
FINDING OPTIMAL (s, S) POLICIES IS ABOUT AS
SIMPLE AS EVALUATING A SINGLE POLICY

YU-SHENG ZHENG
University of Pennsylvania, Philadelphia, Pennsylvania

A. FEDERGRUEN
Columbia University, New York, New York

(Received March 1989; revisions received September, December 1989; accepted January 1990)

In this paper, a new algorithm for computing optimal (s, S) policies is derived based upon a number of new properties of the
infinite horizon cost function c(s, S) as well as a new upper bound for optimal order-up-to levels S* and a new lower bound for
optimal reorder levels s*. The algorithm is simple and easy to understand. Its computational complexity is only 2.4 times that
required to evaluate a (specific) single (s, S) policy. The algorithm applies to both periodic review and continuous review
inventory systems.

In many models of single item inventory systems, it is
well known that an optimal policy exists within the

class of so-called (s, S) policies. Under an (s, S) policy,
an order is placed to increase the item's inventory posi-
tion (= inventory on-hand + orders outstanding -
backlogs) to the level S as soon as this inventory posi-
tion reaches or drops below the level s (- o < s < S <
0o; expressing demands as multiples of a standard unit,
we assume without loss of generality, that both s and S
are integers). In this paper, we present a new algorithm
for computing an optimal policy that is simple to state,
the correctness of which is simple to prove and which is
more efficient than the best available alternatives. In
fact, the computational complexity of the algorithm is
only 2.4 times that required to evaluate a (specific)
single (s, S) policy.

Until recently, algorithms for computing the best pol-
icy were rarely used because they were considered pro-
hibitively expensive. Federgruen and Zipkin (1984)
attempted to eradicate this myth by presenting an algo-
rithm that could be implemented to require an average of
no more than 0.4 CPU seconds on an IBM 4341. Their
method, which is similar to that of Johnson (1968) and
Kuenle and Kuenle (1977), is based on an adaptation of
the general policy-iteration method for solving Markov
decision problems, where the special structure of (s, S)
policies is exploited in several ways.

The need for these algorithms arose from the general
perception that the policy cost function is, in general, ill
behaved, implying that almost all possible combinations
{ (s, S): s < S} need to be evaluated in a direct search

procedure. Indeed, the function in general fails to be
quasiconvex and may have several local optima.

The methods of Veinott and Wagner (1965), Bell
(1970), and Archibald and Silver (1978) therefore apply
essentially full enumeration of the two-dimensional grid
on the (s, A) plane (A _ S - s). Such enumeration is
facilitated by lower bounds s, S and upper bounds S, S
for optimal reorder levels and order-up-to levels s* and
S*, as established by Veinott and Wagner. (The effort of
identifying bounds for s* and S* was started by Iglehart
1963.) Archibald and Silver's algorithm improves the
efficiency by exploiting slightly better bounds for A, as
well as the fact that the cost function E(s, A) is convex in
s, under some cost structures. Stidham (1977) and Sahin
(1982) demonstrate additional properties of the cost func-
tion c(s, A) under certain assumptions with respect to
the demand distributions and/or lead times, in particu-
lar, the unimodality of - C(A), where C(A) = min S e(s,
A). Stidham (1986) proves these properties under more
general assumptions. See Sahin (1983, 1988) for a dis-
cussion of related properties.

In contrast with these methods that search in the (s,
A) plane, our algorithm provides for an efficient search
in the (s, S) plane itself and is based on a number of (to
our knowledge hitherto undiscovered) properties of the
cost function c(s, S), as well as new tight lower and
upper bounds for s* and S*, respectively, which are
iteratively and easily updated, and converge monotoni-
cally. (These bounds are of independent interest.) Let so
and S0 be the initial values of these bounds, i.e., s c
so < s* and S* c So c S for any optimal (s*, S*)

Subject classifications: Inventory/production, policies: efficient algorithm for optimal (s, S) policy. Inventory/production, stochastic: efficient
algorithm for optimal (s, S) policy.

Operations Research 0030-364X/91/3804-0654 $01.25
Vol. 39, No. 4, July-August 1991 654 ? 1991 Operations Research Society of America

Finding Optimal (s, S) Policies / 655

policy. Our algorithm requires fewer than (So - 5) +
(s* - so) evaluations of the c(-)-function instead of
Q((S- S)(s- s)) in existing search methods. (An algo-
rithm has complexity C = U(N) if C grows at least
linearly with N, i.e., liminf C(N)/N> 0.) Moreover,

N-woo
we exploit a characterization of the cost function to allow
for fast updates of c(s, S) when only the value of s is
altered.

Numerous heuristic methods have been proposed, in
addition to the exact methods discussed; see e.g.,
Roberts (1962), Porteus (1979), Wagner et al. (1965),
Wagner (1975), Ehrhardt (1979, 1984), Freeland and
Porteus (1980 a, b), Naddor (1975), Sivazlian (1971),
Schneider (1978), Tijms and Groenevelt (1984), and
Sahin and Sinha (1987). This paper generalizers an even
simpler algorithm that we obtained (Federgruen and
Zheng 1988) for the special case where orders are placed
when the recorder point is reached exactly. (This situa-
tion arises in continuous review systems in which de-
mands occur on a unit-by-unit basis.) Such policies are
usually referred to as (r, Q) policies, where r denotes the
recorder level and Q is the (in this case) fixed order
size.

The following is an outline of the remainder of this
paper. In Section 1 we define the notation and give a
description of the model. We initially confine ourselves
to periodic review models and the long-run average cost
criterion. Section 2 derives the properties of the cost
function and the new bounds for s* and S*. Section 3
contains the algorithm and a detailed discussion of its
complexity. In Section 4 we exhibit how the algorithm
performs on a sample of test problems. Extensions to
continuous review systems and the discounted cost crite-
rion are discussed in Section 5. A comparison with
alternative procedures, in particular the Federgruen and
Zipkin, and the Archibald and Silver algorithms, may be
found in the Appendix.

1. NOTATION AND PRELIMINARIES

We consider first a discrete time inventory system in
which an order may be placed with an outside supplier at
the beginning of each period. All stockouts are back-
ordered. We assume that one period demands are i.i.d.
and integer valued and that the cost structure and param-
eters are stationary as well. Our (initial) objective is to
minimize long-run average costs over an infinite hori-
zon. In Section 5, we discuss how our algorithm applies
to models with the discounted cost criterion and/or
continuous review systems. Let

D= the one-period demand (random variable);
pj=Pr{D=j}, j=0,1,2,...,

K= the fixed cost to place an order;
G(y) = the one-period expected costs, including e.g.,

holding and backlog penalty costs, when starting
with an inventory position y; y integer.

(The long-run average order quantity equals ED under
any policy that avoids infinitely large inventories or
backlogs. Linear order costs may thus be ignored for the
purpose of determining an optimal policy.) We assume
only that -G(*) is unimodal and

lim G(y) > minG(y) +K.
IyI-0o Y

Without loss of generality, we assume that K > 0, as for
K = 0 the policy (y* - 1, y*) is optimal for any mini-
mum y* of the G(-) function. The assumed properties
include the common case where the one-period holding
(backlogging) costs increase linearly or convexly with
the end-of-period inventory (backlog) size, and where
G(-) is convex and

lim G(y) +oo,
I y1 -co

as in Iglehart (1963) and Veinott and Wagner. A fixed
delivery lag can be incorporated by a standard redefini-
tion of G(*); cf. e.g., Veinott and Wagner (1965),
Veinott (1966) or other standard treatments of single
item inventory models, e.g. Denardo (1982), Heyman
and Sobel (1984), and Tijms (1986). The same form of
G() arises under random lead times generated by an
exogenous supply process that is independent of the
sequence of demands and with the property that orders
are received in the same sequence as they are placed; see
Zipkin (1986, 1988) for a precise description. Under
these lead time assumptions, G(*) = ELGL(*), where
GL(.) is the one-period cost function under a fixed lead
time L, and the expectation is taken over the lead time
distribution. Clearly, if GL() is convex, so is G() as a
convex combination of convex functions. (An approxi-
mate model of the same form is often used when the
lead times fail to satisfy the above properties; see e.g.,
Ehrhardt 1984.)

If - G() is unimodal and

lim G(y) > minG(y) +K
IyI -oo Y

an (s, S) policy is optimal when minimizing long-run
average costs, as shown by Veinott. The following ex-
pression for the long-run average cost c(s, S) of a given
(s, S) policy is well known and easily verified from
renewal theory or by characterizing the steady-state
inventory position distribution; see e.g., Veinott and
Wagner (1965)

S-s- 1
c(s, S) = M(S - s)K+ E m(I)G(S - j) (1)

j=O

656 / ZHENG AND FEDERGRUEN

where

m(0)=(1-P0)_1, M(O)=O (2a)

m() = Z pm(I-l), j= 12,... (2b)
1=0

and

M(j)=M(j-1)+m(j-1), j=1,2, (2c)

Equations 3-5 provide a concise verification based on
renewal theory. These formulas are needed in the next
section. Under an (s, S) policy the inventory position
process regenerates at every replenishment order epoch
when the inventory position increases to S. Let M(j)
(k(s, y)) be the expected total time (costs) until the next
order is placed, when starting with an inventory position
of s +j (y) units, j > 1 (y > s).

It follows from the theory of regenerative processes
(see, e.g., Ross 1970, proposition 5.9) that

c(s, S) = k(s, S)/M(S - s). (3)

Fix s. It is clear that the functions M(*) and k(s,)
satisfy the discrete renewal equations

j-1

M(j) = 1 + E pM(j - i), j = 1, 2,...
i=o

and
00

k(s, y) = G(y) + K , pi +
j=y-s

y-s- 1

E pjk(s,y-j) y>s (4)
j=0

with the unique solution (2) and

y-s-1

k(s, y) = K+ ,3 m(j)G(y - j) y > s (5)
j=O

respectively.

2. PROPERTIES OF THE COST FUNCTION C(*,*)
AND BOUNDS FOR s* AND S*

This section contains all of the results required to derive
the algorithms, including some known bounds for opti-
mal s* and S* values, with new and simpler proofs. Let
yl = minj y: G(y) = min G(x)} and y* = maxj y: G(y)
= min G(x)} be the smallest and largest minimizers of
G(), respectively, (- oo < y* < Y* < oo since

Also define

M(n)
n M(n + 1)

Note that 0 < an < 1. It follows directly from cost func-
tion (1) that

C(s- 1, S) = xnc(s, S) + (1- an)G(s),

n=S-s (6)

i.e., c(s - 1, S) is simply a weighted average of c(s, S)
and G(s). The following properties of the cost function
are therefore immediate.

Lemma 0. For any fixed S and s < S

a. G(s)<(=, >)c(s- 1, S) (=, >)c(s, S) if
G(s)<(=, >)c(s, S).

b. c(s-1, S) (=, >)c(s, S) if G(s)<(=, >)
c(s- 1, S).

Proof. The proof is by simple algebraic manipulation
of (6).

Lemma 1 shows that - c(s, S) is unimodal in s for
fixed S and provides a useful characterization of optimal
values of s (for fixed S).

Lemma 1. a. For any given order-up-to level S, a
recorder level so < y is optimal, i. e.,

c(s?, S) = min c(s, S) if
S<S

G(s?) _ c(s?, S) > G(s? + 1). (7)

Multiple optima of s for fixed S occur when at least
one of the inequalities in (7) holds as an equality;
that is, so - 1 or so + 1 are also optimal reorder
levels for S if G(s?) = c(s?, S) or G(s? + 1) = c(s?,
S) hold, respectively.

b. For any given order-up-to level S, there exists an
optimal reorder level so such that so <y* and (7)
holds.

c. For any given order-up-to level S, let so and so
be the smallest and largest optimal reorder levels
below y*, respectively. (See part b.) Then G(s?) >
c(s?, S) = c(s?, S) > G(so + 1).

Proof. a. Assume that (7) holds for some so with
sy <1y*. To show that so is optimal (for S), we prove:
i) c(s - 1, S)-c(s, S) for s c so; ii) c(s, S) c c(s +
1, S) for 5? so. To prove i, we show by induction that

G(s) > c(s - 1, S) c(s, S) (8)

for all s c so. By applying Lemma Oa with s = so, the
first inequality of (7) implies that (8) holds for s = s?.

Finding Optimal (s, S) Policies / 657

Assume that (8) holds for s = y + 1, that is

G(y+ 1) > c(y,S) ?c(y+ 1,S)

for some y(<sS) (9)

Note that since y < y*, G(y) > G(y + 1), and in view
of (9)

G(y) ' c(y, S). (10)

Applying Lemma Oa with s = y, we conclude that

G(y) - c(y - 1, S) > c(y, S).

This completes the proof of i.
Next, to show that ii holds for s0o< s < yr, we prove

by induction that

G(s + 1) c c(s, S) c c(s + 1, S) (I11)

for all so < s < y. By applying Lemma Ob with s=

s0+ 1, the second inequality of (7) implies that (11)
holds for s = so; assume that it holds for some s = y - 1
with so y - 1 < y* - 1, that is

G(y) c c(y - 1, S) c c(y, S). (12)

We show that (11) holds for s = y. Note again that
y <y implies that G(y + 1) c G(y), which in conjunc-
tion with (12) implies that G(y + 1) c c(y, S). By
applying Lemma Ob with s = y + 1, this in turn implies
that c(y, S) c c(y + 1, S), thus completing the induc-
tion step.

For y* < s < S. the proof of ii is similar to that of i;
the induction starts with s = S - 1 and uses the fact that
c(S - 1, S) = K(1 - po) + G(S) _ G(S).

The remainder of part a follows immediately from
Lemma Ob and c. Let so be the lowest optimal reorder
level for S. If so > y*, then c(s%, S) _ G(s?) in view of
(1). Thus, c(so - 1, S) c c(s?, S) by Lemma Oa, con-
tradicting the definition of so. Thus, so < y* - 1.

If G(s?) c c(s?, S), then c(so - 1, S) c c(s?, S) by
Lemma Oa, contradicting the definition of so. This proves
the first inequality of c; the proof of the second inequal-
ity of c is similar. Finally, it follows from c and the fact
that G(y) is decreasing for y <y* that (7) holds for
some so with so c so < SO

The following corollary provides an efficient way to
find an optimal reorder level for any given order-up-to
level S.

Corollary 1. For any given order-up-to level S, let
s? =max{y<y*:c(y, S)cG(y)}. Then, (7) holds
and so is an optimal reorder level (for S).

Proof. Since G(s? + 1) < c(s? + 1, S), it follows from
Lemma Oa that G(s? + 1) < c(s?, S) while c(s?, S) <
G(s?) by the definition of so. Thus, (7) holds and the
optimality of so follows from Lemma la.

We now derive bounds that apply to any optimal
reorder level s*. These follow rather straightforwardly
from Lemma 1.

Corollary 2. (Bounds for s*):
a. Let s* denote the smallest optimal reorder level

deft
S* < S = YJ*

b. Let s* denote the largest optimal reorder level
<Y*; if so satisfies (7) for some arbitrary order-up-to
level S, then so < S*

Proof. a. The proof is immediate from Lemma lb;
b. Note that G(s* + 1) < c(s*, S*) c c(s0, S) < G(s0):
The first inequality follows from Lemma Ic. Then so <
S* follows from the fact that G(s) is nonincreasing for
5 ' 5? Y1*

The upper bound s* < S =def Y* - 1 was first discov-
ered by Veinott and Wagner. The lower bound so < S*
(with so as a reorder level satisfying (7) and, hence, for
some order-up-to-level) is, to our knowledge, new. This
bound can continuously be improved, as new optimal
reorder levels for new values of S are determined.
Corollary 3 establishes alternative lower bounds for s*.
While this corollary is not needed for the derivation of
the algorithm in Section 3, we state it for the sake of
completeness. Let c* denote the optimal average cost
value.

Corollary 3. (Alternative lower bounds for s*): There
exists an optimal reorder level s* such that the follow-
ing properties hold:

a. Let s* defmax{ Y < Y*: G(Y) > c*}. Then s% <

s.

b. Let c c* (e.g., c is the cost of an arbitrary
policy) andSc =def maxf y < y*: G(y) > c}l. Then <

s.

Proof. Part b is immediate from part a and the uni-
modality of - G(). Let S* be an optimal order-up-to
level. It follows from Lemma lb that there is an optimal
reorder level s* (< y*) (for S*) such that G(s* + 1) c
c= c(s*, S*) < G(s*), so that s* < s*.

Let s def maxf y < y*: G(y) > [min,, G(x) + K]}
Veinott and Wagner's lower bound s c s* follows as a
special case of Corollary 3 with c = c(y* - 1, Y*) =

[K + G(y)/(I - po)] (I - po) c K + minx, G(x).
Lemma 2 derives bounds for S*.

Lemma 2. a. (Veinott and Wagner's lower bound for
S*): There exists an optimal policy (s*, S*) with
S -def Y2

658 / ZHENG AND FEDERGRUEN

b. (New upper bound for S*): For every optimal
policy (s*, S*)

S*S* =def max{Y>Y*:G(y) cc}*

c. Any upper bound c of c* (e. g., c is the average
cost of an arbitrary policy) defines an upper bound

=def max{ y y: G(y) c c}. Moreover, 5*c __df 2 Cl

< Sc2 if c*- <ci - C2.

Proof. a. Let (s*, S*) be an optimal (s, S) policy that
maximizes the value of S*. Assume that S* < y*. Since
G(y) is nonincreasing for y < y*, G(S* - j) > G(S* -
j+ 1) for all j>O and, hence, c(s*, S*) > c(s* + 1,
S* + 1) (see (1)), which contradicts the definition of Su*.

b. Assume to the contrary that an optimal (s*, S*)
exists with G(S*) > c*. Note that Pr(D < S* - s*) > 0
(otherwise c* = K+ G(S*) > G(S*); see (1)). Let X
be a one-period demand truncated on the interval [0,
S* - s* - 1], i.e., X =def (D I D < S* s*) or Pr(X
= j) = PjlPr(D < S* - s*), j = O,. . . .,S* - s* - 1.

Consider the modification of the (s*, S*) policy in
which S* - X(> s*) is used as the (random) order-up-to
level instead of S* (i.e., an independent realization x of
X is determined whenever the inventory position reaches
or drops below s*, and the inventory position increases
to S*-x). Under this policy, the system regenerates at
each replenishment epoch as well, so that its long-run
average cost c* is given by c* = k /M where

s*- - 1

k= E pjk(s*,S*-j)/Pr(D<S*-s*)
j=O

s*-s*- 1
M= >, pjM(S*-j -s*)/Pr(D<S*-s*).

j=O

Note, however, from (3) and (4) that

C= c(s*, S*) = k(s* s*)
M(S* -s*)

G(S*) +KPr(D > S* -s*) +kPr(D < S* -s*)

1 +MPr(D < S*-s*)

c*+ c*MPr(D<S*-s*)

1 M+ Pr(D < S* - s*)

and hence, c* < c* contradicts the definition of c*. Part
c is immediate from part b.

We observe that Veinott and Wagner's upper bound
S =def maxfyy2*:G(y)cmin G(x)+K} arises as
a special case of Lemma 2c: note that c(y* - 1, Y*)
min G(x) + K. Lemma 2c may be used to identify in-
creasingly tighter upper bounds for S* as increasingly
better policies (s, S) are found.

Our last lemma allows for a major reduction in our
algorithm's complexity. For any fixed order-up-to level
S, let

()def c(S) - minc(s,S).
S<S

S is said to be improving upon So, if c*(S) < c*(SO).

Lemma 3. For a given order-up-to level So(> y*), let
so(< y*) be an optimal reorder level.

a. c*(S) < c*(SO) if and only if c(s0, S) <
c(s0, So).

b. Assume that (7) holds with S = So. If c(s0,
S') < c(s0, SO) for some S'(> y*), then s' =def min{ y

so:c(y, S') > G(y + 1)} is optimal for S'; more-
over, s' < y* and G(s') _ c(s', S) > G(s' + 1).

Proof. The "if" part of a is trivial. To prove the
"only-if" part, assume that c(s?, S) _ c(s?, SO). In
view of Lemma lb, it suffices to show that c(s, S) 2
c(s?, SO: i) for y* > s > so, and ii) for s < so. We only
prove i; the proof of ii is analogous.

Let 3 = M(S - s)/M(S - so). Note that 0 < c1.
In view of (1)

c(s?, S)

S-s-i S-s?-l
K+ E m(j)G(S-j) + Z m(j)G(S-j)

j=0 j=S-s

M(S - so)

S-s?- 1

c(s, S)M(S - s) + E m(j)G(S-j)
j=S-s

M(S - so)

S-s?- 1

c(s,S)M(S-s)?+ E m(j)c(s0,S)
j=S-s

M(S-so)

=foc(s, S) + (1 -)c(s?, S).

This inequality follows from c(s?, S) _ G(s? + 1) _
G(y) for y _s?? 1 in view of Lemma 1 and the
unimodality of - G(-). We conclude that c(s?, S) <

(')c(s, S) if c(s?, So) < (=)c(s?, S).
b. Note that s' is well defined in view of Corollary 2b.

Note that G(s') 2 c(s' - 1, S') - c(s', S') > G(s' + 1),
where the first and the third inequality follow from the
definition of s', and the second inequality follows from
the first and Lemma Oa. Lemma la thus establishes the
optimality of s' (for S'). Finally, s' <y* in view of
G(s) > G(s' + 1).

Finding Optimal (s, S) Policies / 659

3. THE ALGORITHM AND ITS COMPLEXITY

The lemmas and corollaries of the previous section sug-
gest the following algorithm. Let y* be a minimum
point of the G(*) function.

Algorithm
Step 0. s y*

SO :=y*;
Repeat s := s - 1 until c(s, SO) c G(s);
sO := s; co :=-c(so, SO); So := SO; S :=S + 1;

Step 1. While G(S) < co do
begin If c(s, S) < co

then begin So := S.
While c(s, SO)-G(s+ 1) do s := s+ 1;
co= c(s, S0);

end;
S :=S+1;

end.

The algorithm is easy to understand. In Step 0, we
enter with an initial order-up-to level So= y*, with
y* as an arbitrary minimum of the G(*) function. We
then find an optimal corresponding reorder level so
by decreasing s from y* with step size 1 until
c(s, SO)< G(s). Optimality of so (for SO) follows
from Corollary 1.

In Step 1, we search for the smallest value of S that is
larger than So, which improves on So. S is increased
with increments of one. A single comparison of c(s?, S)
and c(s?, SO) suffices to verify whether a given value
for S improves on So (see Lemma 3a). If case S is
improving, So is updated to S and the new correspond-
ing optimal reorder level so is determined by increment-
ing the old value of so by units of one, until c(s,
SO) > G(s + 1). The existence of such a reorder level
so, its optimality (for the new value SO) and so < y* are
all guaranteed by Lemma 3b.

Finally, note that whenever Step 1 is initiated, co
represents an upper bound for c* (and in fact is the best
available such bound). In view of Lemma 2c the search
for an improving value of S may be terminated as soon
an G(S) > co. Indeed, at the last iteration of the algo-
rithm, when S? = S* and s?- s* for some optimal
policy (s*, S*), we have co = c* and So < S* in view of
Lemma 2b. It follows that the test in the outer while-do
loop of Step 1 fails when S: = S9 + 1, in view of the
definition of S*; see Lemma 2b.

Complexity of the Algorithm

Consider the two-dimensional integer grid with s on the
horizontal axis and S on the vertical one: Each point (s,
S) with s < S represents a policy. We assume that y* is

given. (Note that ye represents a solution of a one-period
newsboy problem. The most efficient procedure for its
determination depends on the specific form of the G(-)
function; e.g., with linear holding and penalty costs, ye
is obtained as a fractile of the lead time demand distribu-
tion.) In the following discussion, let so denote the value
of s obtained at the end of Step 0, which is optimal for
S=y*.

Starting from the point (so, y*) Step 1 leads the
search through a vertically-up and horizontally-right path
ending at (s*, S* + 1); see Figure 1 and the previous
observations. Regardless of the exact path followed, it
consists of exactly (S* - y* + 1) vertical moves, in
which the S-value increases by one with s fixed, and
(s* - so) horizontal moves, in which the s-value in-
creases by one with S fixed.

We count the number of operations needed for the
algorithm. Note that each vertical move (except for the
last one which involves a single comparison only) corre-
sponds with one execution of the outer while-do loop
in Step 1. This loop consists of one evaluation of
the c(,) function, one addition and at most three
comparisons (two if So is not updated). Each horizon-
tal move requires an additional execution of the
inner while-do loop which requires one update of the
c(*, *) function, one comparison and one addition.

s

S~ ~ ~~~~~S~

!5-------

(sS)~~~~~~~~

-

Figure 1. A typical execution of the algorithm.

660 / ZHENG AND FEDERGRUEN

Straightforward evaluation of c(s, S) via (1) requires
2(S - s) + 1 elementary operations ((S - s) additions,
(S - s) multiplications and one division) assuming all
required G(-), m(*) and M(*) values are available.

Indeed, evaluations of the c(,) function in the if
test of the outer while-do loop, i.e., when performing
vertical moves, need to be done via (1). When comput-
ing the numerator in (1), we obtain the numbers

Ai(S) ==K+ E m(j)G(S-j)
j=O

for i=0, , . ,S-s- 1

as intermediate results. Storing these numbers until the
next update of S simplifies the evaluations of the c(, *)
function in the subsequent series of horizontal moves,
i.e., in the inner while-do loop. For, let so denote the
value of s at the start of such an inner loop. Observe that
in the course of this inner loop S is fixed and for this
value all numbers { A i(S): i = 0, 1, ... , S - so - 1} are
available when stored in the process of the evaluation of
c(s0, S) in the last preceding if test. Since only values
of s > so are needed in the inner loop, all required c(,
) values can be obtained by a single division of one of

these A-numbers and an M(+)-value.
The total number of elementary operations needed in

Step 1 is thus bounded by

3*
E [2(S- so) +]

S=y*+ 1

+4(S* -y*) + 1

for the vertical moves (including the final

comparison verifying that S > S*)

+3(s* - So) for the horizontal moves

= (* +y* - 2so + 6)(S* -y*) + 3(s* - so) + 1.

The remaining computational effort of the algorithm
consists of the following components:

i. Determination of the (S* - s0 + 2) values { G(so),
G(so + 1), . . .,9 G(S* + 1)};

ii. Determination of so and c(so, So); this requires
successive evaluation of A i(SO) for i = 0, 1... S0 -

so - 1, which can be done in 2(So - so) operations,
(y* - s0) additional divisions to calculate c(s, SO) for
s =y* - 1, .. ., s0 and as many comparisons between
c(s, SO) and G(s). Since S0 = y*, the total number of
elementary operations required for ii is thus given by

2(So-s0) +2(y* so) =4(y* -s).

iii. Determination of all required m(*) and M(*)

values. The exact number depends on the specific path
followed by the algorithm but can obviously be bounded
by (S* - so). Unless a closed form expression of the
renewal function is available, the m(*) and M(*) values
are recursively obtained from (2). Observe from (2b)
that

m(j) = (1 - p01 Zp1m(l -j)
1=1

= m(0) Zplm(l - j)
1=1

Computation of m(O) thus requires two operations, of
m(j) 2j operations (j = 1, 2, . . .) and a single addition
to obtain M(j+ 1) from M(j) and m(j); see (2c)
(Ij ? 0). The total number of operations required for iii
is thus bounded by

*- S - 1
2+ E 2j+(S*-so- 1)

j=1

=2+ (* -so)(S* -so- 1) +(*so 1)

=(* _So)2 +1

The total number of elementary operations needed for ii
and iii is thus bounded by

B (S* + y* - 2so + 6) (S* - y*) + 3(s* - so)

+2+4(y*-2so)+ S

=221 - A2?+6A1 -2A2+3A3+2

_ 2(1? + 1)2 + 2(A1 + 1) - (A2 + 1)2 + 3A3

where A1=S* - so, A2=Y*-so and A3=S* - So.

Note that (A2 + 1)2 = (A3 + 2)2 > 3A3 SO that the above
bound is c 2(A 1 + 1)2 + 2(AI1 + 1).

We thus conclude the discussion with the following
theorem.

Theorem 1. a. The algorithm terminates with (s, SO)
being an optimal policy and c0 = c

b. Assuming that y* is known, the algorithm re-
quires no more than B = 2(AI + 1)2 + 2(A1 + 1) -
(A2 + 1)2 + 3A 3 elementary operations and (A1 + 2)
evaluations of the G-function.

c. Assuming that y* and G(so + 1), .. . , G(S* + 1)
are known, let R(A1) =def [the number of elementary
operations needed for the algorithm] [the number of

Finding Optimal (s, S) Policies / 661

elementary operations needed to calculate to single
value c(so, s*)] R(A1) < 2.4 and limed. 0 R(A1) = 2.

Proof. Parts a and b have been verified above. To
prove c note that the one-time evaluation of c(so, s*)
may be achieved via (1) or (3). It is easy to verify
that the former approach is cheaper. Calculating
m(O), . . .,m(S* -so- 1) and M(1), . . . ,M(S* -so)
requires (s* - sI)2 ? 1 = A+ ? 1 operations; see above.
The remaining calculation of c(so, S*) (via 1) takes
2A1 + 1 operations resulting in a total of A, + 2AI + 2
= (Al + 1)2 + 1 operations. The complexity ratio is thus
bounded by

B 2(A? + 1)2 + 2(,A + 1)

((A, + 1)2 + I (+ 1)2 + I

One easily verifies that R(A1) is nonincreasing, so that
R(A 1) < R(1) < 12/S = 2.4. Clearly,

lim R(A1) = 2.
A1 ??

In evaluating the complexity ratio R in part c, we
exclude the computational effort to determine all neces-
sary G(-) values because the latter heavily depends on
the specific choice of the G() function. Note, however,
that the algorithm requires { G(s0), ... , G(S* + 1)} (see
part b, while evaluation of c(so, s*) requires the same
values except for G(s0) and G(S* + 1) i.e., Al instead
of (Al + 2) values. The computational effort for deter-
mining the G(-) values tends to be minor compared to
the remainder, see Section 4; moreover, its inclusion
tends to reduce the complexity ratio in part c.

Optimal order-up-to levels S* may be far from y*
and reasonable initial estimates for an optimal value of
S* may be available, e.g., from simple heuristics (such
as Ehrhardt's power approximation, see the Introduc-
tion) or known optimal values for problems with similar
parameter values. It is therefore useful to observe that (a
slight variation of) the algorithm allows for an arbitrary
starting value SO of S. Indeed, the enumeration of all S
in [y *, 9* + 1] in Step 1 may be carried out in any
desired sequence. The advantage of choosing a good
heuristic value S0 > y* is that by doing so the initial so
value is likely to be closer to an optimal reorder level
S*, thus reducing the magnitude of A1. This complexity
count is easily adapted for the more general version.
(We merely need to replace AI by max(S*, S0) - so.)

Algorithm for General Initial Value So > y*

Step 0. s := y*;
Repeat s := s - 1 until c(s, SO) c G(s);
so :=s; Co := c(so, SO); So := SO; S := S;

Step 1. While S > y* do
begin S := S - 1;

If c(s, S) <c.
then begin

So :=S;
while c(s, SO) > G(s + 1) do s s + 1;
c = c(s, S0);
end;

end.
S :=So+?;
While G(S) c co do

begin If c(s, S) < co
then begin S: S;

while c(s, SO) < G(s + 1) do s s + 1;
co = c(s, so);

end;
S :-So+1;
end.

For any given precision E, the algorithm may be
terminated prior to convergence with an E-optimal pol-
icy, by invoking the bounds in Federgruen and Zipkin
(1984, Theorem 3), themselves applications of Odoni
(1969) and Hastings (1971). However, the use of the
bounds does not appear to be necessary or recommend-
able given the simplicity with which an optimal policy
can be determined.

4. NUMERICAL EXAMPLES

Table I below exhibits how our algorithm performs on
24 test problems. To this end, we have chosen the
example model in Veinott and Wagner with linear hold-
ing and backlogging costs, zero lead time and Poisson
distributed one-period demands. The following parame-
ters are common to all 24 problems and identical to those
used in Veinott and Wagner:

fixed setup cost K 24;

holding cost rate h = 1;

penalty cost rate p = 9.

The problems differ with respect to the mean one-period
demand 1A. In the first part of the table, 1A varies from 10
to 75 in increments of 5; in the second part we evaluate
all remaining cases in Veinott and Wagner. We observe
that in all 24 cases the bound B for the computational
effort, exclusive of the evaluation of the required G()
values comes within 10% of predicting the actual num-
ber of computations required. The ratio R defined by
(the number of elementary operations required to find
and evaluate an optimal policy)/(the number of opera-
tions to evaluate the single policy (so, S*)) varies in the

662 / ZHENG AND FEDERGRUEN

Table I
Performance of Algorithm on 24 Test Problems

A s* S* c* ye s so S S* S-s u IS B *+ #* #/ #COM #TOT #SNG R

10 6 40 35.022 14 3 3 53 45 50 39 26 3,650 1,559 1,564 45 129 3,297 1,892 1.74
15 10 49 42.698 20 7 7 83 57 76 47 29 5,118 2,240 2,247 53 149 4,689 2,652 1.77
20 14 62 49.173 26 12 12 92 69 80 55 29 6,626 3,031 3,041 59 161 6,292 3,422 1.84
25 19 56 54.262 32 16 16 98 79 82 60 19 8,041 3,621 3,631 66 152 7,470 4.160 1.80
30 23 66 57.819 37 21 21 103 87 82 64 16 8,830 4,098 4,110 68 151 8,427 4,556 1.85
35 28 77 61.215 43 26 26 109 96 83 68 15 9,907 4,626 4,639 72 156 9,493 5,112 1.86
40 33 87 64.512 48 31 31 115 104 84 71 13 10,783 5,061 5,074 75 158 10,368 5,550 1.87
45 37 97 67.776 54 36 36 121 112 85 75 12 11,655 5,584 5,600 77 160 11,421 6,006 1.90
50 42 108 70.975 59 41 41 126 120 85 78 10 12,603 6,053 6,069 80 162 12,364 6,480 1.91
55 47 118 74.149 65 46 46 132 129 86 82 8 13,884 6,686 6,703 84 165 13,638 7,140 1.91
60 52 129 77.306 70 51 51 137 137 86 85 4 14,916 7,200 7,217 87 163 14,667 7,656 1.92
65 56 75 78.518 75 56 56 143 143 87 87 0 15,265 7,467 7,486 87 156 15,196 8,732 1.94
70 62 81 79.037 81 62 62 149 149 87 87 0 15,265 8,467 7,486 87 156 15,196 7,832 1.94
75 67 86 79.554 86 67 67 154 154 87 87 0 15,265 7,467 7,486 87 156 15,196 7,832 1.94

21 15 65 50.406 27 13 13 93 71 80 56 27 6,862 3,145 3,155 60 159 6,519 3,540 1.84
22 16 68 51.632 28 14 14 94 73 80 57 26 7,102 3,262 3,272 61 159 6,754 3,660 1.85
23 17 52 52.757 29 15 15 95 75 80 58 23 7,346 3,380 3,390 62 155 6,987 3,782 1.85
24 18 54 53.518 30 15 15 96 77 81 59 21 7,818 3,513 3,522 65 155 7,255 4,032 1.80
51 43 110 71.611 60 42 42 127 122 85 79 10 12,927 6,213 6,229 81 164 12,687 6,642 1.91
52 44 112 72.246 61 43 43 129 124 86 80 9 13,255 6,374 6,390 82 164 13,010 6,806 1.91
59 51 126 76.679 69 50 50 136 135 86- 84 5 14,568 7,027 7,044 86 163 14,320 7,482 1.91
61 52 131 77.929 71 52 52 139 138 87 86 2 14,913 8,293 7,312 86 158 14,849 7,656 1.94
63 54 73 78.287 73 54 54 141 141 87 87 0 15,265 7,467 7,486 87 156 15,196 7,832 1.94
64 55 74 78.402 74 55 55 142 142 87 87 0 15,265 7,467 7,486 87 156 15,196 7,832 1.94

u = the maximum index j for which m(j) is computed;
IS = the number of improving S values;
B = the bound for the number of operations needed as defined in the text;

+ (*, /) = the actual number of additions (multiplications, divisions);
#COM = the actual number of comparisons;
TOT = the actual total number of elementary operations (= (+ + (* *) + (# /) + (#COM));
* SNG = the number of operations needed for computing a single cost value c(s0,

R = #TOT/# SNG.

range [1.74, 1.94] and is therefore close to the theoreti-
cal bound of 2.4; see Theorem 1. Evaluation of the
necessary G(*) values requires only a few hundred
operations both for the computation of c(so, S*) and for
the optimization algorithm. (The latter requires only
4 more operations than the former.) Note also that in all
24 problems S - s c 100 and even the "largest" prob-
lems require no more than about 15,000 elementary
operations. On an IBM 4381 for example, an ele-
mentary operation requires 69 nanoseconds, so that all
of the above problems can be solved in less than one
millisecond.

5. CONTINUOUS REVIEW SYSTEMS; THE
DISCOUNTED COST CRITERION

(s, S) policies continue to be optimal in many continu-
ous review systems with fixed order lead times. This
applies, for example, to models with compound Poisson
demands (see Beckmann 1961, Veinott 1966, or Stidham

1986). Moreover, the long-run average cost is of the
form (1) with G(y) the expected (total) costs in an
interdemand period and K replaced by K/(mean inter-
demand time).

The same is true in the more general case where the
demand process is compound renewal provided that or-
ders can only be placed at demand epochs, as argued in
Federgruen and Zipkin (1985, p. 426). We repeat this
argument in a slightly more detailed form: construct a
related discrete-time model as follows. The demand in
each period is the demand size at renewal epochs in the
original model. The one-step cost function is the ex-
pected cost until the next renewal (after demand, but
before the order, if any) in the original model. Under
standard cost assumptions in the continuous model, this
function is quasiconvex (i.e., its negative is unimodal).
This may be verified from the fact that the steady-state
inventory level IL(oo) may be characterized as

IL(oo) = IP(oo) - D(oo I L) (13)

Finding Optimal (s, S) Policies / 663

with IP(oo) the steady-state inventory position, D(oo I L)
the steady-state demand in a lead time, and with IP(oo)
and D(oo I L) independent of each other; see Sahin
(1979) and Zipkin (1986). We refer to Zipkin (1988) for
a discussion of continuous-time systems with other types
of demand processes in which (13) continues to hold and
the one-step expected cost function continues to be
quasiconvex.

As for discrete-time systems, the same form of the
one-step expected cost function arises under random
lead times provided the lead time process satisfies the
properties mentioned in Section 1; see also Zipkin (1986).

As shown in Veinott and Wagner, the total discounted
cost over an infinite horizon under an (s, S) policy is
also of the form (1) with the renewal density replaced by
a so-called discount renewal density. This term was
introduced by Veinott and Wagner (see ibid. for a
detailed specification). (This analogy applies both to the
discrete- and continuous-time models.) There exists an
optimal (s, S) policy under this criterion as well (see
Iglehart 1963).

Our analysis in this paper is solely based on the cost
function c(,) being of the form (1). This implies that
all of the results we present for minimizing long-run
average costs in discrete-time models apply to the alter-
native models as well.

APPENDIX

Comparison With Existing Algorithms

Veinott and Wagner (1965), Bell (1970) and Archibald
and Silver's (1978) methods are all based on (partial)
enumeration of the policy pairs (s, S) in the rectangle
{s c s < y ; y < S _ S}. We confine our discussion to
Archibald and Silver, the most recent of these three that
builds on Veinott and Wagner. Here, the long-run aver-
age cost of an (s, S) policy is written as a function c-(s,
A) of s and A =def S - s. A limited number of proper-
ties of the E(, *) function are exploited, most notably
the fact that c is convex (and, hence, - c is unimodal) in
s for fixed A, provided the G(-) function is convex
itself. (Recall that G(-) fails to be convex in the pres-
ence of stockout penalty costs.) No complexity bound
is provided. In fact, it appears impossible to bound the
number of (s, A) pairs that need to be evaluated to
anything significantly less than the total number of (S -

S) (9 - s). Archibald and Silver derive bounds for the
optimal value of A that are tighter than the original
bounds (0 and S - s) derived by Veinott and Wagner.
They also show how these bounds may be iteratively
improved. However, the computation of these bounds is
relatively involved, and they appear to achieve a modest

reduction of the feasible span as compared to the simple
Veinott and Wagner bounds.

As substantiated in the Introduction, Federgruen and
Zipkin's method appears relatively efficient on the basis
of the 768 problems on which it was tested. No complex-
ity bound is provided, however, and it appears in fact
impossible to bound even the number of "policy im-
provements iterations" which this procedure consists of.
Even though this method is derived by tailoring a general
policy iteration method for Markov decision problems, it
is nevertheless possible to make a number of interesting
comparisons with the algorithm above.

An iteration of the policy iteration method starts with
some policy (sold, Sold) and terminates with the conclu-
sion that (Sold, Sold) is optimal or with an improving
policy (SnfW, SnW), i. e., either C(Snew, Snew) < c(sold,
sold) or C(Snew, Snew) = c(sold, Sold) and the so-called
relative cost function of (SneW, SneW) dominates that of
c(sold, Sold) (pointwise). (See below for a definition of
this function.) Such an iteration consists of two parts:
i) the Value Determination, and ii) the Policy
Improvement.

The Policy Improvement part starts with identifying
Snew such that c(sold, snew) < c(sold, Sold); if no such
value can be found, one sets Snew = Sold. The actual
search is based on finding a value Snew with a lower
relative cost; see (10) in Federgruen and Zipkin. It is,
however, easy to verify that this occurs if and only if
c(sold, Snew) < c(sold Sold) and the work we require is
about the same as that to find Snew on the basis of the
c(,) function. (This is observed oh page 1282 of
Federgruen and Zipkin; the earlier method " 1 9 of
Johnson (1968) identifies Snew on the latter basis, in-
deed.) With Snew determined, a corresponding reorder
level Snew is found. Note that Snew may fail to be optimal
for Snew.

Recall that the algorithm consists of sequences of
vertical moves alternating with sequences of horizontal
moves (see the figure). It may thus be viewed as consist-
ing of a number of iterations as well, where an iteration
is defined as one sequence of vertical moves, followed
by one sequence of horizontal moves. Note that an
iteration starts with a policy (s, S) and terminates with a
policy (s', S'), where s and s' are optimal with respect
to S and S', respectively. The work performed in such
an iteration is of the same order as that of the Policy
Improvement step in a single iteration of the policy
iteration method. (In fact, the work associated with the
vertical moves is comparable to that of the search for
Snew and the work required to perform the horizontal
moves is about the same as that involved in determining
Snew. Note, however, that in our case only moves to the
right are needed, i.e., the equivalent of the search in (12)

664 / ZHENG AND FEDERGRUEN

of Federgruen and Zipkin is avoided due to Corollary 1
and the fact that the iteration's starting value of s is
optimal for the starting value of S.)

The algorithm avoids, however, the relatively expen-
sive Value Determination parts altogether. Another es-
sential difference with the policy iteration method is the
fact that an iteration in the algorithm succeeds in elimi-
nating an entire interval for S and an entire interval for
s, while no such eliminations appear possible in the
policy iteration method. As a consequence, we can ver-
ify that the work required to do the very last Policy
Improvement Step (i.e., when optimality is reached) is
about the same as that of Step 1 in the algorithm, i.e.,
that of the entire algorithm with the exception of the
initialization Step 0.

The policy iteration method has, on the other hand,
the advantage of achieving somewhat more than an
average cost optimal policy only. It finds among all such
policies, one with a pointwise minimal relative cost
function. The relative cost function of a policy is defined
with respect to an arbitrary reference state, e.g., that
corresponding with a zero inventory position; it specifies
for each starting inventory position, the difference in
total expected costs over an infinitely long period of
time by starting with that inventory position as opposed
to starting with an inventory position at the reference
(say 0) level. See, e.g., Tijms (1986, Chapter 3) for a
general discussion of "relative value functions" and in
particular, Hordijk and Tijms (1975) for a verification of
the interpretation in our specific inventory model.

ACKNOWLEDGMENT

We would like to thank Evan Porteus, the Associate
Editor, for his thorough reading and helpful comments
on a previous version of this paper.

REFERENCES

ARCHIBALD, B., AND E. SILVER. 1978. (s, S) Policies under
Continuous Review and Discrete Compound Poisson
Demands. Mgmt. Sci. 24, 899-908.

BECKMANN, M. 1970. An Inventory Model for Arbitrary
Interval and Quantity Distributions of Demands.
Mgmt. Sci. 8, 35-37.

BELL, C. 1970. Improved Algorithms for Inventory and
Replacement Stock Problems. SIAM J. Apple. Math.
18, 558-566.

DENARDO, E. 1982. Dynamic Programming. Prentice-
Hall, Englewood Cliffs, N.J.

EHRHARDT, R. 1979. The Power Approximation for Com-
puting (s, S) Inventory Policies. Mgmt. Sci. 25,
777-786.

EHRHARDT, R. 1984. (s, S) Policies for a Dynamic Inven-

tory Model With Stochastic Lead Times. Opns. Res.
32, 121-132.

FEDERGRUEN, A., AND Y. S. ZHENG. 1988. A Simple and
Efficient Algorithm for Computing Optimal (r, Q)
Policies in Continuous-Review Stochastic Inventory
Systems. Working Paper, Graduate School of Busi-
ness, Columbia University, New York.

FEDERGRUEN, A., AND P. ZIPKIN. 1984. An Efficient Algo-
rithm for Computing Optimal (s, S) Policies. Qpns.
Res. 34, 1268-1285.

FEDERGRUEN, A., AND P. ZIPKIN. 1985. Computing Optimal
(s, S) Policies in Inventory Models With Continuous
Demands. Adv. Apple. Prob. 17, 424-442.

FREELAND, J., AND E. PORTEUS. 1980a. Evaluating the
Effectiveness of a New Method for Computing Ap-
proximately Optimal (s, S) Inventory Policies. Opns.
Res. 28, 353-364.

FREELAND, J., AND E. PORTEUS. 1980b. Easily Computed
Inventory Policies for Periodic Review Systems: Short-
age Cost and Service Level Models. Working Paper,
Graduate School of Business, Stanford University,
Stanford, Calif.

HASTINGS, N. 1971. Bounds on the Gain of a Markov
Decision Process. Opns. Res. 19, 240-244.

HEYMAN, D., AND M. SOBEL. 1984. Stochastic Models in
Operations Research, Vol. I. McGraw-Hill, New
York.

HORDIJK, A., AND H. TIJMS. 1974. Convergence Results
and Approximations for Optimal (s, S) Policies.
Mgmt. Sci. 20, 1432-1438.

IGLEHART, D. 1963. Dynamic Programming and Stationary
Analysis in Inventory Problems. In Multi-Stage In-
ventory Models and Techniques, chap. 1, H. Scarf,
D. Guilford and M. Shelly (eds.). Stanford University
Press, Stanford, Calif.

JOHNSON, E. 1968. On (s, S) Policies. Mgmt. Sci. 15,
80-101.

KAKUMANU, P. 1977. Relation Between Continuous and
Discrete Time Markovian Decision Problems, Naval
Res. Logist. Quart. 24, 431-439.

KUENLE, C., AND H. KUENLE. 1977. Durchschnittsopti-
male Strategien in Markovschen Entscheidungsmod-
ellen bei Unbeschraenkten Kosten, Math. Opera-
tionsforsch . Statis. Ser. Optimization. 8, 549-564.

NADDOR, E. 1975. Optimal and Heuristic Decisions in
Single- and Multi-Item Inventory Systems. Mgmt. Sci.
21, 1234-1249.

ODONI, A. 1969. On Finding the Maximal Gain for Markov
Decision Processes. Opns. Res. 17, 857-860.

PORTEUS, E. 1979. An Adjustment to the Norman-White
Approach to Approximating Dynamic Programs. Opns.
Res. 27, 1203-1208.

ROBERTS, D. 1962. Approximations to Optimal Policies in a
Dynamic Inventory Model. In Studies in Applied
Probability and Management Science, Chap. 13, K.
Arrow, S. Karlin and H. Scarf (eds.). Stanford Univer-
sity Press, Stanford, Calif.

Finding Optimal (s, S) Policies / 665

Ross, S. 1970. Applied Probability Models With Opti-
mization Applications. Holden-Day, San Francisco.

SCHNEIDER, H. 1978. Methods for Determining the Re-order
Point of an (s, S) Ordering Policy When a Service
Level is Specified. J. Opns. Res. Soc. 29,
1181-1194.

SAHIN, I. 1979. On the Stationary Analysis of Continuous
Review (s, S) Inventory Systems With Constant Lead-
times. Opns. Res. 27, 717-729.

SAHIN, I. 1982. On the Objective Function Behavior in (s,
S) Inventory Models. Opns. Res. 30, 709-725.

SAHIN, I. 1983. On Sufficient Conditions for Cost Rate
Function Unimodality in Periodic Review (s, S) Inven-
tory Models. Opns. Res. Letts. 2, 77-79.

SAHIN, I. 1988. Optimality Conditions for Regenerative
Inventory Systems Under Batch Demands, Appl.
Stochastic Models and Data Anal. 4, 173-183.

SAHIN, I., AND D. SINHA. 1987. On Asymptotic Approxima-
tions for (s, S) Policies. Stochastic Anal. and
Applic. 5, 189-212.

SIVAZLIAN, B. 1971. Dimensional and Computational Anal-
ysis in (s, S) Inventory Problems With Gamma Dis-
tributed Demand. Mgmt. Sci. 17, B307-B311.

STIDHAM, S. 1977. Cost Models for Stochastic Clearing
Systems. Opns. Res. 25, 100-127.

STIDHAM, S. 1986. Clearing Systems and (s, S) Inventory
Systems With Nonlinear Costs and Positive Lead
Times. Opns. Res. 34, 276-280.

TIJMS, H. 1986. Stochastic Modelling and Analysis. John
Wiley & Sons, Chichester, England.

TIJMS, J., AND H. GROENEVELT. 1984. Approximations for
(s, S) Inventory Systems with Stochastic Leadtimes
and a Service Level Constraint. Eur. J. Opnl. Res.
17, 175-190.

VEINOTT, A. 1966. On the Optimality of (s, S) Inventory
Policies: New Condition and a New Proof. J. SIAM
Appl. Math. 14, 1067-1083.

VEINOTT, A., AND H. WAGNER. 1965. Computing Optimal
(s, S) Inventory Policies. Mgmt. Sci. 11, 525-552.

WAGNER, H. 1975. Principles of Operations Research,
2nd ed. Prentice-Hall, Englewood Cliffs, N.J.

WAGNER, H., M. O'HAGAN AND B. LUNDH. 1965. An
Empirical Study of Exact and Approximately Optimal
Inventory Policies. Mgmt. Sci.. 11, 690-723.

ZIPKIN, P. 1986. Stochastic Leadtimes in Continuous-Time
Inventory Models. Naval Res. Logist. Quart. 33,
763-774.

ZIPKIN, P. 1988. Lecture Notes in Inventory Theory. Grad-
uate School of Business, Columbia University,
New York.

	Article Contents
	p. 654
	p. 655
	p. 656
	p. 657
	p. 658
	p. 659
	p. 660
	p. 661
	p. 662
	p. 663
	p. 664
	p. 665

	Issue Table of Contents
	Operations Research, Vol. 39, No. 4 (Jul. - Aug., 1991), pp. 527-695
	Front Matter [pp. 527-527]
	In This Issue [pp. 528-530]
	OR Forum
	Operations Research in Industry: New Opportunities in a Changing World [pp. 531-542]

	OR Practice
	A Multilevel Analysis of Production Capabilities of the National Forest System [pp. 543-552]

	Aggregation and Disaggregation Techniques and Methodology in Optimization [pp. 553-582]
	Using Common Random Numbers and Control Variates in Multiple-Comparison Procedures [pp. 583-591]
	Value Functions When Decision Criteria Are Not Totally Substitutable [pp. 592-600]
	A Stochastic and Dynamic Vehicle Routing Problem in the Euclidean Plane [pp. 601-615]
	Capacitated Vehicle Routing on Trees [pp. 616-622]
	A Lagrangian Based Approach for the Asymmetric Generalized Traveling Salesman Problem [pp. 623-632]
	Stationary Waiting Time Distribution of a Queue in Which Customers Require a Random Number of Servers [pp. 633-638]
	Dominance and Decomposition Heuristics for Single Machine Scheduling [pp. 639-647]
	Strongly Polynomial Algorithms for the High Multiplicity Scheduling Problem [pp. 648-653]
	Finding Optimal (s, S) Policies is about as Simple as Evaluating a Single Policy [pp. 654-665]
	Block Angular Structures and the Loading Problem in Flexible Manufacturing Systems [pp. 666-676]
	Technical Notes
	Commonality Analysis Using Clustering Methods [pp. 677-680]
	C.P.M. Scheduling with Small Communication Delays and Task Duplication [pp. 680-684]

	Back Matter [pp. 685-695]

