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APPROXIMATIONS OF DYNAMIC, MULTILOCATION 
PRODUCTION AND INVENTORY PROBLEMS* 

AWI FEDERGRUENt AND PAUL ZIPKINt 

Consider a central depot (or plant) which supplies several locations experiencing random 
demands. Orders are placed (or production is initiated) periodically by the depot. The order 
arrives after a fixed lead time, and is then allocated among the several locations. (The depot 
itself does not hold inventory.) The allocations are finally received at the demand points after 
another lag. Unfilled demand at each location is backordered. Linear costs are incurred at 
each location for holding inventory and for backorders. Also, costs are assessed for orders 
placed by the depot. The object is to minimize the expected total cost of the system over a 
finite number of time periods. 

This system gives rise to a dynamic program with a state space of very large dimension. We 
show that this model can be systematically approximated by a single-location inventory 
problem. All the qualitative and quantitative results for such problems can then be applied. 
(INVENTORY AND PRODUCTION; APPROXIMATIONS; STOCHASTIC MODELS) 

1. Introduction 

Description of the System 

This paper is concerned with a system consisting of a central depot which supplies J 
locations where exogenous, random demands for a single commodity must be filled. 
Inventories are reviewed and decisions taken periodically. In each time period the 
depot may place an order for the product. This order arrives at the depot after a lag of 
L periods. Then the order is allocated among the J demand points. These shipments 
reach the locations after a further delay of 1 periods. 

Demands at the locations are assumed to be independent in different periods, but 
there may be dependence among demands at different locations in the same period. 
(For most of the paper we assume the demands in each period have a joint normal 
distribution. The results also apply to other distributions in certain special cases.) 

Unfilled demand at each location is backordered. Linear costs are incurred at each 
location for holding inventory and for backorders. Also, costs are assessed for orders 
placed by the depot. Any structure may be assumed for the ordering cost functions; 
these may represent, for example, economies of scale, resulting from quantity dis- 
counts or fixed costs or smoothing costs (i.e., costs depending on the previous order as 
well as the current one). 

Demands and costs need not be stationary. Holding and penalty costs may also 
differ among locations. The object is to minimize the expected total cost of the system 
over a finite number T of time periods. 

Assumptions and Interpretations 

An important restriction is the assumption that no inventory is carried at the central 
depot. This assumption is appropriate, for example, when the "depot" does not 
represent a physical location at all, but rather a centralized ordering function; here, 
directions for shipment to the ultimate destinations can be postponed until L periods 
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after the bulk order is placed. Even if it does correspond to a certain place, the depot 
acts as a transshipment center, not a stocking point. See Eppen and Schrage (1981) for 
a fuller discussion of the assumption. Rosenfield and Pendrock (1980) refer to systems 
of this type as "coupled systems." 

The model can also be viewed as representing a two-stage production process, 
involving several products instead of several locations. An order then corresponds to a 
decision to make blanks or some other intermediate product. This stage requires L 
periods. These blanks are later fabricated (in 1 periods) into the several finished 
products. The assumption of no central inventory implies that the intermediate 
product cannot be stored, perhaps because it is highly perishable or dangerous, e.g., a 
molten metal. In this context the freedom to specify any "ordering" cost function is 
important, since production smoothing costs may be significant. 

The model may also represent a single-stage, multiproduct system, where the 
products are made from a common raw material with an L-period order lead time. 
With L = 0 we obtain the important multi-item inventory problem with joint purchase 
costs, cf., Peterson and Silver (1979, p. 495). 

In general, centralized ordering as represented here may offer two distinct advan- 
tages. We mentioned above the possibility of economies of- scale in ordering. Note also 
that one could choose to decide the future allocations at the same time as the order. 
Postponing the allocations permits one to observe the demands in the intervening L 
periods, and thus to make better informed allocations. The phrase "statistical econo- 
mies of scale" has been used (Eppen and Schrage 1981) to describe this effect. 

Summary of Results 

The problem of determining optimal order sizes and allocations for this system can 
be formulated as a dynamic programming problem (?2). The state space of this 
problem has very large dimension, however, so standard numerical procedures for 
dynamic programs are not applicable. Our goal here is to obtain a good approximation 
to the problem which is computationally tractable. 

A key concept in the simplification is that of myopic allocation: In period t we must 
divide up the order placed in period t - L, which has just arrived at the depot, among 
the J locations. The myopic allocation solves what we call the myopic allocation 
problem-it minimizes the expected costs in period t + 1, when the allocation actually 
takes effect, ignoring costs in all subsequent periods. 

We use a result of Zipkin (1982a) as part of a two-step procedure to approximate the 
cost of myopic allocation, as a function of state variables in each period (?3). This 
method, it turns out, can be applied recursively to the dynamic program (?4). (We 
confine ourselves to normal demand distributions; extensions to more general distribu- 
tions are discussed in ?6.) Two conclusions result: First, myopic allocations in fact are 
optimal in every period, up to the approximations. Second, what remains after the 
approximations are performed is a dynamic program with only a single state variable. 
The form of this model, moreover, is precisely that of a single-location dynamic 
inventory problem. The appropriate qualitative and quantitative results that have been 
developed for problems of this type (depending on the form of the original ordering 
cost function, which is inherited by the approximation) can thus be applied. 

The optimal (or a good, heuristic) ordering policy for the reduced problem, together 
with myopic allocation, should thus comprise an effective overall policy for the 
original problem. 

In ?5, we present and discuss some computational results. For many important cases 
these confirm the analytical arguments supporting the approximation and myopic 
allocations. 
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In ?6, we treat a number of special cases and extensions. First, we explore the 
single-cycle problem, there T = L + 1 + 1. This case represents, in effect, a one-time 
decision problem with a lag between the (single) order and the (single) allocation 
decision. Here, the approximation results in a single newsboy problem, whose cost 
function can be explicitly computed and easily minimized. This result is then used to 
reduce a three-stage stochastic transportation problem to a tractable two-stage model, 
thus extending earlier work by Zipkin (1982b). Next, we show how our results can be 
extended to other classes of demand distributions. Finally, we point out that systems 
with more than two levels can also be reduced to single-location problems. These 
results apply also to problems with both multiple products and multiple locations. 

Related Literature 

Clark (1972) surveys a variety of multi-echelon inventory models. Some more recent 
references are in Peterson and Silver (1979, Chapters 12, 13). 

Considerable effort has been devoted to understanding single-period, multilocation 
models, often including complications not treated here such as redistribution or 
transshipment of inventories. Quite general qualitative results for such problems have 
been developed by Karmarkar and Patel (1975); see their references for earlier work in 
this area. More recent papers include those by Hoadley and Heyman (1977), Prastacos 
(1978) and Federgruen and Zipkin (1983). 

Some of these qualitative results have been extended to multiperiod problems by 
Tan (1974), Karmarkar (1981) and Showers (1981 a, 198 ib). Laakso and Thomopoulos 
(1979) and Rosenbaum (1981) give heuristic analyses of certain aspects of such 
problems. See also the recent book edited by Schwarz (1981), especially Deuermeyer 
and Schwarz (1981) and Ehrhardt, Schultz and Wagner (1981). 

The paper by Clark and Scarf (1960), best known for its treatment of systems with 
several levels in series, also contains a brief discussion of more general structures of the 
type studied here. Using an approximation which is essentially equivalent to our first 
step, they develop a parametric cost function for a problem analogous to our myopic 
allocation problem. This function, however, is expressed in terms of the optimal 
allocations, and thus is not computable in closed form. 

The papers by Veinott (1965), Bessler and Veinott (1966) and Ignall and Veinott 
(1969) differ from ours mainly in the absence of an explicit depot; ordering and 
allocation occur at the same instant (L = 0), and there are no economies of scale. 
Their models allow joint constraints in inventory positions after allocations, while in 
our model the allocations themselves are constrained by previous orders. They show 
that myopic policies are optimal under various assumptions, and it is of interest that 
our (approximate) myopia results are reminiscent of theirs. 

A recent paper of Federgruen, Groenevelt and Tijms considers a continuous-review 
problem similar to ours; they cite earlier work on this problem. 

Our model and the results obtained extend those considered by Eppen and Schrage 
(1981). The major departures here are the following: 

-Eppen and Schrage (1981) assume normal demands throughout. For some impor- 
tant special cases we allow other classes of distributions, including the exponentials 
and the gammas. 

-Eppen and Schrage (1981) require holding and penalty costs to be identical across 
locations. No such restriction is imposed here. (The approximations, however, are 
"closer" the more nearly identical these costs are. See Zipkin 1982a.) 

-Assuming demands and costs are stationary over time, Eppen and Schrage (1981) 
consider an infinite-horizon model, using the criterion of expected average cost per 
period. We allow nonstationary demands and costs and consider the finite-horizon 
case. 
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-Most importantly, Eppen and Schrage (1981) require that an ordering policy of a 
specific type (a stationary order-up-to, or critical-number policy) be followed. Given 
this restriction, and assuming myopic allocations, Eppen and Schrage (1981) show how 
to compute a critical number, which is optimal up to an approximation essentially 
equivalent to our first step (called the allocation assumption in Eppen and Schrage 
1981). When there are fixed costs in ordering, Eppen and Schrage (1981) permit 
ordering every m periods, but the analysis requires still further approximations. Here, 
we permit the ordering policy to be determined by analysis of the approximate 
dynamic program, according to the actual nature of the ordering costs, and justify 
myopic allocations themselves as (approximately) optimal. 

Many approximation schemes have been proposed to reduce the dimensions of 
general dynamic programs; see Morin (1979) for extensive references. Our aproach is 
somewhat similar in spirit to polynomial approximation (e.g., Bellman, Kalaba and 
Kotkin 1963), in that we fit a certain function by a simpler function of known form. 
We approximate one-period costs instead of the optimal cost function, however. The 
function we use is known to fit the true costs well, and this function has a special 
inventory-theoretic interpretation (cf. ?3). Also similar in spirit is the approach of 
state-space relaxation (Christofides, Mingozzi and Toth 1981), although their problems 
and methods differ considerably from ours. 

2. Formulation 

Lags 

L = time required for an order to arrive at the depot, 
1 = time required for allocations to arrive at the demand points. 

Indices 

j indexes demand locations, j = 1, .. ., J, 
t indexes time periods, t = 1, . .. , T (s is also used as a time index). 

State and Action Variables 

xit = inventory at locationj at the beginning of period t, 
y, = order placed by the depot in period t, 

t = allocation to location j in period t, zt = (zjf)1 
We define a vector containing those orders already placed which have yet to arrive at 
the depot, and those (say, the last L') on which the cost of the current order depends: 

yt = (y )t - where N = max{L,L'}. 

Our formulation will be simplified if we apply a transformation of variables (a 
standard one for problems with lags): 

t- I 
A + Xjt Xjt +E zis 

s =t-1 

= initial inventory at location j, plus all previous alloca- 
tions still in transit (analogous to the economic inven- 
tory at the beginning of period t), Xt = (x)J1 

The last relevant order is placed in period T - L - 1, and the last allocation made in 
period T - 1. For convenience we use the notation above for all periods, with zeroes 
inserted where appropriate. 

The state of the system at the beginning of period t can thus be described by the 
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vector (X tt). The actions taken in period t must satisfy 
y~~~~~~~ 

yt > 0, ZJt Yt-L z t > 0. () 
j=1 

Demands 

ujt = demand at locationj in period t, ut = (uj,)_ =I 
Fjt = marginal cumulative distribution function (cdf) of ujt. 

For most of the paper we require that each ut have a joint normal distribution. Thus, 
FjI is characterized by the parameters 

t = E(uj,), ajt = Var(uj,). 

Also, let 1 denote the standard normal cdf. Other distributions are considered in ?6, 
but only under some further assumptions. The ut are assumed throughout to be 
independent random vectors. 

We shall need to refer to the sum of the (independent) demands at location j over 
A A 

1 + 1 periods: j = +Iu. Letting Fj, denote the cdf of zj, the Fjt are also normal 
cdf's with 

t+l 

At E(At) = E A>1 2 t'it = E Uit JS ~~~~~~(2) 
s= t 

t+l 
AJt = Var(A)= 

2 o2(3) 
s= t 

Costs 

ct(yt, yt) = cost to ordery, in period t, possibly depending on earlier orders. 
Since the allocation z t is the last decision affecting holding and penalty costs in period 
t + 1, we may count these costs as if they were incurred in period t. Thus, 

hjt =unit cost of holding inventory at location j from period t + I to period 
t+ 1+ 1, 

pit = unit penalty cost for demand backordered at location j from period t + 1 to 
t+ 1+ 1. 

The one period expected holding and penalty costs in period t + 1, as viewed from 
period t, are Q1 (zt x t) = 2, jqjt (z1t, xj,), where 

At+ - t]+ 
A 

+ ZjA-Ut]-. qj, (zjt, ,xit) = hjt E[ Xit Z-Ujt + pjt E[ Xjt + jjt ]i 

By a standard argument, 

qjt(zjt,xjt) =Pt[ i-j(Xjt + Zjt)] + (Pjt + hjt)ftjt+ u?t(u)du. 

We remark that linear shipping costs can be included also, by a suitable redefinition 
of Pjt and hjz. 

Dynamics and Recursive Equations 

Given the initial state, the actions and the demands in period t, the state in the next 
period is determined as follows: 

At+1 =At+z ut -+ 
x =xt +zt_ut y =(Yt-N+1* Yt-* I-Yt)* 

With the definitions above we can state the recursive functional equations whose 
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solution provides the optimal policy for the problem. Let 
f(x ,yt) = minimum total expected ordering costs in periods t through T, and 

penalty and holding costs in periods t + 1 through T, given the system starts period t in 
state (x yt) 

Then, we may set fT-I+I = 0. (Thus, f1 in fact includes all costs which can be 
influenced by our decisions.) For periods t= 1, . . . , T - 1, we have 

x' ,y') = min { c, (y, , y)+ Q(Z 1,x 
y,.z' 

+ EJ+ IL(+z -u'),(Y-N+ I, ...,y,) Y, ,zt satisfying (1)}. 

(4) 

The state space of this dynamic program has dimension J + N, and there is no 
obvious way to decompose the problem into smaller ones. For any but the smallest 
values of J, N and T, clearly, exact solution of the equations is impractical. 

More Aggregate Variables 

We make use of a variety of aggregate-level variables below, so the following 
convention has been followed (more or less): Capital letters denote sums overj, a caret 
(A) denotes a sum over 1 + 1 periods, and a bar () denotes a sum over L periods. 
Thus, the notation x and u t above. 

Define 
J t+l _ t+L-I 

Ut= E Ujt Ut SU, Ut 

j=l s=t s=t 

These are all normal random variables, characterized by the parameters in Table 1. 
Also, let 

J 

xt = EXt 
j=1 

J t-L-I 

Xt = Xt = xt + YS 
j=1 s=t-L-l 

t-I t-I 

AAt=AXt + Ys = xt + YS 
s=t-L s=t-L-l 

Thus, X, represents total inventory in the system, X, is system inventory plus all 
allocations yet to arrive at the locations, and X/A is system inventory plus outstanding 
allocations, plus all orders placed but not yet received at the depot (which we may 
describe as the total economic inventory in the system), all at the beginning of period t. 

The symbol tilde (-) is used in several ways, and has no single meaning. 

TABLE 1 

Aggregate Demands 

Ut U, U- 

cdf GI GI G, 

mean Mt =, = I ijt Mt = =t+Ms= , M= = E,t+L IMS 

variance S,2 S, = 7Is- 
2 2 = t+L-IS2 
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3. Approximating the Myopic Allocation Problem 

For any period t < T - 1 the problem defining the myopic allocation is the fol- 
lowing: 

Rt( t, Yt-L) = m Qt(zt, t) 

subject to zJt = Yt- L I Z t O. (5) 
j=1 

We now apply the methods of Zipkin (1982a) to approximate the function R,. Later 
we shall discuss the effects of the approximation. (Note. Though we approximate (5) 
below in order to determine an order policy, it is (5) itself which constitutes the myopic 
allocation policy.) 

The first step in the approximation is to relax the nonnegativity constraints in (5). 
Let R (x , XYt-L) be the minimal cost of the remaining problem. 

For the second step, the optimality conditions of the remaining problem can be 
manipulated (Zipkin 1982a) to yield the following (where A is the Lagrange multiplier, 
and using +Jt(u) = jt+ 

A l(u), for all u): 

it + hj, Xt +Yt-L) (6) 

(The term in parentheses is the critical ratio that always appears in such constrained 
newsboy problems.) Expression (6) can be viewed as a parametric equation in A. It is 
shown in Zipkin (1982a) that the solution to an equation of this form can be well 
approximated by the following function of its right-hand side: 

A -po + (po + ho)I'[(XD +Yt- - M )/St, (7) 

where St = IAt, and po and ho are constants derived by any one among several 
interpolation methods. (When the costs are identical across locations, so Pjt = Pt and 

hjt = ht, j = 1, ..., J, (7) is exact with po = pt, ho = ht.) 
Note too that A = aRt- /aYt - L. Thus, an approximation Rt ; Rt- can be obtained 

by integrating (7): Letting 

Gt(U) = 0[(U- Mt)/St], 

Rt(Xt' YtL) - A[M t (Xt +Yt-L)] + (B. + ht+YtLG,(U)dU. (8) 

(The constant term pt(Mt - X) can be shown to be a reasonable choice.) 
Observe that Rt has the form of a one-period expected holding-and-penalty cost 

function at a single location (which we may consider to be the depot). (In particular, Rt 
is strictly convex in Xt + Yt - L.) It depends only on the total (economic) inventory in 
the system Xt, not its distribution among the locations. 

4. Approximation of the Dynamic Program 

We are now prepared for the major result. We shall define recursively an approxi- 
mation ft to the function ft, starting with fT- I+ I = fT- I+ I = 0. Suppose we can write 
the approximation for period t + 1 as ft+ = ft+ (Xt+ ,1 t+-) which, as the notation 
suggests, depends on x t +l only through the aggregate inventory Xt + I. (This is certainly 
true for t= T - 1.) 
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Given such an approximation, we would like to find the optimal policy for period t. 
That is, we wish to solve the following problem, derived from (4) by replacing ft+1 with 
ft+1: 

min c(yy ) + Q(Xx )+ Eft+l[(Xt +yt_ L -Ut ) (yt- N+l ' * 
. . . 

yt)]}' 
Yt, Zt 

subject to (1). But this is equivalent to 

min { Ct(Yt, y _) + Eft + 1[ (Xt+y Ut ), (Yt-N+ 1 5 .. *5 SYt)]) 

( ~ ~~J) 
zt ~~j=1 

Thus, the minimizations over Yt and z t separate. The minimization over z t, moreover, 
is precisely problem (5). In sum, up to an approximation f + 1 of the form above, a myopic 
allocation is optimal in period t. 

Further, suppose we define ft by replacing the true minimum cost over zt namely 
Rt, by Rt in (9). Then, we may write 

f(tx 5 t) = ft(Xt it) 

= Rt(Xt, Yt-L) 

+ min { tr(yt 5 _t) + Efr+l[(t +1[ - Ut ), (Yt-N+ l 5 .. * *,yt) ] 10) 
Yt 0X 

Thus, ft has the form assumed above for ft + 

Straightforward induction, therefore, yields the following conclusion: If we approxi- 
mate Rt by Rt for all t, then myopic allocations are optimal in all periods in the 
resulting problem. 

In addition, the recursive equations (10) have precisely the form of a single-location 
dynamic inventory problem with delivery lag L, demands Ut and one period expected 
holding and penalty costs R,. 

This means that the same standard trick invoked in ?2 can be applied to reduce the 
state space of (10). For now we assume that c, depends only on the current order, that 
is, ct= ct(yt). We shall reformulate (10) by counting in period t the expected penalty 
and holding costs previously represented in period t + L. (Recalling the earlier 
transformation, these costs are actually incurred in period t + L + 1.) Viewed from 
period t, the initial inventory in period t + L will be 

t-1 t+L-1 

Xt+L = Xt+ Ys- Us 
s=t-L s=t 

= XA- U 

The expected cost in period t + L is thus 

t(A X yt) EUR (A - ) 

{Pt+L[Mt+L (xt x U +t)] 

+(Pt +L +Mht+L)(t U'YIGtL(U)dU}dGt(U)t 
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Reversing the order of integration, we obtain 

Pt(Xt , yt) P + L[ (Mt+ L + A7i) (XtA + Yt) + (Pt+ L + ht+L)f+YHt(U)dU, 

where 

Ht=Gt*Gt+L 

We may now define 
gt(XtA) = minimal total expected ordering costs in periods t through T, and penalty 

and holding costs represented in (10) in periods t + L through T, given the system 
starts period t in state Xt/. 

Then g9T_L+ 1= 0, and, for t < T-L-1, 

gt Pt (X) = y ) 1t) + Egt +1) (Xt + yt-Ut 

The recursive equations (11) are equivalent in all essential respects to (10) and we have 
thus reduced the state space of the problem to a single dimension. 

We now have a one-dimensional dynamic program whose form is that of an 
inventory problem with no lag, demands Ut, and (strictly) convex expected holding 
and penalty costs Pt. The many known results for problems of this type, depending on 
the form of ct, can thus be applied. For example, if ct is linear, a critical number (or 
order-up-to) policy is optimal (Karlin 1960). If ct is linear with a fixed cost term, then 
an (s, S) policy is optimal (Scarf 1960). Clark (1981) recently solved numerous 
problems of this type, each with 72 periods and nonstationary data. On average these 
required I CPU seconds on an Amdahl 7B. (This estimate is conservative.) For the 
most general functions ct the codes described in Morin (1979) can be used. 

Now suppose c, depends also on Yt, -1. A transformation similar to the above yields 

gt (Xt", yt_ min {ct,(yt,, yt,_ ) + Pt (XtA, yt) + Egt,+ I [ (X,5 +y, -U) y,} Yt >0) 

If ct represents proportional smoothing costs, as in Sobel (1969), then the relatively 
simple type of policy derived in that paper is optimal for this dynamic program. 

In general, if ct = Ct[Yt (Yt-L'5 ... , Yt- s)] for some integer L', the program (10) can 
be transformed to one having an (L' + 1)-dimensional state space. For large L' 
computation of the true optimal policy for the approximate problem may still be a 
formidable task. The policy space has been considerably reduced, however, so it may 
be possible to use discretization and/or simulation approaches to locate good ordering 
policies, even when the size of the original problem would have defeated such 
techniques. 

Observe that evaluation of Pt, like that of qj1, requires integration of a normal cdf. It 
can be shown, however, that 

fY D(u) du= yD(y) + +(y), 

where 0 is the standard normal density. The integrals in the functions thus require no 
more work than evaluation of D, which is available in standard packages of scientific 
functions. 

Form of the Reduced Model 

Observe, the function Pt, like Rt and the original qjt1 has the form of a one-period 
expected holding-and-penalty cost function derived from linear costs. The demand 
distribution Ht appearing in Pt is almost GC * Gt+L, the distribution of system-wide 
demands in periods t through t + L + 1: Both Ht and Gt * Gt+L are normal distribu- 
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tions with mean 

t+L+/ t+L+/ J 

Mt + Mt +L = MS [Lis j 
s=t s=t j=1 

The variance of Ht, however, is 

t+ L-1 J t+L+l1/2-2 

St + St+ L = E Ss + ( ) i 
s =t .= I s=t+L 

t + L + IL 
t+L+l 

> E s5 = St + St+ L 
s = t 

= Var(G6 * Gt+L)' 

with equality holding if and only if Aj + L J = 1. ... , J, are perfectly correlated. In the 
special case where ajt = a for allj and t, and the uj, are independent overj as well as t, 
we obtain 

Var(Ht) =[LJ + (l + l)j2]a2 > (L ++ I)Ja2= Var(G *Gt+L). 

For fixed L + / suppose L is large relative to 1. Then (11) has costs as well as 
dynamics very similar to those of a completely centralized system (with larger 
variance, however, even when / = 0), where all demands are pooled at the depot. As / 
increases and L decreases, the variance of Ht increases, reflecting greater decentraliza- 
tion, in that allocations must be finalized relatively sooner. 

5. Computational Results 

To test the proposed method we compared the approximation with a simulation of 
the true system for each of several instances of the model of ?2. Attention was 
restricted to relatively simple, but still interesting cases, specifically, L' = 0 (so N= L), 
stationary data, independent normal demands, and identical holding and penalty costs 
across locations. Also, the approximate program (11) was replaced by its infinite- 
horizon, average-cost analogue. The latter problem is computationally simpler, and the 
infinite-horizon case is of great practical interest. This represents, in effect, another 
approximation step. The simulations, of course, had finite (but very long) horizons. 

Two types of order cost functions were considered, linear and fixed-plus-linear. (The 
systems tested are thus among those treated in Eppen and Schrage 1981.) 

For each system an optimal (stationary) policy for the approximate program was 
computed. Five additional policies were evaluated, in order to test the robustness of 
the approximation and to search (albeit not very hard) for an improved policy. The 
cost of each policy according to the approximate program (referred to here as the 
";approximate cost") was then compared to the true average cost as estimated by 
simulation (the "estimated cost"); the difference is reported as percentage absolute 
error, that is 

% error = lOOlapproximate cost-estimated costi/estimated cost. 

Each simulation was run for about 8000 periods. (Some sampling error remains, but it 
is small.) 

Note that, since the approximate program is derived by relaxing constraints only, its 
optimal cost is a lower bound on the true optimal cost of the (infinite-horizon) original 
problem; the estimated cost of the policy computed is (up to sampling error) an upper 
bound. Thus, the % error measures also the suboptimality of that policy. 
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TABLE 2 

Results for System I 

Critical number Approximate cost Estimated cost Percent error 

260 27.840 27.757 0.299 
265 23.640 23.550 0.229 
267.23* 23.229 23.248 0.082 
268 23.269 23.282 0.056 
270 23.713 23.767 0.227 
275 26.425 26.436 0.042 

* = optimal policy for approximate program. 

Linear Order Costs 

In this case a critical-number policy is optimal for the approximate program. 
(Because of the average-cost criterion, the order costs can be ignored, and were not 
included in the costs compared.) The optimal critical number is computed by globally 
minimizing the function Pt = P; this requires one inversion of (. The approximate cost 
of any policy of this type is computed by one evaluation of P at XA + y = X*, where 
X* is the critical number. 

Seven systems were tested, numbered I-VII. Systems II-VII are variations on the 
"basic" system I. Characteristics of the systems are as follows: 

I: J = 5, L = / = 2, p = 10, h = 1, demands at locations identical with mean y = 10, 
standard deviation a = 1.4. 

II: same as I, butp = 2. 
III: same as I, but L = 3, 1 = 1. 
IV: same as I, but L = 1, 1 = 3. 
V: same as I, but J = 10. 
VI: same as I, but means yj range from 5 to 25 in increments of 5, with coefficient of 

variation al/j held constant at 0.14. 
VII: same as I, but standard deviations aj range from 0.1 to 3.0. 
The results for system I are shown in Table 2. For the other systems the results are 

comparable; none exhibited markedly larger or smaller errors. Since there were 7 
systems with 6 policies each, a total of 42 simulations were run. The largest error 
among these was 0.51%, and the average error was 0.14%. In no case was a policy 
found whose estimated cost was lower than that -of the policy predicted to be optimal 
by the approximate program. 

The approximations in this case are very close indeed. 

Fixed-plus-Linear Order Cost 

In this case an (s, S) policy is optimal for the approximate program. To evaluate the 
average cost of a given (s, S) policy the aggregate program was discretized on the 
integers; this represents another potential source of approximation error. (The simula- 
tions, however, were performed on the true, continuous problem.) The optimal policy 
for the discretized problem was found by the methods of Federgruen and Zipkin (to 
appear). 

Each of the systems described above was tested, but with a fixed order cost K = 100. 
Also, System I was run with K = 50, 150 and 300. 

The results for System I with K = 100 are shown in Table 3. Similar results were 
obtained for the other systems and other values of K, with the exception of System 
VII. Excluding VII, over the remaining 54 simulations, the maximum error was 4.35%, 
and the average was 1.77%. Although the correlation is not perfect, the error appears 
to increase with S-s, hence, with the average time between orders, as Table 3 
suggests. (The relationship is clearer for other systems.) 
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TABLE 3 

System I with K = 100 

s S Approximate cost Estimated cost Percent error 

243* 312* 94.294 96.405 2.190 
253 312 94.373 96.340 2.042 
263 312 128.783 125.196 2.865 
253 322 98.486 99.305 0.825 
263 322 98.608 99.430 0.827 
220 400 115.393 119.690 3.590 

* = optimal policy for discretized, approximate program. 

Note that the estimated cost of the second policy in Table 2 is lower than that of the 
approximately optimal policy. The difference, however, is only 0.07%, and this is the 
largest improvement found over all systems; in most cases no better policy was 
discovered. 

While not as small as in the linear case, the errors here are still quite reasonable. 
The results for System VII with K = 100 show errors ranging from 24% to 66%. 

Evidently, the approximation breaks down when coefficients of variation are unequal 
and there are many periods between orders. (Intuitively, the reason can be seen in an 
example with J = 2, a1 = a2, and y1 >> 2. The key fact is that, in a period with nothing 
to allocate, the constraints Zjt > 0 are inessential-hence the approximation perfect-if 
and only if the quantities (Xt - j)/aj are equal. It can be shown that, if a large 
amount is allocated myopically, these quantities are likely to be close in the next 
period; in subsequent periods with nothing to allocate, however, the quantities become 
increasingly unequal, hence the approximation deteriorates. The same argument sug- 
gests myopic allocation is a poor choice under these circumstances.) 

Subsequent computations, not reported here, indicate that the results deteriorate 
slightly when the coefficients of variation are larger but equal; the approximations 
remain quite accurate, however. 

6. Special Cases and Extensions 

The "Single-Cycle" Problem 

We first consider the special case where T = L + 1 + 1. The order placed in period 1 
arrives at the beginning of period L + 1, and its allocation is received at the demand 
points in period T. There are thus only a single order and a single allocation decision 
which can affect costs; the only costs so affected, moreover, are the order cost in 
period I and the holding and penalty costs in period T. In this sense the system 
operates for a single cycle. 

There are only three important epochs in this case, the beginning of period 1, the 
beginning of period L + 1, and the end of period T. In essence, therefore, the problem 
covers two "macro-periods" of different lengths, the first composed of periods 1 
through L, and the second of periods L + 1 through T. The model can thus be viewed 
as a three-stage stochastic program. 

The myopic allocation is certainly optimal in period L + 1 and suppose we approxi- 
mate its cost by R = RL+I. For simplicity assume c = c, = c,(y1) = c(y), so the order 
cost depends only on y = y,. Using (1 1), therefore, the problem for period I becomes 
the following newsboy problem: 

minOc(y) + P(XA, y) 

= c(y) + p[(M + M)-(XA +y)] + ( p?o+h?)JX YH( U) dU. (12) 
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(We have suppressed the now unnecessary time subscripts; in terms of earlier notation, 
p?, ho and M would have subscript L + 1, and all other symbols subscript 1.) Here, 

T J 

E(H)== >p1j=M+M, 
t-l j=l 

LJIT 1/212 
Var(H) = SI + sZ+1 S |7 I ( )l| 

t=1 i=L1 t=L+l 

The (approximately) optimal order is thus easily computed. 

Application to Transportation Problems with Uncertain Demands 

The closed-form cost function (12) can be embedded in a much more complex 
three-stage stochastic program: Suppose there are now K depots, and depot k serves 
the set of demand points Tk, k = 1, . .. , K. There are also I sources of the commod- 
ity, where source i has supply ai. At the beginning of period 1 we must decide the 
quantity Wik to ship from source i to depot k (at constant unit cost Cik)5 and hence the 
total shipment Yk to depot k. From then on each depot faces the scenario described 
above: The shipment Yk arrives in period L + 1; it is then allocated among Tk, and the 
allocations reach the demand points in period T = L + 1 + 1. 

The expected holding and penalty costs for the locations Tk, as viewed from period 
1, can be approximated by Pk (Xk,6 Yk) of the form above. The entire problem, 
therefore, can be approximated by the following convex network-flow program: 

I K K 

min E E cikWik + E Pk(Xk ' Yk) 
i=1 k=1 k=1 

K 

s.t. E Wik < ai 5 i l ... ., I, (13) 
k= 1 

Wik-Yk = ?O k = 1, ..., K, all Wik > O. 
i = 1 

This two-stage stochastic program has the form of a transportation problem with 
uncertain demand, and efficient methods for solving it have been developed, e.g., by 
Williams (1963). 

Zipkin (1982b) considers the case L = 0, i.e., a completely decentralized system. 
Here, the second stage of the original problem effectively vanishes. Problem (13) is 
viewed in Zipkin (1982b) as an aggregation of a larger two-stage problem, where the 
sources ship directly to the demand points. In this case the subsets Tk do not 
correspond to any physical restrictions on supply relations; rather, they are chosen 
arbitrarily to reduce the size of the problem. 

Let Hk denote the distribution appearing in Pk. With L = 0 we can write Var(Hk) 
- S,2 and SA = true variance of the sum of demands at locations Tk in periods 1 
through T = 1 + 1. The fact that in general, S2> S2 it is argued in Zipkin (1982b), 
has implications for choosing the required total shipments to destinations in classical, 
deterministic transportation problems: If the destinations k represent aggregates of 
groups of smaller destinations Tk, k = 1, ..., K, one cannot set the shipment size for 
the whole subset Tk as if all demands occurred in one place; an estimate of S,2 must be 
used instead of an estimate of the true variance S, . It is speculated (Zipkin 1982b), 
moreover, that this finding reflects the complete lack of centralization, and that in 
systems with some centralization the finding would be modified. 



82 AWI FEDERGRUEN AND PAUL ZIPKIN 

The results above, with the comments on the form of (11), confirm this speculation: 
As L increases from 0, with T = L + l + 1 fixed, the system becomes more centralized, 
and each Var(Hk) decreases. As long as l > 0, however, Var(Hk) remains larger than 
the true variance of demands at Tk over periods 1, . . . , T. Procedures for choosing the 
total shipment sizes, therefore, must reflect these larger Var(Hk). 

Linear Order Cost 

We now return to the single-depot problem, and assume c(y) = cy for some scalar 
c <po. Also, suppose we can replace H(U) by F[U - M`)/SA] in (12), either exactly 
or approximately, where MA8 and S 8 are the mean and standard deviation of H. Note, 
F = 1D for normal demands. In this case straightforward analysis (cf., e.g., Eppen 1979 
for the normal case) yields the following expression for the minimal cost of problem 
(12): 

c(MA-XA) + [(c-po)y + (po + ho)6]SA, where (14) 

-y= F1( -Oc 5 j F( U)du 
(p 0+ ho ) J 

Expression (14) includes a constant term, a term linear in X8, and a term 
linear in SA = (S2 + S2 )1/2. Again, assuming independence and caj, = ar, SA= 

c[LJ + (1 + 1)j2]1/2. Thus, not only problem (12) but also its minimal cost (14) reflect 
the degree of centralization of the system: The larger L is relative to 1, the smaller SA 
is, and (since 8 > y) the smaller (14) is. Thus, greater centralization leads to reduced 
(approximate) cost. (This observation is similar to one in Eppen 1979.) 

More General Distributions 

Approximations for the R& (.,.) function, similar to (8), can be obtained for 
nonnormal demands under certain other assumptions. The crucial stipulation which 
must be satisfied is the following. Let FJ? again be the cdf of At . Then, for each t, there 
exists an underlying distribution F, such that, for some positive constants A 

, and t5 

A = (ua-yjt ) 

for all j and u. Moreover, F, must be continuous and strictly increasing where positive. 
In this sense, therefore, allocation-lead time demands at the various locations must be 
"of the same form". 

The methods of Zipkin (1982a) apply when this more general condition holds, just 
as the normal case. The approximation to Rt is expression (8) above, with Ft replacing 
1D in the definition of G,. 

The assumption above is indeed satisfied for several important cases: 
(a) 1= 0, that is, the time required to deliver shipments after allocation decisions are 

made is negligible. Here, each Fj, = Fj, so we require that 

j,((u) = F,t( ) 

for positive constants yj, and a1,, and a continuous cdf F, which is increasing where 
positive. 

This assumption is satisfied, for example, when uj, is exponentially distributed, 
j =1, .. ., J: We can choose F,(u) = 1 -exp(-u), yj, = O and aj, = E(uj,), j = 1, 

...,J. The assumption holds also when the Fj, are all gamma, all Weibull or all 
Pareto distributions with the same shape parameter. By allowing positive yjt, translated 
distributions of these forms are also included. 
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(b) Demands are stationary and all Fj, are exponential. In this case, each FJ is a 
gamma distribution with shape parameter l + 1. More generally, if each Fj, is gamma 
with stationary scale parameters a. and common shape parameters At, F, is also 
gamma with shape parameter Et+1,85. Again, translated distributions of these classes 
permit analogous results. 

Moreover, where allocation-lead-time distributions are "of the same form", the 
reduction of the dynamic program can be performed precisely as above. The mean 
and variance of H,, moreover, are the same as in the normal case, and hence the 
centralization/decentralization interpretation still holds. 

In general, however, H, may not have a simple form. (Even when 1= 0 and the u 
are independent exponentials, but with different means 

"i,t 
j= 1, .. ., J, their sum 

over L periods has the complicated density given, e.g., in Feller 1971, p. 40.) To solve 
(12), therefore, it is probably necessary to approximate H, by one of the tractable 
distributional forms, using its true mean and variance. Indeed, reasonable results can 
probably be obtained even when the assumptions of ?3 are not strictly met; when 
l > 0 and the uj, are general exponentials, for example, approximate the FI) and then 
the H, by gamma distributions. 

Systems with More than Two Levels 

The fact that the one-period costs in the approximate problem have the same form 
as those of the individual locations implies that the methods here, repeated several 
times, can be used to reduce a system with more than two levels to a single-location 
problem. For this to work the system must have the form of an "arborescence" (each 
location has a unique supplier); also stock is held only at the lowest echelon. 

The three-level model may be used to represent a multiproduct, multilocation 
system. An order at the highest level again represents production of an intermediate 
good or an order of a raw material. This resource is allocated among the several 
products at the second level, while at the third level the products are allocated among 
locations. (Thus, each "location" at the lowest level represents a product-location pair.) 
Alternatively, the second level might represent shipment of the intermediate product to 
locations, where it is then allocated to production of the various final goods.1 

'The authors wish to thank L. Pohlman for his help with the computations and the referees for useful 
suggestions. 
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