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We show for the general dynamic lot sizing model how minimal forecast horizons may be detected by a slight adaptation 
of an earlier 0(n log n) or 0(n) forward solution method for the model. A detailed numerical study indicates that minimal 
forecast horizons tend to be small, that is, include a small number of orders. We describe a new planning approach to 
ensure stability of the lot sizing decisions over an initial interval of time or stability horizon in those (relatively rare) cases 
where no planning horizon is detected or where the stability horizon extends beyond the planning horizon. To this end, 
we develop a heuristic, butfull horizon-based adaptation of the optimal lot sizing schedule, designed to minimize an upper 
bound for the worst-case optimality gap under the desired stability conditions. We also show how the basic horizon length 
n may be chosen to guarantee any prespecified positive optimality gap. 

T he dynamic lot sizing model is one of the most 
commonly used (single-item) production/ 

inventory planning models: For a given horizon of n 
periods, one needs to find a schedule of order quan- 
tities or lot sizes, to satisfy a given demand in each of 
the periods while minimizing the sum of fixed-plus- 
variable order and linear inventory carrying costs. All 
cost and demand parameters may be time dependent. 
The dynamic lot sizing model arises as a repeatedly 
solvable subproblem in, for example, material re- 
quirement planning (MRP) systems, hierarchical 
planning problems, and multi-item capacitated lot siz- 
ing problems; see Federgruen and Tzur (1991) for a 
more detailed discussion. 

Wagner and Whitin (1958) showed that an exact 
solution of the dynamic lot sizing problem can be 
found with a relatively simple O(n2) shortest path 
algorithm. Subsequently, a large volume of heuristics 
was developed, see, for example, the least unit cost 
heuristic, the part-period balancing heuristic, the eco- 
nomic order quantity heuristic, as well as Silver and 
Meal (1973), Peterson and Silver (1979), Axsater 
(1982, 1985), Bitran, Magnanti and Yanasse (1984), 
and the survey of Baker (1989). These heuristics were 
designed for special cases of the lot sizing model, for 
example, with constant fixed and per unit order costs. 

Moreover, the decision of whether to order in a given 
period is, in virtually all of these heuristics, based on 
prior demand and cost data only, thus ignoring infor- 
mation about later periods entirely. Therefore, we 
refer to these heuristics as history-based procedures 
as opposed to full horizon-based lot sizing decisions 
which arise in exact solution methods. 

The need for such heuristics has been motivated on 
the grounds that: 

i. the O(n2) complexity of the Wagner-Whitin algo- 
rithm was considered prohibitive for many of the 
above-mentioned settings where the model needs to 
be solved repeatedly for a larger number of items 
and/or different combinations of parameter values; 

ii. as is the case with most dynamic planning prob- 
lems, the dynamic lot sizing model is usually 
solved on a rolling horizon basis, whereby as each 
period passes, it is eliminated and replaced by a 
new period, appended at the end of the horizon. 
Many have asserted that a new optimal schedule 
obtained by exact optimization over the most re- 
cent horizon (with possibly updated parameters), 
may differ markedly from the previous schedule 
upon which some plans may already have been 
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based. This phenomenon is referred to as nervous- 
ness (see Steele 1973). 

It is argued that nervousness is best eliminated by 
adopting one of the history-based heuristics. In this 
paper, we provide a new perspective on the use of 
history-versus full horizon-based methods, and de- 
scribe how the latter can be designed efficiently to 
deal with the above-mentioned problems. 

As far as the complexity issue is concerned, new 
exact algorithms have been developed by Federgruen 
and Tzur (1991), Wagelmans, Van Hoesel and Kolen 
(1992) and Aggarwal and Park (1993) whose complex- 
ity is 0(n log n) for the general model and 0(n) for all 
cases for which the history-dependent heuristics were 
designed. In other words, there now exist exact (full 
horizon-based) solution methods whose complexity is 
of the exact same order of magnitude as that of these 
heuristics. 

The potential for nervous lot sizing schedules arises 
because of two distinct causes: the revised data effect 
and the truncated horizon effect. The former arises in 
rolling horizon procedures as one proceeds from one 
solution of the lot sizing model to the next, because 
cost as well as demand parameters are modified on the 
basis of new and more accurate data. The second 
effect consists of the extension of the horizon, poten- 
tially resulting in a change of many or all lot sizes, 
including the ones that pertain to initial periods. 

As far as the revised data effect is concerned, 
history-based heuristics are no more immune to the 
resulting potential for nervousness than their full ho- 
rizon-based counterparts. The former appear to have 
the advantage that the impact of a revised demand 
estimate for a given period is restricted to that and 
future periods only. The same partial stability may, 
however, be achieved in any full-horizon based 
method by fixing the decisions in all periods prior to 
those with revised demands. We now discuss why the 
latter approach results in more cost-effective sched- 
ules while ensuring the same (partial) stability. 

Several authors have addressed the truncated ho- 
rizon effect, by describing procedures for the detec- 
tion of planning and forecast horizons. A period L is 
called a forecast horizon if the decisions for the first 
iC periods in the optimal solution of a problem with 
horizon length L are not affected by the model pa- 
rameters for periods beyond the horizon L. Such a 
period e is called a planning horizon. We refer to n as 
the study horizon. (Some authors use the term deci- 
sion horizon for planning horizon and planning hori- 
zon for study horizon.) Clearly, all periods in a 

planning horizon are immune to the truncated horizon 
effect. 

Existing procedures for the identification of a plan- 
ning horizon have all been confined to special cases of 
the model, except for Bensoussan, Proth and 
Queyranne (1991) in which a procedure is described 
for the identification of a maximal planning horizon (if 
any) for any given study horizon. Their algorithm 
handles general, piecewise linear concave order and 
holding cost functions, a generalization of the basic 
model. The complexity of their algorithm is 0(n3) 

when applied to the basic model (and of higher com- 
plexity under general, piecewise linear functions). 

We show how minimal forecast horizons may be 
detected in the general model by a slight adaptation of 
the 0(n log n) forward algorithm in Federgruen and 
Tzur. (This appears to be a unique advantage of this 
algorithm compared with the other O(n log n) alter- 
natives.) Moreover, a detailed numerical study indi- 
cates that forecast horizons tend to be small, i.e., 
include a few orders, in particular, under considerable 
variability in the cost or demand data. 

The final question relates to ensuring stability of lot 
sizing decisions over an initial interval of time or 
stability horizon in those (relatively rare) cases where 
no planning horizon is detected or when this stability 
horizon extends beyond the planning horizon. Here 
we develop a heuristic, but full horizon-based adap- 
tation of the optimal lot sizing schedule, designed to 
minimize an upper bound for the worst-case optimal- 
ity gap under the desired stability conditions. We also 
show how the basic horizon length n may be chosen to 
guarantee any prespecified, positive optimality gap. 

In many practical single or multi-item lot sizing 
problems, it is necessary to address one or more 
capacity constraints. Even for the single-item capac- 
itated problem, no exact forecast horizon procedures 
are known. Indeed, the problem is NP-complete (see 
Florian, Lenstra and Rinnooy Kan 1980). This is why 
capacitated models are transformed into uncapaci- 
tated ones in practice. For example, even the more 
advanced material requirement planning systems 
(MRPII) start determining system-wide order releases 
without considering capacity constraints, i.e., on the 
basis of the uncapacitated single-item model, treated 
here. Only at the end is an attempt made to eliminate 
capacity conflicts by heuristic adaptations of the 
schedules. It is, therefore, important to demonstrate 
(whenever possible) that at least the basic schedules 
are invariant with respect to unknown future demand 
or cost parameters. Moreover, even for the single- 
item capacitated model, many heuristics are based on 
heuristic adaptations of an optimal schedule for the 
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uncapacitated version (see, for example, Dixon and 
Silver 1981, Karni 1981, and Nahmias 1989, subsection 
6.6). 

In other settings the uncapacitated model arises as 
a subproblem in a more complex (for example, hier- 
archical) planning model which is solved on a rolling 
horizon basis via Lagrangian relaxation. The cost 
parameters in such applications depend on the 
Lagrange multipliers. The bound maximizing values 
of these multipliers (even those which pertain to an 
initial interval of periods) vary in general with 
the chosen horizon. Forecast horizons found for the 
single-item subproblemrs and a given vector of 
Lagrange multipliers imply that the decisions which 
pertain to the associated planning horizons are opti- 
mal for all parameter values beyond the forecast ho- 
rizons, as well as sufficiently small variations of the 
Lagrange multipliers relevant to periods preceding 
these forecast horizons. (Exact ranges for the permis- 
sible variation of individual Lagrange multipliers are 
easy to compute, using the results in Van Hoesel and 
Wagelmans 1993.) The optimal Lagrange multipliers 
for initial periods are likely to be insensitive with 
respect to the chosen study horizon, as long as 
the overall capacity utilization is not close to one. The 
planning horizons identified for the uncapacitated 
models thus imply that decisions for periods up to 
these horizons remain optimal, as long as the optimal 
Lagrange multipliers for periods preceding the fore- 
cast horizon lie within the above-mentioned ranges, 
or, the search procedure for Lagrange multipliers is 
restricted to these ranges. 

Algorithms to detect planning and forecast hori- 
zons are due to Wagner and Whitin (1958), Zabel 
(1964), Lundin and Morton (1975), Chand (1982) and 
Bensoussan, Crouhy and Proth (1983). These algo- 
rithms apply to special cases where no speculative 
motives exist, i.e., where the per unit order cost 
increases by no more than the cost of carrying a unit 
in stock in each interval of time. Chand, Sethi and 
Proth (1990) and Chand, Sethi and Sorger (1992) ad- 
dress the special case where all parameters are con- 
stant, establishing existence as well as upper bounds 
for a forecast horizon in the undiscounted and dis- 
counted model, respectively. Eppen, Gould and 
Pashigian (1969) develop planning horizon procedures 
for the general model. These procedures may all fail 
to detect forecast horizons, i.e., they apply test con- 
ditions which are sufficient but not necessary. Only 
Chand and Morton (1986) describe a procedure for 
detecting a minimal forecast horizon for models with- 
out speculative motives. (In this case, the optimal, 
last setup period is nondecreasing in the horizon 

length, as observed in Wagner and Whitin, thus mark- 
edly facilitating the detection of forecast horizons.) 

A crucial element in our forecast horizon procedure 
is the construction of a minimal list of periods which 
are optimal, last order periods for some conceivable 
future horizon. Lundin and Morton first introduced a 
similar concept of a regeneration set, defined as a set 
containing optimal regeneration points (among possi- 
bly others), i.e., periods followed by an order, in 
some conceivable future horizon. Their planning ho- 
rizon theorems contain sufficient conditions for de- 
tecting a planning horizon, stated in terms of these 
regeneration sets; Lundin and Morton's work also 
appears to be the first to address optimality gaps 
associated with the first lot sizing decision in settings 
where no forecast horizon has been detected. 

As mentioned, Bensoussan, Proth and Queyranne 
describe a procedure for MP, the identification of a 
maximal planning horizon (if any) for a given study 
horizon n. The procedures in this paper identify min- 
imal forecast (MF) horizons for a given stability ho- 
rizon s ? 1. All other existing previous work 
addresses the same problem, albeit for the case s = 1 
only. MP and MF may be viewed as dual. Indeed, a 
procedure for MP may be transformed into a proce- 
dure for MF and vice versa, via a binary search with 
respect to the study horizon n or the stability horizon 
s, respectively. Lee and Denardo (1986) determine, 
for models without speculative motives, upper 
bounds for the error (i.e., the extra costs) which may 
be incurred by fixing the first ie periods' lot sizes on 
the basis of a lot sizing model of given length n, rather 
than some larger length T > n. The results in this 
paper extend theirs to the general lot sizing model. 

The remainder of this paper is organized as follows: 
In Section 1 we derive our procedures for the detec- 
tion of minimal forecast horizons and report the 
above-mentioned numerical study. In Section 2 we 
derive bounds for the optimality gap associated with 
any given first period decision; this section also de- 
scribes our proposed full horizon-based planning 
procedure. 

1. PROCEDURES FOR FINDING MINIMAL 
FORECAST AND PLANNING HORIZONS 

In this section we describe procedures for finding min- 
imal forecast horizons (and associated planning hPri- 
zons) for the general dynamic lot sizing model. The 
derivation of these procedures is based on an O(n log n) 
algorithm recently developed by Federgruen and Tzur 
to solve the dynamic lot sizing problem. 

The model is described by the parameters: 
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di = the demand in period i (i = 1, ..., n); 
K: = the setup cost in period i (i = 1, ..., n); 
ci = the variable per unit order cost in period i 

(i = 1, ... , n); 
hi = the cost of carrving a unit of inventory at the 

end of period i (i = 1, ... n); 

We assume, without loss of generality, that the start- 
ing inventory in period 1 and the ending inventory in 
period n equal zero. 

We use the following auxiliary notation: 

D(i) = Yk= d, represents the cumulative demand in 
periods 1, ,i. 

For all i < j, let 

dij = di + **- + dj-_ 

cij -- Ci + hi + *y + hj-l 
(the variable cost of ordering a unit in period i 
and carrying it till periodj); 

C(i) = Cin 

(Thus, with some algebra one verifies that for all i < 
j the following equivalency is satisfied: cij < cj if and 
only if C(i) < C(j).) 

In subsection 1.1 we summarize the properties of 
this algorithm that are essential for the derivation of 
the forecast horizon procedures. In subsection 1.2 we 
develop the procedure under the assumption that the 
optimal last order period for each horizonj = 1, ... 

n is unique. We then relax this assumption in subsec- 
tion 1.3 and extend the procedure to the general case, 
allowing for multiple, optimal last production periods. 
In subsection 1.4 we consider models in which at the 
beginning of period 1 all cost parameter trajectories 
are assumed to be known ad infinitum. Since we 
assume that no parameter values beyond the forecast 
horizon are known in the general case, a minor mod- 
ification to the general procedure is required. Finally, 
in subsection 1.5 we extend the minimal forecast ho- 
rizon procedures to ensure that the associated plan- 
ning horizon is at least as large as a prespecified 
so-called stability horizon. Our computational results 
are presented in subsection 1.6. 

1.1. Summary of an O(n log n) Algorithm to 
Solve the Dynamic Lot Sizing Problem 

It is well known since Wagner and Whitin that optimal 
policies exist under which orders are placed if and 
only if inventory equals zero, and such zero-inventory 
ordering policies are completely determined by the 
specification of the last order period f(j) preceding 
any given horizon j (j = 1,. .. ., n). Thus, we only 
consider solutions that satisfy the zero inventory 

property. Let F(j) the minimum cost in the first j 
periods (j = 1, . . . n), and F(e, j) = the minimum 
cost in the firstj periods if the final setup is performed 
in period -e < j (j =1, ... , n). 

The above-mentioned algorithm is a forward pro- 
cedure with n iterations. In the jth iteration we treat 
all future parameter values pertaining to periods 
(j + 1, j + 2,...., n) as unknown so that, in 
particular, all future cumulative demands may adopt 
any potential value D > D(j). The algorithm con- 
structs in the jth iteration a list Ql(j) containing all 
periods that, among the firstj periods, are optimal last 
order periods for some potential horizon t ? j with 
cumulative demand D > D(j). More specifically: 

Definition. Let Ql(j) = {i1, i2, ..., in} = {1 < f % 

j: There exists a horizon t ? j with a potential cu- 
mulative demand D D D(j) for which e is the lowest 
index with F(ie, t) = min1j,j1 F(i, t)}. Associated 
with the list Ql(j) are values D(j) = g(1) < ... < 
g(m) with the following property. 

Property. Let Ql(j) = {i1, i2, ... , in}. For all k = 

1, ... , M, ik is an optimal last order period among 
the periods 1, . . ., j for a horizon t ? j if and only if 
D, the cumulative demand over that horizon satisfies 
g(k) < D < g(k + 1) (with the convention 
g(m + 1) = oo). (See Lemma 2 and the discussion in 
Section 2 in Federgruen and Tzur.) 

The lists Ql(j) (j = 1, ... , n) are recursively 
updated and at the end of the jth iteration f(1), ... 

1(j) are available. The following inclusion holds: 

V(J+ 1)C[f(])U{]+ 1}] j =1, ...,n -1. (1) 

1.2. Minimal Forecast Horizon Procedure Under 
Unique Optimal Solutions 

In this subsection we assume that 1(j) is unique for all 
j = 1, ... , n. This assumption implies that a unique 
schedule exists for all horizons j = 1, ... , n. We 
derive an efficient procedure for the identification of 
the shortest forecast horizon and its associated plan- 
ning horizon. Let 

q(j) = the first order period after period 1 in any 
given schedule which is optimal among all 
schedules that place an order in period j 
(j = 2, ..,n); 

q(1)= 1. 

(Note that in every optimal schedule which places an 
order in period j, the ending inventory in period 
j - 1 equals zero; thus, all such schedules prescribe 
the same decisions in periods 1, ... , j - 1.) 
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We first derive the necessary and sufficient condi- 
tion for a periodj to be a forecast horizon. As pointed 
out in the Introduction, this generalizes Chand and 
Morton's necessary and sufficient condition for 
models without speculative motives for carrying 
inventories. 

Theorem 1. Fix j = 1, ..., n. Let fQ(j) = {il, 
i2, . i. .,m}. Period j is a forecast horizon if 

1 < q* -q(il ) = q(i2) =* =q(i ). (2) 

If (2) holds, then q* - 1 is a planning horizon. 

We first need the following lemma. 

Lemma 1. Fix j ? 1. In the optimal schedule for any 
horizon t ] j, an order is placed in some period i E 

Proof. By induction with respect to t. By the defini- 
tion of l(j) the lemma clearly holds for t = j; assume 
that it holds for all horizonsj, j + 1, . . . , t. Consider 
now the horizon of length t + 1. If e(t + 1) ] j, then 
e(t + 1) E f(j), by the definition of fl(j), and the 
lemma holds. If j < ?(t + 1) < t + 1, it follows from 
the zero-inventory ordering property that the first part 
of the optimal schedule for the horizon of length t + 
1 is also optimal for the horizon of length [e(t + 1) - 
1] < t. The lemma now follows from the induction 
assumption. 

Proof of Theorem 1. Assume first that (2) holds and 
consider an arbitrary horizon t ] j. By Lemma 1, the 
optimal schedule for this horizon prescribes an order 
in some period i E fQ(j) and hence in q(i) = q*. By 
the zero-inventory ordering property, it is therefore 
optimal to order D(q* - 1) units in period 1, and 
nothing in periods 2, .. ., - 1, regardless of cost 
and demand parameters pertaining to periods after 
period j. Therefore, j is a forecast horizon and q* 
1 the associated planning horizon. 

Conversely, assume that (2) fails to hold but that 
period j is a forecast horizon nevertheless. This im- 
plies, in particular, that the optimal order quantity in 
the first period is independent of any parameter value 
that pertains to periods after period j. Thus, in view 
of the zero-inventory ordering property, assume that 
it is optimal to order in period 1 the cumulative de- 
mand up to (but not including) some period r ? 1 for 
any horizon t ] j. This implies that period r is the first 
order period after period 1 in the corresponding op- 
timal schedule. Since (2) fails to hold, there exists an 
element ik E fl(j) with q(ik) ? r. Assume now that 
the unknown cumulative demand D(j + 1) satisfies 

g(k) < D(j + 1) < g(k + 1) and either Kj+1 or cj11 
is sufficiently large to preclude ordering in period 
j + 1. By the Property, 3(j + 1) = ik and it is 
uniquely optimal to order in period 1 the cumulative 
demand up to (but not including) period q(ik) ? r, 
which is a contradiction. 

Theorem 1 suggests an extremely simple procedure 
for the detection of a minimal forecast horizon and its 
associated planning horizon. Note, once again by the 
zero-inventory property, that 

(I if C(j -1)= 1 

q(j) = (= 2, ..., n). (3) 
lq(e(j - 1)) otherwise 

The above-mentioned forward solution method of 
the dynamic lot sizing problem is thus easy to adapt to 
allow for the detection of a minimal forecast horizon. 
Having computed and stored the values q(2), .... 
q(j - 1) in the first j - 1 iterations, q(j) is easy to 
compute via (3). Thus, to verify whether period j is a 
forecast horizon, it suffices to conclude the jth itera- 
tion with a test of whether (2) holds or not. This can 
be done efficiently by keeping track of the multiplicity 
of each distinct q-value among all q-values associated 
with elements of fl. 

Thus, using an additional n-array COUNT, let 

COUNT[r] = |{e E Q|q(e) = r}l (r = 1, ... , n). 

Note that this array needs to be updated only when an 
element is added to or deleted from fl, in which case, 
one of its entries is increased or decreased by one, 
respectively. At the end of the jth iteration of the 
algorithm, condition (2) may thus be checked by test- 
ing whether for example, 

COUNT[q(ij)] = If(j)l. (4) 

The work required to update the COUNT-array is 
constant per single deletion or addition of an element 
of fl. There are, at most, 2n such deletions and ad- 
ditions (see Federgruen and Tzur). The total amount 
of additional work required when appending the min- 
imal forecast horizon procedure to the basic algo- 
rithm, is thus 0(n) (including the test (4) at the end of 
each iteration). In other words, the integrated algo- 
rithm continues to have complexity 0(n log n) and 0(n) 
in the special cases identified in Federgruen and Tzur. 

1.3. Minimal Forecast Horizon Procedure Under 
Multiple Optimal Solutions 

In this subsection, we consider the general model in 
which several optimal last order periods and, hence, 
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several optimal schedules may exist for some hori- 
zons j (j = 1, . . ., n). We thus define: 

L(j) = {e: F(e, j) = F(j)} (j = 1, . . ., n) 

i.e., L (j) is the set of all optimal last order periods in 
the problem with horizon length j. Also, let 

Q(j) = {f: e is the first order period, after period 1, 
in some schedule which is optimal among all 
schedules that place an order in period j} 
(j = 2, *.,n), 

Q(1)= {1} 
One easily verifies, in direct analogy to (3), that 

rEL(j-) Q(r) if 1 g L(j -1) 

Q() = 4 j =2, ...,n. (5) 

rEL(j-1)\{1} Q(r) U {j} otherwise 

Computation of the sets L(j) and Q(j) (j = 2, ..., n) 
requires a slight modification of the algorithm in 
Federgruen and Tzur. The algorithm there, designed 
to identify one optimal solution only, eliminates ele- 
ments from the candidate list fl, whenever at least as 
good an alternative last order period prevails for ev- 
ery conceivable future horizon. To identify the sets 
L(j), j = 1, ..., n one needs to maintain every 
element which is not strictly dominated for all future 
horizons. It follows from the algorithm's stated prop- 
erty (see subsection 1.1) that an element ik E Q(j) is 
the unique optimal last order period for some poten- 
tial future horizon if g(k) < g(k + 1). If g(k) = 
g(k + 1) however, ik is a (nonunique) optimal last 
order period for a future horizon with cumulative 
demand D = g(k) = g(k + 1) and it is strictly 
dominated by some other element in the list Q( j) for 
all other values of D. 

The algorithm in Federgruen and Tzur eliminates 
such nonessential periods from the list. For the pur- 
pose of identifying the complete sets L(j) (j = 
1, ... , n) it is, however, necessary to keep such 
periods in the list. Thus, with this modification, we 
construct a list Q( j) = {f E, .. . , Im} defined by: {1 S 

t S j: There exists a horizon t > j with a potential 
cumulative demand D ? D(j) for which F(f, t) = 
min1,i,j F(i, t)} and with associated g-values such 
thatg(1) < g(2) < ... ** g(mi), as opposed to the list 
fl(j) constructed in the original algorithm in which 
the associated g-values are strictly ordered. (Note 
that fQ(j) 2 fl(j), j = 1, ..., n.) Thus, assume that 
the g-values associated with a list fQ(j) = {f, **, 
m-} contain m distinct g-values g( 1) < ... < g(m) 

within m m. For k = 1,..., m, let ik = 

fmax{r:g(r) =g(k)} denote the highest indexed element of 

fl(j) with the kth smallestg-value (see Table I). (Note 
from the property that among all elements of Q(j) 
with g-value equal to g(r) only ik is a unique, optimal 
last order period for certain potential future horizons. 
In other words, the minimal list fQ(j) = {i1, . . ., imr}) 

With the modified algorithm, and in view of the 
property, we easily identify L(j) at the end of the jth 
iteration as L(j) = {ek E f(j): g(k) = g(1) = D(j)}. 
Having computed L(j), Q(j) is identified via (5). 

We now restate the necessary and sufficient condi- 
tion for a period j to be a forecast horizon. 

Theorem 2. Fix j = 1, . . ., n. Period j is a forecast 
horizon iff there exists a period 

1<q*EQ(ir) forallr= 1,... ,m. (6) 

If (6) holds, q* - 1 is a planning horizon. 

Proof. In the general case where multiple optimal 
schedules may exist Lemma 1 continues to hold for 
some optimal schedule. Fix 1 < q* E Q f{Q(ir): 
r = 1, . . ., m}. The proof of the sufficiency part of (6) 
is identical to that given for Theorem 1. 

Conversely, assume that (6) fails to hold, but that 
periodj is a forecast horizon nevertheless. Define pe- 
riod r as in the necessity part of the proof of Theorem 1. 
Since (6) fails to hold, there exists an element ik E fl(j) 
such that r ? Q(ik). Specify period (j + 1)'s param- 
eters as in the proof of Theorem 1, so that in an 
optimal schedule for the corresponding planning 
problem with j + 1 periods, ik is the unique, best last 
production period. In other words, by the definition of 
the set Q(ik), for the schedule to be optimal it is 
necessary to order in period 1 up to some period in 
Q(ik), but r 0 Q(ik), which is a contradiction. 

Theorem 2 suggests a simple procedure for the 
detection of a minimal forecast horizon for the general 
case where multiple optimal solutions may exist. To 

Table 1 

Index g-Value 

El g(1) 
42 g(2) = g(1) 
E3 = il g(3) = g(1) = g(1) 

Er g(r) 
fr+ = ik g(r + 1) = g(r) = g(k) 

-(m) =(r-) g(m) 
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verify whether periodj is a forecast horizon it suffices 
to conclude the jth iteration of the (modified) algo- 
rithm with a test of whether (6) holds. As before, this 
can be done efficiently by keeping track of the multi- 
plicity of each of the q-values that belong to one of the 
Q-sets associated with elements of fl. The same 
COUNT-array may be used; its updates proceed as 
before and (6) may be verified at the end of the jth 
iteration by checking whether for some q E Q(il), 
COUNT[q] = Il(j)l. Under the extremely innocu- 
ous assumption that the cardinality of the Q-sets is 
uniformly bounded, we conclude again that the addi- 
tional work required when appending the minimal 
forecast horizon procedure to the basic algorithm, 
remains 0(n). The integrated algorithm thus has 
complexity 0(n log n) in the most general case and 
0(n) in the special cases identified in Federgruen 
and Tzur. 

1.4. Minimal Forecast Horizon Procedures 
Under Known Cost Trajectories 

In this subsection, we describe a modified procedure 
for the detection of minimal forecast horizons in 
models with known cost trajectories, i.e., where at 
the beginning of period 1 the parameters Kt, ht, and 
ct are assumed to be known for all t > 1. Special 
cases include models with constant cost parameters, 
as treated, for example, by Chand, Sethi and Sorger, 
and Chand, Sethi and Proth. Other cases include set- 
tings where the cost parameters follow a given trend 
and/or cyclical pattern. Our analysis indicates that to 
establish that a given period j is a forecast horizon, of 
all future cost parameters, only those pertaining to 
periodj + 1 can be used. Chand and Morton also give 
special treatment to this case, for models without 
speculative motives for carrying inventories. 

For the sake of notational simplicity, we restrict 
ourselves to the case where a unique optimal schedule 
exists for all horizons j = 1, . . ., n. (The extension 
to the general case is straightforward along the lines of 
subsection 1.3.) 

Note first that (2) continues to be sufficient. It may, 
however, fail to be necessary because under known 
cost trajectories some of the elements in the list l(j) 
can never arise as order periods in the optimal 
schedule of any future horizon t ] j. In constructing 
fl(j + 1) in the (j + 1)st iteration of our forward 
solution method, some elements of .(j) are elimi- 
nated because, after the addition of periodj + 1, they 
are identified as being dominated as last order periods 
in any (j + 1)-period problem with potential cumu- 
lative demand D > D(j). The elimination tests re- 
quire knowledge of period (j + 1)st cost parameters 

but, by definition, not of the future demand value 
dj+l. Under the assumption of known cost trajecto- 
ries, these eliminations can thus be conducted on the 
basis of the information available up to periodj. Let 

(j) C fl(j) denote the list obtained after the above 
deletions. (These deletions correspond with the exe- 
cution of the procedures DELUP and DELDOWN in 
Step 1 of the algorithm in Federgruen and Tzur.) 
Using the Property, it is now easy to verify that every 
i E fl(j) is the unique optimal last order period for the 
problem with horizon length j + 1 and some cumu- 
lative demand D. The following minimal forecast ho- 
rizon test now follows directly from the proof of the 
necessity part of Theorem 1. The test generalizes that 
obtained in Chand and Morton for models without 
speculative motives for carrying inventories. 

Theorem 3. Assume that all cost trajectories c,, Ki, 
hi are known for all i = 1, 2, .... Fixj = 1, ..., n. 
Let fQ(j) = {kl, ... , km} (with m < m). Period j is a 
forecast horizon iff 

1 < q*-=_q(kl ) = q(k2) q(km) (7) 

If (7) holds, period q* - 1 is a planning horizon. 

As before, the additional work required to perform 
test (7) at the end of each iteration remains of com- 
plexity O(n). The integrated algorithm (which in- 
cludes a procedure for the detection of a minimal 
forecast horizon) thus continues to require O(n log n) 
operations. In special cases, for example, those with 
constant cost parameters, the algorithm may be im- 
plemented in linear time (see Sections 3 and 4 in 
Federgruen and Tzur). 

1.5. Minimal Forecast Horizon Procedures for a 
Given Stability Horizon 

To our knowledge, all forecast horizon procedures, 
including the ones derived in subsections 1.2-1.4, 
accept any associated planning horizon. Such proce- 
dures are perfectly adequate if at the beginning of 
period 1 a commitment needs to be made with respect 
to the first period only. However, in many practical 
settings it is required or desired to obtain a planning 
horizon which is at least as large as a prespecified 
interval of time, which we refer to as the stability 
horizon (see the Introduction). 

In this subsection we describe how our minimal 
forecast horizon procedure may be extended to en- 
sure that a given stability horizon s is achieved. As in 
the previous subsection and for notational simplicity 
only, we restrict ourselves to the case where a unique 
optimal schedule exists for all horizonsj = 1, . . ., n. 
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(The extension to the general case is again straight- 
forward along the lines of subsection 1.3.) 

For a given stability horizon s - 1, define: 

the first order period j = s + 1,***, n 
after period s in any 
schedule which is 

q, (]) = optimal among all 
schedules that place 
an order in period] otherwise. 

Note that q1(j) = q(j) for all ] = 1, ..., n. In 
analogy with (3) one verifies that: 

j ~~~if C(j -1) :& s 

qs(j) (j = s + 1( 1. .,n) (8) 
q(.e(j - 1)) otherwise. 

The following corollary describes how to detect 
minimal forecast horizons, guaranteeing a planning 
horizon of length s or larger. Its proof is immediate 
from Theorem 1 and the definition of qs( ). 

Corollary 1. Fixj = 1, .. ., n and s i j. Let f(j) = 

{il, ... , im}. Period j is a forecast horizon for a 
stability horizon s, iff 

1 < q* -qs(il) = qs(i2) = = qs(im). (9) 

If (9) holds, then q - 1 is a planning horizon equal 
to or larger than the stability horizon s. 

To detect a minimal forecast horizon for a given 
stability horizon s ? 2, the procedure described in 
subsection 1.2 may be adopted, merely replacing the 
recursive computation of the q-values via (3) by that 
via (8). The resulting integrated algorithm has the 
same complexity (O(n log n)) as that in subsection 
1.2. 

1.6. Numerical Results 
In this subsection we describe the results of a numer- 
ical study conducted to evaluate the magnitude of 
minimal forecast horizons in a variety of lot sizing 
problems. We have evaluated a total of 435 problems. 
Their one-period parameters di, Ki, ci and hi are 
generated from the following first-order auto- 
regressive equations: 

d1e' K Ke~ c1ec h he d, = ell k, = el, I cl= ell h, el; 

and for i > 1: 

di = adi-, + (1 - )ei; 

Ki = aKi-, + (1 - )ef; 

ci = acCi- + (1- a)ef; 

hi = ahi-, + (1 a)eP; 

where the random variables in each of the sequences: 
{ed: i 1, ..., oo}, {eK: i = , ..., oo}, {e: i 

1, ..., oo}, and {eh: i = 1, ..., oo} are independent 
and uniformly distributed on the integer values of a 
prespecified interval. The random variables e, and eh 

are, in all problem instances, uniformly distributed on 
the integer values of the interval [1, 5]. The distribu- 
tion of the eK and e d variables differ per problem 
category, as specified below. The autoregressive pat- 
terns reflect correlations between consecutive param- 
eter values, as typically observed in most practical 
settings. Note also that this specification corresponds 
with one of the most popular forecasting techniques, 
i.e., the technique of exponential smoothing. The ex- 
treme case where a = 0 corresponds with fully inde- 
pendent and random parameter values; in the other 
extreme case where a = 1, the parameter values stay 
completely constant over time. 

Table II specifies 25 problem categories, each con- 
sisting of 15 problem instances. The problem catego- 
ries differ by the assumed values of a and the intervals 
from which the e[K and e d random variables are gen- 
erated (uniformly). For each problem category, we 
report the minimum, maximum, and median values of 
the computed minimal forecast horizons and the as- 
sociated planning horizons. The last three columns in 
the table specify the minimum, maximum, and me- 
dian values of the total number of setups (including 
period l's setup) employed over a horizon which is 
equal to the minimal forecast horizon. 

We conclude that the minimum forecast horizon is 
surprisingly short in virtually all of the above problem 
instances. This is particularly apparent when consid- 
ering the "number of setups" columns where the 
median values are equal to 2 in the first 20 categories 
and equal to 3 in the remaining 5 categories (all with 
a = 0.8). In other words, a forecast horizon tends to 
exist even when planning over a horizon that contains 
no more than one or two order cycles! It is fair to 
surmise that in practice virtually all dynamic lot sizing 
models are solved over horizons that contain more 
than two order cycles. Note that the median values of 
the obtained planning horizons tend to be half as large 
as the corresponding forecast horizons. 

The forecast and planning horizons increase almost 
invariably with a. In other words, the larger the 
interperiod variability of the parameter values, i.e., 
the more the dynamic lot sizing model differs from the 
standard EOQ model, the shorter a minimal forecast 
horizon can be expected! This empirical phenomenon 
may be understood as follows: The larger the inter- 
period variability of the parameter values, the more 
likely it is that a specific choice f for the first order 
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Table II 
The Impact of the Correlation Between Consecutive Periods on Forecast and Planning Horizon 

Forecast Horizon Planning Horizon Number of Setups 
a d K Min. Max. Median Min. Max. Median Min. Max. Median 

0.0 [1, 10] [1,50] 2 5 3 1 3 2 2 3 2 
[1,100] 3 6 4 1 4 3 2 3 2 
[1, 200] 2 8 5 1 4 3 2 3 2 
[1,500] 3 11 7 1 7 4 2 3 2 

[1, 1000] 4 12 8 2 9 4 2 3 2 

0.0 [1,5] [1,50] 2 6 3 1 4 2 2 2 2 
[1,100] 2 9 6 1 5 3 2 3 2 
[1, 200] 3 11 7 1 7 3 2 3 2 
[1, 500] 2 11 8 1 8 4 2 3 2 

[1, 1000] 6 18 8 1 10 4 2 3 2 

0.2 [1,5] [1,50] 2 8 4 1 4 2 2 3 2 
[1, 100] 3 9 5 1 5 3 2 3 2 
[1, 200] 2 13 8 1 8 4 2 3 2 
[1,500] 6 17 10 3 10 7 2 3 2 

[1, 1000] 8 27 13 3 11 7 2 3 2 

0.5 [1, 5] [1,50] 2 13 6 1 5 3 2 5 2 
[1, 100] 4 17 7 1 6 2 2 5 2 
[1, 200] 6 26 9 3 6 5 2 6 2 
[1, 500] 8 24 11 3 12 6 2 4 2 

[1, 1000] 12 39 19 3 15 10 2 4 2 

0.8 [1,5] [1,50] 3 17 6 1 4 2 2 8 3 
[1, 100] 5 25 9 1 6 4 2 7 3 
[1,200] 7 19 12 2 8 5 2 4 3 
[1, 500] 9 49 20 4 10 6 2 7 3 

[1, 1000] 15 48 27 5 17 12 2 5 3 

period after period 1 has characteristics which are 
significantly different from those pertaining to adja- 
cent periods; for example, a low fixed or per unit 
order cost, or large demand value. Such a period is, 
therefore, more likely to be optimal for all potential 
horizons beyond a relatively small forecast horizon. 

The above conclusions continue to hold if the 
interperiod variability of the parameters is increased 
due to an increase of the variance of the e-variables. 
To substantiate this assertion, we have investigated 
four additional problem categories (again with 15 
problem instances each) in which only the variance of 
the eK~ variables is systematically increased (keeping 

everything else unaltered). See Table III in which 
the problem categories are ranked in increasing order 
of the variance of the e>-variables. The median value 
of the minimal forecast horizons, the planning hori- 
zons, and the number of setups, all decrease from one 
problem category to the next, with just two minor 
violations of this monotonicity pattern. Note from 
Table II that the median values of the minimal fore- 
cast horizons tend to increase rather than decrease as 
the upper limits of the range of the efK-variables 
is increased, leaving everything else unaltered. Such 
increases have two conflicting effects on the minimal 
forecast horizon: The increase in the mean of the 

Table III 
The Impact of the Setup Cost Variability on Forecast and Planning Horizons 

Forecast Horizon Planning Horizon Number of Setups 
a d K Min. Max. Median Min. Max. Median Min. Max. Median 

0.5 [1, 5] [475, 525] 22 68 34 9 16 13 2 6 3 
[450, 550] 15 72 36 6 14 10 2 7 3 
[400, 600] 14 56 34 6 14 11 2 5 3 
[250,750] 13 57 25 6 13 10 2 6 3 
[1,1000] 12 39 19 3 15 10 2 4 2 
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K e -variables results in an increase of the average 

order cycle and hence of the forecast horizon; this 
effect tends to dominate that resulting from the in- 
creased variance of these variables. See, however, 
Chand, Sethi and Proth for counterexamples for the 
above monotonicity. 

2. WHAT TO DO IF NO APPROPRIATE 
FORECAST HORIZON IS FOUND 

In most practical settings dynamic lot sizing models 
are solved over a horizon which can be expected to 
include more than two or even five order cycles. The 
numerical results in subsection 1.6 thus suggest that a 
forecast horizon associated with a desirable stability 
interval can be detected in many practical settings. In 
this section we propose planning procedures for those 
(presumably rare) cases where no appropriate 
forecast horizon is detected. 

We first (subsection 2.1) derive bounds for the op- 
timality gap associated with any given first period 
decision, i.e., for a given choice of the first order 
periodf after period 1 (2 < f < n). We also discuss 
the asymptotic behavior of these bounds. In subsec- 
tion 2.2 we describe our proposed full horizon-based 
planning procedure. 

2.1. Bounding the Worst-Case Optimality Gap 
for the Initial Decision 

We bound the worst-case optimality gap that may 
arise over some future horizon t in excess of n (the 
number of periods for which adequate data are avail- 
able). Thus, define: 

Ff(t) = the minimum cost over a horizon of length 
t, given that period f is chosen as the first 
order period after period 1, t > n; 

E(f, n) = maXt-n max {[Ff(t) - F(t)]/F(t): all possible 
parameters in periods n + 1, ... , t}. 

Clearly, F(t) = Fq(t) for some q = q(i) with i E 
fQ(n), provided that for every horizon t ? n the first 
order period after period 1 is guaranteed to be one of 
the periods 2, ... , n. (This qualification can be rig- 
orously shown to hold for sufficiently large n and mild 
conditions with respect to the model parameters (see, 
for example, Proposition 1 in Federgruen and Tzur). 
In practice, the qualification can be assumed to hold 
for relatively small values of n.) We first need the 
lemma that follows; see the Appendix for the proof. 

For all i = 1, ... , n let A(i) denote an upper bound 
for the first period whose demand cannot be satisfied 
optimally by an order in period i or earlier. Such 
upper bounds are easily computable as a function of 
the known parameters in periods i, i + 1, . .. , n, for 

example, as in Proposition 1 of Federgruen and Tzur. 
Also defined di, = o if t > n + 1. 

Lemma 2. Fix t > n. 

a. Let 2 < i < j < n. Fi(t) - Fj(t) S Uij where 

(Ki-KJ) + [C(i)-C(1)]dij 
if C(i) S C(j) (lOa) 

U 
=Ki + [C() -C(M)dij 

if C(i) > C(j). (lOb) 

b. Let 2 < j < i < n and Cmiin = minj r<i C(r). Fi(t) 
- Fj(t) S Uij where 

C Ki .j) + [C(l) - CJm 

Uii = K if CjTi " C(i) (lla) 
UX1 =)(Ki-(Kj) + [C(1) - Cjin] 

+ [C(i) - Cjin] diA(k) otherwise. (llb) 

c. Let 2 < i < min {e: e E fQ(n)}. Fi(t) - F(t) S 

U' where 

Ui = max {Fi (e - 1) - F(e - 1)}. (12) 

Note that the expressions to the right of (lOa), 
(lOb), (lla), and (12) are all finite; the expression to 
the right of (llb) is infinite only if A(i) > n + 1. 

For all i < j, Lemma 2 thus provides afinite bound 
for the cost differences Fi(t) - F (t) or Fi(t) - F(t), 
which is independent of the value of t and the un- 
known demand and cost trajectories beyond the ho- 
rizon n. This implies thatf, the first order period after 
period 1, can always be chosen such that the cost 
difference Ff(t) - F(t) is uniformly bounded; for 
example,f = min {q: q = q(i) for some i E fQ(n)}. 

The -following theorem shows that the same is true 
with respect to the optimality gaps E(f, n). 

Theorem 4. a. For all 2 < f S n, 

E(f, n) < [F(n)]1 max {Ufq: q = q(i) (13a) 

for some i E fQ(n)}. 

b. Forall 2 fmin {e: e Efl(n)}, 

,E(f, n) _< [F(n) ] Uf. (13b) 

Proof. This is immediate from Lemma 2, the fact that 
F(t) = Fq(t) for some q = q(i) with i E Q(n), and 
the inequality F(t) > F(n) for all t > n. 

The bounds in Theorem 4 generalize those obtained 
by Lee and Denardo for models without speculative 
motives for carrying inventories. For this special 
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case, the bounds in part b reduce to theirs. (Note, 
Lee and Denardo derive bounds for [Ff(t) - F(t)] 
where Ff (t) < Ff (t) denotes the minimum cost over 
a horizon of length t given that some (not necessarily 
the first) order is placed in periodf.) Note that for any 
f > 2, the upper bound in part a can be computed in 
O(n) time. Repeating the algorithm in Federgruen and 
Tzur by starting in period f rather than in period 1, 
one obtains the values Ff(C) (4 = f, ... , n) and 
hence Uf; its computation thus requires O(n log n) 
time in the most general case and O(n) in all special 
cases identified in Federgruen and Tzur. The bound in 
part a is clearly simpler to compute than that of part 
b; we expect the latter to be tighter, in general. 

LetEn = minf E (f, n) denote the minimum worst- 
case optimality gap at stage n (n > 1). Under weak 
assumptions with respect to the single period param- 
eters {di, Ki, hi, ci} it is, in fact, easy to show that the 
minimum optimality gap En decreases to zero, as n 
tends to infinity. In other words, an asymptotically 
optimal first period decision can be determined. 

Corollary 2. Assume that there exists an integerM ? 
1, and constants h., c*, K* and c * such that 
(di + + di+M) > 1, hi > h*, c, > c*,K, K< K* 
and c c* for all i = 1, , n. Then, limnOO en = 

0. - 

Proof. See the Appendix. 

For settings where the horizon n may be varied 
Corollary 2 implies that for every precision E > 0, an 
E-optimal first order period after period 1 (f ) may be 
found for sufficiently large values of n (i.e., there 
exist choices of f such that E(f, n) - E for all n 
sufficiently large). 

2.2. What To Do If No Appropriate Forecast 
Horizon is Found: A Recommended Menu 
of Planning Procedures 

We now discuss what planning procedures should be 
adopted in the (presumably rare) cases where no ap- 
propriate forecast horizon is detected with the proce- 
dures described in Section 1 (see subsectioii 1.6). We 
first recommend computing the bounds for the opti- 
mality gap E(f, n) (as specified in Theorem 4) for 
some or all values of f E {q: q = q(i) for some i E 
Q1(i)} in the hope that this worst-case bound be 
acceptably small for at least one of the candidate 
values of f. 

Recall that the set {q: q = q(i) for some i E Q(n)} 
is a singleton if n is a forecast horizon. If n fails to be 
a forecast horizon, the set is likely to be very small. 
In any case, its cardinality is no larger than Il(n) . In 

all of our computational work we have found the latter 
never to be larger than 5 (see Federgruen and Tzur). 
It is uniformly bounded under mild parameter condi- 
tions (see Proposition 1 in Federgruen and Tzur). 

This leaves us with the question of how to proceed 
if every possible first period decision is associated 
with a significant worst-case optimality gap or bound 
thereof. It is in these cases that a new optimal sched- 
ule, obtained in a rolling horizon procedure by exact 
optimization over the most recent horizon, may differ 
markedly from the previous such schedule upon 
which some plans may already have been based. An 
equal degree of stability, however, is achieved 
whether the first period decisionf is fixed on the basis 
of one of the many history-based heuristics, or if it is 
fixed, for example, in accordance with the full 
(n-period) horizon solution, i.e., f = q(4(n)). More- 
over, the latter alternative represents a superior 
tradeoff of current and future cost and demand con- 
siderations over all periods for which adequate data 
prevail; this is particularly true because all history- 
based heuristics assume constancy in all or some of 
the cost parameters and are therefore ill equipped to 
deal with the general lot sizing model. 

Note, moreover, that any of the periods in {q: q = 

q(i) for some i E fl(n)} is a sensible choice for the 
first order period decision f, not just the specific 
choicef = q(-C(n)). In selecting among the periods in 
{q: q = q(i) for some i E Q(n)} it is useful to be 
guided by the bounds for the worst-case optimality 
gaps, as obtained in Theorem 4. 

This suggests the following full horizon-based 
heuristic. 

Full Horizon-Based Heuristic 

STEP 1. Apply the forward algorithm in 
Federgruen and Tzur with the above-described asso- 
ciated procedure for detecting minimal forecast hori- 
zons. If a minimal forecast horizon with associated 
planning horizon q * - 1 is detected, then setf* = q 
and terminate. Otherwise, go to Step 2. 

STEP 2. Use (13a), (13b), or both to compute an 
upper bound for E(f, n) for all f E {q: q = q(i) for 
some i E fQ(n)} and select a value of f which mini- 
mizes this upper bound. 

APPENDIX 

Proof of Lemma 2 

Part a. Consider a schedule wr under which period j 
is the first order period after period 1 and with cost 



FEDERGRUEN AND TZUR / 467 

Fj(t). Let s(o) denote the next order period under this 
schedule, if any; otherwise s(j) = t + 1 

Case 1. (C(i) < C(j)) Let F(t) denote the cost of the 
schedule + which orders in periods 1, i, and s(j), and 
follows schedule Tr thereafter. Clearly, Fi(t) - 
Fj(t) - F(t) - Fj(t). The difference in setup costs 
incurred under schedules iv and w is clearly given by 
(Ki - Kj). For all units sold prior to period i and from 
period s(j) on, the same variable order and holding 
costs are incurred under both schedules. Finally, it is 
easy to verify after some algebra that the differences 
in variable costs incurred for the units sold in the 
intervals [i, j - 1] and [j, s(j) - 1] are given by 
[C(i) -- C(1)]d1j and [C(i) - C(j)]djs(j), respec- 
tively. Combining all cost components we conclude 
that Fi(t) - Fj(t) % F(t) - Fj(t) S (Ki - Kj) + 
[C(i) - C(1)]di + [C(i) - C(j)]djs(j) S 

(Ki - Kj) + [C(i) - C(1)]d11, where the last inequal- 
ity follows from the assumption that C(i) S C(j). 

Case 2. (C(i) > C(j)) Let F(t) denote the cost of the 
schedule ir2 which orders in periods 1, i, and j, and 
follows schedule Tr' thereafter. Clearly, Fi(t) - 

FJ(t) S F(t) - Fj(t). The difference in setup cost 
incurred under schedules n2 and T- is clearly Ki. For 
all units sold prior to period i and from period] on, the 
same variable order and holding costs are incurred 
under both schedules. The difference in variable costs 
incurred for the units sold in the interval [i, j - 1] is 
given by [C(i) - C(1)]d1j, so that Fi(t) - Fj(t) < 

F(t) - Fj(1) < Ki + [C(i) - C(1)]dij. 

Part b. Let T' denote the schedule defined in part a. 
Let a(i) = min {f e i: -e is an order period under T7}. 

Let F(t) denote the cost of the schedule m- which 
orders in periods 1, i, and a(i), and follows 1Tr there- 
after. As before, Fi(t) - Fj(t) < F(t) - Fj(t). The 
difference in setup costs incurred under schedules ir 

and wr is clearly bounded by (Ki - Kj). (The differ- 
ence equals (Ki - Kj) only if under 17H no orders are 
placed between periods]j and i.) For all units sold 
prior to period j and after period a (i) both schedules 
incur the same variable order and holding costs. 
Finally, it is easy to verify that the difference in 
variable costs incurred for the units sold in the inter- 
vals [j, i - 1] and [i, a(i) - 1] are bounded by 
[C() _ 

Cj a C(i) C Cjm]dia(i), respec- 
tively. Adding all cost components we conclude 
that Fi(t) - Fj(t) < F(t) - Fj(t) < (Ki -Kj) + 

[C(1) - Cmin]dji + [C(i) _ Cji learly 

dia(i) 6 diA(i), hence (lla) and (llb). 

Part c. Consider an optimal schedule vT for the 
t-horizon problem. In view of Lemma 1, there exists 
a period 4* E f(n) in which an order is placed. Let 
Fi(e*, t) denote the minimum cost of any schedule Tr' 
which places its first order in i and a subsequent order 
in 4*. Note that from period e* on, identical costs are 
incurred under Tr and Tr'. Thus, 

Fi (t) -F(t) Fi (f * , t) -F(t) 

=Fi(f* - 1) - F(f* - 1). 

Proof of Corollary 2. The parameter conditions in this 
corollary guarantee that A(1) is uniformly bounded in 
n (see Proposition 1 in Federgruen and Tzur). Clearly, 
F(n) o an for a = c*/M and all n > 1. This implies 
the existence of a uniform upper bound for optimal 
first order periods after period 1, i.e., the existence of 
a number I such that for all n ? 1, q < I if q = q(i) 
for some i E Q(n). Let 

f(n) = min {q: q = q(i) for some i E fQ(n)}. (14) 

It follows from (14) that En S E(f(n), n) S a-ln-1 
max {Ui: i < j < I}. The corollary follows easily 
because Uij < oo is independent of n for fixed i < j. 
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