AN INVENTORY MODEL WITH LIMITED PRODUCTION CAPACITY AND UNCERTAIN DEMANDS II. THE DISCOUNTED-COST CRITERION*

A. FEDERGRUEN and P. ZIPKIN
Columbia University

Abstract

This paper considers a single-item, periodic-review inventory model with uncertain demands. We assume a finite production capacity in each period. With stationary data, a convex one-period cost function and a continuous demand distribution, we show (under a few additional unrestrictive assumptions) that a modified basic-stock policy is optimal under the discounted cost criterion, both for finite and infinite planning horizons. In addition we characterize the optimal base-stock levels in several ways.

1. Introduction. This paper is a sequel to Federgruen and Zipkin [3]. We consider a single-item, periodic-review production (or inventory) model with linear production costs, a convex function representing expected one-period costs, and nonnegative i.i.d. demands. Stockouts are backordered. All data are stationary. Both finite- and infinitehorizon problems are treated. As in [3], the novel feature here is a finite production capacity in each period. Whereas [3] treats the discrete-demand, average-cost case, we assume here continuous demand and the expected-discounted-cost criterion.

Our goal, as in [3], is to prove that a stationary, modified base-stock policy, characterized by a single critical number, is optimal: when initial stock is below that number, produce enough to bring total stock up to that number, or as close to it as possible, given the limited capacity; otherwise, do not produce.

See [3] for a discussion of related prior work and related models. The proof in [3] is based on specific results of Federgruen, Schweitzer and Tijms [2] for denumerablestate, average-cost dynamic programs. Such results are not available (to date, at least) for the case treated here, so we adopt a different approach, based on the limiting behavior of the sequence of finite horizon problems. This is a relatively standard approach for uncapacitated problems (e.g., Iglehart [6]). This approach allows us to show also that the optimal base-stock level and optimal cost function are, respectively, the limits of their finite-horizon counterparts.

As in the average-cost case [3], if there is also a fixed cost for production, solutions to the infinite-horizon optimality equation continue to exist and any stationary policy satisfying this equation for certain such solutions is optimal. These results may be obtained from a simple adaptation of the analyses below. Whether our optimal policy has a simple (e.g. modified (s, S), cf. [3] and Heyman and Sobel [5]) structure remains an open question.
$\S 2$ sets forth the notation and a set of required assumptions under which the cost of every policy is finite. $\S 3$ examines finite-horizon problems, and demonstrates that a (nonstationary) base-stock policy is optimal in each period. The optimality proof for the infinite-horizon problem is presented in $\S 4$. $\S \S 3$ and 4 also describe the dependence of the optimal critical number(s) on the production capacity in the finite- and

[^0]infinite-horizon cases, respectively. $\S 5$, finally, provides a partial characterization of an optimal (modified) base-stock policy.

2. Notation and assumptions.

$\mathbb{R}=$ the real numbers.
$D=$ generic random variable representing one-period demand.
$D_{t}=$ demand in period $t, t=0,1, \ldots$.
$\bar{D}=\left\{D_{t}\right\}_{t=0}^{\infty}$.
$D^{(i)}=$ generic i-period demand, $i=1,2, \ldots$.
$b=$ production capacity, or limit on order size, a finite positive number.
$c=$ per-unit order (production) cost, a nonnegative number.
$x_{t}=$ inventory at the beginning of period t.
$y_{t}=$ inventory after ordering (production) but before demand in period $t, t=0$, $1, \ldots$.
$Y(x)=\{y: x \leqq y \leqq x+b\}$, the feasible values of y given $x \in \mathbb{R}$.
$G(y)=$ one-period expected cost function, exclusive of order costs.
$\alpha=$ discount rate, $0<\alpha<1$.
The D_{t} are assumed independent and distributed identically as $D . D$ is nonnegative and possesses a density. We suppress the time index where possible, writing x for x_{t} for example. We now state additional assumptions:

ASSUMPTION 1. (a) $\lim _{|y| \rightarrow \infty} G(y)=\lim _{|y| \rightarrow \infty}[c y+G(y)]=\infty$; (b) G is C^{1} (continuously differentiable), nonnegative and convex.

Assumption 2. $\quad G(y)=0\left(|y|^{\rho}\right)$ for some positive integer ρ.
Assumption 3. D has finite moments of all orders up to ρ.
Assumption 1 is required (even in the uncapacitated case) to guarantee that a (modified) base-stock policy is optimal. Assumption 2 seems satisfied in all cases of practical interest. Given Assumption 2, Assumption 3 is required to guarantee finite expected costs even in finite-horizon problems and even in the uncapacitated case. Note, we do not require $b>E(D)$, a crucial condition in the undiscounted case [3]. (Only in Corollary 1 of $\S 5$ is $b \geqq E(D)$ assumed.)

Let Δ denote the set of pure, stationary, measurable policies; $y=\delta(x) \in Y(x)$ denotes the action prescribed by $\delta \in \Delta$ in state $x \in \mathbb{R}$. We shall also use $\delta \in \Delta$ to denote a one-period policy, and $\bar{\delta}$ to denote a sequence of one-period policies; the meaning will be clear from the context. Define

$$
\begin{aligned}
& B_{t}(x \mid \bar{\delta}, \bar{D})=\left\{\sum_{i=0}^{t} \alpha^{i}\left[c\left(y_{i}-x_{i}\right)+G(y)\right] \mid x_{0}=x, \bar{\delta}, \bar{D}\right\}, \\
& B(x \mid \bar{\delta}, \bar{D})=\limsup _{t \rightarrow \infty} B_{t}(x \mid \bar{\delta}, \bar{D}), \quad B(x \mid \bar{\delta})=E B(x \mid \bar{\delta}, \bar{D}),
\end{aligned}
$$

for $x \in \mathbb{R} . B(x \mid \bar{\delta})$ is the expected discounted cost of the policy sequence $\bar{\delta}$ starting in state x. Observe that $\left\{B_{t}(x \mid \bar{\delta}, \bar{D})\right\}$ is nondecreasing, so we may replace the lim sup by $B(x \mid \bar{\delta}, \bar{D})=\lim _{t \rightarrow \infty} B_{t}(x \mid \bar{\delta}, \bar{D})$. Also by the monotone convergence theorem (Royden [7, p. 227]) we have $B(x \mid \bar{\delta})=\lim _{t \rightarrow \infty} E B_{t}(x \mid \bar{\delta}, \bar{D})$. Specifically, let $\delta[\bar{y}]$ denote either the one-period base-stock policy with critical number \bar{y}, or the corresponding stationary, infinite-horizon policy, $\bar{y} \in \mathbb{R}$.

We now show that every feasible policy has finite expected cost under the assumptions above.

Lemma 1. For a fixed integer $q, 0 \leqq q \leqq \rho, E\left[D^{(i)}\right]^{q}=0\left(i^{q}\right)$.

Proof. $E\left[D^{(i)}\right]^{q}=E\left(\sum_{t=1}^{i} D_{t}\right)^{q} \leqslant i^{q} C_{q}$, where

$$
C_{q}=\max \left\{E\left(D_{1}^{l_{1}}\right) E\left(D_{2}^{l_{2}}\right) \ldots E\left(D_{q}^{q_{q}}\right): \sum_{j=1}^{q} l_{j}=q, l \geqslant 0, \text { integer }\right\}
$$

Theorem 1. $\left.B(x \mid \bar{\delta})=(|x|)^{\rho}\right)$ for all policy sequences $\bar{\delta}$.
Proof. Define $\hat{D}=\max (D, b)$, and $\hat{D}^{(i)}$ the i-fold convolution of \hat{D}. In view of Lemma 1 applied to \hat{D} there exists a constant \hat{C}_{ρ} such that $E\left(\hat{D}^{(t)}\right)^{\rho} \leqslant \hat{C}_{\rho} t^{\rho}$. Note that $x-D^{(t)} \leqslant y_{t} \leqslant x+t b$ for all policies and demands. Now, by the (quasi-) convexity of G and Assumption 1,

$$
\begin{aligned}
G\left(y_{t}\right) & \leqslant \max \left\{G\left(x-D^{(t)}\right), G(x+t b)\right\} \\
& \leqslant A+B \max \left\{\left|x-D^{(t)}\right|^{\rho},|x+t b|^{\rho}\right\},
\end{aligned}
$$

for some positive constants A and B. From the convexity of the function $|z|^{\rho}$, $\left|x-D^{(t)}\right|^{\rho} \leqslant \frac{1}{2}(2 x)^{\rho}+\frac{1}{2}\left|-2 D^{(t)}\right|^{\rho}$. Hence,

$$
\begin{aligned}
G\left(y_{t}\right) & \leqslant A+2^{\rho-1} B\left(|x|^{\rho}+\max \left\{\left(D^{(t)}\right)^{\rho},(t b)^{\rho}\right\}\right) \\
& \leqslant A+2^{\rho-1} B\left(|x|^{\rho}+\left(\hat{D}^{(t)}\right)^{\rho}\right), \quad \text { and } \\
& E G\left(y_{t}\right) \leqslant A+2^{\rho-1} B\left(|x|^{\rho}+\hat{C}_{\rho} t^{\rho}\right)
\end{aligned}
$$

The theorem now follows from

$$
\begin{aligned}
B(x \mid \bar{\delta}) & =\sum_{t=0}^{\infty} \alpha^{t} E\left[c\left(y_{t}-x_{t}\right)+G\left(y_{t}\right)\right] \\
& \leqslant(1-\alpha)^{-1} c b+\sum_{t=0}^{\infty} \alpha^{t} E G\left(y_{t}\right)
\end{aligned}
$$

3. Finite-horizon problems. In this section we characterize the optimal policies and value functions in finite-horizon problems.

Define
$v_{n}(x)=$ minimal expected discounted cost with $n \geqslant 0$ periods remaining in the problem starting with inventory $x \in \mathbb{R}$.

Then the v_{n} satisfy the following standard functional equations, expressed in terms of auxiliary functions J_{n} and I_{n} :

$$
\begin{aligned}
& v_{0}(\cdot)=J_{0}(\cdot)=I_{0}(\cdot)=0 \\
& J_{n}(y)=c y+G(y)+\alpha E v_{n-1}(y-D), y \in \mathbb{R}, \\
& I_{n}(x)=\min \left\{J_{n}(y): y \in Y(x)\right\}, x \in \mathbb{R}, \\
& v_{n}(x)=-c x+I_{n}(x), x \in \mathbb{R}, n \geqslant 1 .
\end{aligned}
$$

(A simple induction shows that each $v_{n}(x)$ is $0\left(|x|^{\rho}\right)$, so $E v_{n-1}(y-D)$ exists and is finite, hence J_{n} is well defined.)

Theorem 2. For all $n \geqslant 1$
(a) J_{n} is C^{1} and convex; there exists a finite number which achieves the global minimum of J_{n}. Let y_{n}^{*} be the smallest value of y that minimizes J_{n}.
(b) The optimal policy in period n is $\delta\left[y_{n}^{*}\right]$.
(c) I_{n} and v_{n} are C^{1} and convex.
(d) $I_{n}^{\prime}(x) \leqslant I_{n-1}^{\prime}(x), x \leqslant y_{n}^{*}$.
(e) $J_{n+1}^{\prime}(x) \leqslant J_{n}^{\prime}(x), x \leqslant y_{n}^{*}$.
(f) $y_{n+1}^{*} \geqslant y_{n}^{*}$.
(g) $\left\{v_{n}(x)\right\}$ is nonnegative and nondecreasing in $n, x \in \mathbb{R}$.

Proof. A simple induction using $c(y-x)+G(y) \geqslant 0, y \in Y(x), x \in \mathbb{R}$ verifies (g). We shall prove (a)-(f) by induction.

For $n=1$, (a) and (b) are obvious.

$$
I_{1}(x)= \begin{cases}J_{1}(x+b), & x \leqslant y_{1}^{*}-b, \\ J_{1}\left(y_{1}^{*}\right), & y_{1}^{*}-b \leqslant x \leqslant y_{1}^{*}, \\ J_{1}(x), & y_{1}^{*} \leqslant x,\end{cases}
$$

from which (c) follows immediately. $I_{1}^{\prime}(x) \leqslant 0=I_{0}^{\prime}(x), x \leqslant y_{1}^{*}$, which is (d). Thus, $E I_{1}^{\prime}(y-D) \leqslant 0, y \leqslant y_{1}^{*}$. Also, the integrals $E I_{1}(y-D)$ and $E I_{1}^{\prime}(y-D)$ converge uniformly over y in any closed interval, so $d E I_{1}(y-D) / d y=E I_{1}^{\prime}(y-D)$. This, together with (c) establishes part (a) for $n=2$. Note, $\lim _{|y| \rightarrow \infty} J_{2}(y)=\infty$ in view of Assumption 1, and part (g).) Thus,

$$
J_{2}^{\prime}(y)=(1-\alpha) c+G^{\prime}(y)+\alpha E I_{1}^{\prime}(y-D) \leqslant c+G^{\prime}(y)=J_{1}^{\prime}(y), \quad y \leqslant y_{1}^{*},
$$

which is (e). In particular $J_{2}^{\prime}\left(y_{1}^{*}\right) \leqslant J_{1}^{\prime}\left(y_{\mathrm{i}}^{*}\right)=0$, yielding (f).
Now, assume the result for $n-1$. Part (a) for n follows from (c) for $n-1$ (using $d E v_{n-1}(y-D) / d y=E v_{n-1}^{\prime}(y-D)$ and $\lim _{|y| \rightarrow \infty} J_{n}(y)=\infty$, as above), and this yields (b) immediately. Thus,

$$
I_{n}(x)= \begin{cases}J_{n}(x+b), & x \leqslant y_{n}^{*}-b, \\ J_{n}\left(y_{n}^{*}\right), & y_{n}^{*}-b \leqslant y_{n}^{*}, \\ J_{n}(x), & y_{n}^{*} \leqslant x,\end{cases}
$$

which yields (c). For (d) we consider two cases; in each case x falls in one (or more) of four intervals:
(A) $y_{n}^{*}-b \leqslant y_{n-1}^{*}$:

$$
\begin{aligned}
& I_{n}^{\prime}(x)=J_{n}^{\prime}(x+b) \leqslant J_{n-1}^{\prime}(x+b)=I_{n-1}^{\prime}(x), \quad x \leqslant y_{n-1}^{*}-b ; \\
& I_{n}^{\prime}(x)=J_{n}^{\prime}(x+b) \leqslant 0=I_{n-1}^{\prime}(x), \quad y_{n-1}^{*}-b \leqslant x \leqslant y_{n}^{*}-b ; \\
& I_{n}^{\prime}(x)=0 \leqslant I_{n-1}^{\prime}(x), \quad y_{n}^{*}-b \leqslant x \leqslant y_{n-1}^{*} ; \\
& I_{n}^{\prime}(x)=0 \leqslant J_{n-1}^{\prime}(x)=I_{n-1}^{\prime}(x), \quad y_{n-1}^{*} \leqslant x \leqslant y_{n}^{*} .
\end{aligned}
$$

(B) $y_{n}^{*}-b \geqslant y_{n-1}^{*}:$ same as (A), $x \leqslant y_{n-1}^{*}-b$;

$$
\begin{aligned}
& I_{n}^{\prime}(x)=J_{n}^{\prime}(x+b) \leqslant 0=I_{n-1}^{\prime}(x), \quad y_{n-1}^{*}-b \leqslant x \leqslant y_{n-1}^{*} ; \\
& I_{n}^{\prime}(x)=J_{n}^{\prime}(x+b) \leqslant 0 \leqslant J_{n-1}^{\prime}(x)=I_{n-1}^{\prime}(x), \quad y_{n-1}^{*} \leqslant x \leqslant y_{n}^{*}-b ; \\
& I_{n}^{\prime}(x)=0 \leqslant J_{n-1}^{\prime}(x)=I_{n-1}^{\prime}(x), \quad y_{n}^{*}-b \leqslant x \leqslant y^{*} .
\end{aligned}
$$

Parts (e) and (f) follow immediately from (d), as above for the case $n=1$.
Let $\bar{\delta}^{*}$ denote the sequence of one-period policies $\left\{\delta\left[y_{n}^{*}\right]\right\}$; thus $\bar{\delta}^{*}$ specifies an optimal n-period policy for all $n \geqslant 1$.

We now show how the optimal policy depends on b. Let $v_{n}(x ; b), y_{n}^{*}(b)$, etc. indicate the quantities above parameterized on b.

Theorem 3. If $0<b_{1}<b_{2}$, then for all $n \geqslant 1$
(a) $v_{n}\left(x ; b_{1}\right) \geqslant v_{n}\left(x ; b_{2}\right), x \in \mathbb{R}$;
(b) $y_{n}^{*}\left(b_{1}\right) \geqslant y_{n}^{*}\left(b_{2}\right)$.

Proof. (a) $\bar{\delta}^{*}\left(b_{1}\right)$ is feasible for $b=b_{2}$.
(b) We show $J_{n}^{\prime}\left(y ; b_{1}\right) \leqslant J_{n}^{\prime}\left(y ; b_{2}\right), y \in \mathbb{R}$, and hence $y_{n}^{*}\left(b_{1}\right) \geqslant y_{n}^{*}\left(b_{2}\right)$ by induction on n. For $n=1$ we have equality. Assuming the result for n, we show $I_{n}^{\prime}\left(x ; b_{1}\right) \leqslant I_{n}^{\prime}\left(x ; b_{2}\right)$, $x \in \mathbb{R}$. There are two cases to consider, and several intervals for x in each case:

$$
\left.\begin{array}{rl}
(\mathrm{A}) & y_{n}^{*}\left(b_{1}\right)
\end{array}\right) b_{1} \leqslant y_{n}^{*}\left(b_{2}\right): ~ \begin{aligned}
& I_{n}^{\prime}\left(x ; b_{1}\right)=J_{n}^{\prime}\left(x+b_{1} ; b_{1}\right) \leqslant J_{n}^{\prime}\left(x+b_{1} ; b_{2}\right) \\
& \leqslant J_{n}^{\prime}\left(x+b_{2} ; b_{2}\right)=I_{n}^{\prime}\left(x ; b_{2}\right), \quad x \leqslant y_{n}^{*}\left(b_{2}\right)-b_{2} ; \\
& I_{n}^{\prime}\left(x ; b_{1}\right)=J_{n}^{\prime}\left(x+b_{1} ; b_{1}\right) \leqslant 0=I_{n}^{\prime}\left(x ; b_{2}\right), \quad y_{n}^{*}\left(b_{2}\right)-b_{2} \leqslant x \leqslant y_{n}^{*}\left(b_{1}\right)-b_{1} ; \\
& I_{n}^{\prime}\left(x ; b_{1}\right)=0=I_{n}^{\prime}\left(x^{\prime} b_{2}\right), \quad y_{n}^{*}\left(b_{1}\right)-b_{1} \leqslant x \leqslant y_{n}^{*}\left(b_{2}\right) ; \\
& I_{n}^{\prime}\left(x ; b_{1}\right)=0 \leqslant J_{n}^{\prime}\left(x ; b_{2}\right)=I_{n}^{\prime}\left(x ; b_{2}\right), \quad y_{n}^{*}\left(b_{2}\right) \leqslant x \leqslant y_{n}^{*}\left(b_{1}\right) ; \\
& I_{n}^{\prime}\left(x ; b_{1}\right)=J_{n}^{\prime}\left(x ; b_{1}\right) \leqslant J_{n}^{\prime}\left(x ; b_{2}\right)=I_{n}^{\prime}\left(x ; b_{2}\right), \quad y_{n}^{*}\left(b_{1}\right) \leqslant x . \\
& \text { (B) } y_{n}^{*}\left(b_{1}\right)-b_{1} \geqslant y_{n}^{*}\left(b_{2}\right): \text { same as }(\mathrm{A}), x \leqslant y_{n}^{*}\left(b_{2}\right)-b_{2} ; \\
& I_{n}^{\prime}\left(x ; b_{1}\right)=J_{n}^{\prime}\left(x+b_{1} ; b_{1}\right) \leqslant 0=I_{n}^{\prime}\left(x ; b_{2}\right), \quad y_{n}^{*}\left(b_{2}\right)-b_{2} \leqslant x \leqslant y_{n}^{*}\left(b_{2}\right) ; \\
& I_{n}^{\prime}\left(x ; b_{1}\right)=J_{n}^{\prime}\left(x+b_{1} ; b_{1}\right) \leqslant 0 \leqslant J_{n}^{\prime}\left(x ; b_{2}\right) \\
&=I_{n}^{\prime}\left(x ; b_{2}\right), \quad y_{n}^{*}\left(b_{2}\right) \leqslant x \leqslant y_{n}^{*}\left(b_{1}\right)-b_{1} ; \\
& I_{n}^{\prime}\left(x ; b_{1}\right)=0 \leqslant J_{n}^{\prime}\left(x ; b_{2}\right)=I_{n}^{\prime}\left(x ; b_{2}\right), \quad y_{n}^{*}\left(b_{1}\right)-b_{1} \leqslant x \leqslant y_{n}^{*}\left(b_{1}\right) ;
\end{aligned}
$$

same as $(\mathrm{A}), y_{n}^{*}\left(b_{1}\right) \leqslant x$.
Therefore, $v_{n}^{\prime}\left(x ; b_{1}\right) \leqslant v_{n}^{\prime}\left(x ; b_{2}\right), x \in \mathbb{R}$, which implies $J_{n+1}^{\prime}\left(y ; b_{1}\right) \leqslant J_{n+1}^{\prime}\left(y ; b_{2}\right)$, $y \in \mathbb{R}$, completing the induction.
4. Optimality proof for the infinite-horizon problem. In this section we show that a stationary (modified) base-stock policy is optimal for the infinite-horizon problem. In addition we show that the infinite-horizon minimal-cost function and the corresponding optimal base-stock level arise as limits of the sequences of their finite-horizon counterparts.

Theorem 4. (a) The sequence $\left\{v_{n}\right\}$ converges pointwise to a limit $v_{\infty} ; v_{\infty}$ is convex, and $\lim _{|x| \rightarrow \infty} v_{\infty}(x)=\infty$.
(b) The function $J_{\infty}(y)=c y+G(y)+\alpha E v_{\infty}(y-D)$ is well defined; J_{∞} is convex, and some finite number achieves its global minimum. Let y_{∞}^{*} denote the smallest such number.
(c) $\lim _{n \rightarrow \infty}\left\{y_{n}^{*}\right\}=y_{\infty}^{*}$.
(d) The function v_{∞} satisfies the optimality equation

$$
v(x)=\min \{c(y-x)+G(y)+\alpha E v(y-D): y \in Y(x)\}
$$

and the minimum is achieved by the policy $\delta\left[y_{\infty}^{*}\right]$, for all $x \in \mathbb{R}$.
Proof. (a) Choose any $\bar{y} \in \mathbb{R}$. By the optimality of $\bar{\delta}^{*}$ for the n-period problem, $v_{n}(x)=E B_{n}\left(x \mid \bar{\delta}^{*}, \bar{D}\right) \leqslant E B_{n}(x \mid \delta[\bar{y}], \bar{D}) \leqslant B(x \mid \delta[\bar{y}])$, for all $n \geqslant 1$ and $x \in \mathbb{R}$. Using Theorems $2(g)$ and $1,\left\{v_{n}\right\}$ is nondecreasing and bounded above, so it is convergent. Each v_{n} is convex, so v_{∞} is also, and $\lim _{|x| \rightarrow \infty} v_{\infty}(x) \geqslant \lim _{|x| \rightarrow \infty} v_{1}(x)=\infty$, by Assumption 1.
(b) $v_{\infty}(x)=0\left(|x|^{\rho}\right)$ by Theorem 1, so $E V_{\infty}(y-D)<\infty$ for all y, and J_{∞} is well defined. The convexity of J_{∞} follows from that of G and v_{∞}. Also, $\lim _{|y| \rightarrow \infty} J_{\infty}(y)$ $\geqslant \lim _{|y| \rightarrow \infty} J_{1}(y)=\infty$, again by Assumption 1, so y_{∞}^{*} is finite.
(c) Since each $v_{n} \leqslant v_{\infty}$, by the Lebesgue Convergence Theorem, $\left\{E v_{n}(y-D)\right\}$
$\rightarrow\left\{E v_{\infty}(y-D)\right\}$, so $\left\{J_{n}(y)\right\} \rightarrow\left\{J_{\infty}(y)\right\}$. Define $\hat{y}_{\infty}=\sup \left\{y_{n}^{*}\right\}$. If $y_{\infty}^{*}<\hat{y}_{\infty}$, then choose N such that $y_{\infty}^{*}<y_{N}^{*}<\hat{y}_{\infty}$. Let $\epsilon=J_{N}\left(y_{\infty}^{*}\right)-J_{N}\left(y_{N}^{*}\right)$; by the definition of y_{N}^{*}, $\epsilon>0$. By Theorem 2(e), (f) for $n \geqslant N$
hence $J_{\infty}\left(y_{\infty}^{*}\right) \geqslant J_{\infty}\left(y_{N}^{*}\right)+\epsilon$, contradicting the definition of y_{∞}^{*}. If $\hat{y}_{\infty}<y_{\infty}^{*}, J_{n}(y)$ is nondecreasing for $y \geqslant \hat{y}_{\infty} \geqslant y_{n}^{*}, n \geqslant 1$, so $J_{n}\left(\hat{y}_{\infty}\right) \leqslant J_{n}\left(y_{\infty}^{*}\right) \leqslant J_{\infty}\left(y_{\infty}^{*}\right)$. Therefore, $J_{\infty}\left(\hat{y}_{\infty}\right)-J_{n}\left(\hat{y}_{\infty}\right) \geqslant J_{\infty}\left(\hat{y}_{\infty}\right)-J_{\infty}\left(y_{\infty}^{*}\right)>0$, by the definition of y_{∞}^{*}. But this contradicts $\left\{J_{n}\left(\hat{y}_{\infty}\right)\right\} \rightarrow J_{\infty}\left(\hat{y}_{\infty}\right)$.
(d) We shall take limits of both sides of the equation

$$
v_{n}(x)=-c x+\min \left\{J_{n}(y): y \in Y(x)\right\}=-c x+J_{n}\left(\delta\left[y_{n}^{*}\right](x)\right) .
$$

The left-hand side converges to $v_{\infty}(x)$. By (c) the policies $\delta\left[y_{n}^{*}\right]$ converge pointwise to $\delta\left[y_{\infty}^{*}\right]$, so the measures induced by the variables $\delta\left[y_{n}^{*}\right](x)-D$ converge setwise, in the sense of Royden [7, pp. 231-232]. Applying his Proposition 18, p. 232, therefore,

$$
\left\{J_{n}\left(\delta\left[y_{n}^{*}\right](x)\right)\right\} \rightarrow J_{\infty}\left(\delta\left[y_{\infty}^{*}\right](x)\right)
$$

which yields the result, by the convexity of J_{∞}.
Theorem 5. The policy $\delta\left[y_{\infty}^{*}\right]$ is optimal.
Proof. Follows immediately from Theorem 4(a) and (d) and Bertsekas and Shreve [1, Propositions 9.16 and 9.12].

Theorem 6. As a function of $b, y_{\infty}^{*}(b)$ is nondecreasing.
Proof. Follows from Theorems 3(b) and 4(c).
5. The expected cost of (modified) base-stock policies. In this section we derive expressions for the expected costs of (modified) base-stock policies. These expressions are used to provide a (partial) characterization of the optimal policy.

For a given such policy $\delta(\bar{y})$ define T as the length of a cycle, i.e. T is the first time period $t \geqslant 1$ such that $y_{t}=\bar{y}$ conditional on $y_{0}=\bar{y}$. (If $y_{t}<\bar{y}$ for all $t \geqslant 1$, set $T=\infty$.) Define $Q_{t}(w)=\operatorname{Pr}\left\{D^{(i)}-i b>0, i=1, \ldots, t-1, D^{(t)}-t b \leqslant w\right\}$. This is the probability that $T \geqslant t$ and $x_{t} \geqslant \bar{y}-(b+w)$. Note that $\int_{-b}^{0} d Q_{t}(w)$ is the probability that the cycle length is t and $\int_{0}^{\infty} d Q_{t}(w)$ is the probability that the cycle length is greater than t. Let $H(\bar{y})$ denote the expected discounted cost during such a cycle, including the order cost in period T, but not $G\left(y_{T}\right)=G(\bar{y})$. Letting C denote the discounted final expected order cost,

$$
C=\sum_{t=1}^{\infty} \alpha^{t} \int_{-b}^{0} c(b+w) d Q_{t}(w)
$$

Then

$$
H(\bar{y})=G(\bar{y})+\sum_{t=1}^{\infty} \alpha^{t} \int_{0}^{\infty}[c b+G(\bar{y}-w)] d Q_{t}(w)+C
$$

which is finite by Theorem 1. Also, let $\beta=E\left(\alpha^{T} \mid x_{0}=\bar{y}, \delta(\bar{y})\right)<\alpha$ which is independent of \bar{y}.

The following theorem provides a (partial) characterization of the optimal critical number.

Theorem 7. A necessary condition for $\delta[\bar{y}]$ to be an optimal policy is that \bar{y} minimize $(1-\beta) c y+H(y)$ over $y \in \mathbb{R}$.

Proof. Observe that $H(y)$ is convex in y. Let y^{-}denote the smallest y realizing the minimum of $(1-\beta) c y+H(y)$ and y^{+}the largest. First, suppose $\bar{y}<y^{-}$. For any $\epsilon, 0<\epsilon<\min \left\{b, y^{-}-\bar{y}\right\},(1-\beta) c(\bar{y}+\epsilon)+H(\bar{y}+\epsilon)<(1-\beta) c \bar{y}+H(\bar{y})$, so $c \epsilon+$ $(1-\beta)^{-1} H(\bar{y}+\epsilon)<(1-\beta)^{-1} H(\bar{y})$.

Since under policy $\delta[\bar{y}+\epsilon]$, the process $\left\{y_{t}\right\}$ is regenerative at epochs t with $y_{t}=\bar{y}+\epsilon$ we have

$$
\begin{gathered}
B(\bar{y}+\epsilon \mid \delta[\bar{y}+\epsilon])=\sum_{t=0}^{\infty} \beta^{t} H(\bar{y}+\epsilon)=(1-\beta)^{-1} H(\bar{y}+\epsilon) \text { and } \\
B(\bar{y} \mid \delta[\bar{y}+\epsilon])=c \epsilon+(1-\beta)^{-1} H(\bar{y}+\epsilon) .
\end{gathered}
$$

Thus $B(\bar{y} \mid \delta[\bar{y}+\epsilon])<B(\bar{y} \mid \delta[\bar{y}])$. For $x=\bar{y}$, the policy $\delta[\bar{y}+\epsilon]$ thus yields a lower cost than $\delta[\bar{y}]$, so $\delta[\bar{y}]$ cannot be optimal. Second, if $\bar{y}>y^{+}$, choose ϵ with $0<\epsilon$ $<\min \left\{b, \bar{y}-y^{+}\right\}$and use a similar argument to show $B(\bar{y}-\epsilon \mid \delta[\bar{y}-\epsilon])<B(\bar{y}-$ $\epsilon \mid \delta[\bar{y}])$ so $\delta[\bar{y}]$ is not optimal for $x=\bar{y}-\epsilon$.

Recall that in the uncapacitated problem, the optimal critical number minimizes $(1-\alpha) c y+G(y)$. Theorem 7 provides the analogous result in the capacitated case. Under the additional assumption that $b \geqslant E D$, Corollary 1 provides an alternative way to view the connection.

Corollary 1. Assume $b \geqslant E D$. A necessary condition for $\delta[\bar{y}]$ to be an optimal policy is that \bar{y} minimizes $\int_{0}^{\infty}[(1-\alpha) c(y-w)+G(y-w)] d\left\{\sum_{t=0}^{\infty} \alpha^{t} Q_{t}(w)\right\}$, where Q_{0} is the unit step function at zero.

Proof. Note that in the first $(T-1)$ periods under policy $\delta[\bar{y}]$, the process $\left\{y_{t}\right\}$ follows a random walk with increments distributed as $b-D$. Since $b \geqslant E D, T$ has a proper distribution (see Feller [4, p. 396]). Thus,

$$
\begin{aligned}
1-\beta & =1-\sum_{t=1}^{\infty} \alpha^{t} \operatorname{Pr}\left\{T=t \mid x_{0}=\bar{y}, \delta[\bar{y}]\right\} \\
& =(1-\alpha)\left[1+\sum_{t=1}^{\infty} \alpha^{t} \operatorname{Pr}\left\{T>t \mid x_{0}=\bar{y}, \delta[\bar{y}]\right\}\right] \\
& =(1-\alpha)\left[1+\sum_{t=1}^{\infty} \alpha^{t} \int_{0}^{\infty} d Q_{t}(w)\right] .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
(1-\beta) c y+H(y)= & (1-\alpha)\left[1+\sum_{t=1}^{\infty} \alpha^{t} \int_{0}^{\infty} d Q_{t}(w)\right] c y+G(y) \\
& +\sum_{t=1}^{\infty} \alpha^{t} \int_{0}^{\infty}[c b+G(y-w)] d Q_{t}(w)+C \\
= & {[(1-\alpha) c y+G(y)]+\sum_{t=1}^{\infty} \alpha^{t} } \\
& \times \int_{0}^{\infty}[(1-\alpha) c(y-w)+G(y-w)] d Q_{t}(w) \\
& +\sum_{t=1}^{\infty} \alpha^{t} \int_{0}^{\infty}[(1-\alpha) w+b] c d Q_{t}(w)+C \\
= & \text { constant }+\int_{0}^{\infty}[(1-\alpha) c(y-w)+G(y-w)] d\left\{\sum_{t=0}^{\infty} \alpha^{t} Q_{t}(w)\right\}
\end{aligned}
$$

Acknowledgement. This research was supported in part by grants from the Faculty Research Fund, Graduate School of Business, Columbia University. We acknowledge the many useful suggestions by two anonymous referees.

References

[1] Bertsekas, D. and Shreve, S. (1978). Stochastic Optimal Control. The Discrete Time Case. Academic Press, New York.
[2] Federgruen, A., Schweitzer, P. and Tijms, H. (1983). Denumerable Undiscounted Semi-Markov Decision Processes with Unbounded Rewards. Math. Oper. Res. 8 298-314.
[3] ___ and Zipkin, P. (1986). An Inventory Model with Limited Production Capacity and Uncertain Demands. I. The Average Cost-Criterion. Math. Oper. Res. 11 193-207.
[4] Feller, W. (1971). An Introduction to Probability Theory and Its Applications. Vol. II. 2nd ed., Wiley, New York.
[5] Heyman, D. and Sobel, M. (1984). Stochastic Models in Operations Research. Vol. II. McGraw Hill, New York.
[6] Iglehart, D. (1963). Optimality of (s, S) Policies in the Infinite Horizon Dynamic Inventory Problem. Management Sci. 9 259-267.
[7] Royden, H. (1968). Real Analysis, 2nd ed. MacMillan, New York.
GRADUATE SCHOOL OF BUSINESS, COLUMBIA UNIVERSITY, NEW YORK, NEW YORK 10027

[^0]: *Received February 20, 1985.
 AMS 1980 subject classification. Primary: 90B05.
 IAOR 1973 subject classification. Main: Inventory.
 OR / MS Index 1978 subject classification. Primary: 346 Inventory/production/policies.
 Key words. Inventory model, periodic review, production policy, basestock policy.

