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In continuous review models with a fixed delivery lag T, the state of the system 
is conveniently described by the net inventory position = (inventory on hand) 
plus (outstanding orders), in spite of most cost components depending on the 
actual inventory on hand. To relate these two inventory concepts one observes 
that the distribution of the inventory on hand at time t + T is determined by the 
inventory position at time t. This explains the standard convention of charging 
the expected costs incurred in [Sn + T, Sn+1 + T) to the decision made at time 
Sn, where Sn denotes the nth decision epoch. This paper derives simple 
expressions for the expected costs in [Sn + T, Sn+1 + T) as a function of the 
inventory position just after decision epoch Sn. 

IN CONTINUOUS review single-item inventory models, the stochastic 
demand is conveniently characterized by the renewal reward process 

(Xc, Yn); n = 1, 2, * * * 1. The renewal process X1, X2, * * * describes the 
interarrival times of customers. (Sn = =i Xi with So = 0 represents the 
arrival epoch of the nth customer.) The random variable Yn (n = 1, 
2, * * * ) indicates the change in inventory resulting from the demand Dn 
of the nth customer (i.e., Yn = -Dn) and may possibly depend on Xn; 
however, we suppose that the pairs (Xn, Yn), n = 1, 2, ... are i.i.d. having 
a joint distribution function F(x, y). 

Beckmann [1961], Finch [1961], Rubalskiy [1972a, 1972b], Sivazlian 
[1974], Sahin [1979], Tijms [1972] have all studied models of this type. 
Other contributors to the literature consider mainly the special case 
where demands are described by a compound Poisson process, i.e., where 
all Xn_ n > 1, are i.i.d. exponentials, and where Xn and Yn for n > 1 are 
independent. 

When excess demands are backlogged, and delivery of an order takes 
a fixed time T, the inventory control problem can be represented by a 
semi-Markov decision model with a one-dimensional state space. This 
formulation chooses the demand points as decision epochs and the state 
of the system is given by the net inventory position = (inventory on hand) 
+ (outstanding orders) - (backlog), in spite of the fact that holding and 
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shortage costs depend on the actual inventory on hand. To relate these 
two inventory concepts, one observes that the inventory on hand at time 
t + T is distributed as the inventory position at time t minus the total 
demand during [t, t + T). The inventory position just after decision 
epoch Sn thus unambiguously determines the distribution of the inven- 
tory on hand at time Sn + T. This explains the standard convention of 
charging expected holding and shortage costs incurred in [Sn + T, 
Snr+1 + T) to the decision made at epoch Sn (with appropriate discounting 
if the objective is to minimize the expected present value of current and 
future costs). The holding and shortage costs in [0, T) are omitted since 
no decision can take effect before time T. This note derives simple 
expressions for the expected (discounted) holding and shortage costs in 
[Sn + T, Sn+1 + T) for n ? 1 as a function of the inventory position just 
after decision epoch Sn. These are needed to compute optimal inventory 
control policies as well as to characterize the structure of an optimal 
control rule. For example, under appropriate assumptions (such as con- 
vexity of the holding and shortage cost function) these formulae show 
that an (s, S) policy is optimal. 

Our development considerably simplifies existing expressions such as 
those in Beckmann [1961] -for general demand processes. We achieve 
further simplification for the case of compound Poisson processes, 
thereby providing a substantially shorter and more direct derivation of 
the results in Archibald [1976] (see also Archibald and Silver [1978]). 
Our results are related to Sahin's who derived the steady state distribu- 
tion of the inventory position and on-hand inventory, assuming inven- 
tories are controlled via an (s, S) policy. Whereas the steady state 
distribution enables the evaluation of average costs per unit time for 
arbitrary cost rate functions (see Section 1), it is insufficient to handle 
fixed penalties, e.g. for running out of stock (Section 2). Also, the 
formulas in Sahin are hard to evaluate, inappropriate when computing 
total discounted costs, and reflect the costs only under an assumed (s, S) 
replenishment policy. 

Section 1 derives the expected (discounted) value of an arbitrary cost 
rate function in [Sn + T, Sn+1 + T) and discusses some special cases. 
Section 2 discusses the treatment of fixed penalty costs incurred for any 
requested unit or demand order that cannot (in part or in total) be 
delivered from current inventory. Finally Section 3 shows how similar 
cost expressions arise in multi-item models with compound Poisson 
demand processes. 

1. EXPECTED (DISCOUNTED) HOLDING AND SHORTAGE COSTS IN 
[Sn + T, Sn+1 + T) 

Assume the system incurs a holding (shortage) cost rate h(y) per 
unit of time during which the inventory on hand equals y units. Let 
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C,(yo, j), n > 0 represent the total costs in the interval [Sn + T, Sn+1 + 
T), discounted back to Sn, when the inventory position at time Sn equals 
yo by using a (continuously compounded) interest rate j3. Note that the 
random variables Cn(Yo, j3) are i.i.d. Hence it suffices to characterize 
Co(yo, fi), the expected discounted costs in [T, T + X1). In this section, 
we derive an expression for c(yo, j3) = ECo(yo, ,B). We first introduce the 
following notation: 

N(t) = sup~n: Sn c t}. 

Y(t) = yo + En1) Yn. 
G(x) = F(x, oo) is the distribution function of the interarrival times. 
G(.) denotes its Laplace-Stieltjes transform (L.S.T.) and 

Ag= f xdG(x)<oo. 
H(y) = F(oo, y) is the distribution function of the change in inventory 

resulting from the demand of a single customer. 
F,(x, y) = Prob[X1 c x + z, Y1 ' y I X1 z] 

= [F(x + z, y) - F(z, y)][l -G(z)]- 
(the joint distribution function of the next arrival time and 
demand given the last customer arrived z time units ago). 

Note that in the relevant interval [T, T + X1), Y(t) for t E [T, T + X1) 
represents the inventory on hand. 

With the above notation, we can express c(yo, j3) as 

y ) T+X1 
c(yo, A) = E J h(Y(t))e-Otdtj Y(0) = yo (1) 

Lemma 1 demonstrates that c(yo, j3) can be obtained by evaluating the 
expectation of the h(. )-value of the inventory level at time T that would 
arise if I(Xn, YJ) I'1 were generated by a delayed renewal reward process 
(cf. Karlin and Taylor [1974], Ross [1970]). In this delayed renewal 
process, the c.d.f. of (Xn, Y9) n > 2 is given by F(x, y). The c.d.f. of 
(X1, Y1), however, is given by a distribution 

{i F.(x, y)#e- Z(I - G(z))(1 - G(3))-ldz, 13> 0 
FflD(x, y) = 

Fz(x, y)A-1(1 - G(x))dz, = 0. 

Thus FflD is merely a mixture of JFz} with respect to the density 

{e 13Ze(1 - G(z))(l - G(13))1 13> 0 
Au1(1 - G(z)), ,B= 0. 

(The fact that ,B[1 - G(3)f-le-z(1 O-G(z)) is a proper density function 
can be verified by integrating f e-(1 - G(z))dz by parts.) We will use 
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E(yoz)[E DO,#)] to denote the expectation of a measurable function under 
the delayed renewal reward process with YO = yo and F,(x, y)- 
[F#D(x, y)] as the c.d.f. of (X1, YD). We also use Eyo as an abbreviation for 
E(y o0). (Note that 

#o[ - ] = f o E(yo,z)[ ]fe-#z(l - G(z)) (1 - G(1))-1dz 

and in particular E D0)[.] = fm E(yo,z)[.]A-(1 - G(z))dz.) 

LEMMA 1. 
(a) For any / > 0, c(yo, f) = e-OTO-1[l- - 001E D)[h(Y(T))]. 
(b) For 13=0, c(yo, 0) = ,E D hYT) 

Proof. (a) Let I(t) = 0 or 1 according to whether X1 c t or X1 > t 
respectively; then 

c(yo, j3) = EY0 [ h(Y(t))e-ftI(t - T)dt] 

=-:T [J h(Y( t + T))efltl(t)dtj 

which by Fubini's theorem 
00 

e':T e-ftEy0[h(Y(t + T))I(t)]dt. 

Now: 

Eyo[h(Y(t + T))I(t)] = Eyo[h(Y(t + T) jX1 > t](I - G(t)) 

- E(Y0,t)[h(Y(T))]((1 - G(t)). 

Hence, 
00 

c(yo, ) = _ OTO-1 - G(f)] E(y0t)[h(Y(T))] 

* {,B - G(0)f-1e-t(1 - G(t))}dt 

=e-"TB-1[1- 0(0)]E D 0)[h(Y(T))]. 

(b) Follows in a similar way. 

Observe that the result for ,B = 0 can be obtained by letting ,B 0. Also, 
when X and Y are independent, FoD(X, y) = H(y)-1 fJ (1 - G(t))dt, the 
product of H(.) and the equilibrium distribution of G(.). 

The significance of Lemma 1 is that c(yo, ,B) can be expressed in the 
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form 

|OTO-i [I - G(3)] f h(yo - u)dR(u), 0 <1 
c(yo,1) = (2) 

h(yo - u)dR(u), j3=O 

where R(u) is the c.d.f. of the demand in [0, T) as generated by the 
delayed renewal process specified by FD(x, y) and F(x, y). 

We next discuss a few special cases in which further simplifications 
can be achieved. For simplicity, assume that demands have a discrete 
distribution 1k(j); j ? 0}. 

1. The Compound Poisson Case 

The analysis of the compound Poisson-demand process (with the 
interarrival times IX4,1?1 i.i.d. exponentials, independent of Yn}1?1) is 
immediate from Lemma 1: 

COROLLARY. If (Xn, Yn) is compound Poisson with G(t) = 1 - ext, then 
(a) For 1 > 0, c(yo, 1) = e-fT(X + 3)-1Ey0[h(Y(T))], and 
(b) For 1 = 0, c(yo, 0) = X-1Ey0[h(Y(T))]. 

The corollary shows that in the compound Poisson case, the expected 
costs in [T, T + X1) equal the expected costs in an interval starting at 
time T and terminating at the first arrival after T. 

[(SN(T)+1 1 

c(yo, ) = Ey0 J h(Y(t))e-OtdtJ, > 0. (3) 

Let r(j) represent the probability that the number of units demanded in 
a period of length T equals j, j = 0, 1, * Then, 

Eyo[h(Y(T))] = ET=o h(yo -j)r(j). 

In particular, when 

h+y, y > O 
h(y) = Y -h-y, y < 0 

we have after some algebraic manipulations and using Xj jr(j) = XTE[Y1], 

Eyojh(Y(T))] = h+ (yo -j)r(j) + h- E7=i jr(j + yo) 

= h-(XTE[Y]Y - yo) + (h+ + h-) A (Yo - j)r(j). 

The numbers r(j) can be computed from the stable recursive scheme 
(cf. Adelson [1966]): 
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r(O) = e-'T(1-0(0)> 

r(j) = (XT/j) Z' kh(k)r(j - k), i ' 1. 

11. Erlang Distributed Interarrival Times 

Let F(t) f T [(Xu)m-1Xe-u/(m - 1)!]du for m integer. Let Xn and Yn 
for n ? 1 be independent. Let O(n)( *) be the n-fold convolution of {k( 
As before, let r(i) represent the probability of i units of demand in [0, T) 
where the demand process is a delayed renewal process, and the first 
renewal time is distributed as the equilibrium distribution of G, i.e., the 
probability density function of the first renewal epoch t is given by 

Xim-1 Z'-O e-xtXiltl/l!. 

Let P(i, t) be the probability of i units of demand during an interval 
of length t immediately following a demand. Conditioning upon the first 
renewal time t, and using the formulas on p. 55 in Beckmann, we obtain 
after some algebra for i > 1 

rT 
r(i) Xm-1 j=o +(j) f P(i - j, T - t) E1=- [e-t(Xt)1/1!]dt 

= Xm 1 X=o O(j) ,n=O k Of(i _ j) 

vmn+m-1 vm-1 
* r=mn z1=0 

rT 

* [e-T(Xt)1(X(T - t))rll!r!]dt 

= m 1 xm=Z ?(f)(i) rmnn+nm-l >i1=o e -1 T(XT) +r+l/(l + r + 1)! 

= m1 EX- Ob(n)(i) EXmn+2ml (e T(7XT)l/l!) 

*min(mn + 2m - 1 1 - mn) 

and 
00 

r(O) = (X/m) f NM [e-t(Xt)1/1!]dt + m-1 n-l [0(O)]n 

>lhmn+2l11 (e`(XT0)l/1!)min(mn + 2m - 1, 1 - mn) 

= M -1 Em-1l (m -r)e -IT( T)r Ir! + M-1 E,n 
l [0(/))]n 

1l=nm~n2+l (e- (>T)'/l!)min(mn + 2m - , - mn). 

The numbers r(i), i > 1, enable us to evaluate 

YO'O)[h(Y(T))]-O= Zo h(yo- 
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2. FIXED (DISCOUNTED) PENALTY COSTS 

Assume that (in additioin to the previously considered cost compo- 
nents), the system incurs a fixed penalty A > 0 for any demand that 
cannot be satisfied (in part or in total) from current inventory and a 
penalty cost r > 0 for any requested unit that has to be backlogged. If 
we let D(t) - EN(t) Dn be the total demand by time t, then the expected 
discounted cost in [T, T + X1) is given by: 

- T+Xj 

q(yo, E) =E e-t[DN(t-)+1 - y(t-)+]+dN(t) T 
~~~~~~~~~~~~~~(5) 

rT+Xj 

+ A fT+ l e It{DN(t-)+l + D(t-) > yo}dN(t) 

where x+ = max(0, x) and 1{ * } is the indicator function of }. Lemma 2 
below shows that at least in the compound Poisson case, we can obtain 
a simple expression for q(yo, j). 

LEMMA 2. Let (Xn, Yn) be a compound Poisson process with rate X > 0 
and let j > 0 then: 

q(yo, ) e-,eTX(X + fY1V + -E[Di]) Ej>yO r(j) (6) 

+ EjOo r(j) EX,=yO-j+i k(n)(4P + r(n - yo + j))} 

Proof. Let I(t) be as in Lemma 1. (5) can be rewritten as 
00 

q(yo, 3) = e-fTE f e-1tI(t) I1-(DN(T+t-)+l - [Y(T + t-)]+)+ 

+ i11k DN(T+t-)+1 + D(T + t-) > yo}}dN(t + T) 

= e X A e ( t3l E{X(DN(T+t-)+1 - [Y(T + t)] )+ 

+ 411lDN(T+t-)+1 + D(T + t-) > yo} IX1 > tjdt. 

Interchanging the order of integration and using E[dN(t)] = Xdt, we 
obtain 

q(yo, d) - e/3 TX(X + f)1E{ir(DN(T)+1 - [Y(T)] ) 

+ i11klDN(T)+1 + D(T) > yoi}. 

After rearranging terms, we see that this expression leads to (6). 

Once again we note from (6) that the total (discounted) expected 
penalty costs in [T, T + X1) equal the expected costs in an interval 
starting at time T and terminating at the first arrival after T. 
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TSN(T)+l 
q(yo, j) = E ir e-ft[DN(t-)+1 - Y(t-)+1]dN(t) 

L (7) 
rSN(T)+l 

+ fS e+ eltl{DN(t-)+1 + D(t-) > yo}dN(t)1. 

Lemma 2 can be extended to any penalty cost structure for which the 
cost in [t, t + dt) depends merely upon D(t-) and the size of a single 
demand in [t, t + dt). Note that the evaluation of (6) requires the 
computation of r(O), * * *, r(yo) (via (4)) only. 

3. MULTI-ITEM INVENTORY SYSTEMS WITH COMPOUND POISSON 
DEMANDS 

Silver [1974], Thompstone and Silver [1975] and Federgruen et al. 
[1983] consider continuous review multi-item inventory systems where 
the demand processes for the items are independent compound Poisson 
processes; excess demands are backlogged and replenishments have con- 
stant lead times. There is a major setup cost associated with a replenish- 
ment for the family, and a minor setup cost for any item included in the 
order. In addition, the cost structure consists of holding-penalty and 
variable order costs. 

The methods in the above references decompose the coordinated 
control problem into a single-item problem for each item in the family. 
Each single-item problem has "normal" replenishment opportunities at 
the major setup cost occurring at the demand epochs for this item and 
"special" replenishment opportunities at reduced setup costs at epochs 
generated by a Poisson process which is an approximation to the super- 
position of the ordering processes triggered by the other items. For a 
given item, let F(t) = 1 - e-t, be the c.d.f. of the interarrival times and 
let yu be the rate of the Poisson process describing the special replenish- 
ment opportunities. The normal and the special replenishment oppor- 
tunities together constitute the decision epochs. Hence Xi, i = 1, *, n 
ae i.i.d. exponentials with rate (X + It). 

To evaluate c(yo, 0) and q(yo, 0), note that the process can be described 
as a renewal reward process with for all n > 1, Prob[Yn = -1] = 
X(X + ,u)-10(l) for 1 > 0 and Prob[Yn = 0] = X(X + ,4)-10(0) + /t(X + I4)`. 
Applying Lemmas 1 and 2 we obtain, cf. (2.2) in Federgruen et al.: 

c(yo, 0) + q(yo, 0) = (X + t)`1 Zi=o h(yo - j)r(j) 

+ X(X + zl)`1{jZo r(j) Zk=Yoojk + ir(k - yo + jj)]O(k) 

+ (4 + -rE[D1]) Ej-yO+i r(j)j. 
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