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We consider inventory systems with several distinct items. Demands occur at constant, item specific rates. The items are 
interdependent because of jointly incurred fixed procurement costs: The joint cost structure reflects general economies 
of scale, merely assuming a monotonicity and concavity (submodularity) property. Under a power-of-two policy each 
item is replenished with constant reorder intervals which are power-of-two multiples of some fixed or variable base 
planning period. Our main results include a proof that, depending upon whether the base planning period is fixed or 
variable, the best among all power-of-two policies has an average cost which comes within either 6% or 2% of an easily 
computable lower bound for the minimum cost value. We also derive two efficient algorithms to compute an optimal 
power-of-two policy. The proposed algorithms generate as a by-product, a specific cost allocation of the joint cost 
structure to the individual items. With this specific allocation, the problem with separable costs is in fact equivalent to 
the original problem with nonseparable joint costs in the sense that the two problems share the same sets of optimal 
power-of-two policies with identical associated long-run average costs. 

One of the major complications in managing 
multi-item inventory systems stems from the 

fact that various cost components, in particular, setup 
costs, are often jointly incurred between several dis- 
tinct items. The joint cost structure often reflects 
economies of scale which may be exploited by com- 
bining different items in the same production batch 
or delivery order. Such cost structures invoke the need 
for careful coordination of the items' replenishment 
strategies. The coordination problem and the resulting 
potential for efficiency improvements and cost savings 
is often ignored in the current practice of inventory 
management: Typically, a rather arbitrary allocation 
scheme is applied to allocate the joint cost structure 
to the individual items. The allocated costs are sub- 
sequently used for the determination of inventory 
rules for each of the items separately. 

One of the most extensively studied multi-item 
inventory models with joint setup costs is the so-called 
"joint replenishment problem." In this model, 
demands are assumed to occur continuously, at item 
specific but time-homogeneous rates. Most of the 
literature addresses itself to one specific joint setup 
cost structure: The first-order interaction structure in 
which a major (uniform) setup cost is incurred for 

each order, regardless of which items are involved, in 
addition to item specific (minor) setup costs incurred 
for each specific item that is included in the replenish- 
ment batch. 

Even under the first-order interaction cost structure, 
which is arguably the simplest of all joint cost struc- 
tures, few structural properties have been identified 
that an optimal policy can be shown to satisfy. This 
explains why all existing approaches in the literature 
are based on an a priori restriction to a convenient 
class of inventory policies. In fact, all existing restric- 
tion approaches appear to be of one of the following 
two types (or hybrid combinations thereof): 

Fixed Partitions. Each strategy in this class employs 
a fixed partition of the items into groups; each time 
the inventory of a given item is replenished, it is 
replenished jointly with the other members of its 
group and the setup cost associated with that group is 
incurred. No joint replenishment occurs between 
items that are assigned to different groups. 

Integer Ratio Policies. All items are replenished at 
constant intervals which are integer multiples of some 
base planning period. A special subclass is the class of 
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power-of-two rules under which these replenishment 
intervals are chosen as power-of-two multiples of the 
base period. (Such rules have often been implemented 
in practice because their simplicity facilitates the plan- 
ning, scheduling and coordination problems.) 

For the case of first-order interaction, it has been 
shown (Jackson, Maxwell and Muckstadt 1985, 
Roundy 1985) that the best among all power-of-two 
policies has an average cost which comes within either 
6 or 2% of a lower bound for the minimum cost value 
(depending upon whether the base planning period is 
fixed in advance, or may be varied, respectively). (The 
minimum cost value is defined as the infimum over 
all possible policies, of their "long-run average cost 
values.") 

The first contribution of this paper is to extend this 
result to a general joint setup cost structure, merely 
assuming a monotonicity and a concavity (or sub- 
modularity) property: 

Monotonicity. The fixed cost of a joint replenishment 
does not decrease by the inclusion of additional items. 

Submodularity. The incremental cost due to the addi- 
tion of a new item to a given collection of items is no 
larger than if the same item were added to a subset of 
this collection. 

(The monotonicity property may be assumed without 
loss of generality, as is argued below; the submodular- 
ity assumption reflects general economies of scale.) 
Joint cost structures described by submodular set 
functions were first considered by Queyranne (1985) 
in the context of general production/distribution net- 
works. In a companion paper, Federgruen and Zheng 
(1988), we discuss several specific types of cost struc- 
tures which satisfy these properties. 

The next contribution of the paper is to derive two 
efficient algorithms to compute an optimal power-of- 
two policy. The problem of determining an optimal 
power-of-two policy can be formulated as a nonlinear 
mixed integer program with a special type of integral- 
ity constraint. We derive a characterization theorem 
exhibiting necessary and sufficient conditions for an 
optimal solution of its continuous relaxation. This 
continuous relaxation generates the above mentioned 
lower bound for the minimum achievable cost value 
among all possible policies. A similar characterization 
theorem can, interestingly enough, be derived for the 
original mixed integer program. Our algorithms are 
based directly on these two characterization theorems. 

Our first algorithm is a two-stage procedure which 
computes a solution to the model's continuous relax- 

ation in stage one and applies a rounding procedure 
to transform the obtained vector of replenishment 
intervals into an optimal power-of-two vector in stage 
two. The second algorithm solves the integer program 
directly. The complexity of the direct algorithm is an 
order of magnitude lower than that of the two-stage 
procedure. An advantage of the latter is, however, that 
it generates the above mentioned lower bound for the 
minimum cost value. In this paper, we confine our- 
selves to a brief discussion of the algorithms' general 
complexity. Our companion paper, Federgruen and 
Zheng, contains a detailed discussion of efficient 
implementations for several types of cost structures. 

The proposed algorithms generate, as a by-product, 
a specific cost allocation of the joint cost structure to 
the individual items. With this specific allocation, the 
problem with separable costs is, in fact, equivalent to 
the problem with joint costs in the sense that the two 
systems share the same sets of optimal power-of-two 
policies with identical associated long-run average 
costs. 

In Section 1, we introduce notation, discuss struc- 
tural properties of globally optimal policies, and derive 
our nonlinear (mixed integer) programming formu- 
lation for the problem of determining an optimal 
power-of-two policy. In Section 2, we derive the char- 
acterization theorem for the model's continuous relax- 
ation as well as the two-stage procedure. In Section 3, 
we prove that the continuous relaxation results in a 
lower bound for the minimum achievable cost-value 
and derive the above discussed worst case bound 
for the performance of power-of-two policies. In 
Section 4, we discuss the faster, single-stage algorithm 
which results in an optimal power-of-two vector 
directly rather than via the solution of the model's 
continuous relaxation. In Section 5, we illustrate the 
two algorithms by solving a numerical example. 
In Section 6, we give a discussion of the relative 
performance of fixed partition strategies versus 
power-of-two (or integer ratio) strategies, thus 
establishing a connection between two distinct bodies 
of literature. 

We conclude our introduction with a review of the 
recent literature on the joint replenishment problem. 
Chakravarty, Orlin and Rothblum (1982) apply the 
fixed partition approach to "symmetric" cost struc- 
tures, where the setup cost is a concave function of 
the number of items included in the replenishment 
batch. Chakravarty, Orlin and Rothblum (1985) use 
the same approach for generalized symmetric struc- 
tures of order 1; see Federgruen and Zheng for a 
precise definition. The results of Barnes, Hoffman and 
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Rothblum (1989) may be applied to general symmet- 
ric structures of higher order; see Federgruen and 
Zheng. (Instead of the assumption V2f 3 0 ibid, the 
authors require f to be (quasi) concave.) The first 
two papers show that an optimal partition may be 
found by a simple O(N2) shortest path computation. 
Barnes, Hoffman and Rothblum provide interesting 
characterizations for generalized symmetric cost 
structures of a higher order but these do not, as of 
yet, translate into efficient solution methods. Aggarwal 
(1984a, b, c) and Chakravarty (1982) give heuristic 
solution methods for the determination of a good fixed 
partition. 

Rosenblatt and Kaspi (1985) propose a dynamic 
programming algorithm to compute an optimal par- 
tition for fully general joint cost structures (which are 
not even required to be submodular). Queyranne 
(1987a) shows that the Rosenblatt-Kaspi algorithm 
may fail to find optimal partitions and proposes an 
alternative dynamic programming algorithm with 
complexity 0(3 n). Schwarz (1987) points out that the 
Rosenblatt-Kaspi algorithm may fail even when the 
joint cost structure represents first-order interaction 
only. This observation is due to Quernhein and 
Bastian. 

For the special case of first-order interaction cost 
structures, Jackson, Maxwell and Muckstadt (1985) 
derive an O(n log n) algorithm which generates an 
optimal power-of-two policy. We refer the reader to 
this paper for a review of heuristic search methods for 
this problem. Queyranne (1987b) shows that a modi- 
fication of the Jackson, Maxwell and Muckstadt 
(1985) algorithm, based on a linear medium finding 
procedure, has linear (O(n)) complexity. Roundy 
(1985) obtains similar results for a more general one- 
warehouse multiretailer model. Roundy (1986) 
applies the same restriction to the class of power-of- 
two policies, but his general model allows for joint 
cost structures generated by an arbitraryfamily model. 
The family model is a special case of the general 
submodular cost structures considered here see (exam- 
ple V in Federgruen and Zheng. His proposed algo- 
rithm grows as the cube of the number of "families" 
and the latter may grow exponentially with the num- 
ber of items considered. 

Goyal and Soni (1984) (see Goyal 1987) consider a 
hybrid combination of the two restriction approaches: 
first a fixed partition is constructed with no more than 
three sets; next, the common reorder intervals for 
each of the (at most three) groups are modified to 
exploit additional cost savings by combining items 
into groups at some or all replenishment epochs. 
Chakravarty (1983, 1984b) and Chakravarty and 

Goyal (1986) consider policies which partition the 
items into a number of groups and apply arbitrary 
integer ratio policies within each of these groups. The 
paper by Chakravarty (1984a) differs from the pre- 
vious two papers in that a common reorder interval is 
assigned to all items in the same group; these common 
intervals are chosen as integer multiples of some base 
period. See also Akroy and Erenguk (1988) for a recent 
survey of the above joint replenishment models. 

Balintfy (1964), Ignall (1969), Silver (1965, 1974, 
1981), Peterson and Silver (1979), Naddor (1975), 
Thompstone and Silver (1975), Federgruen, 
Groenevelt and Tijms (1984), and Atkins and Jyogun 
(1987, 1988) consider versions of the joint replenish- 
ment problem with stochastic demands and the first- 
order interaction cost structure. 

Anily and Federgruen (1990) consider a class of 
joint replenishment problems in which an item is 
stored at n distinct locations and distributed by a fleet 
of vehicles. These vehicles combine deliveries to mul- 
tiple locations into efficient routes. The resulting cost 
structure fails to be submodular. The authors restrict 
themselves to a class of strategies where each employs 
a fixed collection of regions (sets of locations); a class 
of O(n log n) heuristics is designed to generate solu- 
tions that, under mild probabilistic assumptions, are 
shown to be asymptotically optimal as n tends to 
infinity, within the specified class of strategies. 

We refer to Zheng (1987) for a discussion of inven- 
tory models with joint cost structures in more general 
production/distribution networks. 

1. THE GENERAL MODEL: A MATHEMATICAL 
PROGRAM FOR THE DETERMINATION OF 
OPTIMAL POWER-OF-TWO POLICIES 

We consider a system with n distinct items N= 

1, .. ., n 1. Demands for these items are assumed to 
occur continuously, at item specific but constant rates. 
We assume that no backlogging is allowed and that 
inventory carrying costs are proportional to the inven- 
tory sizes. Thus, for i E N let: 

di = the rate at which demands for item i occur; 
hi = the per unit holding cost rate for item i. 

We assume without loss of generality that hi > 0, 
i = 1, .. ., n. (An item with hi = 0 does not need to 
be considered; the cost of managing this item can be 
made arbitrarily small by ordering sufficiently large 
quantities.) 

An order for product i arrives after a fixed lead time 
of Li time units (i E N). We assume that at time 0 the 
starting inventory for product i equals diLi. This 



implies that at time 0 orders need to be placed for all 
products. As in the single-item EOQ model, the prob- 
lem is easily seen to be equivalent to the special case 
where all lead times are zero. (For different combina- 
tions of starting inventories, one minimizes long-run 
average costs by first achieving the above inventory 
balance with an appropriately constructed finite hori- 
zon policy.) We therefore assume zero lead times 
henceforth. 

The general joint setup cost structure discussed in 
the Introduction is represented by a general set func- 
tion K: 2N -- R+ which specifies, for any collection of 
items S C N. a setup cost K(S) to be incurred whenever 
this specific collection is replenished together (e.g., 
when the corresponding production operations are 
combined in the same production run). The mono- 
tonicity and submodularity assumptions discussed 
above, may be expressed as follows. 

Monotonicity 

K(S)6K(T) ScT. 

Submodularity 

K(SU {i})-K(S)>K(TU {i})-K(T) SC T i 4S. 

The monotonicity property is made without loss of 
generality: If K( ) fails to be monotone, replace K by 
K defined by K(S) = min{K(T): S C T). (K(S) is 
clearly monotone; if K(S) > K(T) for some S C T, we 
may replace a setup for the collection S by one for the 
larger collection T even though generating zero units 
of the items in T\S.) We also assume without loss of 
generality that K({i}) > 0 for all i E Nand K(Xb) $ 0. 

A replenishment strategy or specifies all replenish- 
ment epochs and quantities for all products over an 
infinite horizon. For a given strategy, let C,(t) be the 
total cost in [0, t); its long-run average cost C* is given 
by 

C* = lim sup - Cr(t). 
t-*oo t 

We do not address the question whether an optimal 
def 

strategy exists, i.e., whether C* = inf, C* may be 
achieved or not. The existence question is, to our 
knowledge, open, even for the simplest of all joint cost 
structures. 

Very few structural properties may be assumed 
without loss of optimality. The single exception, 
known to date, follows. 

Zero-Inventory Ordering. Each strategy is dominated 
by one under which no product's inventory is ever 
replenished unless its inventory equals zero. 
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Optimality of zero-inventory ordering policies is well 
known for the single item EOQ and dynamic lot sizing 
models; see Wagner and Whitin (1958). We refer to 
Veinott (1969), and Zheng (Theorem 2.1) where this 
property is proven in a more general context. The 
following example shows that it may be necessary to 
replenish some of the items with nonconstant, i.e., 
nonstationary replenishment intervals. 

Example 1. Consider a three-product problem with 
di = d2 = d3 = 2 and hi = E, h2 = 1 and h3 = 4/9. 
Assume that the following nonseparable cost structure 
applies: 

KA({I1) = E, K({2 ) = 1, K({3 ) = 1; 

K({1, 2) = K({1, 3D = 1; 

K({2, 3 ) = K({1, 2, 3}) = 2 -e. 

It is easy to verify that K(.) is monotone and sub- 
modular. We show that a stationary policy cannot be 
optimal, i.e., for any given policy with constant reorder 
intervals, there exists a nonstationary policy whose 
average cost is lower. Note first that a setup for product 
1 may be arranged whenever a setup for product 2 
and/or product 3 takes place, at no additional cost. 
Therefore, assuming to the contrary that a stationary 
policy is optimal, note that any such policy must be 
"nested" in the sense that its constant replenishment 
intervals of products 2 and 3 are multiples of product 
I's interval. For, if a stationary policy were not nested, 
the holding cost of product 1 can be reduced strictly 
by ordering this product at all replenishment epochs 
of the others, without increasing any other cost com- 
ponent. The addition of repenishment epochs for 
product 1 improves the total cost, but transforms the 
stationary policy into a nonstationary one. 

The argument is completed by showing that the best 
nested stationary policy is dominated by the following 
nonstationary cyclic rule R. Policy R applies zero- 
inventory ordering, replenishes items 2 and 3 at con- 
stant intervals T2 = 1 and T3 = 3/2, respectively, and 
replenishes product 1 whenever one of the other prod- 
ucts is replenished. (Note that T2 and T3 equal the 
optimal EOQ-intervals for products 2 and 3, respec- 
tively. Indeed, the cost of product 1 is insignificant 
compared to that of the others and an insignificant 
amount is saved by a joint setup of products 2 and 3. 
This suggests it is efficient to replenish products 2 and 
3 according to their own separate EOQ rules. It is the 
clearly optimal to order product 1 at zero additional 
cost, at least whenever one of the other items is 
replenished, i.e., at t = 0, 1, 3/2, 2, 3, 4, 9/2, 5, ....) 
For e = 0.1, we compute in Appendix A the average 
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cost of R as well as a lower bound for the cost of the 
best nested stationary policy and conclude that the 
former is lower than the latter. 

Since C* may not be achieved or even (infinitely 
closely) approached by policies of a simple structure, 
we first restrict ourselves to the class of power-of-two 
policies. Power-of-two policies are simple and easy to 
implement, and we show below that the best such 
policy is guaranteed to come within a few percentage 
points of a lower bound for C*. 

A power-of-two policy applies zero-inventory order- 
ing and prescribes for each product i E N a replenish- 
ment interval Ti, such that replenishments occur at 
times 0, Ti, 2Ti, 3 Ti, .... Moreover, 

T- = 2m'iTL for all i E N, 

where mi is a (possibly negative) integer and TL is a 
base planning period. (TL is sometimes predetermined 
but may be varied continuously in other settings.) A 
power-of-two policy is thus completely characterized 
by the replenishment interval vector T = (T., T2, . . .. 
Ta). The problem of determining an optimal policy in 
this class may be formulated as: 

min K[T] + E HiTi 
iEN 

subject to 

Ti - 2miTL; mi integer and i E N, 

where Hi = 1/2 hidi (i E N), and K[T] denotes the 
system-wide average setup cost per unit of time. 

For policies with constant but arbitrary replenish- 
ment intervals, no simple expression for K[ T] appears 
to prevail. A relatively simple expression may, how- 
ever, be derived for power-of-two policies. 

For a given power-of-two policy T let a (a,,..., 
a,,) be a permutation of the indices { 1, 2, . . , n 1, such 
that 

T,-' 
> T- T' 

al a2 ... a 

i.e., the items' reorder frequencies are nonincreasing 
in this permutation. Observe that under T wherever 
item ai is replenished, all the items {Ia,, .. ., ai-, I are 
replenished as well. Only one of the following n sets 
of items is therefore replenished at any replenishment 
epoch: 

{(la , {(Xl, e2l, * * , {(Xl, ... ., (xi}, ..., {(Xl, ... ., an.) 

The order frequency of the set {I,, ..., ai is 

T - Ti . (Set T`l~ = 0.) 

Therefore 
n 

K[T] = E K({ai, ... , ai)(Ta' - 

By rearranging the terms in this summation, we 
obtain: 

n 

K[T] = E [K({aI, ..., ail) 

-K({a, .. ., ai- I 1)] T-'. (1) 

We now show that K[ T] may be viewed as the 
optimal objective function value of a special linear 
program. 

Lemma 1. Let 

K- {k E RN: E ki < K(S), S 5 N, k > 0}. 
iE=S 

K is referred to as the setup cost polyhedron. 

a. For any vector T E RN (T > 0), let a = (ao,..... 
a.) be a permutation of the indices such that 

Tall > a2 D . NT. 

Then 

max E kI/T = T, 
kEK ieN iEN 

where k* E K is defined by 

k* =K(Jal,..., ail)-K(JaI,. ..,ai_ II), i= 1,.. ., n. 

b. For any power-of-two vector T, 

K[T] = max E ki/Ti. 
kEK iCN 

Thus, for any power-of-two policy T there exists an 
allocation k E K of the joint cost structure, such that 
the long-run average setup costs under the separable 
allocated cost structure equal the actual average setup 
costs (under the joint cost structure). 

This lemma is due to a result of Edmonds (1970) 
with respect to a special class of polyhedral sets, the 
so-called "polymatroids." 

Definition 1. Let E be a finite index set. A set function 
f: 2E-- R is a rank function on E if: 

1. f is normalized: f(l) = 0; 
2. f is nondecreasing: f(T) < f(S). T C S C E; 
3. f is submodular: f(S U { j ) -f (S) _> f(T U { jD) - 

f(T) SC TCE,j S. 
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The following is a convenient alternative definition of 
submodularity: 

f(SU T)+f (Sn T) f(S) +f(T), S, T5 E, (20 

(see e.g., Nemhauser, Wolsey and Fisher 1978). def 
For any finite index set E and x E RE, let x(S) = 

xes xi, SC E. 

Definition 2. A polyhedron F C RE is called a poly- 
matroid if there is a rank function f on ground set E 
such that 

F = F(E,f)={x ERE: x(S) <f(S),S5E,x O}. 

Note that the setup cost polyhedron K is a poly- 
matroid, in view of the monotonicity and submodu- 
larity of the set function K(.). 

The proof of Lemma 1 is given in Appendix B, 
where we exhibit several properties of polymatroids as 
needed in the remainder of this paper. We conclude 
that an optimal power-of-two policy is obtained by 
solving 

Problem JP 

min max E (kl/Ti + HIT1) 
T>O keK iCN 

subject to Ti = 2miTL (mi integer) i E N. 

For notational convenience and without loss of 
mathematical rigor, we use "max" and "min" rather 
than "sup" and "inf" regardless of whether the supre- 
mum or infimum is achieved. 

2. A CHARACTERIZATION THEOREM FOR THE 
MODEL'S CONTINUOUS RELAXATION: 
A TWO-STAGE ALGORITHM 

Consider the continuous relaxation of JP obtained by 
relaxing the power-of-two integrality constraints: 

Problem RJP 

*def c* = min max E (k/lTi + HiTi). 
T>O kEK ieN 

A vector T* is an optimal solution of RJP if it achieves 
the minimum. Consider the dual optimization 
problem: 

Problem JD 

=* = max min (k/lTi + HiTi). 
kEK T>O ieN 

A vector k* E K is an optimal solution of JD if 
it achieves the maximum. Clearly c* < c*. (See 

Lemma 36.1 in Rockafellar 1970 or Lemma C4 
below.) We first give in Theorem 1 necessary and 
sufficient conditions for a pair (T*, k*) to be optimal 
solutions for RJP and JD, respectively. Next we show 
in Theorem 2 that such optimal solutions indeed exist, 
that they can be computed efficiently and that RJP 
and JD have the same objective function value, i.e., 
a* = c*, with 

max min E (ki/Ti + Hi Ti) = min E (k/T1 + Hi Ti) 
keK T>O ieN T>O iC.N 

=E(Oi/Ti*+ HiT*) = max E (kilTi*+ Hi Ti) 
iEN kEK iEN 

=min max E (klTi + HiT). (3) 
T>O kEK iEN 

An alternative proof of (3) is given by Corollary 
2. 10 in Zheng. This proof is an adaptation of a classical 
minimax theorem (see Rockafellar) using the fact that 
the objective function is convex in T and concave 
in k. 

We first need some additional notation. Let 
def 

(N,, N2, ..., NM) be a partition of N; let K1(S) = 

K(S), S C N.; for I = 2,.. ., M, define the set functions 
K,(.) by 

def I 

K,(S) = K( U Nj U S)-K~ Nj i) CN 

We use k' to denote the vector {ki, i E N.} and let 
def 

k(S) = ZiEs ki S C N; let 

K,- {klERN': k(S) < K1(S), S 5 N, k' > 01. 

It follows from Lemma B2a in Appendix B that K, is 
a polymatroid (1 = 1, . .. , M). 

The following characterization theorem generalizes 
that of Jackson, Maxwell and Muckstadt (1988) for 
first-order interaction cost structures, i.e., the classical 

def 
joint replenishment problem. Let H(S) = Eirs Hi, 
S S N. 

Theorem 1. (Characterization Theorem) If the 
components of T* = (T*, ..., T*) take on M 
distinct values T( 1) < T(2) < ... < T(M), and 
(N,, N2, ..., NM) is the partition of N with N, = 

{i E N: T* = T(l)), then T* is optimal for RJP, 
k* is optimalfor JD and c* - c* if and only if the 
following holdfor I= 1, ... , M: 

i. T(l) = fK(Nl )IH(NI ), 
ii. k H* =Hi () 
iii. K,(S)/H(S) > T2(l) for all S C N,. 
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Proof. Let 

f(T, k) = (kl/T, + HiT,). 
iEN 

For the sufficiency part, assume that i, ii and iii 
hold. For any S S N., by ii and iii, k*(S) = 
H(S)K,(N,)/H(N,) < K,(S), i.e., k*1 E K, (I = 
1, ..., M). It follows from Lemma B2b that 
k * E K. By Lemma C4, it suffices to show that 
maxkEKf(T*, k) = minT>Of(T, k *). By the definition 
of T*, we have 

M 

max f(T*, k) = max i (k/l T(l) + Hi T(l)). 
kEK kEK =I 

Since T(1)-' > T(2) 1 > ...> T(M)'- and k*(N,) = 
K,(N,) (I = 1, ..., M), it follows from Lemma B3c 
that the above maximum can be reached by k *. Thus, 

M 

maxf(T*, k) = E (K,(N,)/T(l) + H(N,)T(l)) 
kEEK/= 

M 

= 2 >j(K,(N,)H(G)) 
1= 1 

where the second equality follows from i. Hence, 

n 

minf(T, k*) = 2(Hi) 1/2 

T>O i=I 

M 

= 2 i (K1(N1)H(N,)) 12 = maxf(T*, k). 
kEEK 

To show the necessity part, let T*, k *, be an optimal 
solution of RJP and JD, respectively, and assume that 
c= c*. In view of Lemma C4, (T*, k*) is a saddle 
point off(T, k), i.e., 

min f(T, k*) =f(T *, k*) = max f(T*, k). 
T>O keK 

Since T(1) - > T(2)-1 > ...> T(M)1 and k* is an 
optimal solution of maxkEK f(T *, k), it follows from 
Lemma B3c that k*(N,) = K,(N,) = / 1 ... . M. Thus, 

M 

minf(T, k*) = min E (ki/Ti + HiTi) 
T>O T>O /= I iEN1 

M 

2(K,(N,)H(N,)) 1/2 
/=1 

M 

< (K,(N,)/T(l) + H(N,)T(l)) 

max f(T*, k), 
kE-K 

where the first inequality follows by choosing T 
such that 

Ti = (K(N1)/H(N1)) 1/2, i E N. (I - 1, ... M). 

We conclude that both inequalities hold as equalities. 
The fact that the second one does implies i, and 
the fact that the first one does implies for all /= 
1, . .. , M that ki* achieves the maximum in 

max{ E 2(kiHi) 1/2: E ki = K,(N,) 
iE-N, iGE N, 

hence 

O = H1K1(N1)/H(N1) = Hi T(l), i E N1. 

This proves ii. Also, for any S C N1, 

H(S)K1(N1)/H(N1) 

=k*(S) = k*(Ni U ... U NI-I U S) 

- k*(N U ... U N,1) 

1< K(N, u . .. u Ni,_ u S) 

-K(N1 U ... U N,_1) = K,(S) 

(1= 1,2 ...A M), 

thus proving ill. 

Note that for any given k E K, the inner minimi- 
zation in JD may be carried out explicitly, i.e., 

Problem JD 

*= max E (ii / 
kE K iE=N 

Thus, JD is equivalent to the maximization of a 
separable concave function over a polymatroidal 
feasible region. Groenevelt (1985) developed two algo- 
rithms for this class of problems: the Decomposition 
Algorithm (DA) and the Bottom Up Algorithm 
(BUA). See, also, Federgruen and Groenevelt (1991) 
who show that a simple greedy procedure succeeds in 
terminating with an optimal solution on any given 
discrete grid; and Federgruen and Groenevelt (1988) 
for efficient implementations when the polymatroidal 
feasible region is generated by an underlying network. 
We now describe an implementation of the decom- 
position algorithm. This algorithm bears similarity to 
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the Divide and Conquer Algorithm in Maxwell and 
Muckstadt (1985) for models with a separable cost 
structure but physical interdependencies between the 
items. 

DAJD: Decomposition Algorithm for JD 

StepO. M:= ll:= N1=N. 
Repeat Step 1 until I =M + 1: 

Step 1. Determine a set S 5 N, achieving 
min {K,(S) + u'(N,\S): S 5 N.}, where u' = 

tH1K(Ni)/H(N1): i C N.}. If S = N., k0: = u (i e N,) 
and 1: = I + 1. Otherwise, replace N, in the list 
(N, ..., NM) by S and N1\S and renumber; M: = 

M+ 1. 

The DAJD algorithm consists of at most (2N - 1) 
executions of Step 1 because at the end of Step 1 either 
I or M are increased by one and M < N. The 
set minimization problem in Step 1 is of the type 
min I f(S) + u (E\S): S 5 E I withf() a rank function 
on a ground set E 5 N. (The set functions K, are rank 
functions (see Lemma B2a). This represents one of 
the basic optimization problems regarding rank func- 
tions and polymatroids and is equivalent (see 
Edmonds 1970, and Frank and Tardos 1989) to the 
"maximum element problem," i.e., to determining 
max {x(E): x E F, x < u I with F the polymatroid 
{x , 0: x(S) < f(S), S 5 El. General polynomial 
algorithms based on the ellipsoid method are avail- 
able for the minimal set or maximal element problem 
with general rank functionsf(.; see Grotschel, Lovdsz 
and Schrijver (198 1). A pseudopolynomial procedure 
is due to Cunningham (1985); see also Bixby, 
Cunningham and Topkis (1985). Significantly more 
efficient algorithms are available for a variety of spe- 
cial structures; see Federgruen and Zheng. 

It is easy to verify from Groenevelt that DAJD 
is a correct implementation of his general decom- 
position algorithm; thus, in view of his Theorem 2, 
DAJD generates an optimal solution k * for JD. 
Here we give a self-contained proof showing that 
in addition DAJD generates an optimal solution 
for RJP as well and that c* = c*. We first need the 
following lemma. 

Lemma 2. Fix y > 0. Let E C N and K(.) be a 
rank function on E. Let E1 C E be a set achieving 

def 
min {K(S) + yH(E\S), S c El and E2 = E\Ej. Let 

def 
KI(S) - K(S), S c E, 

def 
K2 (S) = K(S U El) - K(EA) SC E E. 

Then 

a. Kl(El)1H(El) K2 (E2)1H(E2), 

b. For anyEIC El, 
[KI(El )- Kl(El)]/H(Ei\Ei) ay 
For any E2 C E2, K2(E2)/H(E2) : ay. 

Proof. Since El C E is a set achieving mintK(S) + 
yH(E\S), S C El, 

{yH(E) 

K (El + I(2) l K (El) + yH(E\Ei) 

K(Ei U E2) + YH(E2\E2). 

The inequalities of part a as well as part b follow by 
rearranging the terms of these inequalities. 

Theorem 2. Let tN,, ..., NMA and k* denote the 
partition and setup cost vector generated by DAJD. 
For l= 1, ..., M define 

T(l) = [K1(N)/UH(N1)]1/2 

and TV = T(l) for all i E N1. The vector T* is optimal 
for RJP, k* is optimalfor JD and c* = c*. 

Proof. In view of Theorem 1, it suffices to show that 

K,(S)1H4(S) :,: T 2(1) 

for all S 5 Ni (I= 1, ..., M); (4) 

K1 (N1 )/H(N1) 

_< K2(N2)IH(N2) <_ . .. <_ Km(Nmv)1H(Nm). (5) 

Fix I = 1, ..., M. Since S* = N1 achieves 
min {K,(S) + yH(N,\S): S 5 Nil with y = 

K(N,)/H(N,) (see Step 1), (4) follows from algebra. 
To prove (5), consider a pair of sets (NX, Nl+1) 

(I = 1, ..., M - 1). Note that N1 and N,+ 1 belong to 
the same set in the initial partition (the singleton IN)). 
Consider now the last iteration at which a partition 
{ N1, ... ., NM I is generated in which one of the product 
sets (say NS) contains N. as well as N1+1 . In the iteration 
thereafter N5 is partitioned into two sets NS and NS 
with N1 S NS, N1+1 5 NS, and NS achieves the mini- 
mum in min IKs(S) + us(/s\S): S 5 Rsl with us = 

1H1Ks(Ns)/H(Ns): i E RsI and 

kS(S)=K URIUS -K UNi). 
i=l i=l 

Apply Lemma 2 with y = [Ks(Ns)/H(Ns)], E= F S= 

K(.) = K5(.), Ei = NS\N1 and E2 = N1+1, to conclude 
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that 

K1(N1)/H(N,) = [K( U NJ) - K( A H(N/) 

=[K((u Nr) U N) 

r= ~ ~ (r I 
-K r u H(N-) 

= s(Ns) - Ks(Ns\N)]/H(N,) y 

[ Ks(LNs U No+ 1 ) - Ks (Ns)]1H(N1+ 1 ) 

[K((' r) UNUN )+1 

(r=1I) ) 
= K+ 1 (No+1 )/H(N,+ 1) 

We also observe the following. 

Remark. There exists an allocation vector k* E K of 
the joint cost structure such that the separable cost 
model with (separable) setup cost vector k* is equiv- 
alent to RJP in the sense that the same vector of 
replenishment intervals T is optimal in both models 
and the average cost under this policy is identical in 
both models. 

2.1. The Second Stage: Rounding Procedures 

We now discuss rounding procedures which transform 
an optimal solution T for the continuous relaxation 
RJP into a power-of-two vector 1*. We distinguish 
between the following two cases: 

a. TL, the base planning period, is given. In most 
practical planning problems, replenishment inter- 
vals are to be chosen as multiples of some conven- 
ient time period, say an hour, day or a week, i.e., 
in practice TL is indeed usually prespecijied. 

b. TL is variable. 

RPFB: Rounding Procedure for Fixed Base 
Planning Period 

For all l= 1, ... , M, find that unique integer ml such 
that 

2ml- 1/2 TL < T(l)< 2ml+ /2TL, 

and set the common reorder interval for N, as 
T*(l) = 2'n'TL. 

Now we turn to the case where TL is variable. Note 
that its choice may be restricted to the interval [1, 2), 

without loss of generality. The rounding procedure 
embeds RPFB in an efficient one-dimensional min- 
imization over TL in [1, 2). First, to normalize the 
intervals IT(l): I = 1, .. . , Ml, compute, for each I = 

1, . .. , M, the (unique) integer ml and the value b(l) 
such that 

Tefl) <2 1 2< b(l) =m, I/2 (6) 

For a given I / 1, . . ., M, note that if TL is chosen 
such that 1 < TL < b(l), 1 < (b(l)/TL) < 2, and hence 

2 ml/2TL - T(l) < 2 ml/2TL, 

so that RPFB would set T(l) = 2mLTL. Similarly, if 
TL is chosen such that 

b(l)< T. <2, 1/2 < TL(l) 

and hence 

2m 3/2TL < T(1) 2 ml/2TL, 

so that RPFB would set T*(l) = 2 TL- 
An efficient minimization over TL in [1, 2) thus 

starts by ranking the values tb(l): I = 1, . . . Ml in 
nondecreasing order. For each m = 1, . .. , M let 1(m) 
be the corresponding set index, i.e., b(l(m)) = bin. Let 
b,, . .., bbA be an enumeration of these values, 

arranged in nondecreasing order and set bo = 1 and 
bM+1 = 2. If bi < TL < bm+1 (O < m < M), we have 
T*(l) = 2 ml-'TL for all / with b(l) 6 bi and T*(l) = 
2m'TL for all other I = 1, . .. , M. Thus, let 2(m) be the 
N vector defined by 

2(m)= J2'"i, if iE N. and b(l)> bi 
i 2i-, if i E N. and b(l) < bin. 

Hence CTL(T*) = K'/ITL + Hmf TL, where 

m= K[2(m)] (see (1)) (7) 

Hm - E H(N,)2 m/-l 
I:b(l) 6bm 

+ Z H(N)2ml(m = 0, ...., M). (8) 
/:b(l)>bm 

Now CTL(T*) is continuous in TL and although 
convex on each of the intervals [be, bm+1), m = 0, 

M, it is not in general convex over the entire 
interval [ 1, 2); see Appendix D. 

It is therefore necessary to determine the minimum 
of CTL(T*) on all M + 1 intervals [be, bm+1) (m = 0, 
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RPVB: Rounding Procedure for Variable Base 
Planning Period 

Step 1. For I = 1, ..., M compute b(l) and ml as 
in (6); rank tb(l): = 1, ..., Ml in nondecreasing 
order. 

Step 2. Initialize m: = 0; K: = Ko and H: = Ho (see 
(7) and (8)). 

TL = 1; X= +00. 

Step 3. If -K/b2 + H > 0, then 

{x: = min[x, K/bm + Hbm]; TL: = bi; go to Step 41; 

If -K/b2 +, + H < 0, then 

x:= min[x, K/bm+]; TL: = bm+i; go to Step 4L; 

x:= minfx, 2 VKH}; TL: = OKKJHI. 

Step 4. m: = m + 1; 1: = 1(m); K: = K + 2-ml 

[K(N1 U ... U N1)-K(N1 U ... U No-)1; 

H: = H - H(N,) 2mi-n; if m < M go to Step 3, 
otherwise for / = 1, . .. , L, set T*(l) = 2iMITL. 

The first rounding procedure RPFB requires O(n) 
operations. In the second rounding procedure, the 
total amount of work performed in Steps 3 and 4 is 
linear in n as well and is thus dominated by the 
computational effort involved in ranking the numbers 
fb(l): / = 1, ... , Ml in Step 1, which is O(n log n). 

The following theorem and corollary show that the 
two-stage algorithms result in optimal power-of-two 
policies. For the proof we refer to Zheng where this 
result is demonstrated in a more general setting. 

These optimality results are similar to those 
obtained by Maxwell and Muckstadt (1985) and 
Roundy (1986) for the models considered ibid. 

Theorem 3. Assume that the base planning period TL 

is fixed. The two-stage procedure DAJD-RPFB results 
in an optimal power-of-two policy. 

Corollary 1. Assume that the base planning period TL 
is variable. The two-stage procedure DAJD-RPVB 
results in an optimal power-of-two policy. 

We also observe the following corollary. 

Corollary 2. There exists an allocation vector k* E K 
of the joint cost structure, such that the separable cost 
model with (separable) setup cost vector k* is equiva- 
lent to the original model in the sense that the two 
models share the same optimal power-of-two policy 
and the long-run average cost under this policy is 
identical in both models. 

3. A LOWER BOUND THEOREM AND WORST 
CASE ANALYSIS 

The following theorem demonstrates the benefit of 
solving the continuous relaxation RJP as an inter- 
mediate step in the solution procedure. This theorem 
bears some similarity to the lower bound theorems of 
Roundy (1985, 1986). 

Theorem 4. (The Lower Bound Theorem) Let c* be 
the minimal objective function value in RJP; c* is a 
lower bound for the average cost of any feasible 
schedule over anyfinite horizon. 

Proof. Let C be the sum of all costs incurred by a 
given feasible schedule over the time horizon [0, r) 
(r > 0); we will show that C - c*Tr. For any S C N, 
let J(S) be the number of times in [0, r) that an 
order is placed specifically for S. Let Ji be the number 
of times in [0, r) that product i is included in 
an order. Obviously Ji = Zs jes J(S). Then for any 
k E K, the total setup cost 

E K(S)J(S) Z E Z ki J(S) 
S S iE=s 

= E [ki EJ(S1= kiJi. 
iEN S:iECS iEJ-N 

For any i E N and t > 0, let I' be the inventory of 
product i, measured in units of V12di, at time t and 
under the given replenishment schedule. The total 
holding cost over [0, r) is given by lieN Hi f o I' dt. 
Since I' can be increased only when product i is 
included in an order and decreases continuously at 
unit rate in-between orders, we have 

C >, E ki Ji + Hi XI' dt) 

T rE 2(kiHi)'/2. 
iEN 

The second inequality follows from a well known 
result for single product lot sizing problems (see e.g., 
Carr and Howe 1962). We conclude that 

C>rmax2 Y (kiHi)l/2=rc*. 
kEK iEN 

The following theorem shows that the average cost 
of the power-of-two policy generated by the two-stage 
procedure DAJD-RPFB is no more than 6% larger 
than c*, the lower bound for the minimum system- 
wide average costs. 
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Theorem 5. Let TL be fixed. The two-stage procedure 
DAJD-RPFB generates an optimal power-of-two pol- 
icy T* with a worst case performance ratio 1.061, i.e., 

(T *)Ic * < 1.06 1. 

Proof. Let T be the optimal solution of RJP obtained 
by the DAJD algorithm and let (a ', ..., an) be a 
permutation of the product indices such that 

T-' >, T -' >, . >, T -' 
(X I a2 * a * cn 

Note that the components of T * may be ranked in 
the same way. Assume that T takes on M distinct 
values T(1) < ... < T(M) and let N1 = {i: Ti =T(1), 
I= 1, . .. M. Thus by Lemma 1, 

n n 

C* = Hi Ti + [K(a, ..., ail) 

-K({a, ...., ai- I 1)] T~a 

M 

= E [H(N1)T(l) + K1(N1)/T(l)] 
1= 1 

n n 

C(T*)= E HIT* + E [K(f a, ..., ai) 

-K({ a, ..., ai-l)]T*,' 

M 

= E [H(N,)T*(l) + K,(N.)/T*(l)]. 

Thus, C(T) and C(T*) represent the sum of M inde- 
pendent EOQ cost functions evaluated at the mini- 
mizing intervals T(l), (I = 1, 2, ... , M) and intervals 
T*(l) with 1/v12 < T*(l)/T(l) < v'2, respectively. It is 
thus easy to verify and well known since Brown (1978) 
that each of the terms in C(T*) is at most 6% larger 
than the corresponding term in C(T). 

A slight modification of the proof of the 98% theo- 
rem in Roundy (1986) exhibits that the worst case 
bound may be decreased to 2% by employing the 
second rounding procedure RPVB. 

Theorem 6. Let TL be variable. The two-stage proce- 
dure DAJD-RPVB generates an optimal power-of-two 
policy with a worst case performance ratio 1.021, i.e., 
C(T*)/c* < 1.02 1. 

4. A DIRECT ALGORITHM FOR THE INTEGER 
PROBLEM JP 

Upon inspection of the two-stage algorithm in 
Section 2, we find that much of the computational 
effort there is wasted if one is only interested in 

determining an efficient power-of-two policy. Con- 
sider, for example, a system with 100 items, separable 
setup costs, and for all i = 1, . . ., 100, Hi = 1 and 
setup costs Ki = (1 + E)2", where E = 10-100. Assume 
that the base planning TL is fixed at TL = 1. The first 
step of the algorithm requires more than 100 iterations 
to divide N = {1, 2, . . ., 1001 into 100 singletons { 1 , 
2, . . . , 1001 with only slightly different replenish- 

ment intervals Tj = (1 + E)i. In the second step, one 
finds that since for all i = 1, . . ., 100, 1/V1TL < T, < 

12 TL, all T1's are rounded to T* = 1, i.e., the 100 
singletons are regrouped into a single cluster. 

While this example may appear extreme, note that 
in an optimal power-of-two vector very few distinct 
components are used. For example, if the number of 
distinct replenishment intervals were larger than 10, 
then some products would be replenished at least 
210 = 1,024 times less frequently than others, a situ- 
ation that could hardly be economical in any real- 
world application. It is, therefore, natural to search for 
a decomposition algorithm in which the number of 
iterations (partitions) is limited to the small number 
of distinct components in an optimal power-of-two 
vector. 

Indeed, in this section we develop a direct algorithm 
which generates an optimal solution for JP directly 
rather than via a rounding procedure applied to the 
solution of RJP, its continuous relaxation. This algo- 
rithm is based on the following characterization theo- 
rem giving necessary and sufficient conditions for a 
vector T* to be optimal in the integer program JP. 
These conditions bear considerable similarity to the 
ones for the characterization theorem in Section 2. 

Theorem 7. Assume that the vector T* = (T*, T2*, 
. T*) takes on M distinct power-of-two values 

T(1) < T(2) < ... < T(M), and (N., N2, ..., NM) 

is a partition of N with N. = {i E N: T* = T(1)1, 
then T* is an optimal solution for JP if and only if the 
following two conditions hold for I = 1, 2, ..., M. 
Define the set functions K1(.) by 

K1(S) = K(U vNuS) -KCU z) 
j= I = I 

S C N., I 1, ... ., M. 

Then 

i. 1/,/2 (K,(N,)1H(N,)) 1/2 < T(l) <S d/ (KI(NI)l 
H(N1)) /2; 

ii. 1/\12 T(l) l (Kj(S)1H(S)), S) _ KN(S)) 
H(NI\S)) l -/2? T(l ), S C N1. 
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Proof. We first prove the necessity part. Let T * be an 
optimal solution of JP. Assume to the contrary that 
for some], 

(Kj(Nj)/H(Nj)) 1/2 < 1/V2 T(j). 

Let T' be defined by T' = 1/2T(j),i 8 Nj; T' =Ti 
i 4 Nj Let 

Ct)delf'( C,(t)-= K,(N,)/t + H(N,)t, / = 1, ..., M. 

It follows from (1) and T(1) < T(2) < ... < T(M) 
that 

M 

C(T*)= C(T(l) 
1= 1 

C(T') = Q C,(T(l)) + Cj(1/2 T(j)). 
,0i 

It is easy to verify that Cj(/12T(j)) < Cj(T(j)) since 
T(j) > V (Kj(Nj)/H(Nj))"/2 (see Figure 1). We thus 
have C(T') < C(T*), which contradicts the optimality 
of T*. The proof of the second inequality in i is 
analogous. 

To prove ii, assume to the contrary that for some j 
and S C Nj, (Kj(S)/H(S))"/2 < 1/Vs T(j). Define T' 
by T.' = 1/2T*(i E S) and T' = T* otherwise. Then 

Cj(T(j)) = Kj(Nj)/T( j) + H(Nj)T(j) 

= Kj(S)/T(j) + H(S)T(j) + (Kj(Nj) 

- Kj(S))/T( j) + H(Nj\S)T(j) 

> Kj(S)/(1/2 T(j)) + H(S)(1/2T(j)) 

+ (Kj(Nj) - Kj(S))/T(j) + H(Nj\S)T(j) 

where the inequality follows from T(j) > 
12(Kj(S)/H(S)) as above. Thus 

C(T*) = Z C,(T(l)) + Cj(T(j)) 
,0i 

> C,(T(l)) + Kj(S)/('/2T(j)) 
10j 

+ H(S)(1/2T(j)) 

+ (Kj(Nj) - Kj(S))/T(j) + H(Nj\S)/T(j) 

=C(T') 

where the last equality follows from (1). This contra- 
dicts the optimality of 1*. 

Now we prove the sufficiency part. Assume that 
T * satisfies i and ii. Let the optimal value of JP 

I 1,. 1 . >,~~~~~~~~I 

1 1 /it' TQ') 
74? t, T(f) 

Figure 1. t, (K(G1)1H(G,)) 

be C+, D = {T> 0; T1 = 2'"iTL, (mi integer)J. Then 

C+ = min max Z (k/Ti + Hi Ti) 
TED kEK iEN 

min max >1(kJ/T1+H1Ti) 
TEED JkEKk'EzK1,I=1,...,M} iEN 

M 

=min E max (kJ/T +HIT,) 
TED 1= Ik'EK1,*=1,.**,M} iEN1 

where the last equality follows from Lemma B 1. 
Therefore 

M 

C+;> C,+ 

where for subproblem JPi 

Ct+= min max E (kl/T1 +HIT,) 
T>O kEK1 iEN1 

subject to Ti = 2'i TL(m1: integer), i e N1. 
We first show that { Ti = T(l), i E NI is an optimal 

solution for subprogram JP1, / = 1, . .. , M. Then 

C+= K1(N,)/T(l) + H(NI)T(l) (l = 1, ... ,M) 

and 
M M 

C+ >' C+ = K {,I(NI)/T(l) + H(N,)T(l)1 = C(T*) 
1=1 1=1 

in view of (1), thus proving the optimality of T*. 
Fix I = 1, ... , M and an optimal solution T E RN, 

for JP1. Assume that T takes on distinct values 
T(11) < T(12) < ... < T(la) with a corresponding 
partition (N1, , N12 5 ..., Nl). By the above-proved ne- 
cessity part of this theorem: 

2N ) T(l1). 
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On the other hand, by ii, letting S = N1, C N1, 

1/ 2 T(l ) < / K(N, )/H(K,,). 

Therefore, 1/x/2 T(l) < 12;T(1I) or 1/2T(l) < T(11). 
The equality holds if and only if 

= 1/24T(l) = V2 T(11). 

In this case, if we replace T(11) by T(l), the objective 
value in JP, will not change. Therefore, we assume 
without loss of generality that T(11) > T(l). By a 
similar argument, T(la) < T(l), i.e., Ti = T(l) for all 
i E N1. 

Combining Theorem 7 and Lemma 2, it is easy to 
verify that the following modified decomposition al- 
gorithm solves JP for any fixed base planning period. 

DAJP: Decomposition Algorithm for JP 

Let Tj- =2j- '/2TL, j integer. Let / be the unique integer 
such that r2 < K(N)/H(N) < -r 1. For any partition 
fNa, Na+i, .. ., Nb4 of N(a < b), let 

K1(S)=eK UNjUS - 
J=a J=a 

let Ki be the polymatroid: 

Ki = fki C R]Vi: k(S) < K(S), S C Ni, ki >, 0. 

Step 0. Determine a set S 5 N achieving min {K(S) 
+Ir H(N\S); a =- 1, b :=1; Na :=, Nb:= N\S. 

Step 1. If Nb = X, then go to Step 2, otherwise, find 
a set S 5 Nb achieving min {Kb(S) + Tb H(Nb\S) ; 
Nb+I := Nb\S, Nb:= S; b:= b + 1, go back to Step 1. 

Step 2. If Na = , then go to Step 3, otherwise find 
a set S 5 Na achieving min fKa(S) + 2a H(Na\S)I; 
Nai := S5 Na:= Na\S; a:= a - 1, go back to Step 2. 

Step 3. For the final partition (Na, Na+i, ..., Nb): 
let T(m) = 2mTL be the common reorder interval of 
Nm, m = a, . . ., b. T is an optimal solution of JP. 

Theorem 8. The DAJP algorithm generates an opti- 
mal power-of-two policy T. 

Proof. Let (Na, Na+i, . .., Nb) be the final partition 
generated by the algorithm. We clearly have T(a) < 
T(a + 1) < ... < T(b). In view of Theorem 7, it thus 
suffices to verify that conditions i and ii in the theorem 
hold. 

Consider a set Nj with a S j < 1. (The proof for the 
case ] > I is analogous.) Let N= Na U ... U Nj; 
Nj was generated in an execution of Step 2 by deter- 
mining min {K(S) + r] H(N\S): S C Nj. Apply 
Lemma 2 with E = N, E, = N\NJ and E2 = NA to 

conclude that 

T2= 1/2 T 2(j) < [K(N) -K(N\Nj)]H(Nj) 

= Kj(Nj)/H(Nj) 

and 

1/2 T2(j) < [K(f\Nj U S) - K(N\Nj)]/H(S) 

= Kj(S)/H(S) 

for all S 5 Nj, thus verifying the second inequality in 
i and the first one in ii. 

Now consider the previous execution of Step 2 in 
which set Nj+1 is created again by determining min 
K(S) + T2rI H(N\S): S 5 N, now with N = 

Na U ... U Nj+ 1. Apply Lemma 2 with E = 
N, El = NaU ... UNj_ = N\Nj+\\Nj to conclude 
that 

[K(Na U ... U Nj) - K(Na U ... U Nj-1)]/H(Nj) 

<1 T2.+= 2 T2(j), 

thus verifying the first inequality in i. Apply 
Lemma 2 again with E =Na U ... U Nj_ U S 
(S 5 Nj) to conclude that 

[Kj(Nj) - Kj(S)]/H(Nj\S) 

= [K(Na U... U Nj_ U Nj) 

- K(Na U ... U Nj_1 U S)]/H(Nj\S) 

< 2 2 T2( j) 

thus verifying the second inequality in ii. 

We conclude this section with a brief discussion of 
the complexity of the two-stage algorithm as well as 
that of the direct algorithm DAJP. 

Recall that the two-stage algorithm consists of the 
decomposition method DAJD followed by one of two 
rounding procedures RPFB or RPVB, depending 
upon whether the base planning period is fixed or 
variable, respectively. In Section 2 we verified that the 
complexity of these rounding procedures is O(n) and 
O(n log n), respectively. This is, in most cases, domi- 
nated by the complexity of the first stage, the decom- 
position algorithm. 

As pointed out in Section 2, the DAJD algorithm 
requires at most 2n - 1 iterations. The complexity of 
the DAJD algorithm is thus O(nQ) with Q as the time 
required to find a set S minimizing f(S) + u(E\S), 
where f is a rank function defined on a ground 
set E C N, and u E RE is a constant vector. See 
Section 2 for a discussion of the magnitude of Q. 

As far as the integrated algorithm DAJP is con- 
cerned, it is easy to verify that the number of basic 
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iterations is given by 1 + L(= b -a + 2), the number 
of distinct power-of-two values in the optimal replen- 
ishment vector, which is small in all practical -prob- 
lems. If, e.g., L were larger than 10, some products 
are replenished every day (say), while others are re- 
plenished no more frequently than once in close to 
three years. The complexity of DAJP is clearly O(LQ) 
and can be argued to be O(Q). 

5. A NUMERICAL EXAMPLE 

We illustrate the algorithms presented in the previous 
sections by the example in Rosenblatt and Kaspi. 

Example 2. A supermarket buys five different items 
from a single supplier. Items 1 and 2 must be trans- 
ported under very cold conditions (a refrigerated 
truck). Item 3 must be transported under warm con- 
ditions (a regular truck). Items 4 and 5 can be trans- 
ported in any truck, however, transporting item 4 
under very cold conditions requires an additional $5 
packaging cost. Transportation cost in a refrigerated 
truck is $60 and in a regular truck $50. In addition to 
transportation costs there are packaging costs for each 
item; see Table I. It is easy to verify that the setup 
costs are monotone and submodular. 

The DAJD algorithm proceeds as follows. 

Iteration 1. 1 = 1, M = 1, N1 = N. K,(N) 200, 
H(N1) = 17,500, 

Ul= = - ( 1,000,8,000,2,500,3,000,3,000) 

~(11.43,91.43,28.57,34.29,34.29). 

The set S* = {2, 4, 51 achieves 

min{KI(S) + u'(N1\S), S C N, 1. 

We obtain the new partition {N,, N21 with N, - 
{2, 4, 51 and N2 = {1, 31. 

Iteration 2. / 1, M = 2, N, = {2, 4, 51. K1(N,) = 

110, H(N1) = 14,000, 

2= (u, U4, Us) 14,000 (8,000, 3,000, 3,000) 

(62.86, 23.57, 23.57). 

The set S* = {2, 4, 51 achieves 

min{K, (S) + u1(N,\S), S C N, }. 

The partition {N,, N2 1 is maintained. 

Table I 
Data for Example 2 

Item No. Packaging Cost di hi Hi 
1 30 1,000 2 1,000 
2 20 8,000 2 8,000 
3 1 5 5,000 1 2,500 
4 20 (cold) 15 (warm) 3,000 2 3,000 
5 10 6,000 1 3,000 

Iteration3. 1=2,M= 2,XN2= {1, 31. 

K2(N2) = K(N) - K(N1) = 200 - 110 = 90, 

H(N2) = 3,500, 

U2(U2,U)= 3500 (1,000,2,500) = (25.71,64.29). 

The set S* = {3} achieves min{K2(S) + U2(N2\S), 
S 5 N21. We obtain the new partition {N,, N2, N31 
with N1 = {2, 4, 5}, N2 = {31, N3 = {1,. 

We thus obtain the lower bound 
3 

c* = 2 -/K1(Ni)H(N1) = 2(,1 I0 x 14000 

+ f60 x 2500 + -30 x 1000) = 3602.94. 

The vector T = (0.1732, 0.0886, 0.1549, 0.0886, 
0.0886) is optimal for RJP. If the base planning period 
TL = 0.1, we obtain, after rounding, T* = (0.2, 0.1, 
0.2, 0.1, 0.1) and C(T*) = 110/0.1 + 90/0.2 + 
14,000 x 0.1 + 3,500 x 0.2 = 3,650. If TL is variable, 
we obtain the vector T** = (0.1718, 0.859, 0.1718, 
0.859, 0.859) and C(T**) = 3,608.02. We have 
(C(T*) - c*)c* 1.31% and (C(T**) -c*)c* 
0.15%. 

For TL = 0.1, the DAJP algorithm determines T* 
by generating: 

Iteration 1. N-1 = S= X, No= N; 
Iteration 2. No=S= {2,4, 51,N1,= {1, 31; 
Iteration 3. N. = S = {1, 31, N2= q. 

6. A COMPARISON BETWEEN POWER-OF-TWO 
AND FIXED PARTITION STRATEGIES 

In this section, we make a brief comparison between 
power-of-two policies and fixed partition strategies, 
the second restriction approach reviewed in the Intro- 
duction of this paper. Fixed partition strategies may 
dominate power-of-two policies: A trivial example 
arises when the setup cost structure is independent, in 
which case, the fixed partition strategy, which replen- 
ishes each item by itself according to its specific EOQ 
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rule, is optimal, and the average cost of an optimal 
power-of-two policy may exceed the optimal cost. 

The following example shows, on the other hand, 
that the average cost of an optimal fixed partition 
strategy may exceed that of an optimal power-of-two 
policy by as much as 20%. The determination of the 
worst case gap between these two classes of strategies 
remains an open question. 

Example 3. Consider the setup cost structure 
K(S) = maxis Ki, where Ki = 3', i = 1, ..., n; 
let hi = 3-' and di = 2 (i = 1, ..., n). Verify that 
the vector T defined by T, = (KI/H, ) 1/2 = 1 and 
T, = ((K, - K1_I)/H1)1/2 (i = 2, ..., n) solves RJP. 
(Note that T, < T2 < ... < Tn and apply Theorem 1.) 
The optimal objective function value in RJP, c* is 
thus given by 

c* = 2( [(K - Ki_ J)Hj] 1/2 + 1) 

= 2( [(3i - 3i-1)3 -i] 1/2 + 1 

= (,2( $3(n - I1) + I) 

It follows from Theorem 4 that the average cost of 
an optimal power-of-two policy T* is given by 

C(T*) S (1.021)2( 2/3(n - 1) + 1). 

Below we verify that the strategy under which each 
item is replenished by itself, according to its own EOQ 
rule, is an optimal fixed partition strategy. The average 
cost CF under this strategy is given by: 

n 
CF=2 W (K1Hi)1/2=2n 

1= 1 

and note that 

CF 2 
lim ~~~ = = 1. 2. n -->ooC (T *) ( 1. 02 1) 2 /- 

To verify that the partition 1, . . ., n I constitutes an 
optimal partition, it suffices to show for any S 5 
{1, ..., nI with ISI ? 2 and n+ = max{i: i E S , 
the minimal cost C(S\{n'1, {n)1) of the partition 
IS\{n+1, {n+ I is less than C({SI), the minimal average 
cost of the partition {S). Let n- be the next to highest 
index in S, then 

1/2. 

1/2C(S\{n+1, In+1) = 1 + 3 n E H) 
iES, i-n-n 

S 1 + (3 n+-(H(S) - 3.fl+))1/2 

(3 n- H(S)) 1/2C(ISI) 

where the last inequality is equivalent to 

1 + 2[3 n+-I(H(S) - 3-n+)]1/2 + 3+- I(H(S) - 3-n+) 

< 3n+H(S) 

which holds if and only if 

2[3 n+- '(H(S) - 3 n+)] 1/2 < 2[3 n+- '(H(S) - 3 n+)] 

and the latter inequality is immediate from 

3n+'[H(S) -3 ] 3 1. 

APPENDIX A 

Cost Evaluations for Example 1 

The average cost CR of policy R is clearly given by 

CR = [K({ 1, 2, 31) + 2K({ 1, 21) + K(I 1, 3D)] 

+ h2rT2+ h3rT3+ +h,(5/2) 

=(2-c + 2 + 1)/3 + (1 + 2/3 + 5/6E) 

10 
=-+ /2. 

3 

In particular, for e = 0.1, CR = 3.3833. 
A stationary policy with constant reorder intervals 

T., T2 and T3 is called nested if T2 = mT, and 
T3 = nT, for integers m, n > 1. Under such a 
policy the system regenerates every IT, time units 
with I the least common multiple of m, n. Let 
C(m, n, T. ) be the average cost of this policy 
and C(m, n) - infT>o C(m, n, T.) 

C(m, n, T.) +T [K({1, 2, 3 1) + -- 1)K({l, 2 1) 

+ I--lK(1,3t1) 

( /----+I Kf({I ] +ZEhi T 

_ n <[2- )= m 1)( 
+ (-Em+ -1 )K } + 

I 
9-) 

l + + - n) T } 

+( m + ) n+ Tl . 
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Thus, when e = 0.1, 

C(m,n)=2{[(i+4)+(l 1 ) .] 

*[m+gn+o.i1} 

rto0 1 +0.9 0.94/ 142 

=2{(1.31 +( 04+ 0.)n+0.9(m+0.1) 

0.0911/2 
+0.lm+0.9 

mJ 

It remains to be shown that infm n C(m, n) > CR. Note 
first that 

0.99 1/2 
C(1, n) = 2T1.31 + 0.4444n + + 0.19 

Since C(1, n )2 is convex in n and achieves its contin- 
uous minimum at n* = 1.49, we have 

C(l, n) min IC(l, 1); C(l, 2)} 

= min(3.426; 3.396} > 3.396 > CR. 

For m > 2 we have 

C(m, n) 

21.31 +inf 04+ 094 n+ 09(m + 0 1m + 

= 2{2[( 
0 

+ )(m + 0. 1)0.91 

0+09 1 1/2 
+ 0.Im + ~+ 1.31 m J 

The right-hand side is clearly increasing for m > 2. 
Thus, infm>2,n>i C(m, n) = 3.414 > CR as well. 

APPENDIX B 

Polymatroids: A Special Class of Polyhedral Sets 

In this appendix, we exhibit several properties of poly- 
matroids needed to prove Lemma 1 as well as several 
key results in this paper. We first recall some elemen- 
tary properties of rank functions. 

Lemma B1. Let E, E1 befinite sets with E1 C E; letf; 
g be rank functions on E. Then 

a. af is a rank function on Efor any a > 0; 
b. f + g is a rank function on E; 
c. the set function f defined on E\E1 by f (S)= 

f(El U S) - f(El) (S 5 (E\E1)) is a rank function 
on E\El. 

Proof. Parts a and b are immediate. To prove c, note 
that for any T C S C (E\E1) and j E E\E1 with 
j 4 S: 

f(S U Ij}) - f(S) =f(E1 U S U Ij}) -f(E1 US) 

<f(El U TU Ij}) -f(E1 UT) 

=f(T U (j}) - 7(T). 

Lemma B2. Let (E,, E2, ..., Em) be a partition of a 
finite index set E, and let f be a rank function on the 
ground set E. For each I = 1, ..., m define the set 
function fj: 2E1 -* R by 

f(S) = f U E, U s-f(U Ei ) S C El. 

Then 

a. f is a rank function on E1(l = 1, 2, . m); 
b. let x C RE and for each I = 1, ..., m, let x' = 

(xi: i = E1), / = 1, . .., m; if x' E F(E,, f) for 
alll= 1, ..., m, thenxCF(E,f). 

Proof. Part a is immediate from part c of Lemma B 1. 
To prove part b, fix S S E and let S, = S n El, / - 
1,..., m. We show by induction that 

1=1 11I 

It is clear that the inequality holds for 1' = I since 
x' E F(E1, f). Assume that the inequality holds 
for 1', 1 s 1' < m. Then 

x(S,)= x(S)+x(S+) 
1=1 l~l 

/I'+1 \ 

sfU sI). 
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The last inequality follows from (2), and 

UEl}U U SI =UE1US,+,, 
l1l / l=l / 1=1 

UEl n Si s,= USi. 

Now, consider a linear program of the form 

max w(x)= E cixi (ci;2:0, i E=- E I. ........... ,nl) .(9) 
iEE 

subject to 

x E F = F(E, f). 

Edmonds showed that an optimal solution may be 
obtained by the following greedy procedure, provided 
that F is a polymatroid. 

Greedy Procedure for (9) 

Step 0. Let (a,, . . ., an) be a permutation of the 
variable indices such that 

ccI ;>: Ccc, > * > C: 

Step 1. Set x,a, = f({ a, }) and 

Xa, =f(l{a .. ., ai}) -f({a,, ... , ai-l) 

(i= 2, ..., n). (10) 

In the greedy procedure the variables are thus 
ranked in nonincreasing order of their coefficients in 
the objective function. Treating the variables in this 
order, they are sequentially fixed at the highest achiev- 
able value. It is easy to verify (see Edmonds 1970), 
that these highest achievable values are given by the 
right-hand sides of (10). 

Lemma B3. Let F = F(E, f) be a polymatroid. 

a. The greedy procedure (10) solves (9). 
b. If the coefficients in the objectivefunction of (9) are 

distinct, then the optimal solution is unique. 
c. Assume that the coefficients in the objectivefunction 

of (9) take on m distinct values c(l) > c(2) > ... > 
c(m) and let (El, ... , Em) be a partition of E = 

1, 25 ..., nn, such that ci= c(l) (iE- )= 1= 
1, ..., m. x is an optimal solution of (9) if and 
only if 

ieEE j= I j= I 

Proof. Part a is due to Edmonds (see, also, Welsh 
1976 and Frank and Tardos 1989). We repeat its proof 

to facilitate those of parts b and c. Let 

El = Ilal 1, f(J al ) 

= f(al, a , ) - f(lal , al-l 1) 

for I = 1, ..., n. 

The solution x* generated by the greedy procedure is 
feasible in (2), in view of Lemma B2b applied to this 
partition and the set of rank functions. Its objective 
function value is 

n 

W(x*) E. cylOel .a, aitl) -f(loa,, e ai- D)) 

n 

- E (ca,-cay,+ )f({al, . . .,a,}l) (set can+= O), 
1=1~~~~~~(eCn,=) 

To prove that x* is optimal it is thus sufficient to 
identify a feasible solution y* for the dual problem: 

minimize E f(S)ys 
SCE 

subject to 

E Ys >- i ( E E = 11, 25 ... , nD 
S:iEs 

with an identical objective function value. Let y* = 
Cai- cai+I if S = I a . , aicI (i = 1, ... , n) and 

s= otherwise; y* is dual feasible and its objective 
value equals w(x*). 

b. When the c-coefficients are distinct, y. > 
0, 1 = 1, .5. , n. Consider an optimal solution i of (9). 
By the complementary slackness theorem we must 
have 

E 5a, =tf({ai, ..., ai}) (i = 1, ..., n), 
1= 1 

and hence x = x*. 
c. To prove the sufficiency part, it is, in view of 

part a, sufficient to verify that x has the same objective 
function value as x*, the solution generated by the 
greedy procedure. 

n n 

E cix* =- cai(f(Iai, ... , ail) -f(Plai, , ai-1 D) 

-Ec(l)(U E ) -CY ) 

1=1 C Ey 1 i=1 

To prove the necessity part, note that the vector 
(iE, l X, ..., iCEm xi) needs to be optimal in the 
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aggregated linear program: 
m 

maximize E c(l)x, 
1= 1 

subject to 

E XI <f fU El) R 5 {1, .., ml 
IfeR IEiR 

x - 0, and apply part b. 

Since the greedy procedure achieves the optimum 
in the linear program (9) for any polymatroid F, and 
since K is a polymatroid (see above), this establishes 
Lemma 1. 

APPENDIX C 

The Saddle Point Lemma 

In this appendix we exhibit three equivalent saddle 
point conditions. 

Lemma C4. Let 0 be an arbitrary subset of some 
Euclidean space andf: 0 x K -* R, T* E 0, k* E K. 
Then the following statements are equivalent: 

i. T*, k* is a saddle point off over 0 x K, i.e., 

f(T, k*) ->f(T*, k*) > f(T*, k) 

for all T E 0, k E K. 

ii. minTEff(T, k*) > maxkeKf(T*, k) 
iii. minTfer maxkEKf(T, k) = maxkEK minTE=ef(T, k), 

T* and k* are optimal solutions for minTer maxkeK 

f(T, k) and maxkEK minTE4 f(T, k), respectively, that 
is 

max f(T*, k) = min max f(T, k) 
kEK TEe kEK 

and 

min f(T, k*) = max min f(T, k). 
TeO kEK TeO 

Proof 

i ii: immediate 

ii iii: max minf(T, k) > minf(T, k*) > 
kEK TeO TeO 

maxf(T*, k) 
kEK 

min max f(T, k) > max min f(T, k). 
TeO kEK Tee kEK 

The second inequality is ii, all other inequalities hold 
generally for any f 0 and K. Since the two extremes 

of the inequalities are the same, all these inequalities 
must hold as equalities, hence iii. 

iii =* i: f(T, k)* ~> minf(T, k* 
TEE 

= max minf(T, k) = min maxf(T, k) 
kEK TEO TeE keK 

= maxf(T*, k) >f(T*, k) T E Z, k E K. 
kEK 

APPENDIX D 

Properties of C(T*) as a Function of the Base 
Planning Period TL 

Lemma D5. CTL(T*) is continuous in TL. 

Proof. It suffices to show continuity in the finite set 
of points lb,: r = 1, ...,M}. Fix r = 1, ... M. Note 
from (7) and (8) that 

Cbr(T*) - lim CTL(T*) 
TLTbr 

= (K' - K'_ )/br + (H' - H'_ )br 

= [K(Ni U. . U Nr)-K(Ni U ... .U Nr- )] 

* 2-mrb(r) - H(Nr)2Mr-' b(r) 

= K(Nr)/T(r)NI - H(Nr)T(r)/s2 = 0. 

In general, C(T*) fails to be convex. (Note that 

d Cbm (T *) d-Cbn(T *) 
dTL dTL 

= (K'-,-K' )Ib + HtH' -H 0 ). 
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