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This paper considers a single-item, periodic-review inventory model with uncertain de- 
mands. We assume a finite production capacity in each period. With stationary data, a convex 

one-period cost function and a continuous demand distribution, we show (under a few 
additional unrestrictive assumptions) that a modified basic-stock policy is optimal under the 
discounted cost criterion, both for finite and infinite planning horizons. In addition we 
characterize the optimal base-stock levels in several ways. 

1. Introduction. This paper is a sequel to Federgruen and Zipkin [3]. We consider 
a single-item, periodic-review production (or inventory) model with linear production 
costs, a convex function representing expected one-period costs, and nonnegative i.i.d. 
demands. Stockouts are backordered. All data are stationary. Both finite- and infinite- 
horizon problems are treated. As in [3], the novel feature here is a finite production 
capacity in each period. Whereas [3] treats the discrete-demand, average-cost case, we 
assume here continuous demand and the expected-discounted-cost criterion. 

Our goal, as in [3], is to prove that a stationary, modified base-stock policy, 
characterized by a single critical number, is optimal: when initial stock is below that 
number, produce enough to bring total stock up to that number, or as close to it as 
possible, given the limited capacity; otherwise, do not produce. 

See [3] for a discussion of related prior work and related models. The proof in [3] is 
based on specific results of Federgruen, Schweitzer and Tijms [2] for denumerable- 
state, average-cost dynamic programs. Such results are not available (to date, at least) 
for the case treated here, so we adopt a different approach, based on the limiting 
behavior of the sequence of finite horizon problems. This is a relatively standard 
approach for uncapacitated problems (e.g., Iglehart [6]). This approach allows us to 
show also that the optimal base-stock level and optimal cost function are, respectively, 
the limits of their finite-horizon counterparts. 

As in the average-cost case [3], if there is also a fixed cost for production, solutions 
to the infinite-horizon optimality equation continue to exist and any stationary policy 
satisfying this equation for certain such solutions is optimal. These results may be 
obtained from a simple adaptation of the analyses below. Whether our optimal policy 
has a simple (e.g. modified (s, S), cf. [3] and Heyman and Sobel [5]) structure remains 
an open question. 

?2 sets forth the notation and a set of required assumptions under which the cost of 

every policy is finite. ?3 examines finite-horizon problems, and demonstrates that a 
(nonstationary) base-stock policy is optimal in each period. The optimality proof for 
the infinite-horizon problem is presented in ?4. ??3 and 4 also describe the dependence 
of the optimal critical number(s) on the production capacity in the finite- and 

*Received February 20, 1985. 
AMS 1980 subject classification. Primary: 90B05. 
IAOR 1973 subject classification. Main: Inventory. 
OR/MS Index 1978 subject classification. Primary: 346 Inventory/production/policies. 
Key words. Inventory model, periodic review, production policy, basestock policy. 

208 

0364-765X/86/ 1102/0208$01.25 
Copyright C 1986, The Institute of Management Sciences/Operations Research Society of America 



INVENTORY MODEL WITH UNCERTAIN DEMANDS 

infinite-horizon cases, respectively. ?5, finally, provides a partial characterization of an 

optimal (modified) base-stock policy. 

2. Notation and assumptions. 
R= the real numbers. 
D = generic random variable representing one-period demand. 

Dt = demand in period t, t = 0, 1,.... 
D= (D)}t=. 
D () = generic i-period demand, i = 1,2,.... 
b = production capacity, or limit on order size, a finite positive number. 
c = per-unit order (production) cost, a nonnegative number. 
xt = inventory at the beginning of period t. 

yt = inventory after ordering (production) but before demand in period t, t = 0, 
1,.... 

Y(x) = (y: x _ y ? x + b), the feasible values of y given x E R. 

G(y) = one-period expected cost function, exclusive of order costs. 
a = discount rate, 0 < a < 1. 
The Dt are assumed independent and distributed identically as D. D is nonnegative 

and possesses a density. We suppress the time index where possible, writing x for xt for 

example. We now state additional assumptions: 

ASSUMPTION 1. (a) limlyl,o G(y) = limlyl_o[cy + G(y)] = oo; (b) G is C1 (con- 
tinuously differentiable), nonnegative and convex. 

ASSUMPTION 2. G(y) = O(IyP) for some positive integer p. 

ASSUMPTION 3. D has finite moments of all orders up to p. 

Assumption 1 is required (even in the uncapacitated case) to guarantee that a 

(modified) base-stock policy is optimal. Assumption 2 seems satisfied in all cases of 

practical interest. Given Assumption 2, Assumption 3 is required to guarantee finite 

expected costs even in finite-horizon problems and even in the uncapacitated case. 
Note, we do not require b > E(D), a crucial condition in the undiscounted case [3]. 
(Only in Corollary 1 of ?5 is b > E(D) assumed.) 

Let A denote the set of pure, stationary, measurable policies; y = 8(x) E Y(x) 
denotes the action prescribed by 8 E A in state x E R. We shall also use 8 E A to 
denote a one-period policy, and 8 to denote a sequence of one-period policies; the 

meaning will be clear from the context. Define 

B,(x I 8, D) = a'[c(yi- xi) + G(y)] I x = x,8,D , 
i=0 

B(x16,D)=limsupB,(x 1,D), B(x 8)= EB(x ,D), 
t->00 

for x E R. B(x 1 8) is the expected discounted cost of the policy sequence 8 starting in 
state x. Observe that Bt,(x I 8,D)) is nondecreasing, so we may replace the lim sup by 
B(x I 6, D) = limt,, B,(x I 8, D). Also by the monotone convergence theorem (Royden 
[7, p. 227]) we have B(x I 8) = lim0,, EB1(x I 8, D). Specifically, let 8 [y] denote either 
the one-period base-stock policy with critical number y, or the corresponding station- 
ary, infinite-horizon policy, y E IR. 

We now show that every feasible policy has finite expected cost under the assump- 
tions above. 

LEMMA 1. For a fixed integer q, 0 _ q p, E [D (i) ] O(i q). 
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PROOF. E[D (i)Jq = E(', D)q < i Cq, where (i qU ' j t Cq 

C4 = max E(Dj )E(D2) ... E(Df ): 2i = q, > 0, integer). 

THEOREM 1. B(x | 8) = ( x)P) for all policy sequences 6. 

PROOF. Define D = max(D,b), and D() the i-fold convolution of D. In view of 
Lemma 1 applied to D there exists a constant Cp such that E(D(t))P < CptP. Note that 
x - D(') < Yt < x + tb for all policies and demands. Now, by the (quasi-) convexity 
of G and Assumption 1, 

G(y,) < max{ G(x - D(t)),G(x + tb)) 

< A + Bmax{(x - D(t) , Ix + tbP}), 

for some positive constants A and B. From the convexity of the function [zlP, 
Ix - D(t)lP < (2x)P + I1 - 2D(t)l. Hence, 

G(yt) < A + 2P-B(lxIP + max{(D(t)),(tb)p)) 

< A + 2P-'B(IXIp + (D()) ), and 

EG(yt) < A + 2- 'B(IxlP + 6C,t). 

The theorem now follows from 
00 

B(x 18) = atE[c(y - xt) + G(y,)] 

00 

<(1 -a)'cb + aEG(y). I 

t=O 

3. Finite-horizon problems. In this section we characterize the optimal policies 
and value functions in finite-horizon problems. 

Define 
v"(x) = minimal expected discounted cost with n > 0 periods remaining in the 

problem starting with inventory x E R. 
Then the v, satisfy the following standard functional equations, expressed in terms 

of auxiliary functions J, and I,: 
(')=J0() = I0() = 0; 

Jn(y) = cy + G(y) + aEvn (y - D),y E R, 
I,(x) = min{Jn(y): y E Y(x)}, x E R, 

n(x) = -cx + In(x), X E R, n > 1. 

(A simple induction shows that each vn(x) is 0(Ix1P), so Evi_,(y - D) exists and is 
finite, hence Jn is well defined.) 

THEOREM 2. For all n > 1 

(a) J, is C1 and convex; there exists a finite number which achieves the global 
minimum of J,. Let y,* be the smallest value of y that minimizes Jn. 

(b) The optimal policy in period n is [ y,*]. 
(c) In and v, are C' and convex. 
(d) In(x) < I'_l(x), x < y* . 
(e) Jn+ I(x) < Jn(x), x < yn*. 
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(f) Yn*+ I > Yn* . 
(g) { v(x)} is nonnegative and nondecreasing in n, x E R. 

PROOF. A simple induction using c(y - x) + G(y) > O, y E Y(x), x E R verifies 
(g). We shall prove (a)-(f) by induction. 

For n = 1, (a) and (b) are obvious. 

JI(x + b), x < y - b, 

1(x) = tJ(y), y b-b x < y, 

[Jl(x), Yi < x, 

from which (c) follows immediately. I(x) < 0= Io(x), x < y', which is (d). Thus, 
EIl(y - D) < O, y < y*. Also, the integrals EII(y - D) and EI(y - D) converge 
uniformly over y in any closed interval, so dEI(y - D)/dy = EI(y - D). This, 
together with (c) establishes part (a) for n = 2. (Note, limlylj J2(y) = oo in view of 
Assumption 1, and part (g).) Thus, 

J2(y) =(1 - a)c + G'(y) + aEI(y - D) < c + G'(y) = J/(y), y < y, 

which is (e). In particular J'(yf) < J{(y*) = 0, yielding (f). 
Now, assume the result for n - 1. Part (a) for n follows from (c) for n - 1 (using 

dEvn_ (y - D)/dy = Evn_l(y- D) and limlylooJn(y) = oo, as above), and this 
yields (b) immediately. Thus, 

[Jn(x + b), x < Y*- b, 

In(X) = Jn(Yn*) n*- b < yn*, 

lJn (x) Yn < x, 

which yields (c). For (d) we consider two cases; in each case x falls in one (or more) of 
four intervals: 

(A)y*- b < y*,l: 

In (x) = Jn(x + b) < Jn l(x + b) 
= 

In_,l(), x < Yn - b; 

In(x) = Jn(x + b) < 0 = In_ (x), Yn*- -b < x < yn*- b; 

In(x) 
= 0 < Inl_I(X), Yn*-b < x < Yn*-; 

In(X) 
= 0 < J;_ l(X) 

= 
In_l(X), Y*-l < x < Yn - 

(B) y* - b > yn*_: same as (A), x < y*-_ - b; 

In(x) 
= 

Jn(x + b) < 0 = 
In_,(x), Yn* - b < x < yn*- ; 

In(x) = Jn(x + b) < 0 < Jn _(x) = In_ (x), Yn I < x < n* - b; 

In(x) = 0 < Jn_l(x) = I,_(x), yn* - b < x < y*. 

Parts (e) and (f) follow immediately from (d), as above for the case n = 1. ! 
Let 8* denote the sequence of one-period policies 8[y,*]}; thus 8* specifies an 

optimal n-period policy for all n > 1. 
We now show how the optimal policy depends on b. Let vn(x; b), y*(b), etc. indicate 

the quantities above parameterized on b. 

THEOREM 3. If 0 < b1 < b2, then for all n > 1 
(a) v.(x; bl) > vn(x; b2), x E R; 
(b) yn*(b) > y*(b2). 
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PROOF. (a) 3*(b1) is feasible for b = b2. 
(b) We show J,(y; b1) < J,,(y; b2), y E R, and hence y,*(b1) > y, (b2) by induction on 

n. For n = 1 we have equality. Assuming the result for n, we show I,(x; b1) < I,(x; b2), 
x E- R. There are two cases to consider, and several intervals for x in each case: 

(A) yn(b 1)- b1 I y,n'(b2): 

I, (x; bl)= J,(x + b1 ;bi) < Jn(x + b1; b2) 

J(x + b2;b2)=I(x; b2), X<Y *(b2)- b2 

In'(x; b I)= J,,(x + b, ; b ) < 0 = I,,(x; b2), yn* (b2) b2 < x < yn* (bl) - bi 

I(x; bb1)= O= I,n(x'b2), y*(bl) - b, < x < yn*(b 

I'(x; b1)= O J, (x; b2) = In(x; b2), yn* (b2) < x <?n*(b\) 

I,n (x; b1)= Jn(x; b1) < Jn(x; b2) = I$(x;b2), yb(bI) < x. 

(B) y(b1) -- b1 I yn*(b2): same as (A), x < y(b2) - b 

I,n (x; b Jn (x +- b, ; b < 0 = In'(x; b2) *(2)t 2<X n*( 

In(x; b1)= Jn(x + bI ;b1) < 0 < Jn(x; b2) 
In(X; b * (b\~ I*(. - bi 

=Ix2), Yn (2) x < y,*(b1) - 

I,n (x; b 0 <O Jn (x; b2) = In(x; b2), yn* (b 1)- b I < x < yn* (b, 

same as (A),y(b1) < x. 

Therefore, vn(x; bl) < v(x;b2), x EO , which implies J+ I(y; b1) J,+I(y; b), 
y E- R, completing the induction. I 

4. Optimality proof for the infinite-horizon problem. In this section we show that a 
stationary (modified) base-stock policy is optimal for the infinite-horizon problem. In 
addition we show that the infinite-horizon minimal-cost function and the correspond- 
ing optimal base-stock level arise as limits of the sequences of their finite-horizon 

counterparts. 

THEOREM 4. (a) The sequence { vn} converges pointwise to a limit vu; v" is convex, 
and limjxl,1, v.(x) = 0o. 

(b) The function J,(y) = cy + G(y) + aEvu, (y - D) is well defined; J. is convex, 
and some finite number achieves its global minimum. Let y* denote the smallest such 
number. 

(C) limn,.((Yn*) =Y*? 
(d) The function vu satisfies the optimality equation 

v(x) = mintc(y - x) + G(y) + aEv(y - D) :y E Y(x)), 

and the minimum is achieved by the policy 3 [y*], for all x & RF. 

PROOF. (a) Choose any y E IR. By the optimality of &* for the n-period problem, 
Vn(x)= EBn(x I&*, D) < EBn(x I [y], D) < B(x I j [y]), for all n > I and x E R. Us- 

ing Theorems 2(g) and 1, t vn is nondecreasing and bounded above, so it is 
convergent. Each Vn is convex, so vo, is also, and lim1x1,,, v,(x) > lim1Xj1"'v1(x) = 00, 
by Assumption 1. 

(b) v.(x) = O(IxIl) by Theorem 1, so EV.(y - D)< oo for all y, and J, is well 
defined. The convexity of Jo follows from that of G and v,. Also, limj,Y1,,,J.y) 

l 1im1Y,1, J1(y) = oo, again by Assumption 1, so50 is finite. 
(c) Since each vn < v ,, by the Lebesgue Convergence Theorem, { Evn(y - D)) 
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{(Ev,o(y- D)), so {(J(y))}{Joo(y). Define y =sup{y,*). If y* <y^, then 
choose N such that y < YN < Yoo. Let E = JN(Y*) - JN(Y); by the definition of YN, 
? > 0. By Theorem 2(e), (f) for n > N 

J(Y*) - Jn (YN)= -j (y)dy> - ()= c, 

hence Jo((y*) > Joo,(y) + E, contradicting the definition of y*. If yo < Y*, J,(y) is 
nondecreasing for y > Y y,y*, n > 1, so Jn(o) < J,,() < Jo(y*). Therefore, 

Jo_(Yo) - J,(yoo) > J0,(Y) - J00(y*) > 0, by the definition of y*. But this contra- 
dicts {J, (Y^o)) } Jjo(oo) 

(d) We shall take limits of both sides of the equation 

v)n(X)= -cx + min Jn(y) : y E Y(x)} = -cx + Jn(8[ y*](x)). 

The left-hand side converges to vo(x). By (c) the policies 8 [yn*] converge pointwise to 
8 [y* ], so the measures induced by the variables 8 [y,*](x) - D converge setwise, in the 

sense of Royden [7, pp. 231-232]. Applying his Proposition 18, p. 232, therefore, 

{ Jn(a[ Yn ](x)) Joo(8[ y* ] (x)), 

which yields the result, by the convexity of Jo. [ 

THEOREM 5. The policy 8[y*] is optimal. 

PROOF. Follows immediately from Theorem 4(a) and (d) and Bertsekas and Shreve 

[1, Propositions 9.16 and 9.12]. I 

THEOREM 6. AS a function of b, y* (b) is nondecreasing. 

PROOF. Follows from Theorems 3(b) and 4(c). I 

5. The expected cost of (modified) base-stock policies. In this section we derive 

expressions for the expected costs of (modified) base-stock policies. These expressions 
are used to provide a (partial) characterization of the optimal policy. 

For a given such policy 8(y) define T as the length of a cycle, i.e. T is the first time 

period t > 1 such that y = y conditional on y = y. (If t < Y for all t > 1, set T = oo.) 
Define Qt(w) = Pr{D() - ib > 0, i = 1, ..., t - 1, D(t) - tb < w}. This is the proba- 
bility that T > t and xt > - (b + w). Note that f? dQ(w) is the probability that the 
cycle length is t and f dQt(w) is the probability that the cycle length is greater than t. 
Let H(y) denote the expected discounted cost during such a cycle, including the order 
cost in period T, but not G(T) = G(y). Letting C denote the discounted final 

expected order cost, 
00 

C= afl c(b + w) dQ(w). 
t= 1 b 

Then 
00 

H(y)= G(y)+ E at [ cb+ G(y-w)]dQt(w)+ C 

which is finite by Theorem 1. Also, let ,f = E(aT I x0 = y, 8(y)) < a which is indepen- 
dent of y. 

The following theorem provides a (partial) characterization of the optimal critical 
number. 

THEOREM 7. A necessary condition for 8 [y] to be an optimal policy is that y minimize 

(1 - 3)cy + H(y) over y E R. 
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PROOF. Observe that H(y) is convex in y. Let y - denote the smallest y realizing 
the minimum of (1 - f)cy + H(y) andy + the largest. First, suppose y <y -. For any 
c, O < E < mint b, y - -y}, (1 - P)c(y + E) + H(y + E) < (I - P)cy + H(Y), so CE + 

(1 - p)I'H(y +cE) < (1 - /3)-'H(y). 
Since under policy 3[y +,El, the process { y, I is regenerative at epochs t with 

y, =y + E we have 

B(y + c[y +]) = /'H(y + E) = (1 - P) 1H(y + E) and 
t=O 

B(yI [ y + E]) = cE + (1 - 3) 'H(y +cE). 

Thus B(j I 3 [y + e]) < B(y I 3 [y]). For x = y, the policy 3 [y + c] thus yields a lower 
cost than 3 [9], so 3[y] cannot be optimal. Second, if 9 >y , choose c with 0 < E 
< min{b, y -y + ) and use a similar argument to show B(y - I3( 9y -,El) < B(y - 

jE I [y]) so 3 [y] is not optimal for x =9y -EC. I 
Recall that in the uncapacitated problem, the optimal critical number minimizes 

(1 - a)cy + G(y). Theorem 7 provides the analogous result in the capacitated case. 
Under the additional assumption that b > ED, Corollary 1 provides an alternative way 
to view the connection. 

COROLLARY 1. Assume b > ED. A necessary condition for 3 [y] to be an optimal 
policy is that 9 minimizes ft'[(l - a)c(y - w) + G(y - w)]d{X' 0a'Q,(w)}, where Q0 
is the unit step function at zero. 

PROOF. Note that in the first (T - 1) periods under policy 3 [y], the process { y,) 
follows a random walk with increments distributed as b - D. Since b ? ED, T has a 

proper distribution (see Feller [4, p. 396]). Thus, 
00 

l -f3 =l1 - C a'Pr T = t I xo, 8] 
t=1 

- 00 

- 1a) I+ Xa'Pr(T > tlx =y9,[y9]} 
t=1 

=(l-a) l+~Tatf0dQd,(w) 

Hence, 
- 00 

(l-1)cy+H(y)=(l-a) Il+XEa'f0 dQ1(w) cy + G(y) 

+ ~atf00[cb + 
G(y - w)dQ1(w) + 

00~~~~~~~0 

=[(l -a)cy+ G(y)] + 2 a 
t=I 

xf00[(-a)c(y -w) +G(y-w)]dQ1(w) 

+ Ea tf0[(l - a)w + b]cdQ,(w) + C 

= constant+ 00[(l-a)c(y-w)+G(y-w)]d atQt(w)} 
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