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SIMPLE POWER-OF-TWO POLICIES ARE CLOSE 
TO OPTIMAL IN A GENERAL CLASS 

OF PRODUCTION / DISTRIBUTION NETWORKS 
WITH GENERAL JOINT SETUP COSTS* 

A. FEDERGRUEN, M. QUEYRANNE AND YU-SHENG ZHENG 

We consider a production/distribution network represented by a general directed acyclic 
network. Each node is associated with a specific "product" or item at a given location 

and/or production stage. An arc (i, j) indicates that item i is used to "produce" item j. 
External demands may occur at any of the network's nodes. These demands occur continu- 
ously at item specific constant rates. Components may be assembled in any given proportions. 

The cost structure consists of inventory carrying, and variable and fixed production/distri- 
bution costs. The latter depend, at any given replenishment epoch, on the specific set of 
items being replenished, according to an arbitrary set function merely assumed to be 
monotone and submodular. 

We show that a simply structured, so-called power-of-two policy is guaranteed to come 
within 2% of a lower bound for the minimum cost. Under a power-of-two policy, all items are 
replenished at constant intervals and only when their inventory drops to zero; moreover, 
these replenishment intervals are all power-of-two multiples of a common base planning 
period. The above results generalize those of Roundy (1986). 

1. Notation and preliminary results. Consider a production/distribution net- 
work represented by a general directed acyclic network G = (N, A), with node set N 
and arc set A. Each node is associated with a specific "product", where a "product" 
represents a specific in-process or finished item, at a given physical location and/or 
production stage. With this general "product" definition, a directed arc (i, j) between 
a pair of nodes i, j E N indicates that product i is used to "produce" product j. The 
network is assumed to be acyclic to exclude circuits of products, each of which is 
consumed in producing its successor. 

External demands may occur for any of the items, i.e., at any of the nodes in the 
network. These demands occur continuously at (item specific) constant rates. Compo- 
nents may be assembled in any given proportions. No backlogging is allowed. The 
cost structure consists of inventory carrying, variable and fixed production/distribu- 
tion costs. Inventory carrying costs are incurred at constant rates per unit and per 
unit of time. Variable production costs are proportional to the production volumes. 
The value of these cost components is thus constant under any reasonable replenish- 
ment strategy, i.e., any strategy under which the items' long-run average production 
rates equal the corresponding demand rates-and may hence be ignored for the 
purpose of identifying optimal policies. The fixed production/distribution cost at any 
given replenishment epoch depends on the specific set of products being replenished 
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according to an arbitrary (setup cost) set function merely assumed to be monotone 
and submodular: 

(monotonicity) the fixed cost of a joint replenishment does not decrease by the 
inclusion of additional items; 

(submodularity) the incremental fixed cost due to the addition of an extra item to a 
given set of replenishment activities is no larger than if the same item were added to 
a subset of these activities. 

When an order is placed for a product, it is delivered instantaneously. Our 
objective is to minimize long-run average system-wide costs. 

The structure of an optimal strategy may be exceedingly difficult even for the 
simplest of all multi-item models, e.g., the so-called "(first order interaction) joint 
replenishment problem" (see, e.g., Jackson et al. 1985 and Roundy 1985) in which a 
number of distinct products are interrelated only through a single joint setup cost 
incurred for any replenishment, independent of the specific products involved. The 
same is true in models with separable cost structures but physical interdependence 
between nodes in the network, such as single-item one-warehouse multiple-retailer 
systems. The complexity of fully optimal strategies makes them unattractive even if 
they could be computed efficiently. 

We may, however, without loss of optimality, restrict ourselves to "zero inventory 
ordering policies" under which each product's inventory level equals zero at any one 
of its specified replenishment epochs. (For discrete-time models this is shown in 
Veinott 1969. See Zheng 1987 and Federgruen et al. 1989 for a simpler proof for our 
continuous time model; cf. also Schwarz 1973 for a proof for one-warehouse 
multiple-retailer systems with separable costs.) 

In this paper, we show that a simply structured, so-called power-of-two policy is 
guaranteed to come within 2% of a lower bound for the minimum cost. A power-of-two 
policy applies zero-inventory ordering and prescribes for each product i a replenish- 
ment interval ti such that a replenishment for this product occurs at times 
0, ti, 2ti, 3t, .... Moreover, all products' replenishment intervals are chosen as pow- 
ers-of-two multiples of a common base planning period. (This base planning period is 
sometimes predetermined but may be varied continuously in other settings. In the 
former case, the above worst case optimality gap is 6% instead of 2%.) 

The above generalize earlier results of this type, in particular the seminal contribu- 
tion of Roundy (1986) for the case of separable setup costs, or joint replenishment 
costs specified by a so-called "family model". (The family model represents a special 
case of submodular cost structures; see Federgruen and Zheng 1988b for a discussion 
of several alternative classes of submodular cost structures which cannot, or cannot 
efficiently, be represented by a family model.) Federgruen and Zheng (1988a) 
obtained the above results for "joint replenishment models" in which the interdepen- 
dence between the different products is confined to joint (submodular) replenishment 
cost structures, without any technical or physical interdependencies (i.e., the corre- 

sponding network consists of a number of unconnected nodes, one for each item). 
The general model addressed in this paper was proposed and developed first by 
Queyranne (1985) and subsequently by Zheng (1987). The central observation, that, 
in inventory models with linear holding costs and constant demand rates, a cost 
increase of at most 6% results when restricting oneself to power-of-two multiples of a 
given base period, goes back to Brown (1978) (who demonstrated this for the 
single-item Economic Order Quantity model). 

The above worst case optimality gap clearly motivates restricting oneself to power- 
of-two policies when searching for a close-to-optimal strategy. Moreover, while our 
paper does not address how an optimal power-of-two policy may be computed, 
several algorithms for this problem are indeed available. Queyranne's (1985) algo- 
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rithm uses Maxwell and Muckstadt's (1985) divide-and-conquer method and requires 
at most 21NI - 1 calls to a general oracle for minimizing a submodular function (e.g., 
the ellipsoid method, Gr6tschel et al. 1981). Zheng (1987) describes two more 
efficient algorithms which consist of a limited number of polymatroid maximum flow 
computations. The only oracle required in these algorithms is one for polymatroid 
membership. In contrast with Queyranne's approach, this oracle can be specific to the 
submodular setup cost function being used. The networks in which these maximum 
flows need to be determined have, in addition to the usual upper bounds on 
individual arcs, additional capacity constraints for collections of arcs pointing to the 
network's sink. These maximum flow problems thus represent special cases of the 
polymatroidal network flow problems introduced by Hassin (1978, 1982) and Lawler 
and Martel (1982). See Hassin, Lawler and Martel, and Tardos et al. (1986) for 
efficient algorithms for this general class of maximum flow problems. The number of 
maximum flow computations is at most 21NI - 1 in the first of the two algorithms in 
Zheng (1987) and bounded by the number of distinct components in the optimal 
power-of-two vector in the second algorithm. 

Earlier algorithms for special cases include the seminal papers of Maxwell and 
Muckstadt (1985) and Roundy (1986). The former address networks with separable 
costs, restricting themselves to nested power-of-two policies. (Under a nested policy, 
each node places an order each time one of its immediate predecessor nodes in the 
network does; the nestedness condition simplifies the analysis and computations 
significantly but, as pointed out in Roundy 1985, such policies may have a rather poor 
cost performance.) Roundy (1986) considers all (nested and nonnested) power-of-two 
policies under separable costs or nonseparable structures generated by the above- 
mentioned family model. 

In ?2 we specify the model, and formulate the problem of finding an optimal 
power-of-two policy as one of finding a saddlepoint of a nonlinear program with 
special integrality constraints implied by the power-of-two restrictions. In ?3 we 
derive alternative formulations for the continuous relaxation of this program (ob- 
tained by relaxing the power-of-two integrality constraints). These are needed for the 
above described worst case performance analysis of power-of-two policies, which can 
be found in ?4. In ?5 we show that the same worst case optimality gaps arise when 
restricting oneself to nested policies only. 

2. Notation and preliminary results. For each node i E N, let P(i) indicate the 
set of its immediate predecessors in the network, i.e., P(i) = {j E N (j, i) E A). (P(i) 
represents the set of products which are used as inputs in the production of product 
i.) For each arc (i, j) E A, Aij represents the number of units of product i required to 
produce one unit of product j. Let di represent the rate at which external demands 
for product i arise; h' denotes the cost per unit of time for carrying one unit of 
product i in inventory. The incremental holding cost rate for product i is given by 

hi=hi- E Ajih' 
jeP(i) 

These incremental holding cost rates are assumed to be nonnegative, i.e., hi > 0, 
def 

i E N. Let No = {i E N: P(i) = 0} be the set of basic products (whose corresponding 
nodes have no predecessors). We assume that hi > 0 for all i E N0. This assumption 
is without loss of generality: if hi = 0 for some i E No, infinitely large quantities of 
this product may be ordered from external sources with zero resulting inventory costs. 
Such a product may clearly be eliminated from the model. 
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With respect to the setup cost set function K(-) we assume: 
(Monotonicity) 0 = K(0) < K(S) < K(T) if S c T. 
(Submodularity) K(S U {i}) - K(S) > K(T U ({i) - K(T) if S c T, i r T. 
If K(-) fails to be monotone, replace K(.) by the monotone set function K, 

defined by K(S) = min{K(T): T 2 S}, S c N. Note that K(S) < K(S), S c N; an 
expense of K(S) allows for the collection of products S, as well as possibly some 
others, to be replenished jointly. If K(S) < K(T) for all S c T, the set function is 
called strictly monotone. The second assumption (submodularity) reflects economies 
of scale in the joint replenishment activities. Federgruen and Zheng (1988a) discuss 
several common setup cost structures under which the submodularity assumption is 
satisfied. 

We assume that the system starts with zero inventory throughout. Finally it is 
assumed that when an order is placed for one or more products, it is delivered 
instantaneously. The planning problem becomes significantly harder under general 
nonzero leadtimes. See, however, Roundy (1986) for certain special cases which are 
tractable. Let C* denote the minimum long-run average system-wide cost. 

One of the advantages of power-of-two policies is the fact that relatively simple 
formulations may be obtained for their long-run average system-wide costs. For any 
power-of-two policy with replenishment interval vector t let H[t] (K[t]) denote the 
long-run average system-wide holding (setup) costs. The problem of finding an 
optimal power-of-two policy is thus summarized by: 

minC[t =[t] K[t] +H[t] 
t>O 

subject to ti = 2miTL (mi integer), i e N, 

where TL denotes the (fixed or variable) base planning period. 
Let R denote the set of routes in the network G where a route r = (ii,..., i,) is a 

directed path in G starting at an arbitrary node and terminating at an end-product. 
For each route r = (i, .., i) E R let dr = Aili2 ' Ai _i dim and Hr h= i,dr 
denote its (induced) demand and holding cost rate, respectively. It is shown in 
Roundy (1986) (and Lemma 2.7 in Zheng 1987) that 

(1) H[t] = E Hr maxti). 
reR i er 

To derive an expression for K[t] let a =(al,..., a,) be a permutation of the 
indices N = {1,2,..., n} such that ta1 > t2 > * > t-1, i.e., the nodes' reorder 
frequencies are nonincreasing in this permutation. Observe that under t whenever 
node ai is replenished, all of the nodes {a1,... , a,i- are replenished as well. Only 
one of the following n sets of nodes is therefore replenished at any replenishment 
epoch: 

{aJ}, ({a, a2} ,..., (a1,..., ai),..*, {aa,..., a,n) 

The order frequency of the set {a, ..., a} is tal - ta (setting t- = 0). There- 
fore 

K[t] = E K({a,,. a i})(t- t1 ). 
iEN 
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By rearranging the terms in this summation, we obtain: 

(2a) K[t] = [K({al,...,ai}) - K({a,.. ., ai-1})]ta1 
ieN 

Let 

K= (k R: Eki K(s),ScN, ki =K(N), k ). 
iE=S iEN 

K is referred to as the setup cost polyhedron. Note that each vector k E K may be 
viewed as an allocation of the joint setup cost structure to the individual products, as 
in Roundy (1986) and Atkins and Iyogun (1987). 

LEMMA 0. 

(2b) K[t] = max ki/t,. 
keK ieN 

PROOF. Since K(') is monotone and submodular, and K(0) = 0, K is a so-called 
(base of a) polymatroid, see Edmonds (1970) or Welsh (1976). It is well known from 
Edmonds that, on this special type of polyhedron, any linear objective may be 
optimized by the greedy procedure. More specifically, the linear program to the right 
of (2b) has an optimal solution k* with k* given by the expression in square brackets 
in (2a), i = 1,...,N. c 

Substituting (1) and (2) into the objective function of (P) we obtain the mathemati- 
cal program: 

(3)(P) min max kti + E Hrr) 
t,T keK iEN r R 

(4a) subject to Tr = maxti, r E R, 
i r 

(4b) ti = 2miTL (mi integer), i E N. 

Since Hr > 0, the optimal objective value for (P) remains unchanged when relaxing 
the constraints (4a) to: 

(4a') r > ti, all r e R and i e r. 

We redefine t := (t, r) where r = {rr: r E R}. 

3. The continuous relaxation of (P): alternative formulations. Except for the 
special integrality constraints (4b), the problem of finding an optimal power-of-two 
policy ((P)) can thus be formulated as one of finding a saddlepoint of a so-called 
convex-concave function in the vector pair (k, t) with both k and t to be chosen from 
separate polyhedra of special structure. For, let N = N U R, T = {t E RINI: t > 0, t 
satisfies (4a'), (4b)}. Define the function f(t, k) = Ei Nki/ti + Er RHrTr and note 
that f(t, k) is convex-concave, i.e., it is convex in t and linear and hence concave 
in k. 

Problem (P) may then be written as 

min maxf(t, k). 
teT kEK 
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See Rockafellar (1970, Part VII) for a treatment of general saddlepoint (minimax) 
problems of convex-concave functions. 

In this section we consider the continuous relaxation of (P) obtained by relaxing the 
integrality constraints (4b). Thus, let T = {t E RINI: t > 0, t satisfies (4a')}: 

(6)(RP) c* = min maxf (t, k). 
teT kEK 

Theorem 1 below shows that the optimal value of the continuous relaxation (RP) 
constitutes a lower bound for the minimum system-wide costs under any strategy (in 
addition to it obviously being a lower bound for the cost value of the best power-of-two 
policy). This result, while of interest by itself, also provides the foundation for the 
proof of our main result (Theorem 2), by establishing the existence of a power-of-two 
policy t* with cost C[t*] < 1.021c* and hence C[t*] < 1.021C*. 

To prepare the proof of this theorem, we derive an equivalent formulation of (RP). 
We first show that the minimum and maximum operators in (6) may be interchanged. 

LEMMA 1. Let 0 be a compact and convex subset of some Euclidean space and let 
f: 0 x K -* R be a continuous function which is convex in t e 0 and concave in 
k E K. Then 

min max f(t, k) = max minf(t, k). 
tEO kEK kEK te= 

PROOF. See Rockafellar (1970). o 
An interchange of the max- and min-operators in (6) is now simply justified. 

LEMMA 2 (Minimax Theorem for the continuous relaxation of (P)). Assume K(') 
is strictly monotone. 

(7)(RP) c* = min max ki//ti + EHrTr 
teT keK i r 

max min ki/ti + EHr}. 
kEK teT I r 

def 
PROOF. Let 8 = min{K(N) - K(N \ a}): a E N). Since K(-) is strictly mono- 

tone, we have 8 > 0. Note that for all k E K and a E N, ka = K(N) - Eioaki > 
K(N) - K(N \ {a}) > 8. Let TL = TL if TL is fixed, and TL_be an arbitrary allowable 
value for TL if TL is variable. Defining tL E T by tL = TL for all i E N, we have 
rL = TL for all r E R. Thus for all k E K we have 

f(t, k) = K(N)/TL + H(N)TL = c 

where H(N)- ErRHr. Let 

def def 
t /c? and t+ c?/( min dr min hi). t- = S/co and t'=c 2mindrm hi1 

reR iieNo 

Define 0 = {t: t-1 < t < t+1, (4a)} with 1 E RINI a vector of ones. Since 0 is 
compact and convex and f has the properties required in Lemma 1 we have for some 
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(t*, k*) e 0x K: 

(8) max min f(t, k) = min max f(t, k) = f(t*, k*) < c 
kcK teO tEO keK 

where the inequality follows from the vector TL1 E 0. (t-~ TL since 5 < K(N) < 
K(N) + H(N)T2 = c?TL; TL < t+ since 

2 min dr)( m hi) TL< H(N)TL < c 
rE=7R i~ cNo 

In view of (8), it suffices to show that 

(9) f(t,k) > co for all t E T\ and k EK. 

Thus, fix t E T\ 0 and k E K. 
Observe that it suffices to consider the following two cases: 
(1) ta = mini N ti < t- for some a E N. Clearly, 

(lOa) f(t, k) > ka/ta > 8/t-= C?. 

(2) maxr R Tr > t+. Note, in view of (4a'), that max rr is achieved for some route 1 
whose initial node a E No. Hence, 

(10b) f(t, k) > Hr > Ht> ( min dr)(min h t+= co. 
rER R i /o 

Thus (9) follows from (lOa) and (lOb). o 
Note that, for any k E K, the (inner) minimization to the right of (7) is a convex 

program which may therefore be replaced by its dual. This allows us to replace the 
saddlepoint representation of (RP) by a pure maximization problem: 

LEMMA 3. Assume K(') is strictly monotone. 

(lla) c* = max E 2(kivi)1/2 
ieN 

(llb) subject to k E K, 

(l1c) Hr= EXri, r ER, 
ier 

(lid) xi = vi, i EN, 
r: i r 

(lie) x > 0, v > 0. 

PROOF. For any r E R and i E R, let xri be a Lagrange multiplier associated with 
constraint (4a'). Fix k? E K, let (RPko) denote the convex (inner) minimization 
problem to the right of (7) with ki = k? (i E N) and let c*(k?) denote its optimal 
value. The associated Lagrangian of (RPko) is given by 

(12) L(x, t) = E k?/ti + E Hrr + E Xi(ti - Tr) 
ieN reR reR ier 
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By definition, see Geoffrion (1971), the Lagrangian dual of (RPko) can be written as 

(13) D = sup infL(x,t). 
x>O t>O 

Letting 

(14) i = E Xri, i E N, 
r: iEr 

and regrouping the terms in the second summation in (12), we have 

L(x,t) = E [k/ti + i ti+ E (Hr- EXri)r' 
ieN reR iEr 

If, for a given x > 0, (Hr - EiErXri) < O, then inf L(x, t) = limt_o L(x, t) = -o; 
likewise, if (Hr - YiErXri) > 0, inf, >0(Hr - EiErXri)rr = 0. To achieve the supre- 
mum in (13), we may thus restrict ourselves to vectors x for which 

(15) Hr> E Xri, r ER. 
iEr 

Imposing these additional constraints and substituting (14), we may rewrite (13) as: 

(16) D = sup inf E [k?/ti -+ vti] 
{x>O,, r>0: (14),(15)} t>0 ieN 

sup E 2(kii) 
/2 

{x>O, v >: (14),(15)} i N 

Strong duality, i.e., c*(k?) = D, and the existence of a pair (x*, v*) achieving the 
supremum in (16) all follow from (RPko) being a stable convex program, see Theorem 
3 in Geoffrion (1971). Stability may be verified by Slater's condition, i.e., there exists a 
vector t > 0, with rr > T, for all r e R and i E r. (Let Tr = 2, all r e R and Ti = 1, 
all i E N.) Finally note that in an optimal solution (x*, v*), (15) must be satisfied as 
equalities and may thus be replaced by (llc). The lemma thus follows from (16) and 
the subsequent observations. o 

Note that each vector v E Rn which satisfies (llc) and (lid) may be viewed as a 
vector of (re)allocated holding cost rates, as in Roundy (1985, 1986). The first of the 
two algorithms in Zheng (1987), discussed in the introduction, finds an optimal 
solution (t*, k*) for (RP) as well as a corresponding optimal dual solution (x*, v*), 
see Lemma 3. 

4. A lower bound theorem and worst case analysis of power-of-two policies. In 
this section we show that the optimal value of the continuous relaxation (RP) of (P) 
constitutes a lower bound for the minimum system-wide average cost under any 
strategy. This allows us to demonstrate that the average cost of an optimal power-of- 
two policy comes within 6% or 2% of this lower bound depending upon whether the 
base planning period TL is fixed or variable. 

We first need the following preliminaries: each unit of each product may clearly be 
assigned to a specific route and it is thus possible to distinguish between different 
units of the same product according to the specific routes they have been assigned to. 
Consider a given policy, time t > 0, and route r = (i0,..., im). Define, as in Roundy 
(1986), route r's echelon inventory Et as the total number of units of product il, 
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which are held in stock somewhere along the route r at time t (perhaps as 
components of more advanced products) and which have been specified to follow 
route r, measured in multiples of ?dr, i.e., as twice the number of time units of 
demand for product r's (unique) end item which this inventory is capable of 
supporting. (Recall dr is the induced demand rate for route r, see ?2 for a precise 
definition.) For each i e N and t > 0, define 

(17) 771 = min{E: r E Ri} 

where Ri is the set of routes starting at node i. 

THEOREM 1 (The Lower Bound Theorem). The optimal value c* of (RP) is a lower 
bound for the average cost of any feasible policy over any finite horizon. 

PROOF. Assume first that K(-) is strictly monotone so that Lemmas 2 and 3 apply. 
Let t* achieve the minimum in (RP), see Lemma 2. It follows from Lemma 3 that a 
vector k* E K, and vectors x*, v* exist which satisfy (llc), (lld), (lle) and with 

i N2(ki* *)1/2 = C*. 
For r > 0 and a feasible policy rr, let c be the total cost incurred by the policy 

during the time interval [0, r). We show that c > c*r. We evaluate the total setup 
costs and holding costs separately. 

The total setup cost Kt?t. Let J(S) be the number of times in [0, r) that an order is 
placed specifically for the set of items S c N. The number of times product i is 
ordered in [0, r) is then given by Ji = Es: i sJ(S). Thus, since k* E K, 

Kt?t= E J(S)K(S) > E J(S) E ki = E k? E J(S) 
ScN ScN iES ieN S: ieS 

= k*Ji. 
ieN 

The total holding cost H tt. Following the discussion in the introduction, we assume 
without loss of generality that Tr applies zero inventory ordering. The rate at which 
the total holding cost accumulates at time t is then given by 

E HrEr = E EXiEr = >E E XriEE 
reR rER ier ieN r: iEr 

> E E Xri = >E v .i 
ieN r: ier ieN 

(The first and last equalities follow from (llc) and (lld), respectfully. To verify the 
inequality note that for any route r = (i1,... i,..., i. ) 3 i, tr7 < E, < E where 
r' = (i,..., i,).) We conclude that 

Htot> E > *f t dt. 

Therefore 

(18) c = Kt?t + Htt > E (kJ + v dt). 
iEN o I 

For any i E N, note that {rt, t > 0} decreases at a constant rate of 2 and increases 
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only at replenishment epochs of product i. (The latter follows from (17) and the 
observation that Et increases only at replenishment epochs of product i for any route 
r which starts at product i.) For any i E N, the expression within curled brackets in 
(18) may thus be interpreted as the total setup and holding costs in [0, r) in a 
single-item model with constant demand rate 2, setup cost k*, holding cost rate v*, 
initial inventory zero and under an arbitrary policy prescribing Ji setups in [0, r). It 
follows from Carr and Howe (1962) that the expression is minimized by ordering 
2r/Ji units every r/Ji time units. We conclude that 

c > E (kJi + vu,*2/Ji) > E 2(k*uv)1/2 C*. 
ieN icN 

If K( ) fails to be strictly monotone, define for all e > 0, the perturbed cost 
function KE( ) by K,(S) = K(S) + EISI for all S c N. (One easily verifies that KE(.) 
is strictly monotone, and continues to be submodular.) Let C* denote the minimum 
system wide cost and c* the optimal values of (RP) under the setup cost function 

K(-). By the above proof, we have c* < C* for all e > 0. Moreover, c* = lim, 0 c* 
and C* = lim, o C*. Thus, c* < C*. o 

The proof of the above theorem bears similarity to that in Roundy (1986) for the 
model considered ibid. 

As in prior analyses of this type (Maxwell and Muckstadt 1985, Roundy 1986, 
Federgruen and Zheng 1988a), the worst case analysis of power-of-two policies is 
completed by showing that any optimal replenishment vector t for (RP) may be 
replaced by a feasible power-of-two vector t* whose (long-run average) cost value is 
at most 6% (2%) higher than c* when the base planning period TL is fixed (variable). 

In case TL is fixed, it suffices to replace each component i of t* by a power-of-two 
multiple of TL which is closest in a relative sense, i.e., such that max{t*/t*, t*/t*} is 
closest to one. 

If TL may be varied, its optimal value may be found by a simple O(n log n) search 
procedure, see Roundy (1985). We are now ready for our main result: 

THEOREM 2 (Worst case analysis of power-of-two policies). (a) Assume TL is fixed. 
There exists a power-of-two policy t* whose cost value C[t*] < 1.061c* < 1.061C*. (b) 
Assume TL is variable. There exists a power-of-two policy t* whose cost value C[t*] < 
1.021c* < 1.021C*. 

PROOF. (a) See appendix. The proof constructs a power-of-two vector t* with 

(19) C[t*] < 1.061c*. 

Hence, by Theorem 1, C[t*] < 1.061C*. Part (b) follows from part (a) and Roundy 
(1986). o 

The proof of Theorem 2(a) is a variant of that of Theorem 5 in Federgruen and 
Zheng (1988a) and the 94% theorem in Roundy (1986). 

We note that, if K(.) is strictly monotone, the power-of-two policy generated by 
applying the above rounding procedure to an optimal solution of (RP) is in fact 
optimal among power-of-two policies, i.e., it solves (P). See Zheng (1987) for a proof. 

5. Nested policies. As pointed out in the introduction, it is considerably simpler 
to compute optimal nested power-of-two policies instead of optimal general power- 
of-two policies. (On the other hand, as pointed out by Roundy 1985, and referred to 
in the introduction, all nested policies may be significantly more expensive than other 
feasible policies.) In this section we show that the 2% or 6% worst case optimality 
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gaps for power-of-two policies are preserved when restricting oneself to nested, but 
otherwise general (stationary and nonstationary) policies. In other words, best nested 
power-of-two policy comes within 2% or 6% of the minimum cost c* among all 
nested (stationary and nonstationary) policies. 

The long-run average holding cost H[t] of a nested power-of-two policy t is given 
by a simple linear function of t = (tl,..., t); i.e., there exist numbers {Hi: i E N) 
such that H[t] = EiNHiti for all power-of-two vectors t; see Maxwell and Muck- 
stadt (1985). This greatly simplifies the formulation of the objective function of (P) at 
the expense of additional constraints: 

(20) titj, all (i,j) A, 

to enforce the restriction to nested (power-of-two) policies. The problem of determin- 
ing an optimal nested power-of-two policy may thus be formulated as: 

(21)(PN) min max( E [ki/t + ti i] 
t>0 keK i N N 

(22) subject to ti > tj, all (i, j) E A, 

(23) ti = 2miTL (mi integer), i E N. 

Let T1 = {t > 0: (22)}. 
Following the analysis of ?3, one easily verifies that the continuous relaxation of 

(PN), i.e., the problem of finding the best nested power-of-two policy (obtained by 
relaxing (23)), may be written as: 

(24)(RPN) * = min 
max{ E [k/i 

+ i] 
tElTl kEK iE-N 

=max min{ E [k/ti + Hiti]} 
keK teT iEN 

THEOREM 3 (Lower bound theorem for nested policies). The minimum value c* of 
(RPN) is a lower bound for the average cost of any (stationary or nonstationary) 
feasible nested policy over any finite horizon. 

PROOF. The proof is analogous to that of Theorem 1. For each i E N, and t > 0, 
let Ei' denote the echelon inventory of product i. It is easily verified that, under any 
nested policy, the rate at which holding costs are incurred at time t is given by 
LiENHiEt. Let (t*, k*) be a saddle point of (RPN). Fix 7 > 0 and a feasible nested 
policy. Adopting the notation in the proof of Theorem 2 one concludes that 

cdfKt?t + Htt > E ki + HiEit dt > E { k*Ji + Hir /Ji } 
iEN i? i=N 

where the second inequality as well as Kt?t > Ei Nk*Ji are verified as in the proof 
of Theorem 2. Since the policy is nested we have Ji < Jj for all (i,j) eA. Let 
ti = T/Ji (i E N). We conclude that 

c > min{ E {k*/ti + Hiti}r' ti > tj for all (i, j) A} = j*T. 
^i^N E 
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By straightforward adaptation of the analysis in ?4 we conclude: 

COROLLARY 1 (Worst case analysis of nested power-of-two policies). There exists a 
nested power-of-two policy t* whose cost value 

C[t*] < 1.021c* < 1.021C* in case TL is variable, and 

C[t*] < 1.061c* < 1.061C* in case TL is fixed. 

Appendix. Proof of Theorem 2. We assume that K( ) is strictly monotone so that 
Lemma 2 applies. If it is not, the proof can be amended by considering a sequence of 
perturbed setup cost functions, as in the proof of Theorem 1. In view of Lemma 2, let 
t* denote an optimal solution to (RP) and t* the power-of-two vector obtained by 
the above rounding procedure. Let (a, ..., a,) be a permutation of the node indices 
such that t~*- > t~2 1> . . > t~ Note that the components of t* may be ranked 
in the same way. Assume t* takes on M distinct values t*(1) < ... < t*(M) and let 
t*(1) < .. *< t*(M) denote their rounded power-of-two values. For all 1 = 1,..., M 
let Nl = I{i E N: t* = t*(l)}l; 

Kl = K({(cl,..., aNN+ -+N}) K({(a,.^., a N,+ -.. +N1_}) 

Nl+ .. +Nt 

E [K ({ a, ,..., a,i}) 
- 

K({a,..., ai- })], 
i=N1+ . +N,_,+l 

H,= Hr. 
{reR: r,.=t(l)} 

It follows from Lemma 0 that 

M M 

c= [Ht*(l) + Kl/t*(l)] and C[t*] = E [Hjt*(l) + K,/t*(l). 
l=1 /=1 

t*(l) is clearly the unique minimand of the EOQ cost function {Hlx + Kl/x: x > 01 
(I = 1,..., M). (If t*(l) is bigger (smaller) than this minimum, it could be decreased 
(increased) to a new value t'(l), resulting in a new feasible solution t' of (RP) with 
maxk eK f(t', k) < c*, contradicting the optimality of t*.) Thus, c* and C[t*] repre- 
sents the sum of M independent EOQ cost functions evaluated at the minimizing 
intervals t*(l) (1 = 1,...,M) and intervals t*(1) with 1/v2 < t*(l)/t*(l) < r2, 
respectively. It is thus easily verified and well known that each of the terms in C[* ] is 
at most 6.1% larger than the corresponding term in c*. Hence C[t*] < 1.061c* < 
1.061C*, by Theorem 1. o 
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