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Abstract 

We consider a single-server queueing system with Poisson arrivals and general 
service times. While the server is up, it is subject to breakdowns according to a 
Poisson process. When the server breaks down, we may either repair the server 
immediately or postpone the repair until some future point in time. The operating 
costs of the system include customer holding costs, repair costs and running costs. 
The objective is to find a corrective maintenance policy which minimizes the long-run 
average operating costs of the system. The problem is formulated as a semi-Markov 
decision process. Under some mild conditions on the repair time and service time 
distributions and the customer holding cost rate function, we prove that there exists 
an optimal stationary policy which is characterized by a single threshold parameter: a 
repair is initiated if and only if the number of customers in the system exceeds this 
threshold. We also show how the average cost under such policies may be computed 
and how an optimal policy may efficiently be determined. 

QUEUES WITH BREAKDOWNS; SEMI-MARKOV DECISION PROCESS; CORRECTIVE 

MAINTENANCE POLICY; MONOTONE POLICIES 

1. Introduction 

This paper considers the problem of determining optimal repair policies for 

operating devices that are subject to breakdowns. This is a common problem in 
reliability models and a large amount of research on optimal operating policies for 
maintenance systems (see e.g. McCall (1965), Pierskalla and Voelker (1976), Sherif 
and Smith (1981)) exists in the literature. The major difference between our model 
and most existing repair models is that we view the operating devices as servers in a 

queueing system, providing service to arriving customers. 
We consider a single-server queueing system with Poisson arrivals and general 

i.i.d. service times. While the server is up, it is subject to breakdowns according to a 
Poisson process. When the server breaks down, we may either repair the server 
immediately or postpone the repair until some future point in time. The operating 
costs of the system include customer holding costs, repair costs and running costs. 
The objective is to find a corrective maintenance policy which minimizes the 
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long-run average operating costs of the system. We refer to this problem as the 
wait/repair problem. 

Basically, the advantage of considering the operating device as a server in a 
queueing system is that we can take into account the costs due to customers waiting 
in the system, which in turn implies that we take into account the workload of the 
system at the time it fails in considering whether to repair the system immediately or 
not. This formulation has the flexibility of assigning a higher operating cost when 
there are more customers in the system. This higher cost may be due to the higher 
workload in the system. It also may be due to greater customer dissatisfaction 
because of longer waiting times, or to lost productivity (profit) if the customers are 
internal to the organization. 

One possible extension of our basic model is to include the option of turning off 
the server even when it is operational, at the expense of a fixed shutdown cost. This 
would permit saving on the operating costs. This extended problem can be viewed as 
an extension of the problem of optimally operating an M/G/1 queueing system with 
a removable server and can be solved by a slight modification of the analysis in this 
paper. Our results thus generalize those in Yadin and Naor (1963), Sobel (1969) and 
Bell (1971) for M/G/1 systems without breakdowns and repairs. See also Balanch- 
andran (1973), Balanchandran and Tijms (1975) and Heyman (1977) for the analysis 
of special classes of policies for this model. We shall discuss this in greater detail in 
Section 6. 

There is also similarity between queues with breakdowns and preemptive priority 
queues (see e.g. Gaver (1962), White and Christie (1958) and Federgruen and 
Green (1986), (1988)). For example, assume that there are two priority job classes 
in which the high-priority jobs can preempt any low-priority job. Customers 
correspond to the low-priority jobs. A breakdown corresponds to an arrival of a 
high-priority job which preempts the current low-priority job in service. The repair 
time corresponds to the service time of a high-priority job or to the busy period 
initiated by a high-priority job. Therefore, queues with breakdowns may also find 
applications for the corresponding priority queueing models. 

The rest of the paper is organized as follows. In Section 2 we formulate the 
wait/repair problem as a semi-Markov decision process. In Section 3 we show under 
some mild conditions with respect to the repair and service time distributions as well 
as the holding cost function, that an optimal stationary policy exists. In Section 4 we 
prove that an optimal stationary policy exists which is characterized by a single 
threshold parameter: a repair is initiated if and only if the number of customers in 
the system exceeds this threshold. We refer to such policies as monotone. In Section 
5 we demonstrate how the average cost of a monotone policy may be computed and 
how an optimal monotone policy may efficiently be determined. Finally, in Section 
6, we give a few remarks on some special cases and extensions of our model. 

Our proof that optimal monotone policies exist is, to our knowledge, based on a 
somewhat novel approach. In the literature on optimal control problems of 
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stochastic systems, most structural results are obtained by verifying that value 
functions or solutions to certain optimality equations have specific properties-such as 
monotonicity, convexity, K-convexity, etc. Our proof is based on a parametric 
variation of one of the model parameters. The existence of a monotone optimal 
policy is first verified when this parameter takes on sufficiently small values and is 
then inductively extended from interval to interval. We believe that this approach 
may prove to be fruitful in many other models as well. 

2. Model formulation 

We consider a single-server queue with Poisson arrivals at rate A and general i.i.d. 
service times with service time distribution F(.). While the server is up and working, 
it is subject to breakdowns according to a Poisson process with rate a where 
0 < a < 00, and possibly with a different rate ao0 with 0 ao < oo when the server is up 
but idle. We assume that the arrival, service and breakdown mechanisms are 
independent of each other. When a service is interrupted, it needs to be restarted 
from scratch, i.e., when the service of a job is restarted, its service time is a new 
independent sample from the distribution F(.). In the special case where service 
times are exponenftial, it is immaterial whether an interrupted service due to 
breakdowns is resumable or not. When the server breaks down, we can either 
initiate a repair or postpone the repair (wait) until some future point in time. Repair 
times are i.i.d. with general distribution G(.) and mean v, 0 < v < oo00. 

The cost structure includes a customer holding cost rate H(i) ?0 where i 
represents the number of customers in the system, a fixed cost c -0 for each repair, 
a running cost rate r when the server is working, and a possibly different running 
cost rate r0 when the server is idle. The running cost is 0 when the server is broken. 
In some cases, ro0- 

r because additional costs (resources) are needed to serve the 
customers, e.g., electricity cost to run the machine. However, we do not impose any 
restriction on the relation between r and ro in our model. We can also include a 
reward R for each service completion. The long-run average value of this reward 
component is, however, constant for any policy under which the queueing system is 
stable. We therefore assume R =0. Our objective is to minimize the average 
operating costs of the system among all possible policies. 

The wait/repair problem is formulated as a semi-Markov decision process with 
state space S = {(i, j) I i = 0, 1, 2, . . ., and j = 0, 1}. (X(t), Y(t)) E S denotes the 
state of the system at time t where X(t) represents the number of customers in the 
system at time t and Y(t) the status of the server at time t, with value 0 or 1 
indicating that the server is down or up, respectively. The decision epochs include 
(i) breakdowns or service completions when the server is up and working; (ii) 
arrivals of customers when the server is idle or down and no repair has been 
initiated yet; and (iii) repair completions. 

For each decision epoch at which Y(t)= 1, there is only one action available, 
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namely, do nothing and let the server work. For those epochs with Y(t)= 0, there 
are two available actions: wait (denoted by action 1) and repair (denoted by action 
2). A pure stationary policy f is called monotone if for all i <j, f(i, 0) -f(j, 0). In 
particular, we call a monotone policy an n-policy where n = min {i If(i, 0) = 2}, 
i.e., an n-policy repairs the server when the number of customers in the system is 
equal to or exceeds n. 

Let Z(x, t) be the total cost incurred up to time t when starting in state x. 
The average cost vector under policy r, 4~, is defined as O(x) = 

lim sup,.t E, {Z(x, t)/t} and the minimum average cost vector 4 is given by 
O(x) = inf, 4,(x). A policy 7r* is average optimal if 4*.(x) = O(x) for all x e S. For 
policies whose average cost is independent of the initial state x, we write ~, instead 
of OW(x). 

3. Existence of an optimal stationary policy 

We first impose the following three conditions. 

Condition 1. H(i) is non-decreasing in i and bounded above by a polynomial. 
Specifically, H(i) 

- 
hi' for some constant h > 0 and integer m_ 1. Furthermore, 

H(i) -- oo as i--- oo. 

Condition 2. The (m + 1)th moment of the repair time distribution function G(.) 
is finite; let 0( be the lth moment of the repair time, 1= 1, 2, ... - , m + 1. (We write 
v instead of v).) 

Condition 3. 

A{F(oa)-ls + (F(oa)-1- 1)v} < 1 where f(a) = fe-adF(t). 

For any x, y E S, let p,(a) denote the one-step transition probability from state x 
to state y if action a is taken. Note that F(.) defined by F'(t) = 1 - e-"(1 - F(t)) 
(t > 0) represents the c.d.f. of a truncated service time, defined as the time between 
the initiation of a service and the next decision epoch (either the completion of this 
service or a breakdown, whatever comes first). Let st() be the lth moment of ft(.), 
1 _ 1. Since the truncated service time is always smaller than or equal to an 
exponential breakdown time, all of its moments are finite. We write s instead of s(1) 
The one-step expected holding times t(x; a) are clearly given by 

t((i, 1); 1) = ' i>0 

' (A+ 
o0), 

i==0 
t((i, 0); 1)= A-1 

t((i, 0); 2) = v. 

Note that all expected holding times are finite and uniformly bounded by two 
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positive numbers tmin and tm,, i.e., 0 < tmi , t(x; a) -tm, for all x E S and a = 1, 2. 
Let c(x; a) denote the one-step expected costs in state x E S when action a is 

taken. Clearly, 

(1) c((i, 0); 1) H(i)A-1 

c((i, 
0); 2) = 

c + E 
et 

H(i + 1) t dG(t) 
k=o0 

k! 
i=0 (k + 1) 

-c 

+ hf> e-kt(At)kt (i + k)m dG(t) 
0k=o k!1 

(2) = c + h ()im- t(t)ktkldG(t) 
1= k=-Ao k! t 

h =( 
im_ 

1 e-1 (et)ktk... (k -p + 1) EE+ I im 'S E dG(t) 

=p=O 
0 k=O k. 

m I 
= c+h 

- 
im-1 I S , 

'V(p+1) 
= O(im) 

=0 p=o 

where Sl, is the (1, p)th Stirling number of the second kind, see e.g. Selby (1980). 
(The first identity follows by conditioning on the repair time t and k, the number of 
customers that arrive during this repair time, as well as by the observation that 
conditional upon k Poisson arrivals occurring in an interval of length t, the 
interarrival times have mean t/(k + 1), see e.g. Ross (1970). The first inequality 
follows from H(.) being non-decreasing and the polynomial bound in Condition 1.) 
Similarly, 

H(O) + ro (3) c((0, 1); 1) = (A + ro) 
(4) c((i, 1); 1)= o(im). 

(Verification of (4) is analogous to that of (2), replacing G by P, v by s, and c by 0.) 
Conditions 1 and 2 thus ensure that all one-step expected costs are finite and 

polynomially bounded. As shown below, Condition 3 guarantees that a stationary 
policy exists with finite long-run average cost, namely the no-wait or 0-policy under 
which the server is repaired as soon as broken. 

First, define C, as the expected total cost incurred under the no-wait policy when 
starting in state (i + 1, 1) until reaching state (i, 1). 

Lemma 3.1. 
(a) Ci = O(im), i > 1. 

(b) The long-run average cost of the no-wait policy is finite. 

Proof. (a) Consider the queueing system with service interruptions that arises 
under the no-wait policy when the holding cost rate function is given by H,(.) with 

H•(k) 
= H(i + k) (k 

_0), 
while in all states the operating cost rate is r and 
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breakdowns occur with rate a. A busy period is defined to start with the arrival of a 
customer to an 'empty' system and to terminate when the system empties out next. 
Note that Ci is the conditional expected cost in a single busy period of this queueing 
system given that the busy period starts with the server up. The cost process in such 
a busy period is equivalent to that in an ordinary M/G/1 queue, with a customer's 

completion time F, i.e., the time between the start of a customer's service and its 
termination, as the 'service time'. 

One easily verifies, see e.g. Gaver (1962), that a completion time consists of the 
convolution of N independent truncated service times and (N -1) independent 
repair times where N is a geometrically distributed random variable with parameter 
F(a) = f e-" dF(t) (i.e., with mean [P(o)]-l), i.e., 

N N-1 

(5) r = ST+ E Rp, 
p=1 p=l 

{ST, ..- , S} denote independent truncated service times and {R, 1,-- , RN-1 
independent repair times. One easily verifies from (5) that the first (m + 1) moments 
of F are finite since the corresponding moments of G(.) are. (See e.g. Lemmas 2 
and 3 in Federgruen and Green (1986)). For example, E(F) = [P(a)]-s + 
([F(a)] - 1)v, as is easily verified with Wald's lemma. 

Condition 3 represents the stability condition for the queueing system that arises 
under the no-wait policy; the system is thus regenerative with terminations of busy 
periods as regeneration epochs. Let 

y, represent the long-run average cost under the 
no-wait policy with holding cost rate function Hi(.) (and all other cost components 
as specified). Let T represent the length of a busy cycle (defined as the interval 
between two consecutive regeneration epochs) and L the number of service 
completions in a busy cycle. Since the first (m + 1) moments of the completion time 
F are finite, it follows as in ordinary M/G/1 systems that the first m moments of L 
are finite, so also Wolff (1984). We conclude that 

(6) hE(L + i)m + r + c{E(L)(F(a)-1 - 1) + ao/A}/E(T) 
>- y, - C,/E(T) - r. 

The first inequality follows from Hi(k) = H(i + k) 
` 

h(i + k)m and the fact that the 
average repair costs per unit time are given by E(T)-1E{expected total repair costs 
in a busy cycle} E(T)-lc{E(L)a/p + ao/A} since the expected number of 
breakdowns in a busy cycle prior to the first arrival is bounded by Uo/A while the 
expected number of breakdowns thereafter equals, by Wald's lemma, E(L) times 
the expected number of breakdowns that occur during a customer's service, and the 
latter equals [F()]-1 - 1. The second inequality follows from the observation that 
Ci - rE(T) 

-5 
E{total holding and repair costs in a busy period which starts with the 

server up} 5 E{total holding and repair costs in an arbitrary busy period} 
_ 

yE(T). 
We conclude that C, = O(im). 

(b) Immediate from the bound for Yo in (6). 

For any integer u >0, let S, = {(i, j); 0O i S u and j = 0 or 1}. Let M(x, y) denote 
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the minimal expected cost incurred when starting in state x E S until the first visit to 
state y e S. 

Lemma 3.2. Fix u >0. There exists a number K >0 such that M(x,y) - 
K max {im+1, 1} for all x = (i, j) (j = 0 or 1) and all y e S,. 

Proof. Since S, is a finite subset of the state space, it suffices to prove that the 
inequality holds for a fixed state y0 E S,. Let M*(x, yO) be the expected total cost 
incurred when statting in state x E S until the first visit to state yO under the no-wait 
policy. Similarly, let Ml(x) denote the expected total cost incurred under the 
no-wait policy when starting in state x e S up until the next visit to the set S,. We 
show that a constant K > 0 exists such that 

(7) Ml((i,j)) - Kim+l for all il and j = 0, 1. 

This implies in particular that Ml(x) is finite for all x e S,. 
Note that M*(x, yO) may be decomposed as: 

(8) M*(x, yO) = MI(x) + M2(x, yO) 
with M2(x, yo) the expected total cost incurred under the no-wait policy between the 
first entry into the set Su (starting in state x) and the first visit to state yO. (If the set 
S, is entered in state yO, the cost on this trajectory is defined to be 0). Consider 
under the no-wait policy the Markov chain embedded on visits to the set Su. All 
states in S, belong to a single recurrent set of states on this (finite state) embedded 
Markov chain, since they all communicate with each other in the original 
semi-Markov process. Thus, let F be the largest expected first passage time from any 
state in S, to y0. Clearly, 

(9) M2(x, y0)5 F max {Ml(z)} < oo. z eS, 

Thus, by proving (7), we have due to (8) and (9) that a constant K > 0 exists such 
that M*((i, j), y0) 5 Kim+l for all i -0 and j = 0, 1. 

We prove (7) first for all i > u and j = 1. Note that when starting the process in 
state (i, 1), the set S, is entered in state (u, 1) after sequential visits to states (i - 1, 1), 
(i -2, 1), - - - , (u, 1). We conclude, in view of Lemma 3.1, that a constant 
K > 0 exists such that 

(10) M*((i, j), yo)= C<l 
5 K m 

Im 
K xm K 5m+ > u. 

l=u l=u 
- (m + 1) 

For x = (i, 0) e S, we have 

M*((i, 0), yO) = c((i, 0); 2) + M*((i + k, 1), yO) dG(t) 

(11) k=(u+1-i)+ 
O 

Sc(0)2+ K " 
f e- '(At)k 

S 

•o !oe-0;()tk(i 

+ k)m+l dG(t). 
(m + 1) 

_- 

k! 
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We conclude that M*((i, 0), yO) = O(im+l) since c((i, 0); 2) = O(im) (see (2)) while 
the second term to the right of (11) is O(im+l)--the verification of which is 
analogous to that of (2). 

It remains to be shown that M*((i, 1), y0)< <o for i : -u; but this follows from 
c((i, 0); 1)< oo and a verification which is analogous to that of (11). 

We are now ready to prove the existence of a solution to the average cost 
optimality equation as well as the existence of a stationary optimal policy. 

Theorem 3.3. 
(a) There exist a constant g* and a non-negative function {v*(x):x e S} with the 

property v*((i, j)) = 0(im+l) for all 
i_ 

0, j = 0, 1, which satisfy the optimality 
equation 

(12) v(x) = min c(x; a) -gt(x; a) + Epxy(a)v(y) , x S. 
a=1,2 I 

yES 

(b) Assume the constant g and the non-negative function {IV(x):x E S}, with 
V((i, j)) = O(im+~) for all i- 0 and j = 0, 1, solve the optimality equation (12). Let 
;r be a stationary policy which in each state x E S prescribes an action which achieves 
the minimum in (12). Then ;r is an optimal policy and g is the minimum long-run 
average cost. 

The proof of Theorem 3.3 is based on the following lemma. Let 
b•j 

denote the 
Kronecker delta, i.e., bii = 1 if i = j and 0 otherwise. 

Lemma 3.4 Consider the discrete-time Markov decision model with the 
same state and action spaces as our original semi-Markov decision model but 
with one-step expected costs and one-step transition probabilities given 
by .(x; a) 

-c(x; a)tmin/t(x; a) and 5xy(a) xy + [tmin/t(x; a)][pxy(a) - 6xy], 
respectively. A constant g* and a non-negative function {v*(x):x e S} solve (12) if 
and only if g*tmin and the function 

{v*(x)":x 
e S} solve the optimality equation for 

the discrete-time Markov decision model: 

(13) v(x) = min{ (x; a) - g + 1 ,xy(a)v(y) , x S. 
a=1,2I yES I 

Proof. See Schweitzer (1971); note that 
xy3(a)- 

0 and EY~xy(a) = 1 for all 
x, ye S. 

Proof of Theorem 3.3. 
(a) We make the following observations with respect to the discrete-time Markov 

decision model constructed in Lemma 3.4: 
(i) Its state space S is countable and all action sets are finite. 

(ii) All one-step expected costs are non-negative. 
(iii) All states in S communicate under some (i.e. the no-wait) policy. 
In addition, let ?o be the long-run average cost of the 0-policy (i.e. the no-wait 
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policy) in the discrete-time model. It is again elementary to verify that jo= tminYo 
with yo the long-run average cost of the no-wait policy in the original model. Thus 
^o<o, see Lemma 3.1(b). Let u=min{i:H(i)>o,0 i?1}<oo in view of 

limi,~ H(i)= oo, see Condition 1. Finally let M(x, y) denote the minimum expected 
total costs incurred in the discrete-time model when starting in state x until the first 
visit to state y. 

(iv) max n((i, j), y) = O(im+l) for all i - 0 and j = 1, 2. 
yeSu 

Observe that (iv) follows from Lemma 3.2 and the fact that for all x y ES and 
a = 1, 2, 

t mn 
c(x; a) -5 E(x; a) 5 c(x; a) 

tmax 

and 

--an Pxy (a)Pxy(a) pxy(a), xxyy. 
tmax 

Let V,(x) denote the minimum expected total discounted cost over the infinite 
horizon when starting in state x E S and discounting at rate a > 0. Let x, denote the 
most favourable starting state, i.e. V,(x,) - V,(x) for all x e S. It follows from 
observation (ii) and Proposition 8 on p. 253 of Bertsekas (1976) that 

V,(x) = minm ̂ (x; a) + (1 - a) I Pxy(a) 
V,(y), 

x eS. 

.yeS 

Subtracting V,(x,) from both sides, we obtain for all x e S, 

V,(x) - V,(x) = - =aV,(x,) 

(14) + min m (x; a) + (1- ar) ~ 
xy(a)[V,(y) 

- V,(x,)]}. 
a=l,2f yyeS 

Following the proof on pp. 213-215 of Weber and Stidham (1987), one verifies 
that a sequence {rk}Lk=• 1 0 exists such that 

v*((i, j)) = lim {V Vk((i,j))- 
Vk,,(x•k)} 

= O(im+1) for all i -0 and j = 0, 1, 

(15) 

g** lim rkVGk(X 
V 

k). k---oo 

Taking limits on both sides of (14) we obtain for all x e S: 

v*(x) = -g* + lim I (x; a) + lim 
xy(a)[Vk(y)- V-k(Xk)] a=1,2 

k..-.• 
yeS 

= min a g(x;+a)-g* + 
xya)V*(y 

) 

where the last equality follows from Lebesgue's dominated convergence theorem, 
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(15) and the observation that 
E=ofix(ij)(a)im+1 <oo for j =0, 1. (The latter may 

again be verified as with (2) using the finiteness of the first (m + 1) moments of the 

repair time distribution.) Now (a) follows from Lemma 3.4. 

(b) follows from the proof on p. 215 in Weber and Stidham (1987). 

Remark 3.1. An alternative proof may be obtained by relatively minor adapta- 
tions of the analysis in Federgruen et al. (1979). This approach allows for a direct 
verification of the existence of a solution to the optimality equation (12) in the 
semi-Markov decision model (rather than via the equivalent discrete-time model). 

In the next section we use the following corollary with respect to the n-policies 
(n -1). For any stationary policy f, let c(x;f), t(x;f) and pxy(f) denote 
respectively, the one-step expected cost in state x, the one-step expected holding 
time in state x and the one-step transition probability from state x to state y, under 
policy f (x, y S). 

Corollary 3.5. Let f be an n-policy (n -0), 
(a) There exist a constant g, and a non-negative function {v,(x); x e S} with 

v,((i, j)) = O(im+1) for all i - 0 and j = 0, 1, which satisfy the system of equations: 

(16) v(x) = c(x;f) - gt(x; f) + pxy(f)v(y), x E S. 
yeS 

(b) If {g, v(.)} solve (16) with v((i, j)) = O(im+l) for all i - 0 and j = 0, 1, then g 
represents the long-run average cost under policy f; moreover, the function v(.) is 
unique up to an additive constant. 

(c) If f is optimal and {g, v(.)} solve (16) with v((i, j)) = O(im+1) for all i _0 and 
j = 0, 1, then {g, v(.)} solve the optimality equation (12). 

Proof. (a) Repeat the proof of Theorem 3.3, restricting the action set for 
x = (i, 0) as follows: if i < n only action a = 1 is allowed; if 

i;--n 
only action a = 2 is 

allowed. Redefine Mf(x, y) as the expected total cost incurred under policy f when 
starting in state x up until the first visit to state y (x, y E S). A minor adaptation of 
Lemma 3.2 establishes for any fixed y E S that Mf((i, j), y) = O(im+l) for all i; -0 
and j = 0, 1. 

(b) The fact that g equals the long-run average cost under policy ffollows again as in 
the proof of Theorem 3.3. Note that all states in S belong to a single ergodic set under 
policy f. Thus let ;r(.) be the unique steady-state distribution of the (embedded) 
Markov chain under policy f. Assume {g, vl(.)} and {g, v2(.)} are two alternative 
solutions to (16) with v'((i, j)) = O(im+l) for all. i - 0 and j =0, 1 (1= 1, 2). One 
easily verifies, as for ordinary M/G/1 queueing systems that the steady-state 
probabilities xc((i, j)) decline to 0 at an asymptotically exponential rate, i.e., there 
exists a number 

r/, 
with 

0_- 
7 < 1, such that xc((i, j)) = O(ir') for all i- 0 and 

j =0, 1; see e.g. Neuts (1981b). Thus CyeS c(y)v'(y) < for l = 1, 2. Subtracting 
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Equation (16) with v = v2 from Equation (16) with v = vI we obtain for all x e S 

V'(x) - 
v2(x) = Y P1y(f)[v1(y) - v2(y)]. yeS 

By a standard argument, one concludes that for all x e S 

Vl(x) - 
v2(x)= j r(y)vl(y)- > 7c(y)v2(y) 

yES yeS 

where the right side is a constant, independent of x. 
(c) Assume to the contrary that for some x E S, 

c(xo; a) - gt(x0; a) + > pxoy(a)v(y) < c(x0;f) - gt(x; f) + > pxo,(f)v(y), 
yeS yeS 

for a Of(xo), the action prescribed by policy f. Let policy f be defined as the policy 
which prescribes action a in state xo but is otherwise identical to policy f. Thus, since 
{g, v(.)} solve (16), 

(17) c(x; ) - gt(x; ) + + pxV(f)v(y) 
- 

v(x), 
yeS 

with strict inequality for x = xo 
As in part (b), one easily verifies that under policy f, all states in S are positive 

recurrent with the unique steady-state distribution ft satisfying ft((i, j)) = O(~i) for 
all i -0, j = 0, 1, and some ri with 0 < r < 1. Thus, multiply both sides of (17) by 
?c(x) and add over x E S to conclude that the long-run average cost under policy f: 
EXES j(x)c(x;f)/EXs ir(x)t(x; f) < g. This contradicts the optimality of policy f. 

Thus, for any n-policy, let {gn, V,(.)} be the unique solution to (16) with 
V,((0, 1)) = 0 

(n- 
0, see Corollary 3.5(b)). We refer to V,(.) as the relative cost 

function of the n-policy. The characterization of the structure of an optimal policy in 
the next section is achieved by varying the parameter ro over the entire real line. 
Under the n-policy, let rGn(0, 1) denote the steady-state probability of the system 
being empty and the server up. We clearly have the following result. 

Lemma 3.6. (a) gn = ;r,(0, 1)ro + gn where gn is independent of ro. 
(b) nr,(0, 1) is decreasing in n. 

Proof. Part (a) is immediate. Note that the first passage times from states (0, 1) 
and (0, 0) to themselves are strictly increasing in n. This verifies part (b). 

4. Characterization of an optimal policy 

In this section, we prove that an n-policy is optimal, provided that the holding 
cost rate function H(.) is convex. We thus add the following Condition 4. 

Condition 4. H(.) is convex. 
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For any stationary policy f and any pair of states x, y E S, let Tf(x, y) denote the 
expected first passage time from state x to state y under policy f, and let Mf(x, y) 
denote the expected total cost when starting in state x until reaching state y. For 
n-policies, we write Tn(.) and M,(.) instead of Tf(.) and Mf(.). 

We first prove a more limited result: there exists an optimal (stationary) policy 
which prescribes immediate repairs whenever the number of customers in the system 
is sufficiently large. 

Lemma 4.1. Let {g*, v*} be a solution of optimality equation (12) with v* ?0 
and v*((i, j)) = O(im+l) for all i - 1, j = 0, 1. Let i* = min {i: H(i) > g*}. For i 

_ 
i*, 

only action 2 achieves the minimum in (12). In particular, there exists an optimal 
(stationary) policy f which prescribes immediate repairs (action 2) in all states (i, 0) 
with i >i*. 

Proof. Let f be a stationary policy which, in each state x e S, prescribes an action 
which achieves the minimum in (12). It follows from Theorem 3.3(b) that f is 
optimal. Assume to the contrary that policy f prescribes the wait action (action 1) 
for some state (i', 0) with i' > i*. Then there exists an integer i 

_ 
i* such that action 

1 is prescribed in state (i, 0) and action 2 is prescribed in state (i + 1, 0). (Otherwise, 
no repairs would be initiated when the number of customers in the system exceed i* 
so that lim,, Pr {(X(t), Y(t)) = (i, 0) with i - N} = 1 for all N L 1, i.e., the policy 
would have infinite average cost.) Thus, 

v*((i, 0)) = H(i)A-1 - g*A-l + v*((i + 1, 0)) 

(18) = H(i)A-1 _ g*-1 + c((i + 1, 0); 2) - g*v + > pkV*((i + k + 1, 1)) 
k =O0 

- 
c((i, 0); 2) - g*v + > pkV*((i + k, 1)) 

k=O 

where Pk = 0 e-Xt(At)k/k! dG(t) is the probability that k customers arrive during a 
repair time (k ? 0). Note that the number of customers in the system cannot drop 
from (i + k + 1) to any number less than (i + k), without the system passing through 
state (i + k, 1). Thus, 

0 [H(i) - g*]A-' + [c((i + 1, 0); 2) - c((i, 0); 2)] 

+ 
pkk[v*((i 

+ k + 1, 1)) - v*((i + k, 1))] 
k=0 

- 
[H(i) - g*]A-J + [c((i + 1, 0); 2) - c((i, 0); 2)] 

+ 

, 

pk[H(i + k + 1) - g*] Tf((i + k + 1, 1), (i + k, 1)). 
k=0 

Each of the terms to the right of this inequality is however, non-negative while the 
first one is strictly positive, in view of H(.) being non-decreasing, the definition of i* 
and (2). This leads to a contradiction. 
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Theorem 4.2 (main result). There exists an increasing sequence {R}n.=o with 
Ro = 

-0, R1 > -oo, R < oo arid R -- oo as n --+ oo such that the n-policy is optimal for 

ro e [Rn, R+11]. 

Proof. The proof is by induction. We first establish that a number R, > -00 exists 
such that the 0-policy is optimal for all ro - R1. 

In view of Theorem 3.3 and Corollary 3.5, it suffices to show that Vo satisfies 
optimality equation (12) for all ro sufficiently small. Fix an initial value r? for ro, let 
i*(ro) min {i :H(i) > go(ro)} and gO the long-run average cost under the 0-policy with 
ro= r?. For all i io? i*(r?), one verifies as in the proof of Lemma 4.1 that (12) 
holds for v = Vo, x = (i, 0) with i 

= 
io and all r0o r?. (In (18), replace v* by Vo and 

g* by go; note that i*(ro) 5 i*(r?) for all r0o r? since go is increasing in ro.) 
It thus suffices to verify that for all ro sufficiently small and i < io, {Vo, go} satisfy 

the optimality equation (12) as well, or in view of Corollary 3.5 that 

c((i, 0); 2) - gov + > PkVo(i + k, 1) 
(19) 

k=O 

_ 
H(i)A-1 - go)-1 + c((i + 1, 0); 2) - gov + > PkVo((i + 1 + k, 1)). 

k=0 

(19) is equivalent to 

goA-1 -< H(i)A-1 + c((i + 1, 0); 2) - c((i, 0); 2) 

+ E pk{Vo((i + 1 + k, 1))- Vo((i + k, 1))}, 
k=0 

and hence to 

go -1 + 
PkTO((i 

+ 1 + k, 1), (i + k, 1)) 

- 
H(i)A-1 + c((i + 1, 0); 2) - c((i, 0); 2) + > 

pkMo((i + 1 + k, 1), (i + k, 1)). 
k=O 

The latter inequality holds for all i 
:- 

io and ro sufficiently small since go-- -00 as 
ro- 

-0• 
and the right-hand side is independent of ro. 

Now assume that numbers {R1, - - - , R,,} exist such that the i-policy is optimal 
for all ro e [RI, RI,1] (I = 0, 1, ... , n) with R,,1 = sup {w: w 

- 
Rn and the n-policy is 

optimal for all R, 5 ro - w}. We now show that the (n + 1)-policy is optimal for 
ro= R,,. This establishes the existence of a number Rn+2?E 

Rn,+ 
such that the 

(n + 1)-policy is optimal for all ro e [R,,+, Rn+2]. (Choose Rn+2 = sup {w: w1- Rwn+ 
and the (n + 1)-policy is optimal for all R,,1 5 r0o w}.) 

Consider some e > 0 such that the n-policy is not optimal for ro = R,,+ + e. Let 

V*(.) be the relative cost function and g* the average cost of the n-policy with 

ro = R,,+ + e. In view of Theorem 3.3, V*(.) fails to satisfy the optimality equation 
for ro= R,,1 + e. Thus, some non-negative integer i exists such that one of the 
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following two cases holds: 

Case (i). For some i with 0 5-i 5<n - 1: 
00 

H(i) g* c((i, 0); 2) - g*v + 1 pkV*((i + k, 1)) < V*((i, 0)) = 
Vn((i 

+ 1, 0)) k=o 

H(i) g* H(i + 1) g* 
+ + V+*((i + 2, 0)) 

H(i) + - + H(n - 1) (n - i)g** 
n + 

c((n, 0); 2) - g*v + pkV*((n + k, 1)). SA k=0 

Rearranging terms on both sides gives 

H(i) + 
. . . 

+ H(n - 1) + c((n, 0); 2) - c((i, 0); 2) 

+ E pk{V*((n + k, 1)) - V*((i + k, 1))} 
- (n 

- i)g*> 0, 
k=0 

or equivalently, 
pl,(Rn+I 

+ e)> 0 where 

V,(ro) = A-1{H(i) + - - - + H(n - 1)} + {c((n, 0); 2) - c((i, 0); 2)} 

(20) + E PkMn((n + k, 1), (i + k, 1)) 
k=0 

--gn 
(n -Ei)-1 > PkTn((n + k, 1), (i + k, 1) . k=O 

Notice that all quantities on the right side of (20) are independent of ro except for 
g,. Since gn is increasing in ro, lp(ro) is decreasing in ro. By the optimality of the 
n-policy at ro= Rn+1 and Corollary 3.5(c), we have 0 < 1p,(Rn+1 + e) < 1,i(Rn+1) = 0, 
a contradiction. Thus, Case (i) cannot occur and Case (ii) below must arise. 

Case (ii). For some i with i _n: 

c((i, 0); 2) - g*v + > pkV*((i + k, 1)) > H(i)A- - g*-1 + V*((i + 1, 0)) 
k=O 

= H(i)A-1 - g.•-1 + c((i + 1, 0); 2) - g*v + >. pkV*((i + 1 + k, 1)), 
k=0 

or equivalently iqp(Rn+1 + e)> 0 where 

Vip(ro) = {c((i, 0); 2) - c((i + 1, 0); 2)} - H(i)A-1 

(21) -o PkM((i + 1 + k, 1), (i + k, 1)) 

+ gn -1' + 0p 
Tn((i + 1 + k, 1), (i + k, 1)) . 

k=-0 
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It follows from (4) and the convexity of H(.) that c((i, 0); 2) is convex in i so that 
the first three terms to the right of (21) are non-increasing. Observe that 

T,((i + 1 + k, 1), (i + k, 1)) represents the expected length of a busy period for an 
M/G/1 queue with arrival rate A and mean service time F(ao)-s + ((ao)-1 - 1)v. 
The last term to the right of (21) is thus independent of i and we conclude that 1pi(ro) 
is non-increasing in i. It follows that p,(R,+1 + e) 

- 
1,(R,+1 + e) > 0. It also follows 

from (21) that p,(ro) is continuous in ro. By the definition of Rn+ and the above 
analysis, there exists a sequence {ek} 1 0 with 

P,(Rn+1 
+ Ek)> 0. We conclude that 

p,(Rn,+) 
= 0 since the n-policy is optimal for ro = 

R,+I. 
(Use Corollary 3.5(c).) 

Fix now ro= Rn+. It follows from Corollary 3.5(c) that {gn, V,(.)} solve the 

optimality equation (12) for this value of ro. Since n(Rgn+,) = 0, it follows from 
Theorem 3.3(b) that the (n + 1)-policy is optimal for ro= R=,+. 

To show that R, < oo for all n _ 1, note that g, = ;r,1(0, 1)ro + gn > ;tr+1(0, 1)ro + 

gn+ = gn+ for ro sufficiently large in view of parts (a) and (b) of Lemma 3.6 (g, is 
independent of ro, n 

_1). 
It remains to be shown that the above constructed 

sequence {R,} oo. Assume to the contrary that lim,. R, = R* < oo. As in Lemma 

4.1, let i*(ro)= min {i:H(i)>g*(ro)A-1} and choose n*> i*(R*). Let {g*, v*} be a 
solution of optimality equation (12) for ro = R, with 

v*_ -0 
and v*((i,j))= 

O(i'"+). It follows from Lemma 4.1 that only action 2 achieves the minimum in (12) 
for some state (i, 0) with n* > i 

-i*(R*) _ 
i*(R,.). This contradicts the optimality 

of the n*-policy for ro = R,.. 

5. Computing optimal n-policies 
In this section we describe an efficient algorithm for the determination of an 

optimal n-policy. We first need the following two lemmas. 

Lemma 5.1. The optimal average cost g* is piecewise linear, strictly increasing 
and concave in ro. 

Proof. From Theorem 4.2, it follows immediately that g* is piecewise linear 
and strictly increasing in ro. Since g, is linear (and thus concave) in ro and 

g* 
= inf, {g,}, g* is concave in ro. 

Lemma 5.2. For any fixed ro, the function g, is unimodal as a function of n. 

Proof. We need to show that for any fixed ro and n, 
(i) if g, - gn+l, then g, 5 gn+k for all k 

- 
2 and 

(ii) if g, -gn-1, then g, 
- 

gn-k for all k i> 2. 
To prove (i), recall from Lemma 3.6 that g, = ;r,(0, 1)ro + 9n with gn independent 

of ro and ;r,(0, 1) decreasing in n. Thus, if for some fixed ro = F and n, g, 
_ 

g,+1, 
then g, <gn+l for all ro < F. Thus, to prove (i), assume to the contrary that g, > gn+k 
and thus gnl > •gn+k. It follows again from the above observations that gn+1 >gn+k 

for all 
ro-- 

. Thus, the (n + 1)-policy is not optimal for any value of ro, contradicting 
Theorem 4.2. 
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The proof of (ii) is similar. 

In view of Lemma 5.2, an optimal n-policy may be obtained by a simple bisection 
procedure. Let N1 < N2 be integers such that gN+1 

<gN, 
and gN2-1 5 

-gN2. 

Bisection procedure. 
Step 0: Initialize n1:= N1; n2:= N2. 
Step 1. Let n:= r(ni + n2)/2]. If g, < 

g,l, 
set n2:= n; if g, > g,+1, set n1:= n; if 

g,=g,+l and g,_-1g,, set n2:=n; if g,=g,+1 and gn,_>g,, set nl:=n. If 

n2- nl > 1, repeat Step 1. 

The bisection procedure clearly requires no more than O(log2 (N2/N1)) evalu- 
ations of {g,:n _1}. We now describe an efficient recursive procedure for the 
evaluation of the steady-state distribution {Ir,(.)} of the number of customers in 

system under the n-policy. This recursive scheme is analogous to that of standard 
M/G/1 queues, see e.g. Tijms (1986). With the help of the latter, the average cost 

g, of the n-policy is easily computed as well, see below. 
Let T be the length of a busy cycle, and for any i _ 1, let 7T be the total amount of 

time during a busy cycle with i customers present. Our derivation of a recursive 
scheme is based on the observation that a busy cycle may be divided into a random 
number of disjoint, so-called service completion intervals separated by the service 

completion epochs and that E(Ti) may thus be calculated as the sum of the 
contributions to E(Ti) of these intervals. Thus, define the quantities 

Aik = the expected amount of time that k customers are present during a service 

completion interval that is started with i customers present (k _ i). 

We also need 

Bjk = the expected amount of time that k customers are present during an interval 
which starts with j customers present and the initiation of a repair, and which 
terminates with the first service completion (k >_j _ n). 

Similarly to the standard M/G/1 queue we obtain 

(22) E(T) Alk 
k 

(22) E(Tk) = Alk + 
{l{k<n)_} 

-1 + l kn}Bnk} + 
AE(Tj)Ajk, k 

- 1, CO+ A C+ A j=l 

see e.g. Tijms (1986). (The first two terms represent the contribution to E(Tk) which 
occurs during the first interval of the busy cycle prior to the first service completion 
epoch; the first term represents the contribution when the first customer in the busy 
cycle arrives prior to a failure and the second term corresponds with the alternative 
case.) 

By the theory of regenerative processes, we have n,(k) = E(Tk)/E(T), k 
_ 

1 and 
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;rn(0) = [AE(T)]-1. We conclude that 

(r,(k) 
= Axrn,(O) + Alk + 

0 

{l{k<•n•}A- 
+ 

1{k-n})Bk} 
(23) k 

+ E A7,(j)Ajk, 
k > 1. 

j= 1 

We now derive expressions for the quantities {Ajk}. Let G(.) denote the 
cumulative distribution function of a customer's completion time F, see (5). For 

j- n, the expression for Ajk and its derivation are standard: assuming that at epoch 
0 a new service starts while j customers are present, define X, = 1 if there are k 
customers in the system and this service completion interval is still in progress at 
time t; otherwise, define X,=0. Thus, Ajk=E(f' Xtdt), 

j=n. 
Since E(X,)= 

Pr (Xt = 1) = (1 - (t))e-'t(At)k-ji(k - j)! using the fact that the number of arrivals 
in [0, t] is Poisson distributed with mean At, we find 

(24) 
Ajk = (1 - G(t)) ( dt k 

j, 
jn. (k - )! 

The integral in (24) may be computed in closed form when G(.) is of phase type 
which is the case when the repair time and service time distributions are of phase 
type, see Tijms (1986) and Neuts (1981b) and the Appendix. 

Now, consider the case where i < n. For a service completion interval that starts 
with j customers present, let 

A k = the expected amount of time that k customers are present during the first part 
of the service process which precedes the first failure. 

(If no failure occurs during the service process, Ak = Ajk.) One verifies as above 
(see (24)) that 

Ajk = (1 - (t)) t)k- dt (k - #)! 

= (1 - F(t)) 
e 

)A)dt, k > j and j<n. o (k - j)! 
To characterize (Ajk - A;k), condition upon the event that t time units after the 
beginning of the service completion interval a breakdown occurs while the service is 
still in process and that I customers are present. Clearly, 

k 0 
e-At( (-t)j- 

Ajk = A fk {7u-t(1 - F(t)) • 
dtf 

{l{k<n}-1 + l{kn}Bmax{l,n),k} 

k 

= A;k + > 
A;l{1{k<n)lA 

-1 + 

l{k-n}Bmax(l,n),k}, 

(k 
-j). l=j 
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Finally, as in (24), 
00 

e 1e-k'(At)k-j 
(25) Bjk = f(1 - G(t)) 

e-(t)Adt, 
(k 

> 

j =n) 
o (k- -j) 

where G(.) is the cumulative distribution function of the convolution of F with an 
additional repair time. Once again, G(.) is of phase type, provided G(.) and F(.) 
are and the integrals in (25) may be computed in closed form. 

The steady-state distribution {r{,(.)} is then determined via the recursive scheme 

(23): guess an initial value for zr(0), evaluate rx,(j) for consecutive values of j until 
the series ~ ixr(j) appears to have converged and rescale the steady-state 
probabilities by the obtained estimate for i ir,(j). The long-run average cost of the 

n-policy is now easily determined: 

g,= 
, 

r,(j)H(j) + rA.(f()-ls + ro 
An~,(0) 

j=0 A + 0 

x {in>o} 
+ l -o 1 

f1ro e-0 
0 

dG(t) 
1 

(26) 1 ++1 
(,+-o) 

1 Co 
Jo• o 

+ cA[P(a)-1- 1] + cAr,(O) 

o + 
1{(n=o) 

+ 1- e-AtdG(t) 
x (A. + 

0-• 

Oro 

The first term represents the average holding costs, the next two terms the average 
running costs and the last two terms the average repair costs. To verify the repair 
costs, attribute any repair that interrupts a service to the customer whose service is 

interrupted, and a repair that starts while the system is empty to the customer who 
initiates the next busy period. The average number of repairs of the first type is thus 

given by A[F(a)-1 - 1] since on average A customers arrive per unit of time and each 

experiences [(ao)-1 - 1] breakdowns on average. (Apply Wald's lemma.) This 
verifies the fourth term in (26). The last term denotes the average number of repairs 
of the second type. The average arrival rate to an empty system is given by A7,(0). 
Let b denote the average number of breakdowns that occur in a busy cycle prior to 
the arrival of the first customer. If n > 0, b = ao0/(A + ao); if n = 0 (the no-wait 

policy), b is obtained as the solution of the linear equation 

b= -o- 1+b Ie-xtdG(t) . 
S(A + aOo) 

L 

The running costs can be verified similarly. 

6. Remarks 

We first give some remarks on the case where the repair time is negligible, i.e. 
v = 0. Such a case might correspond to replacing the broken server (machine) by an 
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available new server (machine). In this case, tmin = 0. However, all the results in 
Section 3 (and following) may be obtained by minor adaptations of the analysis in 
Section 3. In particular, we do not consider repair completion epochs as decision 
epochs. Instead, we define the one-step transition probability P(i,0)x(2) p(i,x(1)(l 
and the one-step expected cost E[(i, 0); 2] = c + c[(i, 1); 1]. Furthermore, one easily 
verifies that convexity of the customer holding cost rate H(i) is not required to 
prove the optimality of monotone policies in Theorem 4.2. 

When the service time distribution is exponential and the customer holding cost is 
linear, an alternative efficient algorithm based on difference equations may be found 
to compute an optimal monotone policy (see So (1985)). 

As pointed out in Section 1, one extension to the wait/repair problem is to 
include the option of turning off the server even when it is operational by paying a 
shutdown cost. This would permit saving the running cost when the number of 
customers in the system is sufficiently small (perhaps zero) to justify this action. 
However, we require that when the server is down, either because of a breakdown 
or being turned off, we will pay the same cost and require the same operation to 
bring the server back to work again. This model can apply in the situation where the 
server can be switched to do other types of work (corresponding to a shutdown) or it 
has to be switched to process some higher priority jobs when these jobs arrive 
(corresponding to a breakdown), and a repair corresponds to bringing the server 
back to serve the lower priority jobs. We can use a similar approach to show that 
there exists an optimal (stationary) policy which either never turns the server off or 
turns the server off only when there is no customer in the system, and repairs the 
server if and only if the number of customers in the system exceeds a certain level 
for this problem. 

To see this, consider any stationary policy f which turns the server off when there 
are n 

(_1) 
customers in the system. First observe that under policy f, there will be 

at least n customers in the system once the number of customers in the system 
exceeds n, i.e., the states (i, j) for all i < n, j = 0, 1 are transient states. Now 
consider another (stationary) policy f* with f*(i, j) =f(i + n, j) for all i 

_ 
0, j = 0, 1. 

Starting from any state (io, jo) and state (io + n, jo) under policies f* and f, 
respectively, the two systems are identical except that the system under 
policy f* has n customers less than that under policy f. Since the customer holding 
rate function is non-decreasing, the average cost under policy f* will be less than 
that under policy f. Therefore, we only need to consider two classes of policies. The 
first class of policies corresponds to those which never turn off the server and the 
problem then reduces to the wait/repair problem. The second class of policies 
corresponds to those which turn off the server only when there is no customer in the 
system. For this class of policies, the average cost will be independent of r0. 
However, we can use a similar parametric analysis on the shutdown cost to show 
that there exists an optimal policy which only turns the server off when there is no 
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customer in the system and repairs the server if and only if the number of customers 
in the system exceeds a certain level. As pointed out in the introduction, these 
results generalize those obtained for M/G/1 systems without breakdowns and 
repairs. 

The assumption that the server's up times are exponential (while the repair time 
and service time distributions are arbitrary) appears to be essential: for different 
up-time distributions, it does not appear to be possible to compute (exactly) even 
such aggregate performance measures as the expected number of customers in the 
system, even if the simplest of all policies, the no-wait policy is adopted; see Gaver 
(1962) and Federgruen and Green (1986), (1988). 

The proof technique used in this paper can be used to produce a similar type of 
structural result in many other models as well. In Federgruen and So (1989) we 
apply the technique to obtain structural results for other control problems in 

queueing systems subject to breakdowns and in priority queueing systems. We now 
sketch the application of the technique to the following control problem in M/M/1 
queues with two discrete service rates. 

Consider an M/M/1 queue with batch arrivals with rate A and i.i.d. batch sizes 
with mean x. Two service rates (parameters Ml and 

/2 
with A1 <A 2) are available. 

The cost structure includes a non-decreasing and unbounded customer holding cost 
rate and two different service cost rates for the two available service rates. The 

problem is to choose the service rate to minimize the average operating costs of the 

system. 
The problem can be formulated as a Markov decision process. The decision 

epochs include service completions and customer arrivals. To use our proof 
technique, we introduce an idle running cost rate ro when the system is empty. 
Under the conditions that Ax < A2 and that the customer holding cost rate is 
bounded above by a polynomial, we can use similar arguments to prove the 
analogous results in Lemma 4.1 and Theorem 4.2 in this problem. In particular, we 
can prove that an optimal monotone policy exists when ro0 = 0, i.e., a policy which 
uses the faster service rate 

/2 
if and only if the number of customers in the system 

exceeds a certain level. 
As shown, our proof technique appears to be very useful in proving structural 

results for control problems under the average cost criterion. It appears that the 
technique should be readily usable to obtain similar structural results under infinite- 
or finite-horizon discounted cost criteria. Note that our proof technique is 

primarily based on the existence of solutions to an optimality equation with a policy 
prescribing actions that achieve the minima in this equation being optimal. In most 
models where these results can be established, they can usually be established under 
the discounted cost criterion when they can be verified under the average cost 
criterion. (As in this paper, the proof for the latter is often based on that of the 
former.) We are currently investigating these conjectures. 
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Appendix 

In this appendix we demonstrate that the distributions 0(.) and 6(.) which are 
used in (24) and (25) are of phase-type, provided the service time and repair time 
distributions F(.) and G(.) are and that their parameters are easily obtained from 
those of F(.) and G(.). 

A phase-type distribution represents the time until absorption in a transient finite 
state continuous-time Markov chain. The class of phase-type distributions is dense in 
the class of continuous distributions. Let 

SUU0 

0 0 

be the infinitesimal generator of the Markov chain underlying the service-time 
distribution F(.) where the Rs x R" matrix U satisfies Uii <0 (1 - i _ R") and Uik 

- 
0 

(i # k) and Uo is a column vector with 

RS 

Ui= - Uik, i=1,---,R". 
k=1 

Let a~ denote the probability row-vector of the initial state of the chain 
(a E R1 x RS). Similarly, let 

Qr 
W 

oo 

be the infinitesimal generator of the Markov chain underlying the repair time 
distribution G(.) where W is an Rr x Rr matrix and let f denote the probability 
row-vector (P E R1 x Rr). 

One easily verifies that G(.) is a phase-type distribution with an underlying 
chain with (R" + R' + 1) states, [a, 0] as the initial state probability vector and 

(R" + R' + 1) x (R" + R' + 1) infinitesimal matrix generator 

U-a o olf Uo 

W0o W 0 
0 0 0 

Similarly G(.) is a phase-type distribution with the same infinitesimal matrix 
generator but initial state probability vector [0, fl]. 
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