 ). Since the right-hand sides of 
the constraints (3) and (4) are generated by a generalized symmetric function, an 
efficient implementation of this algorithm may be achieved with a running time of 
0(J2 log J + Jx) where x is the time needed to solve a certain type of single variable 
(nonlinear) equation. When all of the terms in the objective function are of the form 

fj (W) = ajh((W - fj)/ aj), (13) 

for some aj, 3j > 0 and a strictly convex function h(*), x = 0(J) so that the overall 
running time of the algorithm is O(J2 log J). (We call such objectives homoform.) It is 
noteworthy that, in the homoform case, the optimal solution is independent of the 
specific choice for the function h( * ), an observation which goes back to Veinott (1971), 
see also the discussion below. We refer to Groenevelt (1985) and Federgruen and 
Groenevelt (1988) for a full specification and analysis of the algorithm. 

A simple alternative is provided by a greedy or marginal allocation procedure. This 
algorithm is, however, only pseudopolynomial, see Federgruen and Groenevelt (1986) 
for details. 

The above procedures thus generate an exact optimal solution for the single-server 
case; in the general multi-server case, an approximation error may, however, arise since 
an approximation assumption (Assumption (A')) is invoked in the determination of 
the (achievable) performance space. We conclude this section with a discussion of the 
resulting accuracy with which optimal performance vectors are approximated by the 
recommended procedures. 

Assumption (A') may in fact be viewed as introducing two potential approximation 
steps: 

(i) Assumption (A') implies supermodularity of the A *(*) function (the weaker 
Assumption (A)) which is used to establish that all points in W * are feasible, or 
equivalently that constraints (8) are sufficient (as well as necessary) conditions for 
feasibility, see Theorem 2. In other words, should the supermodularity property fail to 
hold, only relaxations of the true optimization problems may be solved by the above 
described algorithms, see also the discussion in ?5. 

As discussed above, the supermodularity property holds when the service times are 
exponential or deterministic but its exact validity is unknown for other types of service 
time distributions. On the other hand, the A * ( * ) function is, even for this most general 
case, at least approximately supermodular since Assumption (A') results in very accu- 
rate approximations of the values of {A* (S), S C E } as substantiated above. (Recall, 
e.g., that the approximations are always asymptotically exact in heavy traffic.) 

(ii) Assuming henceforth that the performance space is indeed given by W * with the 
b*(.) set function in (8) submodular, approximation errors may be incurred in the 
evaluation of the righthand sides {b*(S): S C E} of the constraints in (8). More 
specifically, Assumption (A') results in the approximation formulae (12) for {A*(S): S 
C E } and hence in approximations { b(S): S C E } for the true right-hand sides { b* (S): 
S C E } of the constraints in (8). Again, as substantiated above, these approximations 
are exact when the service times are exponential as well as in heavy traffic and their 
accuracy has numerically been established in several above-mentioned studies. 

Here we demonstrate that 
in the case of a linear cost objective, the exact optimal performance vector is 

obtained in spite of any approximation errors in the computation of the right-hand 
sides of ( 8); 
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-in the case of nonlinear, convex cost objectives, "small" approximation errors in 
the determination of the { b* (S): S C E } numbers result in "small" approximation 
errors for the computed "optimal" performance vector. 

The first conclusion follows directly from the observation that for linear system 
performance measures, an optimal priority rule exists which depends on the ratios 
{c j/pj: j E E } only, see Corollary 1! 

To substantiate our second conclusion for nonlinear, convex objectives, we first show 
the following proposition. (A function is Ck if it is k times continuously differentiable, k 
> 1. Let { b(S): S C E } be the parameterized right-hand sides of the constraints in ( 8).) 

PROPOSITION 1. Consider a system performance measuref( W) = jeEfj( Wj) with 
fj strictly convex and C2 (j E E). The unique optimal solution W* in (8) is a contin- 
uously differentiable function of { b(S): S C E}. 

PROOF. The fact that the optimal performance vector is unique is a standard result 
in convex programming with strictly convex objectives. 

Apply, as in the proof of Corollary 1, the substitution of variables Xj = pjWj (j E E). 
Also, let gj(xj) = Mxj - fj(xj/pj) (j E E) for some large constant M. (M 
2 maxjEE f' (b*( { j }j)).) Note that the functions gj(* ) are increasing, strictly concave, 
and C2, j E E. Our optimization problem is thus equivalent to: 

max z gj(xj) s.t. x20, 2 Xj< b(S), SCE. (P) 
jeE jcs 

(Note that we have relaxed the equality z fJE xj = b*(E) to an inequality; since the 
objective is increasing, this relaxation does not affect the optimal solution.) Let x* be 
an optimal solution of (P) and let {SI, . . ., SL} be an enumeration of the sets S for 
which the constraints are binding. Likewise, let X*(S) denote the optimal Lagrange 
multiplier (dual variable) associated with the constraint for set S C E. (These multi- 
pliers are unique since the objective is strictly concave.) Finally, let e(S) E R' denote 
the indicator vector of set S C E, i.e., e(S)j = 1 ifj E S, and 0 otherwise. 

The proposition now follows from Theorem 2.1 in Fiacco (1976) by verifying that 
(i) the vectors { e(SI), . . ., e(SL) } are linearly independent; 
(ii) X*(Sl) > 0, 1 = 1, ... ., L. 
(i) follows from the fact that the sets { SI, ... , SL } are nested, i.e., either Si c Si or 

Sj Si (1 < i, j < L). This is a well-known consequence of the strict submodularity of 
b*( ), see, e.g., Lemma 2.1 in Lawler and Martel (1982); see also the proof of Lemma 
4 below. Thus (after appropriate numbering) SI C S2 a * * * a SL and (i) follows. 

Moreover, in view of (i) and the fact that xt > 0 (j E E), the Kuhn-Tucker 
conditions imply that 

xj*= b(S,), l=1 .. ,L, (14) 

gj(X*) = X*(Si) + X*(Si+I) + * X*(SL), 1 = 1, .. ., L 

and JE S,\S,+1. (15) 

(ii) is now easily verified by complete induction (starting with 1 = L) since gj( * ) is 
strictly increasing, i.e., gj(x j) > 0, j E E. E 

We note that the optimal performance vector W*, viewed as a function of the 
right-hand side vector { b(S): S C E } is in fact as smooth as the functions { gj( ( ): j 
E E}, i.e., if gj(.) E Ck+l for some k 2 1, then W*(b) E Ck, see Corollary 4.1 in 
Fiacco (1976). 

In view of equations (14) and (15) it is in fact possible to derive bounds for the 
possible approximation errors in the computed optimal performance vectors. Thus, let 
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A(*) (b(*)) denote the approximation for A *(*) (b*(* )), as obtained from Assump- 
tion (A'), and let e = maxscE { I b*(S) - b(S) I } = maxSCE { I A*(S) -A(S) I }. (As 
argued above, e is small.) Likewise, let W(*) be the computed approximation to the 
optimal performance vector W*( ). 

Note first from the proof of Theorem 2.1 in Fiacco (1976) that the constraints 
corresponding with the collection of sets { SI, .. ., SL } are the binding constraints for 
Was well as W* when e is sufficiently small. It thus follows from (14) (provided e is 
sufficiently small) that 

I z PWi - pjWj* = Ib*(SI) - bj(S,)I 
? 

E. 
jESI jESI 

Moreover, it is possible to derive an exact expression for the approximation errors in 
the individual components of the optimal performance vector. This is most easily 
accomplished when the objective function is homoform, see ( 13). Let 

B, 2: = ,j and Al= a j, l=1,.. .,L. 
jE=- SI+ I \SI ~~jEGS/+ I\ Si 

By a simple algebraic manipulation of (15) one verifies for all 1 = 1, ... L and 
E E S,\S,+ , that (p1j W - Oj)/aj = (b*(Si) - B,)/Al while (pj j - j)/aj = (b(Si) 

- B,)/A,, for e sufficiently small. Thus, for all / = 1, . .. , L andj E S, S + , 

I W = (Wiesl+ps -ai) b *(SI) - bj(S) jI P 

Similar bounds (in terms of jGS, gj1s(.), 1 = 1, ..., L) may be derived for general 
nonhomoform objectives. 

4. A Synthesis Algorithm 

We observed (in the proof of Theorem 2) that each point in the performance space 
corresponds with an appropriately chosen randomization of absolute priority rules. 
Since, in view of Caratheodory's theorem (see, e.g., Bazaraa and Shetty 1979), each 
point in a J-dimensional polyhedron can be written as a convex combination of no 
more than J + 1 extreme points, it follows that each point in W * is the performance 
vector of a randomization of no more than (J + 1) absolute priority rules. (The 
randomization probabilities may, at least in principle, be determined by a linear 
program.) 

Randomizations of absolute priority rules are, however, difficult to implement; 
moreover, the variances of the steady-state waiting times tend to be large under such 
rules. In this section we show that each point in W* corresponds with a slight general- 
ization of the, far more attractive, so-called dynamic (Jackson 1960) or delay dependent 
(Kleinrock 1976) scheduling disciplines where a customer's priority is proportional to 
his time spent in queue, the proportionality constant being class dependent. More 
specifically, in a delay dependent priority rule, positive weights aj (j E E) are specified 
such that a customer of classj who arrives at time T is given a priority value of aj( t - T) 
at time t > T. At a service completion epoch, the customer with the highest priority 
value (among all queueing customers) is taken into service. 

We show below that each interior point of W * may be achieved by some dynamic 
priority rule, i.e., by an appropriate choice of the weight vector a. To cover the entire 
performance space we need a larger class of rules which includes the dynamic and 
absolute priority disciplines as special cases: 

DEFINITION 2. A mixed dynamic priority rule is characterized by a partition { E1, 
... EL } of E. The subsets { E: 1 = 1, * * * L } are referred to as leagues. A customer in 
Ek has absolute priority over a customer in FS if and only if k > l. Relative priorities 
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within a league 1 (1 = 1, . .. , L) are determined according to a dynamic priority rule 
with weight vector a"'/ = (aj)jEE,. 

Absolute priority rules have J leagues each consisting of a simple class; pure dynamic 
priority rules have a single league consisting of all classes in E. In the following we 
assume, without loss of generality, that the customer classes are numbered in ascending 
order of their attributed priorities (and hence expected waiting times). We can thus 
restrict ourselves to rules with consecutive leagues and nondecreasing weight vectors: (A 
set S C E is consecutive if it consists of a collection of consecutive integers.) 

We first derive a system of linear equations from which the (approximate) perfor- 
mance vector of any mixed dynamic rule can be obtained. This derivation is based on 
Assumption (A'). 

As in Kleinrock (1976, p. 109) consider a customer in class p E E and define 
Nip = number of customers from class i who are in the queue when the tagged 

customer (in class p) arrives and who receive service before the tagged customer does 
(i E E). 

Mip = number of customers from class i who arrive to the system while the tagged 
customer (in class p) is in queue and who receive service before he does (i E E). 

In view of Assumption (A'), since Poisson arrivals see time averages, and using 
Lemma 2(a), we obtain: 

Wp = E(VO) + c- E(Njp + Mjp)E(Vj), p EE. (16) 
j= 1 

For any given rule, let SI = UkL=I Ek, 1 = 1, . . . , L. Following the analysis in Kleinrock 
(1976, ?3.7) we obtain: 

r 0 for j E S1 = E\S1, 

EN.= tXjWjajl/ap for jEFE, j<p, (17) 

LAjWj for jES1, j_p, 

F 0 for j?p, 

EMjp = X Wp(I ap) for j E El, p <j, 

LjWp for j E SI+,. 
Substitution of ( 16) into ( 17) results in 

Wp E(Vo) +- pj p + -pjWj + - pjWp 1_ +- 
1 
p1 Wp, 

c jeE, op c jeC, c jaEE /aj c 
jES+l 

j<p j;p j;p 

pEEl (1= 1,...,L). (18) 

LEMMA 3. Let Assumption (A') and condition (C) hold. The performance vector of 
any mixed dynamic rule is the unique solution of the linear system of equations (18). 

PROOF. In view of the conservation law in Lemma 1, we have 
p-l 

pj pWj= pW*(E)- I p1Wj. 
jESI j= 
j2p 

Substitution into ( 15 ) transforms this system into a triangular one. C 
We now prove that each point in W * is the performance vector of a mixed dynamic 

rule (the synt hesis proof ). While the proof itself fails to be constructive, it is followed by 
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a simple algorithm which determines the parameters of a rule corresponding with any 
given W E W * (the synthesis algorithm). 

The synthesis proof uses an alternative characterization of mixed dynamic rules 
through a vector rE D = {(rl, . . . , rj-,) E Rj-1: 0-< rj1, j =1, . . ., J-1}. A rule 
with leagues {E1, . .. , EL } and weight vectors { a('): 1 = 1, L } corresponds with 
the vector r E D defined by: 

ri, = 0, 1 = 1, . . . , L - 1; 

rp = ap(/')la(), if pEEl, p< i (I= 1,... ,L), where 

i1=max {p:pEE} (l= 1,...,L). 

Conversely for any r E D, let { i: 1 = 1, ... , L -1 } be the (possibly empty) collection 
of zero components. (Note, 1 < L < J - 1 and L = 1 if all components of r are positive; 
assume i < i2 < . . . < iLL1 and set iL = J.) The vector r corresponds with a rule with L 
leagues; the lth league { ij_1 + 1,... ., i} has a weight vector a"') defined (recursively) by 

a(1) a(.1) (aI1) ' ..Ii 
a11)= 1; ae j= a1?1rj, J = i_+ 1, . .. , - 1. 

Describing a rule via its associated r-vector, one easily verifies that (14) simplifies to 
p-l 

ENjp = XjWj rH rk (j, p E E), 
k=j 

j-1 

EMjp = XjWp(l - II rk) (j, p E E), 
k=p 

(with the convention that empty products equal one). 
Substitution into (16) results in: 

J p-i J j-I 

Wp = E(Vo) + c ' 
2pj(fl rk)Wj + c 2 pj(l - I| rk)Wp, p E E. (19) 

j=I k=j j=I k=p 

Define the polyhedronW = W*n {WE RJ: W1 _ W2 _ ... * Wj}. Recall from (5) 
and (10) that W = { W RJ: I =i+i piWi > f( I =i+l pi), i = 1, ... ., J-1I; 1 =1 pIWI 
=f(p); W1 -? _ - * * _ WJ} wheref(z) = E(Vo)z/(l - c-1z). 

We first need the following lemma. 

LEMMA 4. Let Assumption (A') and condition (C) hold. There exists a piecewise 
linear transformation x: W -* D with the following properties: 

(a) W eW satisfies 
J J 

,: PIW =f(E p)}I ~x( W)j =0 (i =l, ... I J -1). (20) 
Iil l=i+l1_ 

(b) WeW satisfies 

Wi= Wi+l = X(W)i = 1 (i = 1,. .., J- ). (21) 

PROOF. Let WE W. We first show for any i = 1, . . . , J - 1: 
J J 

2: pi WI=f( ,: pi) == Wi > Wi + I, (22) 
I=i+i l=i+l 

thus showing that properties (20) and (21) are consistent. Subtract the equality to the 
left of the =* sign in (22) from the inequality EJ2i p1WI _ f( EJi Pi) to conclude that 

J J J J 

Wi -M fPI) -f( 2: Pi)]/Pi > ( 2: pi) - ( : Pi)]/Pi+l 
l=i l=i?+1 =i+1 l=i+2 

> W+; 
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(Empty sums are again assumed to be zero. The second strict inequality follows from 
the fact thatf is strictly convex; the last inequality is derived by subtracting the inequal- 
ity '=?i+2 pIWI f( 'Ii+2 pl) from the equality to the left of the =* sign in (22).) 

We now define the piecewise linear transformation X. Each vertex of W is mapped to 
a vertex of D which satisfies (20) and (21). Let {W*(l), . . ., W*(M)} be an enumera- 
tion of the vertices of W. Fix a specific triangulation of W, i.e., fix a partition of W into 
a collection of simplices, each containing J + 1 vertices. (A simplex in RJ is the convex 
hull of J + 1 points.) Such a partition always exists, see e.g. Corollary 1.7 in Hudson 
(1969). Thus, each point Win W is either in the interior of a unique simplex or on the 
boundary of two adjacent simplices. In the former case W may be written as a convex 
combination of the (J + 1) vertices of its simplex and in the latter case as a convex 
combination of the J vertices in the intersection of the two adjacent simplices. For a 
given triangulation, this procedure uniquely specifies for each WE W, a vector a E RM 
with z Pm1 ap = l and aop > 0 (p = 1, . . ., M) such that W = EM I apW*(P). 

Define x(W) = lp ?apX(W*(P)) E D. Clearly, x is piecewise-linear and it is easily 
verified that X is continuous as well. (x is a so-called simplicial map, see e.g. ?4 in 
Hudson 1969.) Moreover, (20) and (21) are easily verified. L1 

THEOREM 3. Let Assumption (A') and condition (C) hold. Each W E W is the 
performance vector of a (mixed) dynamic rule. 

PROOF. In view of Lemma 3, there exists, for any r E D, a unique solution W(r) of 
(16) and W(r) E W. Note from the implicit function theorem that W(-) is a continu- 
ous mapping from D into W. Assume first (to the contrary) that some interior point 
W' of W is not contained in the image of W(-). Let 41 denote the central projection 
with W' as its center, projecting each point in the polyhedron W onto its boundary. 
Note that 4' is continuous on W \ { W? }. Next, let v: D D be the point symmetry 
with center(-, I I 

2), i.e., v(r)i = 1 - ri for i = 1, . . . , J- 1. Finally, define d: D 
D: u(r) = voxo4'oW(r). Since a is the composition of continuous mappings, it is a 
continuous mapping of a convex compact set into itself and has a fixed point r*, in view 
of Brouwer's fixed point theorem. Observe that 4' maps W \ { W? } onto its boundary; x 
maps the boundary of W into the boundary of D, in view of(20) and (21). Likewise, a 
maps the boundary of D into itself. Thus a maps D into its boundary and r* is a 
boundary point. Thus, for some i = 1, . . . , J - 1 either r* = 0 or r'* = 1. In the former 
case, the collection { i + 1, . , J} has absolute priority over all other classes under the 
rule associated with r*. In view of Lemma 2 this implies that W(r*), and hence 
4o W(r*) is a point on the hyperplane to the left of the =* sign in (20). In view of (20), 
xo4loW(r*)i = 0 and hence u(r*)i = 1, which contradicts o(r*) = r*. If ri* = 1, a 
similar argument leads to a contradiction. We conclude that the interior of W is 
contained within the image of W(-). Moreover, the image of the compact set D is 
compact, since W(-) is continuous. Since W is the smallest among all compact sets 
which include the interior of W, it follows that W( * ) maps D onto W. C1 

A Synthesis Algorithm 
We are now ready to specify a simple synthesis algorithm. Thus, fix WE W. If Wis 

the performance vector of a rule described by the vector r E D, then r must satisfy the 
system of equations (19). In particular, for any p = 1, . .. , J - 1, r must satisfy the 
equation obtained by subtracting rp times the p-th equation in (19) from the p + 1st 
equation in (19): 

J j-1 

W,+1 - rpWp = E(Vo)(l - rp) + c-' p2(l -P ] rk)Wp+l 
j=l k=p+l 

J j-l 

- 6' zp1(r - rp fi rk)Wp. 
j-1 k=p+l 
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Thus, given values for (rp+?, ..., rj-i), rp must be a root of the quadratic equation: 
J j-l 

[C-1 I pj( fl rk)]Wpx' + {(I - c-p)Wp - E(V0)}x 
j=l k=p+l 

J j-l 

-WP+1 I{ 1-C-1 pj(l- fl rk)} + E(VO) = O, p =1,...,J-1. (23) 
j=l k=p+l 

This suggests that a rule with Was performance vector, may be obtained by recursive 
solution of the (J - 1) quadratic equations (23): 

Synthesis Algorithm. 
Step 0. Set p = J - 1. 
Step 1. Find the unique nonnegative root x* of the quadratic equation in (23); 

rp.: =x* 
Step 2. If p > 1, p: =p - 1 and return to Step 1; otherwise, terminate. 

THEOREM 4. Let Assumption (A') and condition (C) hold. For each WE W, the 
synthesis algorithm determines a rule with Was performance vector. 

PROOF. Fix w E W. It follows from Theorem 3 that a rule exists with W as 
performance vector. As explained above, the corresponding vector r of any such rule 
must satisfy the recursive quadratic equations (23). It is sufficient to show that these 
equations have a unique nonnegative root. Since the coefficient of the quadratic term is 
positive, the proof is complete if we show that either (i) the constant term is negative or 
(ii) the constant term is zero and the coefficient of the linear term nonnegative. Note, 
however, from ( 19 ) that 

J j-l 

Wp+ >_ E(V?) + c-1 p1(l - rI rk)Wp+l 
j=l k=p+l 

and that equality holds iff rp = 0. Hence the constant term is nonpositive and if it is 
zero, we have rp = 0. But this implies, again from (19), that Wp > E(VO) + p6c Wp, so 
the coefficient of the linear term is indeed non-negative, in this case. O 

A special case of the above synthesis algorithm for interior points of the performance 
space in MI G/l systems was first proposed by Wood and Sargent (1984). 

The following corollary strengthens Theorem 3. Its proof is immediate from that of 
Theorem 4. 

COROLLARY 2. Let Assumption (A') and condition (C) hold. For each W E W, 
there exists a unique mixed dynamic rule with W as its performance vector. 

We conclude this section with a brief discussion of the approximation errors that may 
arise in determining a mixed dynamic rule which optimizes a given system objective. 
Such errors may be due to possible errors in the computation of W* which in turn may 
result from possible approximations in the evaluation of {A*(S): S C E } (in view of 
Assumption (A')). As argued at the end of ?3, approximation errors in the computa- 
tion of W* arise only in certain cases, and are "small" when they arise. As mentioned 
there, the collection of binding constraints in (8) for the computed approximation Wof 
W* is the same as that of W*, when the approximation errors for the A * () function 
are sufficiently small and it follows that the computed league structure is identical to 
that of the optimal performance vector W*! (Use Lemma 3 and Theorem 4.) 

Recall that within a given league, 1 = 1, ... , L, the dynamic weight factors a(/) are 
determined by repeated evaluations of the unique positive root of single variable qua- 
dratic equations. Bounds on the possible errors that may arise in the computation of 
these weights are thus easily derived. 
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Rule Rl: 

job idle 1 |31 2 | 4 | idle 
I I I I I I I I I I 

time 0 2 4 6 8 10 12 14 16 18 20 

Rule R2: 

job idle 2 | 4 | 31 1 | idle 

time 0 2 4 6 8 10 12 14 16 18 20 

FIGURE 1. Schedules for Example. 

5. More General Models 

Several elements of the analysis in ??2 and 3 may be extended to more general 
queueing models. In particular, under the stability condition Ej pj < c, Lemma 1 (the 
work conservation law) applies to general arrival processes as long as long run average 
arrival rates exist and the long run averages of the customers' waiting times converge for 
each class in E, see Theorem 1 1-1 3 in Heyman and Sobel (1982). Lemma 1 thus holds 
in particular for GIl GI c queues (with renewal arrival processes), see Wolff(1984) and 
Whitt (1982) for a verification of the required conditions. 

Since Lemma 1 holds for general arrival processes, the necessary conditions for 
achievability of a performance vector in Theorem 1, may be extended to systems with 
such arrival processes as well: the polyhedron W *, described by equations (3) and (4), 
thus contains the performance space under rather general conditions. 

A * () (viewed as a set function on 2E) is supermodular in single-server systems with 
general arrival processes, see Corollary 1 in Federgruen and Groenevelt (1985). The 
supermodularity property may, however, fail to hold in multiserver systems with non- 
Poisson arrival streams and nondeterministic service times, cf., ibid. Thus Theorem 2 
may fail to hold for general arrival processes. W * may fail to be the base of a poly- 
matroid. 

Most importantly, the following single-server example with deterministic service and 
interarrival times shows that W * may fail to represent the performance space when the 
arrival processes are more general than Poisson. 

EXAMPLE. Let E = { 1, 2, 3, 4 } and c = 1. Assume all interarrival times are 
deterministic with the kth customer of classes 1 and 2 arriving at time 20(k - 1) + 1, 
the kth customer of class 3 at time 20 (k - 1) + 2 and the kth customer of class 4 at time 
20(k - 1) + 3.5, k > 1. Service times are deterministic with V1 = V3 = 1; V2 = 4 and V4 

= 10. Let Ri be the rule which gives absolute priority to class i, i = 1, 2. Note that 
A*( { 3 }) = 40 and A*( { 3 } ) is achieved only under rule RI, see Figures 1 and 2. Note 
also that A * ( { 3, 4 }) = 3.925 andA*( { 3, 4 } ) is achieved only under rule R2, see Figure 
3. Thus consider any extreme point of W* satisfying the equations, (see (3)) 

p3W3 = A*({3}) - )213EV2 = I -I = 0, 

p3W3 + P4W4 = A*(3, 4 } - I3E 1.4. 

AR (I 3};t) 

4 - 

2 - 

FR2 4 6 8 10 12 14 16 18 20 

time 

FGR2.Determination of A *( { 3 } ). 
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AR (f3,4);t) 

1 2 

1 0 

8 - 

6 - 

4- 

2 - 

0- 

0 2 4 6 8 10 12 14 16 18 20 

time 

AR F (( 3,4);t) 

1 2- 

1 0 

8- 

6- 

4- 

2- 

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 20 
time 

FIGURE 3. Determination ofA*({3, 4};t). 

Any such extreme point has W3 = 0 and W4 = 2.8. However, the only rule under which 
W3= 0 is R1 and under this rule W4 = 3. We conclude that some of the extreme points 
of W* are not achievable. 

Characterizing the performance space in systems with non-Poisson arrivals remains 
an open question. ' 

' We are greatly indebted to Mark Broadie, William Cook, Lex Schrijver and Tom McCormick for provid- 
ing us with the basic outline of the proof of Theorem 3. We are equally indebted to Stephen Robinson for 
referring us to the perturbation results in Fiacco (1976). 
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