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Clark and Scarf [1960] characterize optimal policies in a two-echelon, two- 
location inventory model. We extend their result to the infinite-horizon case (for 
both discounted and average costs). The computations required are far easier 
than for the finite horizon problem. Further simplification is achieved for normal 
demands. We also consider the more interesting case of multiple locations at 
the lower echelon. We show that, under certain conditions, this problem can be 
closely approximated by a model with one such location. A rather simple 
computation thus yields both a near-optimal policy and a good approximation 
of the cost of the system. 

T HIS PAPER treats a two-echelon inventory system. The higher 
echelon is a single location referred to as the depot, which places 

orders for exogenous supply of a single commodity. The lower echelon 
also consists of one point, called the retail outlet, which is supplied by 
shipments from the depot, and at which random demands for the item 
occur. (The case of several retail outlets is discussed below.) Stocks arn 
reviewed and decisions made periodically. Instantaneous, perfect infor- 
mation about inventory at both levels is assumed. Orders and/or ship- 
ments may each require a (fixed) leadtime before reaching their respective 
destinations. 

Unfilled demand is backordered at the outlet, incurring a linear penalty 
cost. Linear holding costs are assessed on "echelon inventories." That is, 
a cost is incurred for all stock in the system, whether at the depot, at the 
outlet, or in transit between them; an additional holding cost is charged 
on inventory at the retail outlet, it being more expensive to keep stock 
there. The cost of a shipment is assumed linear, while an order incurs a 
fixed cost as well as a proportional cost. All costs and demands are 
assumed stationary. 

Clark and Scarf [1960], assuming a finite planning horizon, show that 
an optimal policy for this system can, in principle, be computed by 
decomposing the problem into two separate single-location problems: 
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The problem for the retail outlet includes only its "own" costs, ignoring 
all others; a critical-number policy solves this problem. The optimal 
policy and expected cost function for each period are then used to define 
a convex "induced penalty cost" function for each period. This function 
is added to the depot's holding costs and the ordering costs to form the 
second problem. An (s, S) policy solves this problem and constitutes an 
optimal order policy for the system as a whole. An optimal shipment 
policy results from a slight modification of the outlet problem's policy: 
In each period ship up to the critical number, if the depot has that much 
stock; if not, ship as much as possible. 

While this characterization greatly simplifies the original problem, 
actual computation of an optimal policy still encounters substantial 
obstacles. First, two sets of recursive functional equations must be solved 
numerically. Second, each evaluation of the induced penalty cost function 
itself entails a numerical integration over the optimal cost function for 
the outlet's problem; indeed, with an order leadtime of several periods, 
the computation requires a double integration (see Section 4 below). 

Regarding the first issue, we show that the qualitative result of Clark 
and Scarf extends to the infinite horizon case, first under the criterion 
of discounted cost (Section 2), and then for long-term average cost 
(Section 3). The resulting two single-location problems are much easier 
to solve than their respective finite-horizon versions (as is often the case 
in dynamic problems). 

Turning to the second issue, we show that in the infinite horizon 
problems the induced penalty cost functions are stationary, do not involve 
optimal cost functions, and require at most one numerical integration 
(none for zero order leadtime). The case of normally distributed demands 
(Section 4) requires no explicit numerical integration; the penalty cost 
can be expressed in terms of functions available in standard packages 
(specifically, univariate and bivariate normal cumulative distribution 
functions). 

Section 5 presents a method to approximate a problem with several 
retail outlets by a single-outlet model. Assuming demand at each outlet 
is normal, with identical coefficients of variation, costs and leadtimes, 
we argue (partly analytically and partly based on empirical results of 
Federgruen and Zipkin [1984a, 1984c]) that the approximation should be 
very accurate. The methods of prior sections, therefore, permit a rather 
simple computation to find both a near-optimal policy and a good 
approximation of the cost of the system. The latter can be used in design 
studies, such as those described by Gross et al. [1981]. 

Although the model assumes completely centralized control, our pro- 
posed policy can be interpreted as prescribing a largely decentralized 
("pull") system, where each outlet "orders" up to its own critical number. 
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Though it may not be obvious, our results can be viewed as justifying 
and considerably streamlining the original approach of Clark [1958] to 
this problem (reported in Clark and Scarf, and Gross et al.). That 
approach assumes that inventories at the outlets are always "in balance," 
a concept central to the development in Section 5. The analysis begins 
(where ours ends) with an independent optimal critical-number policy 
for each outlet. An elaborate parametric optimization is required, how- 
ever, to construct an approximate cost function for the depot in each 
period, so the approach becomes awkward for more than a few outlets 
and time periods. Our method, by contrast, is virtually no harder for 
many outlets than for one. Incidentally, our results suggest that the 
balance assumption, and hence the Clark approach, is inappropriate 
when coefficients of variation are seriously unequal. Section 5 discusses 
extensions to handle this case. 

Section 5 draws heavily on recent work by Eppen and Schrage [1981] 
and Federgruen and Zipkin [1984a, 1984c], who develop effective, com- 
putationally simple methods for the problem where the depot cannot 
hold stock. Zipkin [1984] provides a formal treatment of inventory 
balance. Results for the general case under somewhat different assump- 
tions include those of Ignall and Veinott [1969] and Veinott [1971]. 
Schmidt and Nahmias [1981] have recently studied a problem with two 
components assembled to form a final product using the framework of 
Clark and Scarf. 

In sum, the results here permit computation of optimal or near-optimal 
policies for multiechelon systems of considerable complexity and realism, 
using only readily available and not-too-taxing software. 

1. NOTATION AND PRELIMINARIES 

The sequence of events represented by the model studied in this paper 
differs somewhat from that of Clark and Scarf, in accord with what has 
become common usage. Holding as well as penalty costs are incurred 
after demand in each period. Also, orders and shipments arrive, following 
their respective leadtimes, at the beginning of a period, that is, after costs 
are assessed in the prior period, and before the current decisions. (This 
change does not affect the analysis in any essential way, and slightly 
simplifies computations.) 

The cost data of the problem are 

K = fixed cost to place an order. 
cd = cost rate for proportional order costs. 
cr = cost rate for proportional shipment costs. 
hd = holding cost rate for total system inventory. 
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hr= additional holding cost rate for inventory at the retail outlet. 
pr = penalty cost rate for backorders at the retail outlet. 

We assume that these cost factors are positive, and that they are related 
in certain ways, depending on other factors, that preclude it being optimal 
never to order. 

Other parameters are 

a = discount rate, 0 c a c 1. 
I = leadtime for shipments, a nonnegative integer. 
L = leadtime for orders, a nonnegative integer. 
u = one-period demand, a nonnegative random variable. 
u-W = i - period demand, i = 1, 2, 
I = E(u) < o, 8(i) = i A = E(u"i) 

For convenience we shall assume u is continuous, though this assumption 
is not strictly necessary. Demands in different periods are assumed 
independent. 

The evolution of the system is described by several state and action 
variables. (Our formulation already includes the standard transforma- 
tion, as in Clark and Scarf, that eliminates state variables representing 
individual outstanding shipments.) 

The variables are 

xr= inventory at the retail outlet, plus shipments currently in transit. 
vdu= echelon inventory at the depot 

= inventory at the depot, plus Xr. 

z = shipment from the depot to the retail outlet. 
y = order size. 
y' = outstanding order placed i periods ago, i = 1, ... , L. 
y = 
(5 y 

l 
yL) 

The index n will denote the number of periods remaining until the end 
of planning horizon, that is, we number time periods backward. This 
index is suppressed where possible, as above; when necessary we shall 
write Xnf, Yn, and so forth. The actions are constrained by the inequalities: 

y > 0, Z > 0, Xr + Z C Vd + yL 

The following equations specify the dynamics of the system: 
r r++dyd L -Un 

Xn_1 = Xnr Zn - Ung V n 1 = Vn + Yn Ung 

yn-= (yn, yn1, .,1 y.L-1). 

To formulate system-wide inventory costs, we (temporarily) need more 
detailed descriptors of the system: Let wd = inventory at the depot, Wr = 

inventory at the retail outlet, and si = outstanding shipment placed i 
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periods ago for i = 1, * 1. At the end of the current period, system-wide 
inventory equals 

wd + L + 1-1 si +[Wr + Sl - U]+ 

= vd + yL + {_ (Wr + Sl) + [Wr + Sl U]+}. 

Our current decisions affect the expression in brackets only 1 periods 
later. We shall thus treat the corresponding expected costs through the 
next 1 - 1 periods as constants, and in the current period count costs 
occurring 1 periods later. Under this accounting scheme, the relevant one- 
period expected holding costs for system-wide inventory are 

hdE{Vd + yL - al(Xr + z - U(1)) + a 1[Xr + Z -U ]. 

Similarly, we count now expected penalty and holding costs at the out- 
let occurring I periods later, 

alE(hr[xr + Z - u(1+1)]+ + pr[u(l+l) - xr _ Z]-+) 

treating prior such costs as constant. 
Let Ar denote all the constant costs mentioned above. The one-period 

holding and penalty costs may thus be represented by D(Vd + yL) + 

R(xr + z), where 

D(v) = hdv, and 

R(x) = al{- hd(X _ ()) + prE[u(l+l) -x]+ + (hd + hr)E[x -u(l] } 

Finally, let 

c d(y) = order cost function 

=0 if y=O,K+cdy if y>0. 

We may now state the finite-horizon dynamic program: 

gn( 5, vd Xr) = minimum total discounted expected costs with n 
periods remaining, if the system begins in state 
(5, vd, xr), excluding costs represented by Ar. 

Then, 

go = 0 

g(5, vd, Xr) = miny,z{cd(y) + D(vd + yL) + CrZ + R(xr + Z) 

+ agEgA_1[(Y, y1, ... . yL-1) vd + yL (1) 

- Us xr + Z - U]: 

y > 0, Z > 0, Xr + Z C Vd + yL , n - 1. 
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(Because of the transformation, the effective planning horizon is shifted 
from n = 0 to n = 1, so (1) represents a different numbering of time 
periods.) 

The main result of Clark and Scarf is that program (1) can be 
decomposed into a pair of simpler programs. The first of these programs 
involves the outlet alone: 

gOr = o 

gnr(xr) = minz,o{crz + R(xr + z) (2) 

+ aEgr_i(xr + z - u)} 1. 

Since R is convex and crz is linear, a critical-number policy solves this 
problem. Let xr* denote the critical number for period n. Now define the 
induced penalty cost functions: 

r Os ~~~X > Xr 
* 

Pn(x)-g = r(x-x ) + [R(x) - R(x*)] + aE[g n(x-a) 

_gr r* - U)], x < xr. 

(These functions are easily shown to be nonnegative and convex.) 
The second dynamic program is the following: 

-= 0 

g d(5 vd) = miny{Cd(y) +D(vd +y l) +Pn(v + y) ( ) 

+ aEgn1[(yy1. Y yL1), Vd+yL u]}, n-1. 

Because of the form of cd(.) and the convexity of D and Pn, an (s, S) 
policy solves this problem (cf., Scarf [1960]). 

In particular, Clark and Scarf show 

k n v, xr) = g d(5, vd) + gnr(xr) (4) 

and an optimal policy for the system consists of an optimal policy for (3) 
as the order policy, and a modification (as described in the Introduction) 
of the critical-number policy optimal for (2) as the shipment policy. 

Our goal is to demonstrate a similar separation for both the discounted- 
and average-cost infinite-horizon problems. To state these problems, we 
employ a construction that goes back at least to Veinott [1965]. Let fi 
be the class of (infinite-horizon) measurable policies and a any realization 
of the entire sequence of demands. Then, for a given starting state (y, 
vd, xr), a policy i- E fI and ut determine the sequences of states and 
actions, and we may define 
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Bn(yU, v,d x 
r 

I r, Ut) 

En n-i[cd(yi) + D(v,d + yL) + crzi + R(Xir + zi)] 

for all n, (y, vd, xr), 7r E fJ and a, where (Un, Vn d Xnr) = (Vd, I, xr). 

Assuming discounted costs (a < 1), we let 

B a(y, vd, x r 7r, t) = limn_B(Bn5, vd, x rI 7r, ). 

(The limit exists, though it may be + oo, since {Bn4 is nondecreasing.) 
Then, Ba(y, vd, xrl 7r) EBa(5, Vd, xrl 7r, ut) is the expected discounted 
cost under policy 7r. Set Ba(5, vd, Xr) = inf{Ba(S, vd, xl .7) 

-7r E [Il . An optimal policy (if it exists) achieves the infimum for every 
state. We refer to this problem as IHa. 

Under the average-expected-cost criterion (with a = 1), let Bn(5, Vd, 
xr 7r) = EB& , V d, xr 7r, u). B(y, Vd, xrI 7r) = lim sup, (1/n)Bn(5, vd, 

Xr 17r) is taken as the average cost under 7r, and the problem is to find 
B(y, Vd, Xr) = inf{B(y, Vd, xrl7r): 7r E [lJ; again, an optimal policy 
achieves every infimum. Call this problem IH. 

Consider now the analogous problems for the retail outlet alone. That 
is, let Hr be the class of shipment policies (constrained only by z - 0), 
and B r(Xr I7rr, u) = EX:= oan-i[crzi + R(X,r + Zi)], where Xnr = Xr, for all 
xr , 1r 

r 
Efr and ut. Using limits and expectations as above, define 

Bra(xrIrr), Bra(xr), Br(xrI7r) and Br(xr). Denote by IHar and IHr the 
discounted and undiscounted problems, respectively. The following are 
well-known facts about these problems (cf. e.g., Chapter 3 in Heyman 
and Sobel [1984]) that are true for both discounted and average costs 
unless stated otherwise: 

(a) A stationary critical-number policy is optimal. Let Xr* be the 
critical number. 

(b) Xr* is the global minimum of (1 - a)crx + R(x), and hence solves 
the equation (1 - a)cr + R'(x) = 0. 

(c) The sequence {xr*I is nondecreasing and converges to Xr*. 
(d) For all n and x n x*, gnr(x) = cr(Xn*-x) + gnr(xn). 
(e) For a < 1, the sequence I gnr} converges to a function gr, and gr = 

Bro. Also, gr(x) = Cr(Xr* - x) + gr(xr*), x c Xr*. 

(f) For a = 1, let ar denote the minimal average cost. Then limn,x(1/ 
n)gnr(X) = Br(x) = ar = Cr/. + R(xr*), for all x. 

(Other properties will be introduced as needed.) 

We may now define the appropriate induced penalty cost for the 
infinite-horizon case: 

To, X > Xr* 
P(x) = A 

1(1 - a)cr(x -Xr*) + [R(X) - R(xr*)], x< Xr*. 
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(It is straightforward to show that P is nonnegative and convex. Observe 
that, in contrast to the P,, P does not involve optimal cost functions and 
requires no integration, except perhaps to evaluate R.) Define a program 
similar to (3), but with P replacing the Pn: 

god = o, 

gn d(5 Vd) = miny2o{cd(y) + D(Vd + yL) + p(Vd + yL) (5) 

+ aEgd[(yd y1 ... yL1), ud + yL _ 

n-1, 

and, by analogy with (4), define 

gn(5y, Vd, Xr) = gn d(5 vdd) + gnr(xr). (6) 

Finally, define the infinite-horizon problems for the depot IHad and IHd, 

with 17 d the class of order policies, setting 

B d(Sj vd I _d, Ut) = in 1 an-i[Cd(yi) + D(v d + Y L) + P(V d + Yi L)] 

for .7rd E [Jd and (n, vn d) = (y, vd), and defining Bda (S, vdI 7rd), 
Bda(y, Vd)I Bd(yj Vd I rd) and Bd(?j, Vd) as above. For both IHad (cf. 
Iglehart [1963b]) and IHd (cf. Iglehart [1963a]), a stationary (s, S) policy 
is optimal. 

Now let 1ra* (resp., 7r*) denote the stationary policy that specifies orders 
according to the policy solving IHad (resp. IHd), and shipments according 
to the (modified) critical-number policy solving IHar (resp. IHr). As we 
shall see, ra* (resp. 7r*) is optimal for IHa (resp. IH). 

To study these problems, we shall examine the limiting behavior of 
the g = g + gnr. The difficulty is that gnd arises from problem (3) which 
has nonstationary one-period costs, so we would like to replace gnd by 
gn d hence g by gn. As shown below, {Pn} -- P; intuitively, as n becomes 
large, significant differences between the programs (3) and (5) recede 
infinitely far into the future. The next two sections provide a rigorous 
basis for this intuition. Indeed, for the average-cost case (Section 3) the 
difficulty essentially disappears. (A similar problem of convergent costs 
is studied by Federgruen and Schweitzer [1981] for general, finite-state 
dynamic programs, and in broad outline our arguments are similar to 
theirs. See also Evans [1981] for some related results.) 

2. THE INFINITE HORIZON CASE: DISCOUNTED COSTS 

Assume a < 1. Iglehart [1963b] shows that the differences (gnr _ gr) 
are bounded and converge uniformly to the zero function on the interval 
(-00, xr*). That is, letting fAn = sup II gnr(x) - gr(x) 1: -_ ? < x c Xr*, we 
have 3n < oo and {O3 -n} ? 
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LEMMA 1. The differences (Pn - P) are bounded and converge uniformly 
to the zero function on the entire real line. 

Proof. We shall refer to several of the properties (a)-(f) in Section 1. 
First, for x - Xr* and all n, Pn(x) = P(x) = 0. Defining 

zn = sup{ Pn(x) - P(x) I: - oo < x < oo}, 

= sup{| Pn(x) - P(x)I| - oo < X < xr*j, (7) 

= sup n | Pn(x) - P(x) |: Xr < x < xr*}, 

we have Yn = max{n-, Yn+} We wish to show that Yn < oo and [Yn -* 0, 
and we shall demonstrate these properties for both the Yn- and the Yn+. 

For x c xr*, using u - 0 and (e), E[gr(x - u) - gr(xr* - u)] = cr(xr*- 

x). Thus, for x c x*, using (c), 

Pn(x) -P(x) = {cr(x - xtr*) + [R(x) - R(xrn*)] 

+ agE[grni(x -u) - grn1(xrn*-U] 

- {cr(x - Xr*) + [R(x) - R(xr*)] 

+ aE[gr(x - U) - gr(xr* - ] 

= - cr(x* - Xr*) - [R(x*) - R(xr*)] 

+ aE[grn(x - u) - gr(x - u)] 

- aE[grn_(x - u) - gr(x - U)] 

- aE[gr(X* - u) - gr(xr*-u)]. 

The third expectation here equals - cr(xr* - Xr*). Considering the first 
two expectations, we have 

E r_I g (X - u) -gr(x - u) | }'n-i, 

and E{ Igr_ (xur*-U) - gr(xr* - u) I I 

so -yj < (1 - a)cr(xr* - xr*) + [R(xr*) -R(xr*)] + 2afi-i < cc, 

and [Yny -- 0. 

Clearly, each Yn+ P(Xr*) < c, and [Yn+I 0- 

LEMMA 2. The differences (gnd -gd) are bounded and converge uniformly 
to the zero function. 

Proof. Let Y = Y *U, vd) achieve the minimum in (3) and Yn* = 

Yn*(5, vd) in (5), and define 60O = 0 and 

=n sup |gI I(yI , Vd) - gnd(5 Vd) I: 5 ?0, Vd E Vd n 
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Then, using Lemma 1 gives 
g d(5 Vd) - g d(y~ Vd) C [P (vd + yL) - Pn(Vd + YL)] 

+ aE{g I[y*, yl, Y' yLl), Vd + yL - U] 

- g9n[(yn* y1, ... ., yLl), vd + yL - U]} CYn < + an-1, 

g d(5 vd) - g d(y, Vd) A [Pn(vd + yL) - P(Vd + YL)] 

+ aE gn [(Yn*, yl ... yLl) vd + yL - U] 

d y L-1), vd L u - U Yn a , 

so Ig 9nd(y vd) - gnd(5, Vd) I < Yn + a6n-1. 

Letting bn' = E l"> an-i', and using straightforward induction yields 
an C bn, for all n, and a direct analytical argument shows {nt' -* 0. 

From Iglehart [1963b] we know $gn d} converges to a function gd. 

Defining g = gd + gr, we have the following result: 

LEMMA 3. The sequence I gn} converges to g. 

Now consider the infinite-horizon functional equation analogous to 
(1): 

f(y, Vd, Xr) = infy,z$cd(y) + D(Vd + yL) + crz + R(Xr + Z) 

+ aEf ly, yl . yL-1)9 v d + yL _ US Xr + Z _ U]: (8) 

y > O, Z > 0, Xr + Z < Vd + yL} 

LEMMA 4. The function g satisfies (8), and the infimum is achieved by the 
policy .7ra*. 

Proof. Substitute g = gd + gr into the right hand side of (8), and use 
the same argument as in the finite-horizon case. 

We are now prepared for the main result: 

THEOREM 1. The policy 7ra* is optimal for problem IHa. 

Proof. By Lemmas 3 and 4 and Proposition 9.16 in Bertsekas and 
Shreve [1978], g = Ba (the true infimal cost function). The result now 
follows from Proposition 9.12 in the same reference. (Note, these prop- 
ositions require the one-period costs to be bounded below. This condition 
is easy to establish, provided a pr2 (1 - Ol)hd; the latter condition must 
hold, otherwise it is optimal never to order.) 

3. THE INFINITE HORIZON CASE: AVERAGE COSTS 

With a = 1, by standard arguments, the average shipping cost is cr,y 
and the average proportional order cost is cd,U under all interesting 
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policies. Thus, we may assume cd = Cr= 0 without loss of generality. A 
straightforward induction demonstrates that Cr = 0 implies xr* = Xr* for 
all n-1, so gnr(x) = nR(xr*) whenever x c Xr*. But this result implies 
that Pn = P, so n = gnd and g = gn for all n - 1. Thus, many of the 
difficulties encountered in the discounted case do not arise here. 

We know (Iglehart [1963a]) that jgnd/nj converges to ad = Bd(5, Vd), 

the true minimum average cost for the depot's problem. (See also property 
(f) in Section 1.) 

Letting a = ad + ar, we have 

Ig(Y , , xr)/nl -- a, for all (5, id, xr). 

LEMMA 5. The policy r* has average cost a. 

Proof. In a finite number of periods under r* we will have Xr < Xr* 
with probability 1, so we may assume Xr c Xr*. Letting z denote the 
decision under the unconstrained critical-number policy, we have X,r + 
zir = xr* i = 1 ... I *Xn for all n. Thus, 

RR(Xr*), Vfd + y.> X* 
R (Xr + Z,) =R(vid + y-L), Vd + yL < Xr* 

= R(x"*) + P(Vi0 + yxL) 

Thus, for all n, a, and (5, vd, xr) 

Bn(y V dI xr I7r*, a) = Bnd(, Vd lIr*, a) + nR(xr*), 

so B VdB(y,vd Xr I *) = ad + ar= a. 

THEOREM 2. The policy 7r* is optimal for problem IH. 

Proof. We must show B(y, vd, Xr) = B(y, vd, Xr l i*) = a. Clearly, B(y, 
vd, xr) - a, since r* is a feasible policy. Now, fix e > 0. There is some 
policy yr" such that 

B(y, Vd, Xr I| T) - B(y, Vd, Xr) + 

By result 111.1 on p. 86 of Dynkin and Yushkevich [1979], for n - 1 there 
is a (finite-horizon) Markovian policy 7rn' such that 

Bn(, ud , I XrI7rn) = Bn(, vdI xr I ir). 

But, by the definition of ,gn 

(Y, v d, x r) - Bn(5V ud, x rl 7rn) = Bn(, v d, x r 
I ). 

Dividing by n and taking limits yields a c B(y, vd, Xr) + E. Since this is 
true for all e > 0, we have a c B(y, vdI Xr), completing the proof. 
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4. COMPUTATION OF OPTIMAL POLICIES: NORMAL DEMANDS 

Before turning to normal demands, we summarize what is required to 
compute an optimal policy in the general case. Here and in the next 
section, we restrict attention to average costs; the discounted case is 
similar. 

As in property (b) of Section 1, computation of Xr* requires the solution 
of a single equation. Solution of IHd is less simple. First, we can define 
an equivalent problem with no order lag by the transformation mentioned 
in Section 1. Define xd = all inventory in the system, plus outstanding 
orders = vd + EfL=1 y'. The new problem has the single state variable xd, 
action y, dynamics Xd_1 = X d + Yn - un, order cost function cd(y), and 
one-period expected costs DL(Xd + y) + PL(xd + y), where 

DL(x) = ED[x - u(L)], PL(x) = EP[x - u(L)]. (10) 

(As in Section 1, a constant Ad representing short-term costs outside our 
control is deducted from the problem; this plays no role at all in IHd.) 

From here, the current state of the art requires discretization. Several 
algorithms are available for solving the discrete version of IHd, e.g., 
Veinott and Wagner [1965] and Federgruen and Zipkin [1984b]. Both 
require multiple evaluations of the functions defined in (10). These 
computations are the concern of the rest of this section. 

Evaluation of DL(X) = hd(X -_M(L)) is no problem. Turning to pL, we 
let f(i) denote the density of u(i) and let F(") be its cumulative distribution 
function (cdf). It is possible to show that 

rx 
R(x) = ps[u(I+l) - X] + (ps + hr) f F(1+1)(t)dt - hdU. (11) 

where ps = hd + pr, and we have 

pL (X) = _* [R(x - t) - R(Xr*)]f(L)(t)dt (12) 

In general, (12) evidently requires numerical integration. (The compu- 
tation is still easier than the finite-horizon analogue, which requires an 
additional integration.) 

Now assume u is normally distributed with mean ,u and standard 
deviation a. (This distribution violates the assumption that u - 0, so the 
previous results may hold only approximately. Since Pr{u < O} is usually 
very small for practical u and a, we ignore this objection.) After defining 
some notation, we shall give an expression for pL and then justify it. Let 
1b(.) = standard normal cdf; 0(.) = standard normal density. If 4, and 42 

have a bivariate normal distribution, with marginal densities X and 
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correlation p, let b(P1, 02; p) = cdf of Q1, 42). Let v(') = i' a be the standard 
deviation of u). Define 

,(X) = - [X - (Xr* + M(L))]/yO(L) 

2 (X) = [X - 1(L+1+1)]/t (L+1+1) 

T3(X)= - - (Xr* + M(L)) _ [0.(L)/0.(l+l)]2[Xr* _ (1+1)]- 

/[U(L) Uf(L+1+l )/ (1+l)]j 

V= [xr* - (l+l)]/Or(1+1) 

(l(X) = P[T3(X)]O[T2(X)]/U (1) 

62(X) = 4(Vr*)0[r[l(x)]/J.(L) 

0(X) = X?(x) + X(X). 

(Note, O'(x) = 4(x). Also, T3(X) simplifies to - {x- [(L + 1 + 1)/ 
(1 + 1)]xr* /[(L + 1 + 1)/(1 + 1)]l/2L'/2o. The notation above, however, will 
facilitate the discussion in Section 5.) Then, 

pL(X) = pst(X) - (ps + hr)K(X), (13) 

where 

t (x) = (L) [T1(X)], 

K(X) = (l+l)0(Vr*)p[_T(X)] - [U(L+1+1)] 2l(x) 

- (L) (x) - [X - (L+1+1)] 

*4 [rl(X), iT2(x); - 0.(L)/0.(L+1+1)] 

Note that all the functions required to evaluate pL are available in 
standard packages, e.g., IMSL [1977]; while not quite simple, the com- 
putation is easier than numerical integration. 

In principle, the derivation of formula (13) is an elementary integration 
problem, but it is sufficiently involved to warrant an outline. We first 
compute the derivative of pL: 

00 

PL'(X) = R'(x - t)f(L)(t)dt 
(14) 

rX = -p84t>[ri(x)] + (ps + hr) Js H F(')(x - t)f(L)(t)dt, 

using (11). The integral in (14) is precisely Prfu(L)>x-Xr*, u(L) + 
u(ll c x}. This expression may be written in standardized form: Define 

= - [u(L) u (L)]/a(L) and {2 = [u(L) + u(1+1) - ,1(L+1+1)]/k7(L+1+1) The 
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correlation between Ai and {2 can be shown to be - a(L)/kr(L+1+1)j SO (14) 
becomes 

PL'(x) = - p84{[-T(x)] + (p8 + hr)4[r_(x), r2(x); - a(L)/Or(L+1+1)] (15) 

It is easy to show that limx .PL(x) = 0. Therefore, 
00 

PL(x) = - PL(t)dt. 

Integrating the two terms of (15) separately will lead to t and K. The first 
term is straightforward, since limxlt(x) = 0, and t'(x) = - f[rj(x)]. For 
the second term of (15), limx,K(x) = 0 as well (examining K term by 
term), so we must show K'(X) = - 4T(X), T-2(X); -(L)/Or(L+1+1)]. 

For any bivariate normal Q1, 42), 1 1 02)- N[p2, (1 - p2) /2] and (2 I1) 
- N[ptj, (1 - p2)l/2]. This fact and tedious algebra can be used to show 

PI 1 r 1(x) l I2 = T2(x) =[T3(X) 

and PI 2 T2(x) l Al = i-(x) = X (vr*) 

and, therefore, 

(d/dx)4[-T (x), T2(x); - 0.(L)/0.(L+1+1)] = (l(X) - 62(X). 

More algebra demonstrates 

fi' (x) = - (L+1+1)]-21[f(1+1)0(Vr*)][O(rl(X))/f( ] 

+ [X - M(L+1+1)]CE(X) j 

and (2 (x) = [a(L)r2 [ a(1+1)vr*4(pVr*)][(p (1r (x))/a(L)] 

- [x - U(L+1+1)]C2(X)}e 

The last three equations yield the desired result. 
We remark that a closed form expression for pL can be derived from 

(12) for Erlang-distributed demands as well. 

5. SEVERAL RETAIL OUTLETS 

Now consider the case of J retail outlets. A subscript j will index the 
outlets, and an overbar will indicate a vector over j. Thus, xr = (XJ)%l is 
the vector of inventories plus outstanding shipments, and z = (zj),J=1 is 
the vector of current shipments. Each outlet experiences a normal 
demand, so u = (uj)jJ=1 is a normal random vector. While demands in 
different periods remain independent, correlations between components 
of a are allowed. Let ,Uj and fj denote the parameters of uj. Assume the 
u; have equal coefficients of variation fjlAj. The symbols Xr, z and u will 
represent sums over the index j; in particular, z is the total amount 
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withdrawn from the depot, and system-wide demand u itself is normal. 
We assume the outlets all have the same cost factors, Cr, pr and hr. We 
shall retain z explicitly in the formulation and describe z as the allocation 
of z among outlets. We continue assuming a = 1. 

The system has state (5, vd, xr) and action (y, z, z). The constraints 
and dynamics are given by the following equalities and inequalities: 

y > O, Z > 0 xr + Z Vd+ yL, J=1 zi = z, z > O, 
d =nd L ~ d = d - 

- = -) vd_1 = Vn + yn Un Xn-1 Xn + Zn Un, Yn-1 (Yn, Yn 1 . Yn) 

Total one-period costs are given by 

cd(y) + D(Vd + yL) + CrZ + X-1 R1(xr + Zj), 
where 

Ri(x) hd(X _ -U1)) + prE[u(l+l) - x]+ + (hd + hr)E[x -u('] - 

We now approximate this problem by one having a single outlet, like 
those of prior sections. We use an approach introduced in Federgruen 
and Zipkin [1984a, 1984c] related to that of Eppen and Shrage, which 
performs extremely well when the depot cannot hold stock. After describ- 
ing the approach we shall argue that, if anything, it should work better 
in the present case. 

Form a relaxed problem by dropping the constraints z > 0. Now, the 
current choice of z in no way affects the achievable future values of xr + 
z, and hence future costs. We may thus choose z to minimize current 
costs only, that is, to solve the following problem: 

min- J=1 Rj(xjr + zj), subject to: J=1 zj = z. (16) 

But the minimal cost of (16) can be written as R(xr + z), where 

R(x) = - hd(X _ (I)) + prE[u(I+l) - x]+ + (hd + hr)E[x -ul+'], 

and u('+') denotes, not system-wide demand in 1 + 1 periods, but rather a 
normal random variable with the same mean (1+1) = (1 + 1) J-=1 uj and 
a different (larger) standard deviation u('+1) = (1 + 1)1'2 EJ=1 oj. Further- 
more, the vector xr now affects the problem only through Xr. The relaxed 
problem thus reduces precisely to problem IH, understanding that u (+1) 
and hence R have the new interpretations given here. The results of 
Sections 1-3 can, therefore, be applied directly to determine an optimal 
policy. In Section 4 the symbol a('+l) has the meaning given here, 0(L) iS 
the true standard deviation of L-period total-system demand, and a (L+l+1) 

= I[la(L)]2 + [or(1+1)]2}?/2. Because we arrived at this problem by enlarging 
the original action sets, the optimal cost of this version of IH provides a 
lower bound on the true optimal cost of the original problem. 
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The optimal policy for this instance of IH provides a feasible policy 
for orders and total withdrawals z. To complete the specification of a 
policy for the original problem, we require an allocation rule. For this 
purpose, we propose the myopic allocation policy (following Federgruen 
and Zipkin [1984c]), which sets z to minimize the true current costs, that 
is, to solve the problem 

min- ,J-1 Rj(xjr + Zj), subject to: ,J=1 zj = z, 2 0. (17) 

The true total cost of this feasible policy is, of course, an upper bound on 
the optimal cost of the original problem. We shall argue, partly on the 
basis of earlier empirical results, that the relaxed problem provides a 
close approximation to the cost of this policy; in other words, the 
difference between the upper and lower bounds is small. We can then 
conclude both that the policy is a good one, and that the relaxed problem 
provides a good cost approximation. 

Clearly, the relaxed problem reproduces exactly the costs represented 
by the functions cd( .), DL(.) and crz. Any error arises in the measurement 
of ,jRj. Comparison of (16) and (17) shows that the approximation 
would be exact, if the constraints z 2 0 were never binding in (17). The 
accuracy of the approximation as a whole, therefore, depends on how 
often these constraints are essential and the resulting effects of relaxing 
the binding constants on the total cost of (16). 

Let a "cycle" mean a sequence of periods starting with the arrival of 
an order at the depot and ending just before the next order arrives. A 
cycle consists of some "ample-stock periods," when the depot has enough 
stock to ship up to the critical number Xr*, one period when the depot 
has positive but less-than-ample stock (the "allocation period"), and 
finally some "empty periods" when the depot has no stock, so z = 0. (Not 
every cycle, of course, need have all three kind of periods.) 

Let xjr* denote the critical number for outlet j alone (i.e., x4* minimizes 
Rj) and xr* = (x*)J-1. A direct calculation shows E4jxjr = Xr*. Suppose a 
cycle begins with 

x _x (18) 

If there is ample stock in the first period, we have z = Xr - Xr 2 O, and 
it is straightforward to show that the solution to both (16) and (17) is 

- x -X. (19) 

In particular, z > 0 is inessential in (17). The only way (18) could fail in 
subsequent periods of the cycle, furthermore, is if some demands were 
negative, events that we assume to have very low probability, as explained 
in the previous section. It is possible to show that under the proposed 
policy, from any initial state, we shall arrive at a cycle where (18) holds 
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in a finite number of periods with probability 1. Subject to the qualifi- 
cation expressed earlier about negative demands, therefore, (18) will hold 
in all periods of all subsequent cycles, and hence z > 0 is inessential in 
all but a finite number of periods with ample stock. 

In the allocation period, z > 0 may be essential and it (almost surely) 
will be essential in the empty periods. Observe, however, that z 2 0 is 
inessential in (17) if and only if the solution to (17) satisfies the following 
condition: 

[Xjr + Zj - 1+1)]/(,1+1) - [Xr + Z - g(l+l)]/j(l+l) = 0, 
(20) 

j=1, J. 

For given (Xr + z), roughly speaking, the cost of (17) increases with 
deviations from (20). (Cf. Zipkin [1984] for a more formal treatment.) 
The process described by these differences during the allocation and 
empty periods evolves in just the same way as it does during an entire 
cycle of a system without central stock operating under an (s, S) policy. 
In both cases the system starts with (20) nearly satisfied; for the remain- 
der of the cycle the differences are generated by the demand process 
only. Also, the cost functions in the two cases have the same form (refer 
to (11)). And, as shown empirically in Federgruen and Zipkin [1984a, 
1984c], the cost effects of such "imbalances" are quite small in the case 
of no central stock, so they must be small here as well. 

All of these observations taken together suggest that the overall 
approximation provided by the relaxed problem should indeed be very 
accurate. 

The assumption of equal jl/,j enters the argument only in the last 
step concerning the allocation and empty periods. As shown in Feder- 
gruen and Zipkin [1984c], with very unequal fj/lUj, if we start with (20), 
the imbalance grows very fast and results in much higher cost. Federgruen 
and Zipkin [1984a] present a special modified. allocation rule, which 
solves this problem satisfactorily when there is no central stock. The 
method does not apply directly to the current case, unfortunately, but 
we suspect some related approach can be fashioned to work just as well. 
Similarly, further research will hopefully show how to adapt the tech- 
niques of Federgruen and Zipkin [1984a] and Zipkin [1982] for unequal 
penalty and holding costs. 

Equation 19 expresses a remarkable fact: Under the proposed policy 
the shipments to individual outlets are the same as if each outlet followed 
its own critical-number policy, and the depot simply satisfied the result- 
ing orders when there is enough stock to do so (in ample-stock periods). 
The only period in a cycle requiring an explicit allocation decision is the 
allocation period (hence the name). Thus, even though the original model 
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describes a system under centralized control, a maximally decentralized 
policy should perform very well. This situation contrasts markedly with 
the case of no central stock, where no such interpretation is possible. 
Rosenfield and Pendrock [1980] among others have noticed before that 
centralizing some inventory permits some decentralization of decision 
making, but we believe the discussion above provides the first strong 
evidence that such an approach is economically effective. We emphasize, 
however that our construction of the cost functions for IH to determine 
the depot's order policy (especially the calculation of a (L+1+1)) uses data 
on the individual outlets in a nontrivial way. 
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