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The reorder point/reorder quantity policies, also referred to as (r, Q) policies, are widely used in industry and extensively 
studied in the literature. However, for a period of almost 30 years there has been no efficient algorithm for computing 
optimal control parameters for such policies. In this paper, we present a surprisingly simple and efficient algorithm for 
the determination of an optimal (r*, Q*) policy. The computational complexity of the algorithm is linear in Q*. For the 
most prevalent case of linear holding, backlogging and stockout penalty costs (in addition to fixed order costs), the 
algorithm requires at most (6r* + 1 3Q*) elementary operations (additions, comparisons and multiplications), and hence, 
no more than 13 times the amount of work required to do a single evaluation of the long-run average cost function in 
the point (r*, Q*). 

In this paper, we derive a simple and efficient algo- 
rithm for computing optimal (r, Q) inventory 

control policies. These policies are also known as 
reorder point/order quantity policies. We will restrict 
ourselves to the case when demands arise on a unit- 
by-unit basis. Under an (r, Q) policy, the inventory 
position (= inventory on-hand + orders outstanding- 
backorders) of the item in question is continuously 
reviewed, and an order of fixed quantity Q is placed 
as soon as the inventory position drops to a reorder 
point r. 

Such (r, Q) policies are widely used in inventory 
systems with uncertain demands and lead times. For 
single item inventory systems under standard assump- 
tions, it is well known that an optimal policy exists 
within the class of (r, Q) policies. Many multi-item or 
multilocation systems are designed such that each 
item's (facility's) inventory is governed by an (r, Q) 
policy. Other planning models consist of a large num- 
ber of single item (r, Q) systems, tied together by 
aggregate inventory constraints. These models are 
decomposed into single item models via Lagrangian 
relaxation. Highly efficient solution methods are 
essential here. Similarly, Atkins and lyogun (1988) 
propose a decomposition method to derive a tight 
lower bound for stochastic joint replenishment models 
in which optimal (r, Q) policies need to be computed 

repeatedly for each of the items involved; (r, Q) poli- 
cies are also optimal in many (generalized) stochastic 
clearing systems with point arrival processes that arise 
in other settings than those involving physical inven- 
tories. See Federgruen and Zheng (1988) for details. 

The use of (r, Q) policies has been propagated since 
the seminal paper of Galliher, Morse and Simmond 
(1959), and the classical textbook by Hadley and 
Whitin (1963) appeared 30 years ago. Nevertheless, 
and as mentioned in Browne and Zipkin (1991), "until 
recently, there was no reliable, straightforward method 
for computing an optimal (r, Q) policy, even in the 
simple case of Poisson demand processes." Instead, a 
large number of heuristics have been proposed (see 
Lee and Nahmias 1989). The only existing algorithm, 
to our knowledge, was presented in Zipkin's (1988) 
classnotes. This procedure is based on a result in Sahin 
(1982); see also Sahin (1990). 

Our algorithm is based on the observation that the 
long-run average cost C(r, Q) of an (r, Q) policy is of 
the form: 

r+Q / 

Q(r, Q)= K + E G(y) /Q- (1) 
y=r+ I 

Here K > 0 is a given constant and -G(.) is a unimodal 
function with limlyl=O G(y) = oo. Our approach is 
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based on the following observations: The unimodality 
of -G(.) implies: for fixed Q, C*(Q) = minr C(r, Q) 
is achieved when the sum in (1) consists of the Q 
smallest values of this function; and these values are 
achieved in Q contiguous points and the optimal 
corresponding reorder level r is trivially identified. 
Next it is easy to verify that -C*(.) is unimodal as 
shown in Sahin (1982), and Q*, the optimal order 
size, is obtained as the largest value of Q for which 
C*(Q - 1) > GQ with GQ the Qth smallest G(-) 
value, so that 

C*(Q + 1) = [QC*(Q) + GQ+i]/(Q + 1) > C*(Q), 

and 

C*(Q) = [(Q - 1)C*(Q - 1) + GQ]/Q < C*(Q - 1) 

(see Figure 1). These observations may be exploited 
in an efficient algorithm whose complexity is linear in 
Q*. In the case of linear holding and backlogging costs 
the computational complexity of the algorithm is 
no larger than (6r* + 13Q*) elementary operations 
(additions, comparisons and multiplications) when 
r* > 0, and hence, no more than 13 times the 
amount of work required to do a single evaluation 
of the C(., *) function in the point (r*, Q*). (Similar 
complexity counts apply when r* < 0 or when a more 
general one-step expected cost function is used.) 

The (r, Q) policies are a special case of (s, S) policies, 
under which the item's inventory position is ordered 
to S whenever it is observed to have fallen to or below 
the level. s (s < S). This more general structure arises 
when demands occur in batches of random size. In a 
related paper (Zheng and Federgruen 1991) we 
develop an efficient algorithm for finding optimal 
(s, S) policies. Since the cost function of an (s, S) 
policy fails, in general, to be quasiconvex, except 
under a restrictive assumption on the demand size 
distribution (see Stidham 1977, and Sahin 1982), that 
algorithm has to use a different and more complex 
search procedure. Its complexity is at least quadratic 
in (r* + Q*), even when applied to models in which 
(r, Q) policies are optimal, i.e., where the cost function 
is given by (1). 

Another commonly used generalization of the 
(r, Q) policy, to accommodate for random demand 
sizes, is the (r, nQ) policy: Here as soon as the 
inventory position drops to or below r, an (integer) 
multiple of a fixed quantity Q is ordered to raise 
the inventory position back to the interval of 
[r + 1, .. ., r + Q]. As for the simpler (r, Q) policies, 
the steady-state distribution of the inventory position 
is uniformly distributed under standard assumptions 
(see Hadley and Whitin, and Richard 1975). The cost 

function of an (r, nQ) policy is therefore of a form 
similar to (1). An extension of the algorithm in this 
note may thus be employed (see Zheng and Chen 
1990 for details). 

In Section 1 we introduce the notation and pre- 
liminaries. The proposed algorithm is derived and 
discussed in Section 2. 

1. NOTATION AND PRELIMINARIES 

Consider a single item whose inventory may be replen- 
ished by placing orders of unlimited size. Orders arrive 
after a given lead time. Stockouts are backlogged. In 
this section, we briefly review the main inventory 
models in which (r, Q) policies are optimal and their 
average cost is of the form given by (1) because these 
results are scattered throughout or are not available in 
the open literature. 

For any t > 0, let 

D(t) = the total demand in [0, t); 
IP(t) = the inventory position at time t; 
IL(t) = the inventory level at time t. 

Consider first the simplest of all models for which 
optimal (r, Q) policies exist, namely the case of 
Poisson demands and constant lead times. It is well 
known (see, e.g., Hadley and Whitin, and Zipkin 
1986a) that the inventory position process IP(t) and 
the inventory level process IL(t) have limiting distri- 
butions. Indeed, with IP(oo) and IL(oo) denoting 

G(y) 

L u 

Figure 1. G(.) function. If G(L), G(L + 1), . , G(U) 
represent the q smallest values of the G(-) 
function, then the q + 1st smallest value is 
foundfory=L- 1 or U+ 1. 
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random variables with these distributions we have 

IL(oo) = IP(oo) - LD(oo), (2) 

where 

IP(oo) is uniformly distributed on 

Jr + 1, r + 2, ... ., r + Q), (3) 

and 

LD(oo) is a nonnegative integer valued random 
variable which is independent of LP(oo). (4) 

In fact, LD(oo) represents the total demand in a lead 
time, which in the above model has a Poisson distri- 
bution with a mean XL, where X denotes the per unit 
demand rate. Now assume that the cost structure 
consists of a fixed cost K per order, an inventory 
carrying cost of h per unit carried in stock per unit of 
time, and a backlogging cost of p per unit of back- 
logged demand, per unit of time. In view of (2)-(4) 
we obtain, as in Hadley and Whitin, 

C(r, Q) 

_KX 
0 

- + h E Prob[IL(oo) = j] 
Q j=o 

-1 

+ p E (-j)Prob[IL(oo) = j] 
j=-oo 

KX 1 
=-o 

+ 
_Q Q Q 

r+Q F y X 

* E lh E (y - ipi + p E (i - Y)Pi}, 
y=r+l i=O i=y+1 

where pj = Prob[LD(oo) = j]. (In the Poisson demand 
model, we have pj = exL(XL)j/j!, j = 0, 1 ....) Thus, 
C(r, Q) may be written in the form of (1) with K = 

KX, and 
y 00 

G(y) = h E (y - j)pj + P E (j - y)pj 
j=O j=y+l 

y-1 

= (h + p) , Pj + p(AL -y), (5) 
j=0 

where Pj = Prob[LD(oo) < j]. (In our basic model, (1) 
may also be derived using the renewal reward theorem; 
the chosen derivation allows for the extensions dis- 
cussed below.) 

Several more general cost structures result in 
C(r, Q) being of the form of (1). For example, the 
inventory carrying cost and/or the backlogging cost 
per unit of time may be specified as a general convex 
function h( ) or p( ) of the inventory or backlog sizes. 

In some systems, a one-time penalty ir is incurred for 
each stockout, i.e., for each unit which cannot be 
delivered upon demand. (The parameters p and ir 
may either be given explicitly or they may arise in 
Lagrangian relaxations of service level constraints, i.e., 
upper bounds with respect to the average backlog or 
the fill rate, the fraction of sales which can be satisfied 
upon demand.) The stockout penalty cost results in 
an additional term in the average cost expression: 

C(r, Q) = C(r, Q) + Xir Prob[IL(oo) < 0] 
r+Q oo 

= Qr, Q) + -1 E E p>, 
y=r+1 j=y 

where the first equality follows from the Poisson 
Arrivals See Time Averages (PASTA) property. Once 
again it is easy to verify that (1) continues to apply 
with G(.) replaced by 

G(y) = G(y) + Xir(l - Py-1). 

It is also easy to verify that for all of the above cost 
structures -G(.) is unimodal. Our algorithm, 
described in the next section, merely uses the fact that 
C(r, Q) is of the form of (1) as well as the unimodality 
of -G(.). 

Characterization of the distribution of IL(oo) via 
(2)-(4) applies to considerably more general continu- 
ous-time models than the basic model with Poisson 
demands and fixed lead times. We refer to Zipkin 
(1988) for an elegant and comprehensive treatment of 
these generalized models. See also Federgruen and 
Zheng (1988). 

The Poisson demand assumption Dl may, for 
example, be relaxed to D2: ID(t)} is a renewal process; 
or D3: The demand process is a counting process with 
a Markovian representation, i.e., there exists an aux- 
iliary process such that the joint process {A(t), D(t)} is 
Markovian. Moreover, (A(t), IP(t)) D_ (A(oo), IP(oo)) 
as t -0oo with A(oo) and IP(oo) independent. 

Conditions (2)-(4) continue to hold when {D(t)} is 
a general, nondecreasing process with stationary incre- 
ments and continuous sample paths (see Zipkin 
1986b, remark after Proposition 1, Zheng 1989, and 
Browne and Zipkin 1991). Here r and Q are to be 
treated as continuous variables and (1) continues to 
hold after replacing the summation by an integral. 

The characterization of the limiting inventory level 
distribution by (2)-(4) is valid under fixed lead times 
as well as certain types of random lead times (see 
Zipkin 1986a, 1988). 

In all of the above models, LD(oo) may be inter- 
preted as the "lead time demand," appropriately 
derived. For example, under D2 and fixed lead times 
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L, LD(oo) represents the number of demands (renew- 
als) that occur in the time interval [0, L] under the 
equilibrium renewal process. In some settings, a spe- 
cific distribution for the lead time demand LD(oo) is 
directly estimated or surmised, rather than being 
derived from an underlying demand and lead time 
process. 

2. THE OPTIMIZATION ALGORITHM 

Consider an inventory model in which the long-run 
average cost of an (r, Q) policy is of the form of (1) 
with -G(.) a unimodal function. In this section, we 
describe our optimization procedure. 

As we point out in the Introduction, the unimodal- 
ity of -G(.) implies that for fixed Q, the Q smallest 
G(.) values can be achieved in contiguous points and 
C*(Q) = minr C(r, Q) is achieved if the sum in (1) 
consists of these values. These values and, hence, 
the optimal reorder levels r*(1), . . ., r*(Q) (for given 
order quantities 1, . . ., Q) are easy to identify by the 
following procedure. Let y, be an integer that 
minimizes G( y) over all integers. We generate a 
sequence YI, Y2, ...,} inductively. Assuming 
that Iy', ..., I have been generated, let L(Q) = 

min{y,, . .. , YQ}, R(Q) = max yi, . .. , YQJ. Then let 

YQ+' 

_ JL(Q) -1 if G(L(Q) -1) < G(R(Q) + 1) 
IR(Q) + 1 otherwise. 

Clearly, for any given Q, Iyi, . . ., yQ are contig- 
uous, and their G(.) values constitute the Q smallest 
ones due to the unimodality of -G(.). This leads 
directly to the following lemma. 

Lemma 1. For any given integer Q > 1, r*(Q) = 
L(Q)- 1. 

Proof. The proof is by (1). 

Clearly, L(Q) = L(Q - 1) or L(Q) = L(Q - 1) - 
1. This implies the following corollary. 

Corollary 1. r*(Q) - 1 < r*(Q + 1) < r*(Q) for all 
integers Q > 1. 

This corollary may be derived (with considerably 
more effort) from the results in Sahin (1982) (see 
Zipkin 1988). 

We conclude that 

C*(Q)= K + G(yi)] Q, 

so that 

C*(Q + 1) = [QC*(Q) + G(yQ+,)]/(Q + 1). (6) 

Note that C*(Q + 1) < C*(Q) if and only if 
G(yQ+,) < C*(Q). This suggests the following exceed- 
ingly simple characterization of Q*, the optimal order 
size. 

Lemma 2. Q* is the smallest integer q with the prop- 
erty C*(q) < G(yq+,). 

Proof. It follows from (6) that C*(Q) is decreasing for 
Q < Q*. Moreover, for Q > Q*, 

C(Q) - C(Q*) 

Q/ 
= G(yj) - (Q - Q*)C*(Q)] Q 

-i=Q*+l 

> (Q - Q*)[G(yQ*+,) - C*(Q*)]/Q 2 0. 

Lemmas 1 and 2 clearly suggest an efficient algo- 
rithm for finding an optimal reorder level and order 
size (r*, Q*). Below we give a detailed algorithm for 
the case where AG(y) = G(y + 1) - G(y) is easy to 
compute (this is, for example, the case in the Poisson 
demand model, see (5)). For notational convenience 
only, we restrict ourselves to the most common case, 
where Y, > 0. 

Algorithm OPT 

Step 0. Calculate G(0) and A G(O); L 0; 
while AG(L) < 0 do 

begin L := L + 1, evaluate zAG(L), G(L + 1) 
G(L) + AG(L) 

end; 
S = K + G(L), Q:= 1, C* :=S, r:= L - 1, 
R:= L + 1; 

Step 1. Repeat 
begin if G(r) < G(R) 

then if C* < G(r) 
then stop. 
else begin S:= S + G(r), r:= r- 1, 

if r < 0, evaluate AG(r) and G(r) 
G(r + 1) - AG(r), 

end; 
else if C* < G(R) 

then stop. 
else begin S:= S + G(R), evaluate AG(R), 

G(R+ 1):=G(R)+AG(R),R:=R+ 1 
end; 
Q:=Q+ 1,C*:=S/Q 

end. 
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Complexity of the Algorithm 

Assume that the probability density function of 
LD(oo), i.e., the numbers I pj: j = 0, 1, . . .4, are given 
as input to the problem. We first analyze the com- 
plexity of the algorithm for the (most prevalent) case 
where the cost structure is linear, i.e., where it consists 
of linear holding, backlogging and stockout penalty 
costs (in addition to the fixed order costs). We first 
analyze the case where r* > 0. The entire algorithm 
consists of: 

i. evaluation of the r* + Q* first values of the 
difference function AG(y) = (h + p)Py - X1rpy - 
p: each such evaluation requires five elementary 
operations (three additions and two multiplica- 
tions; in the absence of stockout penalty costs only 
three operations are required); 

ii. r* + Q* additions to compute the IG(1), 
G(r* + Q*)} values; 

iii. at most, 7Q* elementary operations (3Q* 
comparisons; 3Q* additions and Q* divisions) to 
execute the remaining work in Step 1. 

The algorithm thus requires no more than 6r* + 
13Q* elementary operations (4r* + 11Q* operations 
in the absence of stockout penalty costs). In case r* - 
0, the total number of operations is reduced to 13Q* 
because only Q* values of the G(.) function are 
computed. It is useful to compare this complexity 
bound with a lower bound for the amount of work 
that is required to do a single evaluation of the cost 
function C(., *) at the optimal point (r*, Q*). Even 
when the cost structure is linear this evaluation 
requires the computation of Pr*+Q* and the latter 
requires r* + Q* additions. We conclude as follows. 

Theorem 1. Algorithm OPT determines the optimal 
(r*, Q*) policy. Under linear cost structures and when 
r > 0, the amount of work (measured as the number 
of elementary operations required) is at worst 13 times 
the amount of work required to evaluate Pr*+Q* (and at 
worst 11 times in the absence ofstockout penalty costs). 

We conclude this paper with a few comments on 
the case where the cost structure consists of general 
nonlinear holding, backlogging or stockout penalty 
cost functions (the nonlinear case). In the linear case, 
the function G(.) is most easy to evaluate via AG(.) 
(see (5)). In the nonlinear case, it is more efficient to 
evaluate the G(.) values directly. The algorithm needs 
to be modified accordingly. We may replace Step 0 by 
a bisection search to locate the minimum point Yi. To 
gain efficiency, {G(r*), ..., G(r* + Q*)) should be 
evaluated in Step 1 when needed. The resulting algo- 

rithm requires (see Federgruen and Zheng (1988): at 
most rlog2Ul + Q* + 1 evaluations of the G(.) 
function with U an priori upper bound for yi; and at 
most 8Q* elementary operations to execute the 
remaining work. Note that a single evaluation of the 
average cost function C(., *) requires at least Q* 
evaluations of the function G.). 

Note Added in Proof 

Shortly prior to receiving the galley proofs of this 
paper, we became aware of G. Rubal'sky's "Calcula- 
tions of Optimum Parameters in an Inventory Control 
Problem" (Eng. Cybern. 10, 182-187; translated from 
Russian), which describes a similar method for the 
determination of optimal r- and q-values. 
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This note treats optimization problems that involve two criteria on set systems. One is a bottleneck criterion, and the 
other is general. In particular, recent algorithms for such problems on the edge-sets of networks are related to the 
fundamental work of J. Edmonds and D. R. Fulkerson involving more general set systems. 

In a recent note by Berman, Einav and Handler 
(1990), algorithms are given for graph problems 

that involve two criteria with respect to the edge-set. 
The first problem is that of minimizing a bottleneck 
objective, subject to a single generic constraint. The 
second problem is that of minimizing a generic objec- 
tive function, subject to a single bottleneck constraint. 
The purpose of this note is to point out that the first 
problem can be studied in the broader setting of 
clutters. The analysis of the second problem involves 
even less structure. 

Let F be an arbitrary set of subsets of the finite 
set X. Let w and f be arbitrary real-valued functions 
on g and F, respectively. Let F and W be real 
numbers. We define two problems on F. 

Problem 9, 

min{max w(e): f(r) < F). 
2'(&- eEl; 

Problem A2 

min{f(f): max w(e) < W). 
2I&9, e (-.; 

For the purposes of solving ,F,, if f is monotone 
nondecreasing, we may as well assume that F is a 
clutter (i.e., the elements of F are pairwise incom- 
parable with respect to set inclusion), because we can 
replace F by the clutter of its minimal (nonempty) 

elements without altering the optimal value of 41l. 
The set F-= E2 8 F: f(?) < F) is also a clutter on 
E. Hence, the following "threshold algorithm" of 
Edmonds and Fulkerson (1970) can be used to solve 
?9. Accumulate elements of X, in order of nondecreas- 
ing weight, collecting them in a set X, until Y contains 
an element of FF. We can determine whether Y 
contains an element of <F by solving the following 
problem. 

Problem 9? 

If the procedure is implemented using bisection search 
on the elements of X, ordered by w, an & (t(F)log I X I) 
algorithm results, where t(F) is the maximum time to 
solve 9< (over Y C X). 

Iff is not monotone, we may still treat the case in 
which F is not a clutter, by replacing F by the clutter 
of its minimal (nonempty) elements. 

Since F is a clutter, the following duality equation 
holds (Edmonds and Fulkerson): 

min max w(e) = max min w(e), 
(E&F eE- YEFF eCy 

where <F is the "blocker" of FF. That is, F* is the set 
of minimal subsets of X that have nonempty intersec- 
tion with every element of FF. In general, it is not easy 

Subject classifications: Mathematics, combinatorics: clutters. Networks/graphs: algorithms. Programming: bottleneck objective with a side-constraint. 
Area of review: OPTIMIZATION. 
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