
An Efficient Algorithm for Computing Optimal
(s, S) Policies

AWI FEDERGRUEN and PAUL ZIPKIN
Columbia University, New York, New York

(Received February 1982; accepted July 1983)

This paper presents an algorithm to compute an optimal (s, S) policy under
standard assumptions (stationary data, well-behaved one-period costs, discrete
demand, full backlogging, and the average-cost criterion). The method is itera-
tive, starting with an arbitrary, given (s, S) policy and converging to an optimal
policy in a finite number of iterations. Any of the available approximations can
thus be used as an initial solution. Each iteration requires only modest compu-
tations. Also, a lower bound on the true optimal cost can be computed and
used in a termination test. Empirical testing suggests very fast convergence.

M ANY PRACTICAL inventory replenishment problems satisfy rea-
sonably closely the mathematical conditions under which (s, S)

policies are optimal. Rules of this type, moreover, are easy to implement
and require no more data than other standard techniques. Scientific
methods for computing the best (or even a "good") policy, however, are
rarely used, because-according to folklore-they are prohibitively ex-
pensive. We hope the current paper will contribute to the retirement of
this myth.

We present here an algorithm to compute an optimal (s, S) policy
under standard assumptions (stationary data, well-behaved one-period
costs, discrete demand, full backlogging and the long-run-average cost
criterion). The overall strategy of the algorithm is policy-iteration, mod-
ified to exploit an embedding technique (related to the renewal-theoretic
approach) which streamlines many of the computations. The only linear
systems that need be solved are all triangular, and hence can be solved
by simple substitution. This technique also removes the need for trun-
cation of the state space (as required by standard implementations of
policy-iteration and value-iteration, cf. Howard [1960]), so the algorithm
is truly exact.

Starting with a given (s, S) policy, the algorithm evaluates a sequence
of policies, all of this form (unlike standard policy-iteration), and con-
verges to an optimal one in a finite number of iterations. The policies
Subject classification: 117 dynamic programming, Markov, infinite state, 362 inventory/production
stochastic models.

Operations Research
Vol. 32, No. 6, November-December 1984

0030-364X/84/3206-1268 $01.25
? 1984 Operations Research Society of America

1268

Optimal (s, S) Policies 1269

generated are strictly improving, but not in the usual sense: Average
costs decrease, but not necessarily strictly; cycling is precluded by strict
improvement in a certain (natural) lexicographic criterion. In addition,
a lower bound on the optimal cost can be computed in every iteration;
the algorithm can thus be terminated with a suboptimal policy whose
cost achieves any desired level of precision.

A major advantage of such an iterative algorithm is the ability to use
any of the available approximations to an optimal policy as an initial
solution. These include the method of Roberts [1962] and modifications
of it developed by Wagner et al. [1965], Wagner [1975] and Ehrhardt
[1979]; and the techniques of Porteus [1979] and Freeland and Porteus
[1980a, 1980b], which are based on the general approach of Norman and
White [1968]. On the other hand, each of these approximations is
accurate only over a limited range of the data of the problem, and the
respective ranges are imperfectly known; for any given problem, there-
fore, one cannot predict how far from optimality the computed policy is.
Our algorithm and our bounds thus provide a much-needed corrective to
these methods.

It is often asserted (e.g. Ehrhardt [1979]) that methods requiring the
full probability distribution of demand are impractical, since they require
more information than is usually available. Many of the approximations
mentioned above use only the mean and variance of demand. The
empirical results of Archibald and Silver [1978], however, indicate that
the optimal policy can be sensitive to more than the first two moments
of the distribution. Exact methods are the only ones currently known
which can use additional information. Fortunately, more information
(perhaps qualitative rather than quantitative) often is available; for
example, one often knows whether or not the distribution is symmetric.
Such information can be used to guide the choice of an appropriate
distributional form.

The overall logic of the algorithm is close to that of a method proposed
by Johnson [1968], though there are differences in the specifics of the
computations. There are problems in Johnson'sS proof, however. These
have been rectified by Kuenle and Kuenle [1977], under somewhat
different assumptions. The Appendix below discusses in detail the
models, algorithms and proofs in these two papers in relation to ours.
Other methods for computing optimal (s, S) policies include those of
Veinott and Wagner [1965], Archibald and Silver, and Bell [1970]; these
are essentially enumerative rather than iterative. (Sahin [1982] has
recently demonstrated some convexity properties of the average cost as
a function of s and S under certain assumptions on the demand distri-
bution. These results permit some of the enumerative algorithms to
exploit an advanced starting solution, like our iterative algorithm.)

1270 Federgruen and Zipkin

The embedding technique mentioned above can be seen as a special
case of the approach developed by De Leve et al. [1970, 1977a]. The
approach has been applied to a variety of systems by Tijms [1976, 1977],
De Leve et al. [1977b], Tijms and Van Der Duyn Schouten [1978] and
Federgruen et al. [1984]; cf. Tijms [1980] for a survey. Our application,
however, is the first for which finite convergence to an optimal policy is
proven.

Other work on related inventory systems includes that of Sivazlian
[1971], Tijms [1972], Gross and Ince [1975], Naddor [1975], Schneider
[1978], and Tijms and Groenevelt [1984].

Computational testing suggests the algorithm converges very quickly.
We solved 768 test problems, requiring an average of 0.39 CPU seconds
on an IBM 4341. Excluding some unlikely cases (with penalty cost =
(1/10) x holding cost), the average drops to 0.09 second. This is certainly
fast enough for most applications.

In Section 1 we define notation and discuss certain computations
required in the algorithm. The algorithm itself is stated in Section 2,
while Section 3 contains the convergence proof and the derivation of the
bounds on the minimal cost. Our computational experience is reported
in Section 4. An Appendix discusses related algorithms.

1. NOTATION AND PRELIMINARIES

First we define notation; since the problem is stationary we shall
suppress time subscripts throughout.

x = inventory at the beginning of a period.
y = inventory position after ordering, but before demand, y > x.

Both x and y are always integer valued. We assume all stockouts are
backordered, so x and y may be negative.

pj = PrIone-period demand = j}, j = 0, 1, 2,
K = fixed cost to place an order.

G(y) = one-period expected costs, including, e.g., holding and penalty
costs, y = -1, 0, 1 ,. * *.

We assume only that po < 1, -G is unimodal, and limlyl, G(y) >
[minyG(y)] + K. This includes the common case where G is convex and
limIy I G(y) = oo, as in Iglehart [19631 and Veinott and Wagner. A fixed
delivery lag can be incorporated by a standard redefinition of G, cf., e.g.,
Veinott and Wagner. (An approximate model of the same form can be
constructed to handle the case of stochastic delivery lags, cf. Ehrhardt
[1984].)

Under these assumptions an (s, S) policy is optimal, as shown by
Veinott [1966]. Let R = (s, S) denote a particular policy of this class. We

Optimal (s, S) Policies 1271

interpret R to specify orders as follows: If x < s, set y = S (order S -x);
otherwise, set y = x (do not order).

In policy-iteration the usual approach to the evaluation of a policy R
is based on the resulting stochastic process described by the state variable
x, as follows: Define

'y(x, y) = one-step total expected cost when x is the initial state, and
an order y - x is placed.

_ G(y), y = x
{G(y) + K, y> x.

YR (x) = value of y specified by policy R in state x.

(We shall also denote 'YR(X) = 'Y[X, YR(X)I.)

g* = minimal average cost over all policies.
gR= average cost of policy R.

rR (x)= unique steady state distribution of the inventory x under
policy R (cf. Iglehart).

One standard characterization of gR uses the (infinite) system of equa-
tions in the unknowns g and v(.):

V(X) = 'YR(X) - g + 1X0 pjv[yR(x) - j], for all x, (la)

v(S) = 0 (lb)

((ib) serves as a normalization condition.) Now, suppose Ig, v(*)} solves
(1) with v(x) bounded, x c S. Then, it is not hard to show that g = gR.

(Multiply (la) by rR (x), sum over x and rearrange terms.) In practice, of
course, the system (1) must be truncated, and approximate solutions
used.

Our approach is based instead on the inventory process observed at
epochs following replenishment opportunities, that is, on the sequence of
y's: Define

t(v) = expected time until the next order is placed when starting v
units above the order point, i.e., when v = y - s, v > 0.

k, (y) = total expected costs until the next order is placed, when start-
ing with inventory y, y > s.

The functions t and k8, respectively, satisfy the following equations:

t(v) = 1 + Ev 3 pjt(v -), v > 0 (2)

ks (y) = G(y) + Z2_I-o` pjks(y - j), y > s. (3)

Observe that t is independent of the policy R, and that ks depends on R
only through s. Moreover, systems (2) and (3) are triangular, so t can be
computed starting with v = 1 by simple substitution, and k, can be

1272 Federgruen and Zipkin

computed similarly starting with y = s + 1. (Note, t is the renewal
function of {pj} plus one.)

The key point is that gR and VR (x) can be computed from these
functions as follows:

gR= [ks(S) + K]/t(S - s), (4)

VR (X) [k(jX) + K] - gRt(X - s) x >
s(5)

K, x < S.

((4) is a standard result in the theory of regenerative processes, cf., e.g.,
Ross [1970], Proposition 5.9. Direct substitution shows that the solution
specified by (4), (5) satisfies (la) and (lb); cf. also Theorem 2.1(a) in
Tijms [1980] and Lemma 1 in Federgruen et al.) Thus, no truncation or
approximation is necessary.

A policy-iteration algorithm also requires test quantities, in order to
search for improved policies; these quantities are defined as follows:

IR(X, Y) = Y(X, Y) -ggR + ,J=OP PVR(Y -j), y > X. (6)

The algorithm uses IR(x, y) only for certain values of (x, y), and in these
cases IR simplifies greatly: for y > x, we have

IR(X, y) = K + G(y) - gR + >jO PjVR(Y -j)- (7)

If y > s also, we have 'YR(Y) = G(y), so using (1), (7) becomes

IR(X, y) = K +VR(y), y > x,y > s. (8)

Similarly, inserting (5) into (6), we obtain

IR(x, x) = K + G(x) - gR, X C S. (9)

Also, for any two policies R and R', denote IR(X, R') = IR[X, YR'(x)].
The algorithm and the convergence proof utilize constants L, M, U,

which serve as bounds on the optimal policy, specifically, L ' s < M <
S c U. These may be computed as follows (cf. Veinott):

M = smallest integer minimizing G(y),
U = smallest integer greater than M with G(U + 1) - G(M) + K,
L = smallest integer such that G(L + 1) ' G(M) + K.

2. STATEMENT OF THE ALGORITHM

Step 0 (Initialize)

Compute the bounds L, M and U as in the previous section. Choose
an initial policy R = (s, S) with L ' S < M ' S ' U. Compute the
function t(v), v = 1, * , U - L, using (2).

Optimal (s, S) Policies 1273

Step 1 (Value Determination)

If s has changed from the prior iteration, compute k,(y), y = s + 1,
* , U, using (3). Compute gR using (4), and VR(X), x = L, * , U, using
(5).

Step 2 (Policy Improvement)

(a) Find S' satisfying M ' S' ' U and

vR(S) = minM5ysUuvR(y)j. (10)

(If S attains the minimum, set S' = S.)
(b) Search for an integer y satisfying s < y < M and

K + vR (S') < vR (x), S < X < Y.(1

If such a y exists, set s' to be the largest such y, and go to Step 3.
Otherwise, search for x satisfying L c x < s and

G(y) < gR, x < Y ' S. (12)

If such an x exists, set s' to be the smallest such x, and go to Step 3.
Otherwise, set s' = s.

Step 3 (Test for Termination)

If R' (s', S') = R, stop: R is optimal. Otherwise, set R = R', and
return to Step 1.

Remarks. (1) Convergence to the optimum is still guaranteed if Step
2(a) is modified to set S' to be any y, M c y c U, such that VR(y) <
VR(S) = 0; if no such value exists, set S' = S. For example, we can choose
S' as follows: If minIvR(y): M c y ' S) < 0, set S' to achieve the
minimum; otherwise set S' to be the smallest local minimum of VR(y),
S c y c U, with VR(y) < 0; if none exists, set S' = S. This approach
reduces the computation required in Step 1: In Step 1 compute ks(y) and
VR (Y) for y up to S, not U. (This much is needed to compute gR.) Compute
these functions for y > S successively, but only when required, in Step
2. Similarly, the new s' can be chosen to be any y, satisfying (11) and
s < y < M, not just the largest, or any x satisfying (12) and L < x < s?
not just the smallest.

(2) The policy improvement step does not necessarily select a policy
achieving the best one-step improvement (as defined in standard policy-
iteration, that is, by choosing y to minimize IR(X, y) for each x), even
when S' is chosen as the global minimum in (10). (Such a policy may
fail to have the (s, S) structure.) However, the algorithm can be viewed
as performing restricted minimizations of IR: By (8) Step 2(a) chooses y

1274 Federgruen and Zipkin

to minimize IR(X, y) for x < s, given y > x. Then, Step 2(b) chooses y to
minimize IR(x, y), where y is restricted to y = x or y > s, for an interval
of values of x containing s; the interval is increased as long as the
minimization produces improvements over IR (x, R).

3. CONVERGENCE PROOF AND BOUNDS

The proof requires several lemmas and two theorems. The bounds are
derived afterward.

LEMMA 1. Let R' = (s', S') be obtained from R = (s, S) by Step 2 of the
algorithm. Then,

IR(X, R') < VR(X), for all x. (13)

gR' < gR (14)

Moreover, (14) holds strictly if (13) is strict for some state x which is
positive recurrent under R'.

Proof. For (13) we consider two cases, (a) and (b):
(a) Suppose s' < s. First, for x c s', we have

IR(X, R') = K + VR(S') C K + VR(S) = K = vR(X),

by (4), (5), (8) and (10). Second, for s' < x < s,

IR(X, R') = G(x) - gR + K < K = VR(X),

by (5), (9) and (12). Finally, for x > s,

IR(x, R') = IR(x, R) = VR (x)

(b) Suppose s' > s. For x c s,

IR(X, R') < K = vR(X),

as in case (a). For s < x c s',

IR(X, R) = K + VR (S) ' VR (X)

by (8) and (11). For x > s', IR(X, R') = VR(x) as in case (a), completing
the proof of (13).

Now, multiply (13) by 7rR', sum over x, and use (6) to yield
Z2X7rR'(X)VR(X) > Z2XWR'(X)YR'(X) - gR + Z2xWR'(X)2jPjVR[YR'(X) - A1
Letting z =yR' (x) - j, the double sum (the last term) can be written
2x R R' (x)2 ,Pr{next state = z I x, R'}VR(z) = z2;,rR '(z)VR(Z), using the fact
that 'rR' is the equilibrium distribution. But z2XWR' (X)VR(X) < oo, since
VR(X) is bounded, x < S, so this term cancels from both sides. Also,
12rR'(X)'YR'(X) = gR', yielding (14). The assertion concerning strict ine-
quality follows similarly.

Optimal (s, S) Policies 1275

(Remark. The proof that (13) implies (14) closely follows that of
Theorem 2.1(b) in Tijms [1980].)

LEMMA 2. Let R' be obtained from R by Step 2 of the algorithm. If
R' $ R, then either

(i) gR' < gR;

or (ii) gR = gR, but VR'(X) ' VR(X), for all x, and the inequality is strict
for some x.

Proof. Again, there are two cases:
(a) S' $ S: We have VR(S) < VR(S) = 0 by (10). By (8), therefore, for

all x <M, IR(X, S') <IR(X, S) = K, so

IR (X, S') < VR (X), x <,S. (15)
If s' < s, (15) holds in particular for x c s'; if s < s', (11) ensures that

IR(X, S') = K + VR(S') < VR(X), s < x < s',

while (15) still holds for x c s. In either case, we have

IR(X, RI) = IR(X, S') < VR(X), x C S'. (16)

Now, the set {x: x c s'} clearly includes states that are positive recurrent
under R'. Thus, Lemma 1 yields gR' < gR.

(b) S' = S (hence s' $ s): Assume (i) does not hold, so that gR = gR.

We now show by induction that

VR'(X) < IR(X, R') for all x. (17)

First, VR'(X) = K = IR(X, RI), x < s', by (8). Now suppose VR'(X) <

IR(X, R') for all x c x, for some x - s'. From (13) and the definition of
IR,

VR(X + 1) > IR(X + 1, RI)
(18)

- G(x + 1) - gR + X7=1 PIVR(X + 1 -j) + POVR(X + 1).

By repeated substitutions in (18) for the term involving VR (X + 1) we
obtain

VR(X + 1) ' IR(X + 1, RI)

- (1 -po)'[G(+ 1) - gR + tl PjVR(X + 1 -)].

By the induction hypothesis and (13), VR(X) > VR'(X) x < . Hence, since
gR = gR',

IR(X + 1, RI) - (1 - po)f [G(x + 1) -gR +
J -1PjVR'(X + 1-j)] VR'(X + 1).

(The equality follows from (1).) This completes the proof of (17).

1276 Federgruen and Zipkin

Now we show that (13) holds strictly for some x (not necessarily a
positive recurrent one). If s' > s, choose x = s'. Then, using (8) and (11),

IR(S, R') = K < VR(S).

If s' < s, choose x = s. By (9) and (12),

IR(s, R1) = IR(s, s) = K + G(s) -gR < K= VR(S),

proving the assertion.
This fact, (13) and (17) yield (ii) immediately.

COROLLARY 1. If p, > 0 and R' $ R, then gR, < gR.

Proof. When Pi > 0, x is positive recurrent under R' s' < X < S'. In
the proof of Lemma 2 case (b) we showed that (13) holds strictly for x =
s' (when s' > s) or x = s (when s' < s). The result follows from Lemma
1.

THEOREM 1. The algorithm terminates after a finite number of iterations.

Proof. Only finitely many policies (s, S) satisfy the bounds

L---s<M-- S c U,

and Lemma 2 ensures that no policy is ever repeated.

Consider now the standard dynamic-programming formulation of the
problem; the action set for state x is ly: y > x}. Suppose we use the
bounds L, M and U to define a new program with action sets restricted
as follows:

- lxl, x > Ml
Y(X) = lY: y=x or MCYC U}, L<x<M,

Uy: MCyCU}, x'L.

Also, we may restrict the state space to X = Ix: x c U}. Clearly, any
(s, S) policy satisfying the bounds, and hence the optimal policy, is
feasible for this problem, so the new problem is equivalent to the original
one. This construction is crucial in the proof below.

For later use, define T, the value-iteration operator in this model, by:

Tv(x) = minCy(x)l-y(x, y) + ?%o pjv(y - j) 1 x c U. (19)

Consider now the standard optimality conditions for policy iteration
for this equivalent problem:

VR(X) = minlIR(x, y): y E Y(x)}, x E X. (20)

LEMMA 3. If R satisfies (20), then R is optimal.

Proof. By the remarks above, some optimal policy R* is feasible for the
equivalent problem. If R satisfies (20), in particular vR(x) c IR(X, R*),

Optimal (s, S) Policies 1277

x E X. For x $ X note 7rR_ (x) = 0-; as in the proof of Lemma 1, therefore,
gR C gRR.

THEOREM 2. The algorithm terminates with an optimal policy.

Proof. Let R be the policy to which the algorithm converges. We shall
verify that R satisfies (20).

From step 2 of the algorithm we obtain the following relations:

VR(y) -?VR(S) = 0, M c y c U, (21)

VR(S+1) VR(S)+ K=K, (22)

G(s) ? gR. (23)

Note first, for any x < M, if some y > x achieves the minimum in (20),
then y = S does, by (8) and (21). Using the above restriction to the sets
X and Y(x), only the following cases need be considered:

(a) For x 2 M, IR(X, x) = VR(x), by (1).
(b) For x < s, G is decreasing, so from (23)

G(x) - G(s) ' gR.

This together with (8) and (9) yields

IR(X, x) > K = IR(X, S) = VR(X).

(c) For s < x < M we wish to show that

IR(X, x) = vR(X) C K = IR(X, S). (24)

The proof is by induction on x:
First, (22) gives the result for x = s + 1. Suppose it is true for x = s +

1, * * < M -1. Then, by (1),

vR(X + 1) c G(x + 1) -gR + POVR(X + 1) + (1 -po)K,

or VR(X + 1) ' (1/(1 - po))[G(x + 1) - gR] + K. (25)

But, from (2)-(4) and (6) we have

VR(S + 1) = (1/(1 - po))[G(s + 1) - gR] + K,

so VU(S + 1) < K implies G(s + 1) c gR, hence G(x + 1) < gR. This, with
(25), yields the result.

(This proof is related to that of Theorem 3.1 in Van Nunen and Puterman
[1983].)

The following theorem shows that bounds on -the minimal cost g* may
be computed easily at each iteration. For each policy R, let

VR+ = maxs,x<M VR(X).

1278 Federgruen and Zipkin

THEOREM 3. Let R' = (s', S') be obtained from R = (s, S) by Step 2 of
the algorithm. Then,

gR + min{vR(S') + K - VR', G(s) - gR} g g gRt C gR. (26)

Proof. Only the first inequality needs to be proven. An immediate
extension of the bounds in Odoni [1969] and Hastings [1971] (see also
Hordijk and Tijms [1974]) results in:

infxtTvR (x) - VR(x): X E XI < g*X

To evaluate the infimum, we need only consider x < M, since

TVR(X) - VR(X) = gR, x > M.

If s' < s,

VR(S') + gR, x C S

TVR(X) - VR(X) min{G(x), VR(S') + 9RL, s < x C s

min{gR + VR(S') + K - VR(X), gR), s < x < M,

while, if s' > s,

[min{G(x), VR(S') + 9R), x C s

TVR(x) - VR(X) = gR + VR(S') + K - vR(x), s < x c s

min{gR + VR(S) + K - VR(X), gR}, S < x < M

The lower bound in (26) follows immediately from the definition of VRs
and the fact that G(y) is decreasing, L c y c M.

Remarks. (1) The results of Odoni and of Hastings lead to a similar
upper bound supx tTvR(X) - VR(x)l. The proof above shows, however,
that this bound is never tighter than gR.

(2) Upon termination of the algorithm, the gap between the lower and
upper bounds in (26) vanishes; this follows from (23) and (24).

(3) The bounds in (26) may be used to terminate the algorithm prior
to optimality when a desired tolerance level is met. For this purpose let
3R denote the difference between the upper and lower bounds in (26),
that is,

6R = maxIgR- G(s), VR+ - K- MS- I

Suppose we want an e-optimal policy, i.e., a policy R with gR < g* + e for
some e > 0. Then, replace Step 3 in the algorithm by the following:

Step 3' (Test for Termination)

Compute 6R. If 6R C c, stop: R is e-optimal.

Optimal (s, S) Policies 1279

TABLE I

PARAMETER SETTINGS

Parameter No. Values Values

Mean 4 2, 6, 20, 60
Variance/mean 4 0.33, 0.75, 1.5, 10
Leadtime + 1 3 1, 5, 25,
Fixed cost 4 0.1, 1, 10, 100
Penalty cost 4 0.1, 1, 10, 100

Otherwise, set R = R' and return to Step 1.

Alternatively, suppose we want a policy within a certain fraction of the
optimal cost, i.e., such that (gR- g*)/g* C< a for some a > 0. Then replace
the test in Step 3' above with the condition bR/(R - R) C a. (In either
case we may wish to use R' instead of R as our final policy; if so, we may
also wish to compute gR' using (3) and (4) before exiting.)

(4) Note that VR+ can be determined easily in Step 1 while computing
VR (*)-

4. COMPUTATIONAL EXPERIENCE

To test the algorithm we solved 768 representative problems, each
having discretized normal demands. The one-period cost functions G
were based on linear holding and penalty costs and, in some cases, a
fixed leadtime. Every combination of the parameters shown in Table I
was used with holding cost = 1. (These parameter settings were suggested
to us by Evan Porteus.) The initial policy in each case was determined
by the approximation in Ehrhardt [1979].

The results are shown in Tables II-VI. Each table examines the effect
of a single parameter. Table II, for example, shows averages over the
other parameters for each value of mean demand; Tables III-VI are
organized similarly. Each change in policy is counted as an iteration;
when the initial policy is optimal, zero iterations are reported. The times
reported are virtual seconds on an IBM 4341 operating under VM/CMS,

TABLE II

EFFECT OF MEAN ON PERFORMANCE

Approxima-
Mean Cases Iterations CPU (sec) tion % Over

Optimal

2 192 1.97 0.27 14.81
6 192 1.84 0.30 14.54

20 192 1.84 0.39 17.63
60 192 1.68 0.59 18.82

Total 768 1.83 0.39 16.45

1280 Federgruen and Zipkin

TABLE III

EFFECT OF VARIANCE/MEAN RATIO ON PERFORMANCE

Approxima-
Var/Mean Cases Iterations CPU (sec) tion % Over

Optimal

0.33 192 1.75 0.37 23.65
0.75 192 1.69 0.37 18.25
1.50 192 1.75 0.38 14.39

10.00 192 2.15 0.43 9.51
Total 768 1.83 0.39 16.45

TABLE IV

EFFECT OF LEAD TIME ON PERFORMANCE

Approxima-
Lead + 1 Cases Iterations CPU (sec) tion % Over

Optimal

1 256 1.65 0.36 21.51
5 256 1.80 0.38 16.25

25 256 2.05 0.43 11.59
Total 768 1.83 0.39 16.45

TABLE V

EFFECT OF FIXED COST ON PERFORMANCE

Approxima-
Fixed Cost Cases Iterations CPU (sec) tion % Over

Optimal

0.1 192 0.88 0.02 1.15
1 192 1.46 0.03 10.83

10 192 2.21 0.08 27.05
100 192 2.79 1.42 26.77
Total 768 1.83 0.39 16.45

TABLE VI
EFFECT OF PENALTY COST ON PERFORMANCE

Approxima-
Penalty Cost Cases Iterations CPU (sec) tion % Over

Optimal

0.1 192 3.32 1.28 50.71
1 192 1.71 0.14 7.52

10 192 1.07 0.07 3.55
100 192 1.24 0.06 4.03
Total 768 1.83 0.39 16.45

Optimal (s, S) Policies 1281

and include computation of probabilities, the bounds L, M and U, the
initial policies and the lower bounds (26), as well as the iterations
themselves. The enhancement suggested in Remark (1) at the end of
Section 2 was not used. The right-most column of each table compares
the costs of the initial policy and the optimal policy. For each problem
the figure 100 x (initial cost - optimal cost)/(optimal cost) was com-
puted; the tables give averages of these figures.

Of all the parameters the penalty cost and the fixed cost evidently
have the greatest effects on the performance of the algorithm: Smaller
penalty costs and larger fixed costs require more computational effort,
in part because the initial solution is less accurate in these cases, but
also because each iteration is more expensive (the range U-L is larger).
The other parameters have substantially smaller effects.

Overall, the computational demands of the algorithm seem to us quite
reasonable. Note that a penalty cost of only 10% of the holding cost is
rather unlikely in practice, and the other three cases average 0.09 CPU
second per problem. Using this figure (as a quick calculation shows) an
optimal policy for each of 10,000 items can be computed in 15 minutes
of computer time. This, we believe, is a quite modest requirement.

APPENDIX: RELATED ALGORITHMS

Models

Call ours the "standard" model. Johnson permits a more general cost
structure and dynamics, and we shall refer to his as the "generalized"
model. Kuenle and Kuenle treat the standard model only, though with a
slightly more general function G(*), and assuming Pi > 0.

We describe the algorithms and results of these papers only as applied
to the standard model, using our notation. In particular, the policy
parameter s has a different meaning in these papers (order when inven-
tory is strictly less than s), so we use s + 1 below when they write s.

Algorithms

Johnson considers several algorithms. Here, we shall discuss the two
which seem most closely related to ours, which he calls "(H)" and "1."
Kuenle and Kuienle consider only (H).

Algorithm (H) differs from ours in the following ways:
1. Only one coordinate of R is changed at a time. That is, in our Step

2(a), if S' $ S, return to Step 1.
2. In Step 2(b), s is restricted to change by at most one; that is, either

s' = s or s' = s 8 1. The test for increasing s can be shown equivalent
to our (11), when S' = S and x = s + 1. In this case (11) reduces to

1282 Federgruen and Zipkin

G(s + 1) > gR, the test used by Kuenle and Kuenle. The test for
increasing s (p. 86 of Johnson) is G(s) < gR, as in our (12).

Algorithm (H) is intended not as a computational tool itself, but rather
as a means to other results. Algorithm 1 differs from ours in different
ways:

1. Instead of specifying a particular value of s in each iteration, the
algorithm determines an interval [si, s'] within which some value of
s must be chosen.

2. Step 2(a) chooses S' to minimize g(s,y) over y, instead of vR(y).
3. The revision of [si, sl] is accomplished as follows:

If G(s + 1) > g(S,S'),

set si to be the smallest integer y such that G(y + 1) < g(s,S').

If G(s) < g8s9s),

set sl = s - 1, and si to be the smallest x with G(x + 1) < g(s, S').

We now discuss the similarities between our algorithm and Algorithm
1. In view of Remark (1) at the end of our Section 2, point (2) above is
not essential. The work required to calculate g(s,y) is about the same as
that for VR(y), and g(s,y) < gR is equivalent to VR(y) < 0. (This does not
mean that S' is chosen identically in the two algorithms, of course.) Also,
when S' = S and G(s) < gR (so (12) is satisfied for y = s) our algorithm sets
sf = sl; when S' # S, however, s' c sl, since gR >- g(s, S'). Finally,
suppose (11) holds for some x > s. Using the definitions of VR, ks and t,
there are positive constant aog ... *, ax-,- such that (11) is equivalent to

Dx0 1 ai[G(x - i) - gR] > VR(Sf).

In the case S' = S, therefore, if s >- x (so each G(x - i) - gR> 0 with
the inequality strict for x - i = s + 1) then also s' > x, and thus s' > sl.
When S' $ S, there appears to be no obvious relation between s' and sl.

The differences between the algorithms can be summarized as follows:
Ours provides a specific choice of s which works extremely well. The test
quantities and policy improvements in our algorithm are chosen to
remain as close as possible to the spirit of policy iteration, while restrict-
ing attention to (s, S) policies. Although there are apparent similarities
to algorithm 1 in mechanics, the differences are significant, particularly
when s' > s.

Proofs

The proof in Johnson that Algorithm (H) converges to an optimal
policy presents several difficulties:

1. Results for finite-state dynamic programs are invoked, while the
standard model has a countably infinite state space. To use these

Optimal (s, S) Policies 1283

results the state space must be truncated a priori to a finite set;
also, to ensure that the state never leaves this set, the actions must
be suitably restricted, and the demand distribution must be trun-
cated in a manner depending on the current inventory level. (The
discussion on p. 82 of Johnson could be interpreted as suggesting
that such a truncation may be derived from subsequent results; this
is not the case. This point is mentioned by Kuenle and Kuenle.
Problems with infinite state spaces can be quite ill-behaved, cf.
Derman [1966], Ross, and Federgruen and Tijms [1978].)

2. The core of the argument is the assertion that the policy strictly
improves at each iteration. This is never substantiated.

The proof of Kuenle and Kuenle requires only that the state space be
bounded above (so, in particular, the demand distribution need not be
truncated). Assuming Pi > 0, they show that gR improves strictly in each
iteration.

The situation can thus be summarized as follows: Assuming pi > 0 and
the standard model with inventory levels bounded above, Algorithm (H)
is correct. Indeed, it does improve at every iteration. With this fact one
can construct a valid justification for Algorithm 1, along the lines
suggested by Johnson. Even for the standard model, ours is the only
proven algorithm of this kind when Pi = 0 and for an unrestricted state
space.

ACKNOWLEDGMENTS

This research was supported in part by the Faculty Research Fund,
Graduate School of Business, Columbia University. The authors wish to
thank L. Pohlman for help with the computation. The referees and the
associate editor provided many valuable suggestions.

REFERENCES

ARCHIBALD, B., AND E. SILVER. 1978. (s, S) Policies under Continuous Review
and Discrete Compound Poisson Demands. Mgmt. Sci. 24, 899-908.

BELL, C. 1970. Improved Algorithms for Inventory and Replacement Stocking
Problems. SIAM J. Appl. Math. 18, 558-566.

DE LEVE, G., H. TIJMS, AND P. WEEDA. 1970. Generalized Markovian Decision
Processes, Applications, Tract No. 5. Mathematisch Centrum, Amsterdam.

DE LEVE, G., A. FEDERGRUEN, AND H. TIJMS. 1977a. A General Markov Decision
Method; I. Model and Techniques. Adv. Appl. Prob. 9, 297-315.

DE LEVE, G., A. FEDERGRUEN, AND H. TIJMS. 1977b. A General Markov Decision
Method; II. Applications. Adv. Appl. Prob. 9, 316-335.

DERMAN, C. 1966. Denumerable State Markovian Decision Processes-Average
Cost Criterion. Ann. Math. Statist. 37, 1545-1553.

EHRHARDT, R. 1979. The Power Approximation for Computing (s, S) Inventory
Policies. Mgmt. Sci. 25, 777-786.

1284 Federgruen and Zipkin

EHRHARDT, R. 1984. (s, S) Policies for a Dynamic Inventory Model with Sto-
chastic Lead Times. Opns. Res. 32, 121-132.

FEDERGRUEN, A., AND H. TIJMS. 1978. The Optimality Equation in Average
Cost Denumerable State Semi-Markov Decision Processes, Recurring Condi-
tions and Algorithms. J. Appl. Prob. 15, 356-372.

FEDERGRUEN, A., H. GROENEVELT, AND H. TIJMs. 1984. Coordinated Replen-
ishments in a Multi-Item Inventory System with Compound Poisson Demands
and Constant Lead Times. Mgmt. Sci. 30, 344-357.

FREELAND, J., AND E. PORTEUS. 1980a. Evaluating the Effectiveness of a New
Method for Computing Approximately Optimal (s, S) Inventory Policies. Opns.
Res. 28, 353-364.

FREELAND, J., AND E. PORTEUS. 1980b. Easily Computed Inventory Policies for
Periodic Review Systems: Shortage Cost and Service Level Models, Working
Paper. Graduate School of Business, Stanford University, Stanford, Calif.

GROSS, D., AND R. INCE. 1975. A Comparison and Evaluation of Approximate
Continuous Review Inventory Models. Int. J. Product. Res. 13, 9-23.

HASTINGS, N. 1971. Bounds on the Gain of a Markov Decision Process. Opns.
Res. 19, 240-244.

HORDIJK, A., AND H. TIJMS. 1974. Convergence Results and Approximations for
Optimal (s, S) Policies. Mgmt. Sci. 20, 1432-1438.

HOWARD, R. 1960. Dynamic Programming and Markov Processes. Wiley, New
York.

IGLEHART, D. 1963. Dynamic Programming and Stationary Analysis in Inventory
Problems. In Multi-stage Inventory Models and Techniques, chap. 1, H. Scarf,
D. Guilford and M. Shelly (eds.). Stanford University Press, Stanford, Calif.

JOHNSON, E. 1968. On (s, S) Policies. Mgmt. Sci. 15, 80-101.
KUENLE, C., AND H. KUENLE. 1977. Durchschnittsoptimale Strategien in Mar-

kovschen Entscheidungsmodellen bei Unbeschrankten Kosten, Math. Opera-
tionsforsch. Statist., Ser. Optimization 8, 549-564.

NADDOR, E. 1975. Optimal and Heuristic Decisions in Single- and Multi-item
Inventory Systems. Mgmt. Sci. 21, 1234-1249.

NORMAN, J., AND D. WHITE. 1968. A Method for Approximate Solutions to
Stochastic Dynamic Programming Problems Using Expectations. Opns. Res.
16, 296-306.

ODONI, A. 1969. On Finding the Maximal Gain for Markov Decision Processes.
Opns. Res. 17, 857-860.

PORTEUS, E. 1979. An Adjustment to the Norman-White Approach to Approxi-
mating Dynamic Programs. Opns. Res. 27, 1203-1208.

ROBERTS, D. 1962. Approximations to Optimal Policies in a Dynamic Inventory
Model. In Studies in Applied Probability and Management Science, chap. 13,
K. Arrow, S. Karlin and H. Scarf (eds.). Stanford University Press, Stanford,
Calif.

Ross, S. 1970. Applied Probability Models with Optimization Applications. Hol-
den-Day, San Francisco.

SCHNEIDER, H. 1978. Methods for Determining the Re-order Point of an (s, S)
Ordering Policy when a Service Level Is Specified. J. Opnl. Res. Soc. 29,1181-
1194.

Optimal (s, S) Policies 1285

SAHIN, I. 1982. On the Objective Function Behavior in (s, S) Inventory Models.
Opns. Res. 30, 709-725.

SIVAZLIAN, B. 1971. Dimensional and Computational Analysis in Stationary
(s, S) Inventory Problems with Gamma Distributed Demand. Mgmt. Sci. 17,
B307-B311.

TIJMS, H. 1972. Analysis of (s, S) Inventory Models, Tract No. 40. Mathematisch
Centrum, Amsterdam.

TIJMS, H. 1976. Optimal Control of the Workload in an M/G/1 Queuing System
with Removable Server. Math. Operationsforsch. Statist. 7, 933-943.

TIJMS, H. 1977. On a Switch-over Policy for Controlling the Workload in a
Queuing System with Two Constant Service Rates and Fixed Switch-over
Costs. Z. Opns. Res. 21, 19-32.

TIJMS, H. 1980. An Algorithm for Average-Cost, Denumerable-State Semi-
Markov Decision Problems with Applications to Controlled-Production and
Queuing Systems. In Recent Developments in Markov Decisions Processes, pp.
143-179, R. Hartley, L. Thomas and D. White (eds.). Academic Press, London.

TIJMS, H., AND H. GROENEVELT. 1984. Approximations for (s, S) Inventory
Systems with Stochastic Lead Times and a Service Level Constraint. Eur. J.
Opns. Res. (to appear).

TIJMS, H., AND F. VAN DER DUYN SCHOUTEN. 1978. Inventory Control with
Two Switch-over Levels for a Class of M/G/1 Queuing Systems with Variable
Arrival and Service Rates. Stoch. Proc. Appl. 6, 213-222.

VAN NUNEN, J., AND M. PUTERMAN. 1983. Computing Optimal Control Limits
for GI/M/s Queuing Systems with Controlled Arrivals. Mgmt. Sci. 29, 725-
734.

VEINOTT, A. 1966. On the Optimality of (s, S) Inventory Policies: New Conditions
and a New Proof. J. SIAM Appl. Math. 14, 1067-1083.

VEINOTT, A., AND H. WAGNER. 1965. Computing Optimal (s, S) Inventory
Policies. Mgmt. Sci. 11, 525-552.

WAGNER, H. 1975. Principles of Operations Research, Ed. 2. Prentice-Hall,
Englewood Cliffs, N.J.

WAGNER, H., M. O'HAGAN, AND B. LUNDH. 1965. An Empirical Study of Exactly
and Approximately Optimal Inventory Policies. Mgmt. Sci. 1 1, 690-723.

	Article Contents
	p. 1268
	p. 1269
	p. 1270
	p. 1271
	p. 1272
	p. 1273
	p. 1274
	p. 1275
	p. 1276
	p. 1277
	p. 1278
	p. 1279
	p. 1280
	p. 1281
	p. 1282
	p. 1283
	p. 1284
	p. 1285

	Issue Table of Contents
	Operations Research, Vol. 32, No. 6 (Nov. - Dec., 1984), pp. 1195-1396+i-vii
	Volume Information [pp. 1385-vii]
	Front Matter
	A Cutting Plane Algorithm for the Linear Ordering Problem [pp. 1195-1220]
	Confidence Intervals for Steady-State Simulations: I. A Survey of Fixed Sample Size Procedures [pp. 1221-1239]
	The Economic Foundation of Generalized Equilibrium Modeling [pp. 1240-1267]
	An Efficient Algorithm for Computing Optimal (s, S) Policies [pp. 1268-1285]
	Production-Inventory with Equipment Replacement-PIER [pp. 1286-1295]
	Efficient Monte Carlo Procedures for Generating Points Uniformly Distributed Over Bounded Regions [pp. 1296-1308]
	Some Properties of Location Problems with Block and Round Norms [pp. 1309-1327]
	A Separating Choice Hyperplane Algorithm for Evaluating Multiattribute Decisions [pp. 1328-1344]
	Nested Renewal Processes with Special Erlangian Densities [pp. 1345-1357]
	Realizable Performance Vectors of a Finite-Source Queue [pp. 1358-1367]
	Technical Notes
	A Note on the M/G/1 Queue with Server Vacations [pp. 1368-1373]
	Financial Market Approaches to Facility Location under Uncertainty [pp. 1374-1380]
	Determining All Optimal and Near-Optimal Solutions When Solving Shortest Path Problems by Dynamic Programming [pp. 1381-1384]

	Back Matter

