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COORDINATED REPLENISHMENTS IN A MULTI-ITEM 
INVENTORY SYSTEM WITH COMPOUND POISSON 

DEMANDS* 

A. FEDERGRUEN,t H. GROENEVELTt AND H. C. TIJMS$ 

In many practical applications of multi-item inventory systems significant economies of 
scale can be exploited when coordinating replenishment orders for groups of items. This paper 
considers a continuous review multi-item inventory system with compound Poisson demand 
processes; excess demands are backlogged and each replenishment requires a lead time. There 
is a major setup cost associated with any replenishment of the family of items, and a minor 
(item dependent) setup cost when including a particular item in this replenishment. Moreover 
there are holding and penalty costs. We present an algorithm which searches for a simple 
coordinated control rule minimizing the long-run average cost per unit time subject to a 
service level constraint per item on the fraction of demand satisfied directly from on-hand 
inventory. This algorithm is based on a heuristic decomposition procedure and a specialized 
policy-iteration method to solve the single-item subproblems generated by the decomposition 
procedure. The model applies to multi-location inventory systems with similar cost structures 
for coordinated deliveries. 
(MULTI-ITEM INVENTORY SYSTEMS; COORDINATED REPLENISHMENTS; COM- 
POUND POISSON DEMAND PROCESSES; SERVICE LEVEL CONSTRAINT; POLICY- 
ITERATION ALGORITHM) 

1. Introduction 

In many practical multi-item inventory systems considerable savings may be 
achieved by the coordination of replenishment orders for groups of items, cf. Brown 
(1967) and Peterson and Silver (1979). We consider a continuous review multi-item 
inventory system where demands for the items are generated by independent com- 
pound Poisson processes; excess demands are backlogged and each replenishment 
requires a lead time. 

There is a major setup cost associated with a replenishment of the family. In the 
procurement context this is the fixed cost of placing an order for the family of items, 
independent of its size or composition. In the production context, this corresponds 
with the changeover cost incurred when switching the facility from the production of 
some other family to production within the family of interest. For each individual item 
included in the replenishment, an item specific setup cost is added. In addition the cost 
structure consists of holding and penalty costs. 

Our model applies equally well when there are several locations instead of several 
products: a central depot coordinates the replenishment process for a set of locations 
with exogenous, random and independent demand processes for a single commodity. 
Transportation costs can easily be incorporated in the above cost structure, as long as 
they are separable in the locations. 

We wish to minimize the long-run average cost per unit time subject to a service 
level constraint per item on the fraction of demand satisfied directly from on-hand 
inventory. Service level -constraints are widely used in practice, especially when penalty 
costs cannot be specified. 
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The multi-item inventory problem can be modeled as a semi-Markov decision 
problem; however, in view of the dimensionality of the state space, standard solution 
methods are computationally intractable; moreover an optimal rule may fail to have a 
simple form (cf. Ignall 1969), and may thus be hard to implement. 

As a consequence, we confine ourselves to the following class of simple coordinated 
control rules introduced in Balintfy (1964) and Silver (1974). Three parameters Si, ci 
and si are specified for each item i with si < ci < Si. An order is triggered by item i 
when its inventory level falls to or below the reorder level si; any item j for which the 
inventory level is at or below its can-order level, cj, is included in this order; and the 
inventory of each item k included in the order is replenished up to its order-up-to 
level Sk. 

For the special case of unit-Poisson demand distributions and zero lead time, Silver 
(1974) provides an iterative method to compute a suboptimal rule in the above 
described class of (S, c, s) rules. This heuristic method decomposes the coordinated 
control problem into single-item problems for each item in the family. Each single-item 
problem has "normal" replenishment opportunities with major setup costs, occurring 
at the demand epochs for this item; in addition there are special replenishment 
opportunities, with reduced setup costs, at epochs generated by a Poisson process 
which is an approximation to the superposition of the ordering processes triggered by 
the other items. The single-item problems are solved by elementary heuristic search 
procedures in the parameter space of the (S, c, s) rules. The mean time between 
consecutive "special" replenishment opportunities is adapted iteratively. 

Using the approach for unit Poisson demands and zero lead times as the key 
element, Silver (1974) also gives a heuristic solution method for the case of unit 
Poisson demands and positive lead times. Similarly, Thompstone and Silver (1975) 
present a heuristic solution method for the special case of compound Poisson demands 
and zero lead time by using a transformation of the compound Poisson distribution 
into an "equivalent" unit Poisson distribution.' 

This paper addresses the general case of compound Poisson demands and nonzero 
lead times and presents an efficient heuristic algorithm to search for an optimal 
(S, c, s) coordinated control rule. The approach in this paper uses the same decomposi- 
tion principle as in Silver (1974). Apart from its more general applicability, it 
distinguishes itself from Silver (1974) and Thompstone and Silver (1975) by solving the 
single-item subproblems by a specialized policy-iteration algorithm. 

For a review of the literature until 1978 on related models we refer to Chapter 13 in 
Peterson and Silver (1979). Here we merely mention Naddor (1975) treating a periodic 
review analogue of the above model. A few recent papers, Eppen and Schrage (1981) 
and Federgruen et al. (1984a, 1984b, 1984c), treat a periodic review variant of a related 
multi-item model. There replenishments are represented in the more general form of a 
two-stage process where the allocation of the replenishment batch among the various 
items in the family can be postponed until the end of the first stage. We note that our 
approach, as opposed to Eppen and Schrage (1981) and Federgruen et al. (1984a, 
1984b, 1984c), allows for fixed costs per item included in the replenishment. ?2 
describes the specialized policy-iteration algorithm for the single-item subproblems. ?3 
exhibits how this algorithm is used in an iterative procedure to compute an optimal 
(S, c, s) coordinated control rule. Finally, in ?4 numerical results are presented. 

' After completion of this paper we became aware of the paper by E. SILVER, "Establishing Reorder Points 
in the (S, c, s) Coordinated Control System under Compound Poisson Demand," Internat. J. Production 
Res., 9 (1981), 743-750. This paper generalises the results in Silver (1974) and Thompstone and Silver (1975) 
and deals with the case of compound Poisson demand and positive lead times. 
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2. Algorithm for an Optimal (S, c, s) Rule in the Single-Item Model 

Consider a single-item system in which demands occur at epochs generated by a 
Poisson process with rate X; demand sizes are independent nonnnegative random 
variables with common discrete probability distribution {+(j), j > 0). Excess demand 
is backlogged. The inventory level is continuously reviewed. We assume two types of 
ordering opportunities. "Normal" replenishment opportunities at setup cost K occur at 
the demand epochs, whereas "special" replenishment opportunities at reduced setup 
cost K ( < K) occur at epochs generated by a Poisson process with rate t, assumed to 
be independent of the demand process. The replenishment lead time is a constant 
L > 0 (see Remark 2.1 below for the case of stochastic lead times). In addition to the 
ordering costs there are holding costs at a rate h * k when the inventory on hand equals 
k, and at a rate p * k for a backlog of k units where h > 0 and p > 0. Also a fixed 
penalty cost 7r > 0 is incurred for every requested unit that cannot be delivered 
immediately from current inventory. The holding and penalty costs are assumed to be 
linear only for ease of presentation. We wish to minimize the long-run average cost per 
unit time subject to a service level constraint on the fraction of demand satisfied 
directly from on-hand inventory. 

The state of! the system can be described by the inventory position ((the inventory 
on hand) + (outstanding orders) - (total backlog)). A reasonable control rule is the 
so-called (S, c, s) rule with S > c > s, under which the inventory position is ordered up 
to S when either: (i) at a demand epoch the inventory position drops to or below s; or 
(ii) when at a special replenishment opportunity the inventory position is at or below c. 

In this section we develop a specialized policy-iteration algorithm to compute the 
best rule within the class of (S, c, s) rules. Note that by taking y = 0 our algorithm also 
applies to the continuous review (s, S) inventory system studied in Archibald and 
Silver (1978) and Tijms and Groenevelt (1984), cf. Federgruen and Zipkin (1984d). We 
first ignore the service level constraint. Then, by a Lagrangian approach, our algorithm 
can easily be extended to handle the service level constraint. 

To develop the algorithm we first note that the inventory control problem can be 
represented by a denumerable state semi-Markov decision model. Demand epochs and 
"special" replenishment opportunities represent the decision epochs and the state space 
is given by X = {(i, z) I i integer; z = 0, 1). Here state (i, 0) [(i, 1)] corresponds to the 
situation where a demand [special replenishment opportunity] has just occurred 
leaving an inventory position of i units. At each decision epoch we specify the decision 
k as the inventory position just after a possible replenishment. The one-step expected 
transition times and the one-step transition probabilities pXY(k) are easily given. The 
time between consecutive decision epochs are independent and exponentially distrib- 
uted with mean (X + p)f ̀ . The next decision epoch is generated by a demand [special 
replenishment opportunity] with probability X(X + f)-'[ y(X + yf]. Hence, noting 
that p(i,O)Y(k) = p(i,l)y(k) and using the shorthand notation pi,(k) = p(io),.(k), we have 

Pi(k,l)(k) = + X) pi( /,o)(k) = X(x + t)-(k-j), 
with the convention +(j) = 0 for j < 0. To give the one-step expected costs y(x, k), we 
first introduce { r(j), j > 0) as the probability distribution of the total demand during 
the replenishment lead time L. The compound Poisson distribution { r(j)} can be 
computed from the stable recursion scheme, cf. Adelson (1966): 

- = XL i' r(O) = eXL(l (O)) r(j) = --L k4(k)r(j - k), j > 1. (2.1) 
i k=l 

Next we observe that since excess demand is backlogged and the lead time of any 
order is a constant L, the inventory on hand at any time t + L is distributed as the 
inventory position at time t minus the total demand during a period of length L. 
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Hence, letting { TJ } be the sequence of decision epochs, the inventory position just after 
T-n unambiguously determines the distribution of the inventory on hand at time Tn + L. 
We thus adopt the standard convention that when choosing decision k at epoch Tn, 

one is charged with the immediate ordering cost (if any) as well as an amount c(k) 
representing the expected holding and penalty costs incurred in [Tn + L,Tn+l + L). 

Clearly, this shift in costs leaves the average cost of any policy unchanged. We now 
have for the one-step expected costs, 

-y((i,O),k) = KS(k- i) + c(k); -y((i, 1),k)= Ki(k- i) + c(k), 

where 8(j) = 0 for j < 0 and 8(j) = 1 for j > 1. By Federgruen and Schechner (1984) 
(cf. also Archibald 1976), c(k) equals the expected holding and penalty costs incurred 
between time L and the first decision epoch following L under the condition that at 
time 0 the inventory position equals k and no replenishment orders are placed between 
time 0 and time L. Under this condition the inventory on hand minus backlogs at time 
L equals k -j with probability r(j) and remains constant after time L during an 
interval of expected length (X + p)- l. Further, fixed penalty costs can only be incurred 
at the end of this interval and only if the first decision epoch after time L is a demand 
epoch. Thus we obtain 

k oo 

c(k) ( + [)-'h E (k -j)r(j) + ( + )-'p E (j -k)r(j) 
j=O j=k 

k oo oo 

+1X(X+ )-17r Zr(j) E (t-k+j)p(t)+ ED r(j)) 
j=O t=k-j j=k+ 1 

k? 1, 

where ED = 2Aj fp(j). Also c(k) =-pk(X + 41 + 7X(X + )f-1ED for k < 0. It now 
follows readily that c(k), k > 1 can recursively be computed from 

k-I k-I o 

c(k) = c(k -1) + (/X+ IL)-) (h + p) 2, r(j) - p -q 7 r(j) +(), 
j=O j=O t=k-j 

k> 1. 

This completes the specification of the basic elements of the semi-Markov decision 
model for the inventory problem. 

REMARK 2.1. In case the replenishment lead times are stochastic and in case the 
probability that orders cross in time is negligible for relevant control rules, we can 
apply the same model provided r(j) is replaced by r(j) = >, r(j; 1)P [L = 1]. Here 
r(j; 1), j > 0 can recursively be computed from (2.1) with L = 1. The resulting formula 
for c(k) is exact up to neglecting the probability of orders crossing in time. 

Fix now a rule R of the (S, c, s) type. First we discuss the computation of the 
average cost and the relative values for rule R. The relative values will be needed to 
identify potential improvements of R in our policy-iteration algorithm. Both the 
average cost and the relative values can be related to the expected costs incurred 
during a single regeneration cycle, which is defined as the time interval between two 
consecutive replenishment orders. For the system which starts at epoch 0 in state (i, 0), 
with i > s, and is controlled by rule R, define: 

tR(i)= the expected time until the next epoch at which a replenishment order is 
placed, 

hR(i) = the expected holding and penalty costs incurred until the next epoch at 
which a replenishment order is placed (excluding any costs incurred at this replenish- 
ment epoch), and 

qR(i) = the probability that the next replenishment order is triggered by a demand. 
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Also, we introduce for ease of notation, 

kR(i) = hR(i) + KqR(i) + K(I - qR(i)) i > S. (2.2) 

Thus kR(i) denotes the total expected costs of going from state (i,0) to the regenera- 
tion state (= state just after a replenishment order) when using rule R, where among 
the costs incurred at the replenishment epoch only the ordering costs are included. 
Note that tR(i) and kR(i) for i > c also give the expected time and the expected costs 
of going from state (i, 1) to the regeneration state under rule R. Now, by the theory of 
regenerative processes (cf. Ross 1970), the long-run average cost per unit time under 
rule R equals 

gR = kR(S)/tR(S)) (2.3) 

Also, by the theory of regenerative processes and the observation that qR (S) can be 
interpreted as the expected number of orders triggered by a demand in a single 
regeneration cycle, we have 

qR (S )/tR (S) = the long-run average number of replenishments 

X per unit time triggered by a demand. (2.4) 

This result will be needed in the algorithm for the multi-item problem. Finally, the 
relative values for rule R, VR (X) (which denotes the relative costs-relative to a 
constant cost rate gR-of going from state x to the regeneration state) are defined by: 

VR(i,O) = kR(i) gRtR(i), > s, (2.5) 

VR(i,1) k= kR(i) gRtR(i) > C, (2.6) 
K , I< C. 

Thus the difference VR (x)- VR(y) is equal to the long-run decrease in the total 
expected costs caused by starting in state x rather than in state y if the system is 
operated under rule R, cf. also Howard (1960). It remains to be shown how the 
functions tR, hR and qR can be computed. To determine tR (i), condition on the state of 
the system at the first decision epoch after time 0. This decision epoch is a special 
replenishment opportunity with probability A(t + A)-' and a demand epoch with 
probability X(Q + f)- '. In the former case an order is placed only when i < c, while in 
the latter case inventory is replenished only when the demand is at least i - s. Hence 
we obtain 

i-s-I 
tR(i) = (A + ~)'+ p(X + ?l)F'tR(i)3(i - c) + X( + tL) 2 tR(i -])+(]) 

j=0 

i > s. (2.7) 

Similarly, using the convention that the expected holding and penalty costs incurred in 
[Tn + L, T,+I + L) are assigned as immediate costs to the nth decision epoch TnI we 
find 

i-s-I 

hR (i) = C(i) + ~( + I-Y1hR (i)3(i- c) + A(X + )-1 hR (i -I)4(I ), 
i=> 

i >s. (2.8) 
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Also, 

00 i-s- I .A 

qR(i) = (A + <) qR(i)8(i- c) + X(X + tY l(j) + qi- } 

j=i-s j=0 
(i-O 

i > s. (2.9) 

The relations (2.7)-(2.9) enable the recursive computation of the quantities tR(i), hR(i) 

and qR(i) for i = s + l,s + 2, .... 
We need the following lemma, the proof of which is given in the appendix. 

LEMMA 1. The numbers { g,VR(x), x E X} satisfy the linear system of value 
determination equations 

v(x) = y(x,Rx) -g(X + ,) + p Py(Rx)v(y), x E X, (2.10) 
yEX 

where Rx denotes the decision prescribed by rule R in state x. 

We now turn to the problem of designing a policy-improvement step that results in a 
new rule R having the desired (S, c, s) structure. Define the policy-improvement test 
quantity IR(x,k) by 

IR (x,k) = y(x, k) -gR (A + M) - + E, pxy (k)VR (Y) (.1) 
yEX 

The quantity IR (x, k) may be interpreted as the relative costs incurred until the next 
replenishment order when choosing action k in the initial state x and using rule R 
thereafter. Note that, by (2.10), IR (x, R.) = VR (X) for any x. Let R = (S, c, s) be any 
rule such that 

IR (XI Rx ) < VR (X) for all x E X. (2.12) 

Then (cf. Howard 1960, Tijms 1980) 

gR gR, (2.13) 

where strict inequality holds in (2.13) if strict inequality holds in (2.12) for some state x 
which is positive recurrent under rule R. See also the proof of Lemma 3 in the 
appendix. To construct a rule R satisfying (2.12), we first specify IR(x,k) for 
the combinations (x, k) required in our algorithm. Using (2.10) and y((i, 0), k)= 
KS(k - i) + c(k) for k > i, 

IR ((i, O), k) = K + c (k) -gR (A + [) - + E piy (k)VR (Y) 
yEX 

_=K +c(k)- gR (X+tM)-+ E pkj,k)VR (y) 
yCX 

= K+ VR(k,O) all i andk > max(s,i). (2.14) 

Similarly, using VR (1,0) = K and VR (, 1) = K forj < s, we find 

'R ((i, O), i) =sIR ((i( 1), i 

Ci) 
- 

'R1 + IU)-1 + tt(k + II 1K + /(X + ju) 1K, iS. (2X15) 



350 A. FEDERGRUEN, H. GROENEVELT AND H. C. TIJMS 

Using (2.10) we find by analogous arguments 

IR ((i, l ), k) = K + c (k) - gR (X + ,t) + 2 piy (k) VR (Y) 
yeX 

= K + vR(k,O) all i and k > max(s,i). (2.16) 

IR((i 1),i) = c(i) - gR(X + ) + E P,(i)y)R(Y) = VR(iO0), s < i < c. (2.17) 
yEX 

We can now formulate a policy-improvement procedure for our policy-iteration 
algorithm. Using the computed average cost gR and the relative values for the current 
rule R, this procedure yields a new rule R=(S, , ) which satisfies (2.12). In the 
algorithm below we assume that bounds U and L can be given for the relevant values 
of S and s such that L < s < c < S < U; i.e., we only consider the control rules which 
never order up to a level exceeding U and which always place an order when the 
inventory level falls at or below L (our empirical results suggest that L and U could be 
chosen as the lower and upper bounds in Archibald and Silver (1978) for the (s,S) 
policy that would be optimal if It = 0). 

Policy-Improvement Step 

(a) Choose an integer S with c < S < U such that (cf. (2.14) and (2.16)), 

VR (S, 0) = min VR (i 0), 
c<i< U 

where we take S = S when S attains the above minimum (otherwise it suffices to 
choose S as any integer with c < S < U such that VR(S,O) < VR(S,O) = 0). 

(b) Determine the largest integer t with s < t < c such that (cf. (2.14)), 

K+ VR (SI 0) < VR (i, 0) for all s < i < t. 

If such an integer t exists, define s = t and go to part (c) of the policy-improvement 
step. Otherwise, determine t as the smallest integer with L < t < s such that (cf. (2.5) 
and (2.15)), 

c(i) + (X + I)[-gR+ Iuc + XK] < K for all t < i < s. 

If such an integer t exists, define s = t - 1, otherwise let s = s. 
(c) Determine t as the largest integer with c < t < S such that 

K + VR (S, 0) < VR (V( ) for all c < i < t 

(cf. (2.16) and note by (2.5)-(2.6) that VR(i, 1) = vR(i,0) for i > c). If such an integer 
exists define c~ = t. Otherwise determine t as the smallest integer with < K t < c such 
that (cf. (2.17) and (2.5)) 

VR(i,0) < K for all max(t,s + 1) < i < c and 

C(i) + (X + t) 1[-gR 
I 
[ R + SLK+XK] < K for all t < i < max(t, s + 1), 

and define t = t-1 if such an integer exists and let c = c otherwise. 

LEMMA 2. Let R be a given (S, c, s) rule and let R be an (5S', S) rule obtained from 
applying the policy-improvement step to rule R. Then, 

IR (x Rx ) vR (x) for all x EX and gR g 
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PROOF. We first verify (2.12) for x = (i, 0), i integer. 
Case I. < < s. For i < s, using (2.5) and (2.14), 

IR (X, RX )=K + VR(S, ?) < K + VR (S, O) = K =VR (X) (2.18) 

For < K i < s, IR(x,RRX) = C(i) + (X + M)- I[-gR + XK + yKc] < K = VR(x) (the first 
equality follows from (2.15) and the last one from (2.5)). Finally for i > s, IR (X, RX) 

IR(x, RX) = vR(X), cf. (2.10)-(2.1 1). 
Case II. s> s. For i < s, (2.12) follows from (2.18). For s < i < s, I,(x, RX) = K + 

VR(S,O) < VR (X), cf. (2.14). For i > s, IR(X,RX) = IR(x,RX) = vR(X), cf. (2.10)-(2.11). 
Verification of (2.12) for x = (i, 1), i integer, requires a similar distinction between 

the cases c > c and c < c. Finally, by (2.13), gk < gR. Q.E.D. 
We now state the algorithm for the problem without the service level constraint. 

Algorithm (No Service Level Constraint) 

Step 1. Let R = (S,c,s) be the current rule. Using (2.2) and (2.7)-(2.9), compute 
recursively the numbers kR(i), tR(i) for i = s + 1, . .. , S. Next, by (2.3) and (2.5), 
compute the average cost gR and the relative values VR (i, 0) for s < i < S. 

Step 2. Perform the above described policy-improvement step where any required 
VR(i,O) for S < i < U is obtained by_an application of the recursive schemes (2.7)- 
(2.9). This results in a new rule R = (S,c,s). 

Step 3. If R = R, stop; otherwise go to Step 1 with R replaced by R. 
Although the algorithm is bound to terminate in a finite number of iterations (cf. 

Lemma 3 in the appendix) we were unable to prove that it always converges to a 
policy which is optimal among all stationary policies. However, in all examples tested 
convergence to an overall optimal policy was numerically verified through the average 
cost optimality equation, cf. also Appendix 2 in Federgruen et al. (1983). The number 
of iterations required by this algorithm is remarkably small (typically less than ten) 
and each iteration involves only simple computations. 

We next discuss the computation of an (S,c,s) rule which minimizes the average 
holding and ordering costs (i.e., assuming p = 0) subject to the requirement that the 
fraction of demand satisfied directly from on-hand inventory is at least a, with 
O < a < 1 given. Service level constraints are widely used in practice, especially when 
penalty costs cannot be specified. Note that for the earlier cost structure with a fixed 
penalty cost 7, the average cost gR of rule R contains a term X times the average 
demand that goes short per unit time. Dividing this term by X times the average 
demand RED per unit time, we find for rule R the fraction of demand that is 
backlogged. Hence the service level of any (S,c,s) rule can easily be computed. Note 
that in the recursive computation of the cost functions c(k) and hR(k) the different 
cost terms can be dealt with separately. To find an (S,c,s) rule which minimizes the 
average holding and ordering costs subject to the service level constraint, we apply the 
above algorithm repeatedly for different values for the fixed penalty cost X > 0, as in 
ordinary Lagrangian methods. We continue until we have found the smallest value of 
X for which the associated (S,c,s) rule resulting from the algorithm still satisfies the 
service level constraint. In our experience, recovering an average cost optimal (S,c,s) 
rule when making (small) changes in the value of X requires very few iterations, 
provided that the algorithm is restarted with the rule that was found to be optimal 
under the previous value of s. We now state the algorithm. 

Algorithm (Service Level Constraint) 

Initialization. Choose a positive number g. 
Step 1. For the current value of the fixed penalty cost X and the given holding and 

ordering costs, compute by the preceding algorithm the (S,r, c~, s,) rule which mini- 
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mizes the average cost per unit time (initialize this algorithm with the (S, c, s) rule that 
was found to be optimal for the previous value of g). Let a (g) be the fraction of 
demand satisfied directly from on-hand inventory under the (S, c, s,) rule. 

Step 2. If a(g) > a select a smaller X > 0 (e.g., using bisection); if a(g) < a select 
a larger X value. Go to Step 1. 

The algorithm is terminated when the new (Sr, cr, s,) rule is the same as the previous 
one and the value for X has sufficiently converged. This algorithm will be used as the 
key element in the algorithm for the multi-item inventory problem to be discussed in 
the next section. 

3. The Algorithm for the Multi-Item Inventory Problem with Joint Replenishments 

This section deals with the coordinated inventory control problem for a group of n 
items where a saving in the replenishment cost can be achieved by combining several 
items in a single order. More precisely, the setup cost of a replenishment involving j 
items is K + K(j - 1) for j > 1 where 0 < K < K. We note that the analysis below also 
applies when the major setup cost K is item-dependent. The demands are assumed to 
be generated by independent compound Poisson processes, i.e. for each item i 
demands occur at epochs generated by a Poisson process with rate Xi and the demand 
sizes are independent random variables with common discrete probability distribution 

{0i(j),j > 0). Excess demand is backlogged. For item i the replenishment lead time is 
assumed to be a constant Li (however stochastic lead times can also be handled, cf. 
Remark 2.1 in ?2). Also, for item i we incur a holding cost at rate hi k when the 
inventory on hand equals k, and at rate pi * k when there is a backlog of k units. 

In this section we discuss a computational procedure which searches for a multi-item 
(S, c, s) rule which minimizes the long-run average cost per unit time subject to a 
service level constraint per item on the fraction of demand satisfied directly from 
on-hand inventory. 

The multi-item inventory problem can be modeled as a semi-Markov decision 
problem with an n-dimensional state space. However, in view of the dimensionality of 
the state space, standard solution methods are computationally intractable. Moreover, 
they may result in optimal policies that fail to have a simple form (cf. Ignall 1969) and 
are therefore hard to implement. For the case in which no service level constraint is 
imposed, one could apply a heuristic method which is based on the following 
decomposition approach (cf. Norman 1972 and Wijngaard 1979): Determine first for 
each item i independently the (Si,si) rule which would be optimal if joint ordering 
were not possible, as well as the corresponding relative values v&(.). This problem with 
independent control can be solved by the algorithm in the previous section provided 
one sets It = 0, c = s in part (a), c = S - 1 in part (b), and deletes part (c) of the 
policy-improvement step, cf. also Federgruen and Zipkin (1984d). 

Next consider the original multi-item inventory problem with joint ordering. Per- 
form for the corresponding semi-Markov decision problem a single standard policy- 
improvement step (cf. Norman 1972 and Wijngaard 1979) using v1(i1) + * - * + vn(in) 
as an approximation to the relative value of state (i,, . . . , in), and implement the 
resulting policy. This heuristic approach will typically result in a policy that fails to 
exhibit a simple (say (S,c,s)) structure. Moreover, the approximation to the relative 
value function fails to reflect the economies of scale in the replenishment process. 

As a consequence we focus on the decomposition approach in Silver (1974). This 
decomposition approach is based on the fact that under general conditions superposi- 
tions of n point processes converge to a Poisson process as n -> x and as the individual 
processes get more and more sparse (cf. Cinlar 1972; see also Albin 1982 for a 
discussion of the quality of this approximation). The approach thus consists of a 
decomposition of the coordinated control problem into n independent single-item 
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problems of the type studied in the previous section. Here the Poisson process 
generating replenishment opportunities at reduced setup cost represents an approxima- 
tion of the replenishment processes triggered by the other items. The rate Ili of this 
Poisson process in the single-item model for item i is determined in an iterative 
procedure. We now describe the algorithm which searches for a coordinated (S,c,s) 
rule minimizing the average holding and ordering costs subject to the requirement that 
for any item i the fraction of demand satisfied directly from on-hand inventory is at 
least ai with 0 < ai < 1 given. 

Coordinated Control Algorithm 

Initialization. Choose positive numbers / 32, ... 3. Let i :-1 and ti, Ej= i Pig 
Step 1. Compute in the single-item control problem for item i the best rule 

Ri = (Si, ci, si) by the corresponding algorithm of ?2 with pii as the rate of the Poisson 
process describing the replenishment opportunities at the reduced setup cost. Adjust /,A 
by letting /A] = qR(Si)/tRi(Si), cf. (2.4). 

Step 2. i:= i+ 1 (or 1 if i = n), yi j=,,=i Pi and go to Step 1. 
The algorithm is terminated when for each item i the new values of Si, ci and si are 

the same as the previous ones and the value of pii has sufficiently converged. 

4. Numerical Results 

In this section we discuss some numerical results for the multi-item inventory system 
with coordinated replenishments. We require for each item i that the fraction of 
demand satisfied directly from on-hand inventory is at least ail Also, the cost structure 
consists only of holding and replenishment costs (i.e., pi = 0). We minimize the aver- 
age cost per unit time subject to the service level constraint. In the examples be- 
low we assume that for each item i the demand size has a negative binomial distri- 
bution on the positive integers. For item i we denote by ED1 and cv(Di)= 
c(Dj)/EDi the average demand and the coefficient of variation of the demand. We 
consider n = 4 items with the following numerical data: 

item i xi ED; cv2(Di) Li hi pi 

I 10 5 0.5 1 1 0 
2 5 5 0.5 1 1 0 
3 10 5 0.5 1 2 0 
4 5 5 1 1 1 0 

We assume for each item i the same service level ai = a where a has one of three 
values: 0.90, 0.95 and 0.99. For the setup costs K and K we consider the three cases 
(K, ic) = (33,3), (30,5) and (15,5) with ic/(K- K) = 0.1, 0.2 and 0.5 respectively. In 
Table 4.1 we give for the multi-item problem the best (S,*,C,*s,,*) control rule as 
computed by the coordinated control algorithm described in ?3. We compare this 
coordinated control rule with the best independent control rule where each item is 
controlled independently by an (S,*,s,*) rule assuming the setup cost of a replenish- 
ment equals K. For these control rules we report for each item i the associated values 
for the service level a,* and the average cost C,*. Since the coordinated control 
algorithm involves approximations for the superpositions of the ordering processes 
triggered by the items, the coordinated control model has been validated by computer 
simulation. For each case one long simulation of 3600 time units was run. The actual 
values obtained by simulation are reported between brackets. A Pascal computer 
program for the coordinated control algorithm took on the average 5 seconds of 
CPU-time on a Cyber 170-750. 
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TABLE 4.1 

Numerical Results 

Coordinated Control Independent Control 
i (S* ,cI *, sS*) a* (sim) C* (sim) (Si*, sS*) at? C* 

1 (112,93,40) 0.900(0.871) 50.0(48.1) (126,54) 0.901 65.0 K = 33 
2 (68,54, 13) 0.903(0.889) 35.0(33.4) (79, 29) 0.902 47.2 ic = 3 
3 (105,91,50) 0.902(0.873) 90.3(88.7) (113,58) 0.901 105.3 a = 0.90 
4 (72,57, 15) 0.901(0.876) 39.0(37.5) (84,32) 0.903 50.9 

1 (120, 102,55) 0.952(0.945) 60.5(59.0) (135,65) 0.951 75.0 K = 33 
2 (74,60,26) 0.952(0.949) 42.5(41.2) (86,37) 0.951 54.6 ic = 3 
3 (113,99,62) 0.951(0.932) 108.9(107.2) (121,69) 0.951 124.7 a = 0.95 
4 (80, 65, 28) 0.951(0.949) 48.0(46.5) (92,42) 0.952 60.0 

1 (137,119,78) 0.991(0.988) 80.0(79.3) (152,86) 0.990 94.9 K = 33 
2 (87,73,44) 0.990(0.987) 57.1(56.2) (99,53) 0.990 69.8 ic = 3 
3 (130, 116,83) 0.990(0.986) 146.3(146.3) (138,89) 0.990 162.7 a = 0.99 
4 (97,83,51) 0.990(0.988) 66.9(66.2) (110,62) 0.991 79.3 

1 (113,89,42) 0.902(0.877) 51.4(49.0) (125, 55) 0.904 63.5 K = 30 
2 (69,51, 15) 0.904(0.886) 36.2(34.8) (78,30) 0.906 46.3 ic = 5 
3 (105,87,51) 0.900(0.876) 90.6(88.9) (111,59) 0.902 103.1 a = 0.90 
4 (73,54,17) 0.901(0.895) 40.1(38.4) (83,33) 0.906 50.0 

1 (121,97, 56) 0.951(0.940) 61.3(60.5) (133,66) 0.952 73.3 K = 30 
2 (75,57,27) 0.952(0.949) 43.5(42.4) (85,38) 0.953 53.7 ic = S 
3 (113,95,63) 0.950(0.938) 109.3(108.2) (120,69) 0.950 121.5 a = 0.95 
4 (81,62,30) 0.951(0.945) 49.1(47.9) (91,42) 0.951 58.3 

1 (138, 115,79) 0.990(0.988) 81.1(80.7) (150,86) 0.990 92.4 K = 30 
2 (88,71,45) 0.990(0.988) 58.4(57.6) (98,53) 0.990 68.1 ic = S 
3 (130, 113,84) 0.990(0.988) 147.1(146.9) (137,89) 0.990 159.4 a = 0.99 
4 (98,80,52) 0.990(0.990) 67.8(66.9) (108,62) 0.990 77.4 

1 (107, 80, 51) 0.903(0.890) 46.9(45.9) (111, 59) 0.902 51.5 K = 15 
2 (65, 46,24) 0.904(0.910) 33.9(33.6) (69,33) 0.906 38.1 ic = S 
3 (100,80,57) 0.901(0.891) 83.0(81.5) (103,63) 0.906 89.0 a = 0.90 
4 (69,49,26) 0.901(0.908) 37.7(37.4) (73,36) 0.902 41.7 

1 (115,89,62) 0.950(0.945) 55.9(55.3) (120,69) 0.950 60.8 K = 15 
2 (71,53,33) 0.952(0.955) 40.9(40.5) (76,41) 0.955 45.5 ic = S 
3 (108, 89,68) 0.951(0.950) 101.1(100.6) (111,73) 0.953 106.9 a = 0.95 
4 (77,58,37) 0.951(0.950) 46.6(46.0) (82,45) 0.950 50.3 

1 (132,107,84) 0.990(0.990) 75.2(75.0) (137,89) 0.990 79.7 K = 15 
2 (85,67,50) 0.991(0.992) 55.8(55.4) (89,56) 0.991 59.9 ic = S 
3 (125, 107,88) 0.990(0.991) 137.9(137.8) (127,92) 0.990 142.7 a = 0.99 
4 (95,76,57) 0.990(0.990) 65.0(64.5) (99,65) 0.990 69.2 

Our numerical investigations show that the coordinated control algorithm provides 
good approximations for the quantities of interest, including the service level. Ceteris 
paribus the differences Si* - ci*, for each item i, seem practically independent of both 
the service level constraint and the lead time; dependence on the parameters of the 
compound Poisson demand process seems restricted to XiEDi, the average demand per 
unit time. In comparison with the heuristics in Silver (1974) and Thompstone and 
Silver (1975), our algorithm gives in general slightly better results; more importantly it 
can also handle nonzero lead times for the case of compound Poisson demands. 
Finally, we note that our numerical results show that considerable cost savings may be 
achieved by using suboptimal coordinated control instead of the best independent 
control. 
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Appendix 

PROOF OF LEMMA 1. It readily follows from the definition of the functions kR I tR 

and y((i, 0), i) = c(i) that for any i > s, 

kR(i) = y((i,O),i) + Z pj(jO)(i)kR(j) + K E pi(jo)(i) 
j>s j<s 

+p, 1)(i) 8 (i -c)kR(i) + (I - S(i -C))K, 

tR(i) (X + + E Pi(j}O)(i)tR(J) + 
P(u 1)(i)(i - c)tR(i). 

i>s 

Subtracting the second equality gR times from the first one and using (2.5)-(2.6) we 
find for any i > s, 

kR (i) - gR tR(i =Y 7(i) gR(X + M) + E Pi,(') VR (Y). 

In view of i = R( jo) for i > s, and i = R( ) and y((i, 1),i) = y((i,0),i) for i > c this 
verifies that vR(i,O), i > s and vR(i, 1), i > c satisfy (2.10). Using the fact that 
VR(SIO) = kR(S) - gRtR(S) = 0 (cf. (2.3) and (2.5)), we next verify that (2.10) is 
satisfied for x = (i, 0), i < s by: 

VR (i,) = K = K + VR(S,O) 

=K + -y((SI O), S) gR (X + M)+ E PSy (S )VR (Y) 
yEX 

= y((i,0),R(io)) - gR(X + M)+ E PFy(R(io))vR(y). 
yEX 

The verification for the final case (i, 1), i S c is analogous. 

LEMMA 3. The policy-iteration algorithm for the one-item model in ?2 converges in a 
finite number of steps. 

PROOF. We first show that under any rule R of the (S, c, s) class the Markov chain 
describing the state at the decision epochs has a single ergodic set which is positive 
recurrent. Let j* = min{j I o(j) > 0) and note that state (S - j*, 0) can be reached 
from any other state in X. Clearly the mean recurrence time from state (S - j*, 0) to 
itself is finite, thus verifying the assertion. Next, let R # R be a successor policy of R 
in the policy-iteration algorithm. Let 7T(.) denote the unique steady state distribution 
of the Markov chain under rule R. Multiply (2.12) with (ff ) to conclude that g < gR. 

We show that either 

(i) gR < gR or 

(ii) g= gR and Vj-(X) < VR(X), 

x E X with strict inequality for some x E X. (Al) 

Since the algorithm only considers a finite number of policies (note L < s < c < S 
< U) and since (Al) excludes cycling, this proves the lemma. 

First consider the case S #& S. Note that {(i, 0) I i S s} U {(i, 1) 1 i < c) contains 
states x that are positive recurrent under rule R and for which IR (X, Rx) < VR (X) (cf. 

part (a) of the policy-improvement step to verify VR (g,0) < VR (S,0) and use (2.14) and 
(2.16)). Multipy (2.12) with 7F(.) using the above strict inequality to conclude that 

gR; < gR _ 
Next, let S= S. If (Al)(i) fails to hold, gR-= gR For i ? s, we have by (2.14), (2.3) 
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and (2.5) that VR(i,0) > IR((i,),R(i,o)) = K+ vR(SIO) = K= vk(i,O). For i < c, one 
finds K = vK(i, 1) < vR(i, 1) in a similar way. Finally let XN = {(i,O)I i > } U {(i, 1)1 i 
> c} be the set of states in which no replenishment is ordered under R. For given 
starting state 4O = x E XN, denote by {(k} the sequence of states adopted by the 
Markov chain under rule R and let v > 0 be the number of transitions before the first 
visit to the set X\XN. By repeated substitution in the policy-improvement test quantity 
IR( ) and using VR(i,O) > K for i < s and VR(i, 1) > K for i < c, we obtain for x E XN 

VR (X) > IR (X,RX ) 

( kEO [ Y (gk ( ) +R ( ) ] ) + qR (X)K + ( I q (X))K (A2) 

Using the relations 

F { oY((k,R )} + qR (x)K + (I -q (X))K = kk (X), 

(El + 1)(X + M) =tk (x) and gR =g I 

we have by (A2) that VR(X) > IR(X,RX) > VK(X) for all x E XN. Hence we have 
verified that VR(X) > IR(X,Rx) > Vk (X) for all x E X. Since R # R, we have vR(x) 
> IR(x, RX) for some x E X, thus proving (A1)(ii) and hence the lemma.2 

2We are indebted to the referees for helpful suggestions on the presentation of the paper. Also, we thank 
Luuk Seelen for his help with the numerical work. 
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