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This paper presents an algorithm to compute an optimal (s, S) policy under 
standard assumptions (stationary data, well-behaved one-period costs, discrete 
demand, full backlogging, and the average-cost criterion). The method is itera- 
tive, starting with an arbitrary, given (s, S) policy and converging to an optimal 
policy in a finite number of iterations. Any of the available approximations can 
thus be used as an initial solution. Each iteration requires only modest compu- 
tations. Also, a lower bound on the true optimal cost can be computed and 
used in a termination test. Empirical testing suggests very fast convergence. 

M ANY PRACTICAL inventory replenishment problems satisfy rea- 
sonably closely the mathematical conditions under which (s, S) 

policies are optimal. Rules of this type, moreover, are easy to implement 
and require no more data than other standard techniques. Scientific 
methods for computing the best (or even a "good") policy, however, are 
rarely used, because-according to folklore-they are prohibitively ex- 
pensive. We hope the current paper will contribute to the retirement of 
this myth. 

We present here an algorithm to compute an optimal (s, S) policy 
under standard assumptions (stationary data, well-behaved one-period 
costs, discrete demand, full backlogging and the long-run-average cost 
criterion). The overall strategy of the algorithm is policy-iteration, mod- 
ified to exploit an embedding technique (related to the renewal-theoretic 
approach) which streamlines many of the computations. The only linear 
systems that need be solved are all triangular, and hence can be solved 
by simple substitution. This technique also removes the need for trun- 
cation of the state space (as required by standard implementations of 
policy-iteration and value-iteration, cf. Howard [1960]), so the algorithm 
is truly exact. 

Starting with a given (s, S) policy, the algorithm evaluates a sequence 
of policies, all of this form (unlike standard policy-iteration), and con- 
verges to an optimal one in a finite number of iterations. The policies 
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generated are strictly improving, but not in the usual sense: Average 
costs decrease, but not necessarily strictly; cycling is precluded by strict 
improvement in a certain (natural) lexicographic criterion. In addition, 
a lower bound on the optimal cost can be computed in every iteration; 
the algorithm can thus be terminated with a suboptimal policy whose 
cost achieves any desired level of precision. 

A major advantage of such an iterative algorithm is the ability to use 
any of the available approximations to an optimal policy as an initial 
solution. These include the method of Roberts [1962] and modifications 
of it developed by Wagner et al. [1965], Wagner [1975] and Ehrhardt 
[1979]; and the techniques of Porteus [1979] and Freeland and Porteus 
[1980a, 1980b], which are based on the general approach of Norman and 
White [1968]. On the other hand, each of these approximations is 
accurate only over a limited range of the data of the problem, and the 
respective ranges are imperfectly known; for any given problem, there- 
fore, one cannot predict how far from optimality the computed policy is. 
Our algorithm and our bounds thus provide a much-needed corrective to 
these methods. 

It is often asserted (e.g. Ehrhardt [1979]) that methods requiring the 
full probability distribution of demand are impractical, since they require 
more information than is usually available. Many of the approximations 
mentioned above use only the mean and variance of demand. The 
empirical results of Archibald and Silver [1978], however, indicate that 
the optimal policy can be sensitive to more than the first two moments 
of the distribution. Exact methods are the only ones currently known 
which can use additional information. Fortunately, more information 
(perhaps qualitative rather than quantitative) often is available; for 
example, one often knows whether or not the distribution is symmetric. 
Such information can be used to guide the choice of an appropriate 
distributional form. 

The overall logic of the algorithm is close to that of a method proposed 
by Johnson [1968], though there are differences in the specifics of the 
computations. There are problems in Johnson'sS proof, however. These 
have been rectified by Kuenle and Kuenle [1977], under somewhat 
different assumptions. The Appendix below discusses in detail the 
models, algorithms and proofs in these two papers in relation to ours. 
Other methods for computing optimal (s, S) policies include those of 
Veinott and Wagner [1965], Archibald and Silver, and Bell [1970]; these 
are essentially enumerative rather than iterative. (Sahin [1982] has 
recently demonstrated some convexity properties of the average cost as 
a function of s and S under certain assumptions on the demand distri- 
bution. These results permit some of the enumerative algorithms to 
exploit an advanced starting solution, like our iterative algorithm.) 
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The embedding technique mentioned above can be seen as a special 
case of the approach developed by De Leve et al. [1970, 1977a]. The 
approach has been applied to a variety of systems by Tijms [1976, 1977], 
De Leve et al. [1977b], Tijms and Van Der Duyn Schouten [1978] and 
Federgruen et al. [1984]; cf. Tijms [1980] for a survey. Our application, 
however, is the first for which finite convergence to an optimal policy is 
proven. 

Other work on related inventory systems includes that of Sivazlian 
[1971], Tijms [1972], Gross and Ince [1975], Naddor [1975], Schneider 
[1978], and Tijms and Groenevelt [1984]. 

Computational testing suggests the algorithm converges very quickly. 
We solved 768 test problems, requiring an average of 0.39 CPU seconds 
on an IBM 4341. Excluding some unlikely cases (with penalty cost = 
(1/10) x holding cost), the average drops to 0.09 second. This is certainly 
fast enough for most applications. 

In Section 1 we define notation and discuss certain computations 
required in the algorithm. The algorithm itself is stated in Section 2, 
while Section 3 contains the convergence proof and the derivation of the 
bounds on the minimal cost. Our computational experience is reported 
in Section 4. An Appendix discusses related algorithms. 

1. NOTATION AND PRELIMINARIES 

First we define notation; since the problem is stationary we shall 
suppress time subscripts throughout. 

x = inventory at the beginning of a period. 
y = inventory position after ordering, but before demand, y > x. 

Both x and y are always integer valued. We assume all stockouts are 
backordered, so x and y may be negative. 

pj = PrIone-period demand = j}, j = 0, 1, 2, 
K = fixed cost to place an order. 

G(y) = one-period expected costs, including, e.g., holding and penalty 
costs, y = -1, 0, 1 ,. * *. 

We assume only that po < 1, -G is unimodal, and limlyl, G(y) > 
[minyG(y)] + K. This includes the common case where G is convex and 
limIy I G(y) = oo, as in Iglehart [19631 and Veinott and Wagner. A fixed 
delivery lag can be incorporated by a standard redefinition of G, cf., e.g., 
Veinott and Wagner. (An approximate model of the same form can be 
constructed to handle the case of stochastic delivery lags, cf. Ehrhardt 
[1984].) 

Under these assumptions an (s, S) policy is optimal, as shown by 
Veinott [1966]. Let R = (s, S) denote a particular policy of this class. We 
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interpret R to specify orders as follows: If x < s, set y = S (order S -x); 
otherwise, set y = x (do not order). 

In policy-iteration the usual approach to the evaluation of a policy R 
is based on the resulting stochastic process described by the state variable 
x, as follows: Define 

'y(x, y) = one-step total expected cost when x is the initial state, and 
an order y - x is placed. 

_ G(y), y = x 
{G(y) + K, y> x. 

YR (x) = value of y specified by policy R in state x. 

(We shall also denote 'YR(X) = 'Y[X, YR(X)I.) 

g* = minimal average cost over all policies. 
gR= average cost of policy R. 

rR (x)= unique steady state distribution of the inventory x under 
policy R (cf. Iglehart). 

One standard characterization of gR uses the (infinite) system of equa- 
tions in the unknowns g and v(.): 

V(X) = 'YR(X) - g + 1X0 pjv[yR(x) - j], for all x, (la) 

v(S) = 0 (lb) 

((ib) serves as a normalization condition.) Now, suppose Ig, v(*)} solves 
(1) with v(x) bounded, x c S. Then, it is not hard to show that g = gR. 

(Multiply (la) by rR (x), sum over x and rearrange terms.) In practice, of 
course, the system (1) must be truncated, and approximate solutions 
used. 

Our approach is based instead on the inventory process observed at 
epochs following replenishment opportunities, that is, on the sequence of 
y's: Define 

t(v) = expected time until the next order is placed when starting v 
units above the order point, i.e., when v = y - s, v > 0. 

k, (y) = total expected costs until the next order is placed, when start- 
ing with inventory y, y > s. 

The functions t and k8, respectively, satisfy the following equations: 

t(v) = 1 + Ev 3 pjt(v -), v > 0 (2) 

ks (y) = G(y) + Z2_I-o` pjks(y - j), y > s. (3) 

Observe that t is independent of the policy R, and that ks depends on R 
only through s. Moreover, systems (2) and (3) are triangular, so t can be 
computed starting with v = 1 by simple substitution, and k, can be 
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computed similarly starting with y = s + 1. (Note, t is the renewal 
function of {pj} plus one.) 

The key point is that gR and VR (x) can be computed from these 
functions as follows: 

gR= [ks(S) + K]/t(S - s), (4) 

VR (X) [k(jX) + K] - gRt(X - s) x > 
s(5) 

K, x < S. 

((4) is a standard result in the theory of regenerative processes, cf., e.g., 
Ross [1970], Proposition 5.9. Direct substitution shows that the solution 
specified by (4), (5) satisfies (la) and (lb); cf. also Theorem 2.1(a) in 
Tijms [1980] and Lemma 1 in Federgruen et al.) Thus, no truncation or 
approximation is necessary. 

A policy-iteration algorithm also requires test quantities, in order to 
search for improved policies; these quantities are defined as follows: 

IR(X, Y) = Y(X, Y) -ggR + ,J=OP PVR(Y -j), y > X. (6) 

The algorithm uses IR(x, y) only for certain values of (x, y), and in these 
cases IR simplifies greatly: for y > x, we have 

IR(X, y) = K + G(y) - gR + >jO PjVR(Y -j)- (7) 

If y > s also, we have 'YR(Y) = G(y), so using (1), (7) becomes 

IR(X, y) = K +VR(y), y > x,y > s. (8) 

Similarly, inserting (5) into (6), we obtain 

IR(x, x) = K + G(x) - gR, X C S. (9) 

Also, for any two policies R and R', denote IR(X, R') = IR[X, YR'(x)]. 
The algorithm and the convergence proof utilize constants L, M, U, 

which serve as bounds on the optimal policy, specifically, L ' s < M < 
S c U. These may be computed as follows (cf. Veinott): 

M = smallest integer minimizing G(y), 
U = smallest integer greater than M with G(U + 1) - G(M) + K, 
L = smallest integer such that G(L + 1) ' G(M) + K. 

2. STATEMENT OF THE ALGORITHM 

Step 0 (Initialize) 

Compute the bounds L, M and U as in the previous section. Choose 
an initial policy R = (s, S) with L ' S < M ' S ' U. Compute the 
function t(v), v = 1, * , U - L, using (2). 
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Step 1 (Value Determination) 

If s has changed from the prior iteration, compute k,(y), y = s + 1, 
* , U, using (3). Compute gR using (4), and VR(X), x = L, * , U, using 
(5). 

Step 2 (Policy Improvement) 

(a) Find S' satisfying M ' S' ' U and 

vR(S ) = minM5ysUuvR(y)j. (10) 

(If S attains the minimum, set S' = S.) 
(b) Search for an integer y satisfying s < y < M and 

K + vR (S') < vR (x), S < X < Y.(1 

If such a y exists, set s' to be the largest such y, and go to Step 3. 
Otherwise, search for x satisfying L c x < s and 

G(y) < gR, x < Y ' S. (12) 

If such an x exists, set s' to be the smallest such x, and go to Step 3. 
Otherwise, set s' = s. 

Step 3 (Test for Termination) 

If R' (s', S') = R, stop: R is optimal. Otherwise, set R = R', and 
return to Step 1. 

Remarks. (1) Convergence to the optimum is still guaranteed if Step 
2(a) is modified to set S' to be any y, M c y c U, such that VR(y) < 
VR(S) = 0; if no such value exists, set S' = S. For example, we can choose 
S' as follows: If minIvR(y): M c y ' S) < 0, set S' to achieve the 
minimum; otherwise set S' to be the smallest local minimum of VR(y), 
S c y c U, with VR(y) < 0; if none exists, set S' = S. This approach 
reduces the computation required in Step 1: In Step 1 compute ks(y) and 
VR (Y) for y up to S, not U. (This much is needed to compute gR.) Compute 
these functions for y > S successively, but only when required, in Step 
2. Similarly, the new s' can be chosen to be any y, satisfying (11) and 
s < y < M, not just the largest, or any x satisfying (12) and L < x < s? 
not just the smallest. 

(2) The policy improvement step does not necessarily select a policy 
achieving the best one-step improvement (as defined in standard policy- 
iteration, that is, by choosing y to minimize IR(X, y) for each x), even 
when S' is chosen as the global minimum in (10). (Such a policy may 
fail to have the (s, S) structure.) However, the algorithm can be viewed 
as performing restricted minimizations of IR: By (8) Step 2(a) chooses y 
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to minimize IR(X, y) for x < s, given y > x. Then, Step 2(b) chooses y to 
minimize IR(x, y), where y is restricted to y = x or y > s, for an interval 
of values of x containing s; the interval is increased as long as the 
minimization produces improvements over IR (x, R). 

3. CONVERGENCE PROOF AND BOUNDS 

The proof requires several lemmas and two theorems. The bounds are 
derived afterward. 

LEMMA 1. Let R' = (s', S') be obtained from R = (s, S) by Step 2 of the 
algorithm. Then, 

IR(X, R') < VR(X), for all x. (13) 

gR' < gR (14) 

Moreover, (14) holds strictly if (13) is strict for some state x which is 
positive recurrent under R'. 

Proof. For (13) we consider two cases, (a) and (b): 
(a) Suppose s' < s. First, for x c s', we have 

IR(X, R') = K + VR(S') C K + VR(S) = K = vR(X), 

by (4), (5), (8) and (10). Second, for s' < x < s, 

IR(X, R') = G(x) - gR + K < K = VR(X), 

by (5), (9) and (12). Finally, for x > s, 

IR(x, R') = IR(x, R) = VR (x) 

(b) Suppose s' > s. For x c s, 

IR(X, R') < K = vR(X), 

as in case (a). For s < x c s', 

IR(X, R ) = K + VR (S) ' VR (X) 

by (8) and (11). For x > s', IR(X, R') = VR(x) as in case (a), completing 
the proof of (13). 

Now, multiply (13) by 7rR', sum over x, and use (6) to yield 
Z2X7rR'(X)VR(X) > Z2XWR'(X)YR'(X) - gR + Z2xWR'(X)2jPjVR[YR'(X) - A1 
Letting z =yR' (x) - j, the double sum (the last term) can be written 
2x R R' (x)2 ,Pr{next state = z I x, R'}VR(z) = z2;,rR '(z)VR(Z), using the fact 
that 'rR' is the equilibrium distribution. But z2XWR' (X)VR(X) < oo, since 
VR(X) is bounded, x < S, so this term cancels from both sides. Also, 
12rR'(X)'YR'(X) = gR', yielding (14). The assertion concerning strict ine- 
quality follows similarly. 
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(Remark. The proof that (13) implies (14) closely follows that of 
Theorem 2.1(b) in Tijms [1980].) 

LEMMA 2. Let R' be obtained from R by Step 2 of the algorithm. If 
R' $ R, then either 

(i) gR' < gR; 

or (ii) gR = gR, but VR'(X) ' VR(X), for all x, and the inequality is strict 
for some x. 

Proof. Again, there are two cases: 
(a) S' $ S: We have VR(S) < VR(S) = 0 by (10). By (8), therefore, for 

all x <M, IR(X, S') <IR(X, S) = K, so 

IR (X, S') < VR (X), x <,S. (15) 
If s' < s, (15) holds in particular for x c s'; if s < s', (11) ensures that 

IR(X, S') = K + VR(S') < VR(X), s < x < s', 

while (15) still holds for x c s. In either case, we have 

IR(X, RI) = IR(X, S') < VR(X), x C S'. (16) 

Now, the set {x: x c s'} clearly includes states that are positive recurrent 
under R'. Thus, Lemma 1 yields gR' < gR. 

(b) S' = S (hence s' $ s): Assume (i) does not hold, so that gR = gR. 

We now show by induction that 

VR'(X) < IR(X, R') for all x. (17) 

First, VR'(X) = K = IR(X, RI), x < s', by (8). Now suppose VR'(X) < 

IR(X, R') for all x c x, for some x - s'. From (13) and the definition of 
IR, 

VR(X + 1) > IR(X + 1, RI) 
(18) 

- G(x + 1) - gR + X7=1 PIVR(X + 1 -j) + POVR(X + 1). 

By repeated substitutions in (18) for the term involving VR (X + 1) we 
obtain 

VR(X + 1) ' IR(X + 1, RI) 

- (1 -po)'[G( + 1) - gR + tl PjVR(X + 1 -)]. 

By the induction hypothesis and (13), VR(X) > VR'(X) x < . Hence, since 
gR = gR', 

IR(X + 1, RI) - (1 - po)f [G(x + 1) -gR + 
J -1PjVR'(X + 1-j)] VR'(X + 1). 

(The equality follows from (1).) This completes the proof of (17). 
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Now we show that (13) holds strictly for some x (not necessarily a 
positive recurrent one). If s' > s, choose x = s'. Then, using (8) and (11), 

IR(S, R') = K < VR(S ). 

If s' < s, choose x = s. By (9) and (12), 

IR(s, R1) = IR(s, s) = K + G(s) -gR < K= VR(S), 

proving the assertion. 
This fact, (13) and (17) yield (ii) immediately. 

COROLLARY 1. If p, > 0 and R' $ R, then gR, < gR. 

Proof. When Pi > 0, x is positive recurrent under R' s' < X < S'. In 
the proof of Lemma 2 case (b) we showed that (13) holds strictly for x = 
s' (when s' > s) or x = s (when s' < s). The result follows from Lemma 
1. 

THEOREM 1. The algorithm terminates after a finite number of iterations. 

Proof. Only finitely many policies (s, S) satisfy the bounds 

L---s<M-- S c U, 

and Lemma 2 ensures that no policy is ever repeated. 

Consider now the standard dynamic-programming formulation of the 
problem; the action set for state x is ly: y > x}. Suppose we use the 
bounds L, M and U to define a new program with action sets restricted 
as follows: 

- lxl, x > Ml 
Y(X) = lY: y=x or MCYC U}, L<x<M, 

Uy: MCyCU}, x'L. 

Also, we may restrict the state space to X = Ix: x c U}. Clearly, any 
(s, S) policy satisfying the bounds, and hence the optimal policy, is 
feasible for this problem, so the new problem is equivalent to the original 
one. This construction is crucial in the proof below. 

For later use, define T, the value-iteration operator in this model, by: 

Tv(x) = minCy(x)l-y(x, y) + ?%o pjv(y - j) 1 x c U. (19) 

Consider now the standard optimality conditions for policy iteration 
for this equivalent problem: 

VR(X) = minlIR(x, y): y E Y(x)}, x E X. (20) 

LEMMA 3. If R satisfies (20), then R is optimal. 

Proof. By the remarks above, some optimal policy R* is feasible for the 
equivalent problem. If R satisfies (20), in particular vR(x) c IR(X, R*), 
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x E X. For x $ X note 7rR_ (x) = 0-; as in the proof of Lemma 1, therefore, 
gR C gRR. 

THEOREM 2. The algorithm terminates with an optimal policy. 

Proof. Let R be the policy to which the algorithm converges. We shall 
verify that R satisfies (20). 

From step 2 of the algorithm we obtain the following relations: 

VR(y) -?VR(S) = 0, M c y c U, (21) 

VR(S+1) VR(S)+ K=K, (22) 

G(s) ? gR. (23) 

Note first, for any x < M, if some y > x achieves the minimum in (20), 
then y = S does, by (8) and (21). Using the above restriction to the sets 
X and Y(x), only the following cases need be considered: 

(a) For x 2 M, IR(X, x) = VR(x), by (1). 
(b) For x < s, G is decreasing, so from (23) 

G(x) - G(s) ' gR. 

This together with (8) and (9) yields 

IR(X, x) > K = IR(X, S) = VR(X). 

(c) For s < x < M we wish to show that 

IR(X, x) = vR(X) C K = IR(X, S). (24) 

The proof is by induction on x: 
First, (22) gives the result for x = s + 1. Suppose it is true for x = s + 

1, * * < M -1. Then, by (1), 

vR(X + 1) c G(x + 1) -gR + POVR(X + 1) + (1 -po)K, 

or VR(X + 1) ' (1/(1 - po))[G(x + 1) - gR] + K. (25) 

But, from (2)-(4) and (6) we have 

VR(S + 1) = (1/(1 - po))[G(s + 1) - gR] + K, 

so VU(S + 1) < K implies G(s + 1) c gR, hence G(x + 1) < gR. This, with 
(25), yields the result. 

(This proof is related to that of Theorem 3.1 in Van Nunen and Puterman 
[1983].) 

The following theorem shows that bounds on -the minimal cost g* may 
be computed easily at each iteration. For each policy R, let 

VR+ = maxs,x<M VR(X). 
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THEOREM 3. Let R' = (s', S') be obtained from R = (s, S) by Step 2 of 
the algorithm. Then, 

gR + min{vR(S') + K - VR', G(s) - gR} g g gRt C gR. (26) 

Proof. Only the first inequality needs to be proven. An immediate 
extension of the bounds in Odoni [1969] and Hastings [1971] (see also 
Hordijk and Tijms [1974]) results in: 

infxtTvR (x) - VR(x): X E XI < g*X 

To evaluate the infimum, we need only consider x < M, since 

TVR(X) - VR(X) = gR, x > M. 

If s' < s, 

VR(S') + gR, x C S 

TVR(X) - VR(X) min{G(x), VR(S') + 9RL, s < x C s 

min{gR + VR(S') + K - VR(X), gR), s < x < M, 

while, if s' > s, 

[min{G(x), VR(S') + 9R), x C s 

TVR(x) - VR(X) = gR + VR(S') + K - vR(x), s < x c s 

min{gR + VR(S ) + K - VR(X), gR}, S < x < M 

The lower bound in (26) follows immediately from the definition of VRs 
and the fact that G(y) is decreasing, L c y c M. 

Remarks. (1) The results of Odoni and of Hastings lead to a similar 
upper bound supx tTvR(X) - VR(x)l. The proof above shows, however, 
that this bound is never tighter than gR. 

(2) Upon termination of the algorithm, the gap between the lower and 
upper bounds in (26) vanishes; this follows from (23) and (24). 

(3) The bounds in (26) may be used to terminate the algorithm prior 
to optimality when a desired tolerance level is met. For this purpose let 
3R denote the difference between the upper and lower bounds in (26), 
that is, 

6R = maxIgR- G(s), VR+ - K- MS- I 

Suppose we want an e-optimal policy, i.e., a policy R with gR < g* + e for 
some e > 0. Then, replace Step 3 in the algorithm by the following: 

Step 3' (Test for Termination) 

Compute 6R. If 6R C c, stop: R is e-optimal. 
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TABLE I 

PARAMETER SETTINGS 

Parameter No. Values Values 

Mean 4 2, 6, 20, 60 
Variance/mean 4 0.33, 0.75, 1.5, 10 
Leadtime + 1 3 1, 5, 25, 
Fixed cost 4 0.1, 1, 10, 100 
Penalty cost 4 0.1, 1, 10, 100 

Otherwise, set R = R' and return to Step 1. 

Alternatively, suppose we want a policy within a certain fraction of the 
optimal cost, i.e., such that (gR- g*)/g* C< a for some a > 0. Then replace 
the test in Step 3' above with the condition bR/(R - R) C a. (In either 
case we may wish to use R' instead of R as our final policy; if so, we may 
also wish to compute gR' using (3) and (4) before exiting.) 

(4) Note that VR+ can be determined easily in Step 1 while computing 
VR (*)- 

4. COMPUTATIONAL EXPERIENCE 

To test the algorithm we solved 768 representative problems, each 
having discretized normal demands. The one-period cost functions G 
were based on linear holding and penalty costs and, in some cases, a 
fixed leadtime. Every combination of the parameters shown in Table I 
was used with holding cost = 1. (These parameter settings were suggested 
to us by Evan Porteus.) The initial policy in each case was determined 
by the approximation in Ehrhardt [1979]. 

The results are shown in Tables II-VI. Each table examines the effect 
of a single parameter. Table II, for example, shows averages over the 
other parameters for each value of mean demand; Tables III-VI are 
organized similarly. Each change in policy is counted as an iteration; 
when the initial policy is optimal, zero iterations are reported. The times 
reported are virtual seconds on an IBM 4341 operating under VM/CMS, 

TABLE II 

EFFECT OF MEAN ON PERFORMANCE 

Approxima- 
Mean Cases Iterations CPU (sec) tion % Over 

Optimal 

2 192 1.97 0.27 14.81 
6 192 1.84 0.30 14.54 

20 192 1.84 0.39 17.63 
60 192 1.68 0.59 18.82 

Total 768 1.83 0.39 16.45 
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TABLE III 

EFFECT OF VARIANCE/MEAN RATIO ON PERFORMANCE 

Approxima- 
Var/Mean Cases Iterations CPU (sec) tion % Over 

Optimal 

0.33 192 1.75 0.37 23.65 
0.75 192 1.69 0.37 18.25 
1.50 192 1.75 0.38 14.39 

10.00 192 2.15 0.43 9.51 
Total 768 1.83 0.39 16.45 

TABLE IV 

EFFECT OF LEAD TIME ON PERFORMANCE 

Approxima- 
Lead + 1 Cases Iterations CPU (sec) tion % Over 

Optimal 

1 256 1.65 0.36 21.51 
5 256 1.80 0.38 16.25 

25 256 2.05 0.43 11.59 
Total 768 1.83 0.39 16.45 

TABLE V 

EFFECT OF FIXED COST ON PERFORMANCE 

Approxima- 
Fixed Cost Cases Iterations CPU (sec) tion % Over 

Optimal 

0.1 192 0.88 0.02 1.15 
1 192 1.46 0.03 10.83 

10 192 2.21 0.08 27.05 
100 192 2.79 1.42 26.77 
Total 768 1.83 0.39 16.45 

TABLE VI 
EFFECT OF PENALTY COST ON PERFORMANCE 

Approxima- 
Penalty Cost Cases Iterations CPU (sec) tion % Over 

Optimal 

0.1 192 3.32 1.28 50.71 
1 192 1.71 0.14 7.52 

10 192 1.07 0.07 3.55 
100 192 1.24 0.06 4.03 
Total 768 1.83 0.39 16.45 
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and include computation of probabilities, the bounds L, M and U, the 
initial policies and the lower bounds (26), as well as the iterations 
themselves. The enhancement suggested in Remark (1) at the end of 
Section 2 was not used. The right-most column of each table compares 
the costs of the initial policy and the optimal policy. For each problem 
the figure 100 x (initial cost - optimal cost)/(optimal cost) was com- 
puted; the tables give averages of these figures. 

Of all the parameters the penalty cost and the fixed cost evidently 
have the greatest effects on the performance of the algorithm: Smaller 
penalty costs and larger fixed costs require more computational effort, 
in part because the initial solution is less accurate in these cases, but 
also because each iteration is more expensive (the range U-L is larger). 
The other parameters have substantially smaller effects. 

Overall, the computational demands of the algorithm seem to us quite 
reasonable. Note that a penalty cost of only 10% of the holding cost is 
rather unlikely in practice, and the other three cases average 0.09 CPU 
second per problem. Using this figure (as a quick calculation shows) an 
optimal policy for each of 10,000 items can be computed in 15 minutes 
of computer time. This, we believe, is a quite modest requirement. 

APPENDIX: RELATED ALGORITHMS 

Models 

Call ours the "standard" model. Johnson permits a more general cost 
structure and dynamics, and we shall refer to his as the "generalized" 
model. Kuenle and Kuenle treat the standard model only, though with a 
slightly more general function G( * ), and assuming Pi > 0. 

We describe the algorithms and results of these papers only as applied 
to the standard model, using our notation. In particular, the policy 
parameter s has a different meaning in these papers (order when inven- 
tory is strictly less than s), so we use s + 1 below when they write s. 

Algorithms 

Johnson considers several algorithms. Here, we shall discuss the two 
which seem most closely related to ours, which he calls "(H)" and "1." 
Kuenle and Kuienle consider only (H). 

Algorithm (H) differs from ours in the following ways: 
1. Only one coordinate of R is changed at a time. That is, in our Step 

2(a), if S' $ S, return to Step 1. 
2. In Step 2(b), s is restricted to change by at most one; that is, either 

s' = s or s' = s 8 1. The test for increasing s can be shown equivalent 
to our (11), when S' = S and x = s + 1. In this case (11) reduces to 
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G(s + 1) > gR, the test used by Kuenle and Kuenle. The test for 
increasing s (p. 86 of Johnson) is G(s) < gR, as in our (12). 

Algorithm (H) is intended not as a computational tool itself, but rather 
as a means to other results. Algorithm 1 differs from ours in different 
ways: 

1. Instead of specifying a particular value of s in each iteration, the 
algorithm determines an interval [si, s'] within which some value of 
s must be chosen. 

2. Step 2(a) chooses S' to minimize g(s,y) over y, instead of vR(y). 
3. The revision of [si, sl] is accomplished as follows: 

If G(s + 1) > g(S,S'), 

set si to be the smallest integer y such that G(y + 1) < g(s,S'). 

If G(s) < g8s9s ), 

set sl = s - 1, and si to be the smallest x with G(x + 1) < g(s, S'). 

We now discuss the similarities between our algorithm and Algorithm 
1. In view of Remark (1) at the end of our Section 2, point (2) above is 
not essential. The work required to calculate g(s,y) is about the same as 
that for VR(y), and g(s,y) < gR is equivalent to VR(y) < 0. (This does not 
mean that S' is chosen identically in the two algorithms, of course.) Also, 
when S' = S and G(s) < gR (so (12) is satisfied for y = s) our algorithm sets 
sf = sl; when S' # S, however, s' c sl, since gR >- g(s, S'). Finally, 
suppose (11) holds for some x > s. Using the definitions of VR, ks and t, 
there are positive constant aog ... *, ax-,- such that (11) is equivalent to 

Dx0 1 ai[G(x - i) - gR] > VR(Sf). 

In the case S' = S, therefore, if s >- x (so each G(x - i) - gR> 0 with 
the inequality strict for x - i = s + 1) then also s' > x, and thus s' > sl. 
When S' $ S, there appears to be no obvious relation between s' and sl. 

The differences between the algorithms can be summarized as follows: 
Ours provides a specific choice of s which works extremely well. The test 
quantities and policy improvements in our algorithm are chosen to 
remain as close as possible to the spirit of policy iteration, while restrict- 
ing attention to (s, S) policies. Although there are apparent similarities 
to algorithm 1 in mechanics, the differences are significant, particularly 
when s' > s. 

Proofs 

The proof in Johnson that Algorithm (H) converges to an optimal 
policy presents several difficulties: 

1. Results for finite-state dynamic programs are invoked, while the 
standard model has a countably infinite state space. To use these 
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results the state space must be truncated a priori to a finite set; 
also, to ensure that the state never leaves this set, the actions must 
be suitably restricted, and the demand distribution must be trun- 
cated in a manner depending on the current inventory level. (The 
discussion on p. 82 of Johnson could be interpreted as suggesting 
that such a truncation may be derived from subsequent results; this 
is not the case. This point is mentioned by Kuenle and Kuenle. 
Problems with infinite state spaces can be quite ill-behaved, cf. 
Derman [1966], Ross, and Federgruen and Tijms [1978].) 

2. The core of the argument is the assertion that the policy strictly 
improves at each iteration. This is never substantiated. 

The proof of Kuenle and Kuenle requires only that the state space be 
bounded above (so, in particular, the demand distribution need not be 
truncated). Assuming Pi > 0, they show that gR improves strictly in each 
iteration. 

The situation can thus be summarized as follows: Assuming pi > 0 and 
the standard model with inventory levels bounded above, Algorithm (H) 
is correct. Indeed, it does improve at every iteration. With this fact one 
can construct a valid justification for Algorithm 1, along the lines 
suggested by Johnson. Even for the standard model, ours is the only 
proven algorithm of this kind when Pi = 0 and for an unrestricted state 
space. 
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