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In this paper we develop a model for a capacitated production/ distribution network of general 
(but acyclic) topology with a general bill of materials, as considered in MRP (Material Re- 

quirement Planning) or DRP (Distribution Requirement Planning) systems. This model assumes 
stationary, deterministic demand rates and a standard stationary cost structure; it is a gener- 
alization of the uncapacitated model treated in the seminal papers of Maxwell and Muckstadt 
(1985) and Roundy (1986). The capacity constraints consist of bounds on the frequency with 
which individual items can or need to be replenished. 

We derive a pair of simple and efficient algorithms capable of determining an optimal power- 
of-two policy. These algorithms consist of a limited number of maximum flow computations 
in networks closely related to the production/distribution network. The complexity of these 
algorithms, even when applied to the uncapacitated model, compares favorably with that of 
the existing alternative solution methods. 
(General Production/ Distribution Networks; Capacity Constraints; Power-of-two Policies) 

For most production / distribution systems, the task 
of identifying cost effective replenishment strategies for 
raw materials, work in-progress and finished goods' in- 
ventories is complicated by the interdependencies that 
exist between different items and production / distri- 
bution stages. The replenishment strategy of a given 
item, at a given location or production stage, cannot be 
determined in isolation but needs to be closely coordi- 
nated with that of all preceding and subsequent pro- 
duction stages (or higher and lower level stocking points 
in a distribution system). Often, additional complica- 
tions in identifying feasible and cost effective replen- 
ishment strategies arise due to capacity constraints which 
impose bounds on the frequency with which individual 
items can be replenished. 

In this paper we develop a model for a capacitated 
production / distribution network of general (but 
acyclic) topology with a general bill of materials, as 

considered in MRP (Material Requirement Planning) or 
DRP (Distribution Requirement Planning) systems. This 
model assumes stationary, deterministic demand rates 
and a standard stationary cost structure; it is a gener- 
alization of the uncapacitated model treated in the sem- 
inal papers of Maxwell and Muckstadt (1985) and 
Roundy (1986) where it is shown that a simple, so- 
called power-of-two policy exists whose cost is guaran- 
teed to come within a few percentage points of opti- 
mality. A power-of-two policy prescribes for each 
product i a replenishment interval Ti such that a re- 
plenishment for this product occurs at times 0, Ti, 2Tj, 
3Tj, * * * and its inventory level is zero at each such 
replenishment epoch. Moreover, every replenishment 
interval is chosen as a power-of-two multiple of a com- 
mon base planning period. We derive a pair of simple 
and efficient algorithms capable of determining an op- 
timal power-of-two policy. The complexity of these al- 
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gorithms, even when applied to the uncapacitated 
model, compares favorably with that of the existing al- 
ternative solution methods. 

More specifically, consider a production/distribution 
network represented by a general directed acyclic net- 
work G, with node set N(G) and arc set A(G). Let N 
= IN(G)I and A = IA(G)I. Each node is associated 
with a "product," where a "product" represents a spe- 
cific in-process or finished item, at a given physical lo- 
cation and / or production stage. With this general 
11product" definition, a directed arc(i, j) between a pair 
of nodes i, j E N(G) indicates that product i is used to 
11produce" product j. The network is assumed to be 
acyclic to exclude circuits of products, each of which is 
consumed in producing its successor. 

External demands may occur for any of the items, 
i.e., at any of the nodes in the network. These demands 
occur continuously at (item specific) constant rates. 
Components may be assembled in any given propor- 
tions. No backlogging is allowed. The cost structure 
consists of item-specific inventory carrying costs and 
variable and fixed production/distribution costs. In- 
ventory carrying costs are incurred at constant rates per 
unit and per unit of time. Variable production costs are 
proportional to the production volumes. All production 
(distribution) orders are instantaneously delivered. 

Upper and lower bound constraints may be imposed 
on the replenishment frequency of each individual item. 
We first describe a variety of settings in which capacity 
constraints of this type arise because of externally im- 
posed, technical or physical limitations. 

(1) Constraints on Production and Distribution 
Resources 

Assume a product is manufactured in a dedicated fa- 
cility with a capacity of C hours (e.g., per day). For each 
production run, a setup time S is incurred; variable pro- 
cessing times increase proportionally with the size of 
the production run at a rate of u hours per unit pro- 
duced. If a policy replenishes the product every T days, 
the total capacity required for a single run cannot be 
larger than the available capacity in an interval of length 
T, i.e., 

u(Td) + S < TC or T ? b = S/(C-ud). 

Similar capacity constraints arise, e.g., in multiechelon 
distribution systems in which a facility is supplied from 

a unique internal or external supplier, via a fleet of ve- 
hicles of given capacity C. 

(2) Limited Storage Space 
Assume a product with demand rate d is stored in a 

dedicated storage area with capacity Q. Thus if a zero- 
inventory ordering policy replenishes the product every 
T time units, the order quantity (dT) represents the 
maximum inventory level and cannot exceed the ca- 
pacity Q. Thus, dT < Q or T < b = Q/d. 

(3) Palletized Reorders 
Strongly advocated in Just-in-Time programs is the 

use of pallets capable of containing for item i a multiple, 
say bi of its daily demand di. It is reasonable to consider 
situations where all pallet sizes (bi: i E N) are chosen 
as power-of-two multiples of a common standard size 
TL, i.e., for every item i, bi = 2' i TL for some integer ni. 

As the product is progressively manufactured, it is 
also reasonable for lots to be split so that ni ? nj for 
(i, j) E A(G), perhaps because of the size of the now 
partially assembled product. As a result, setup costs fail 
to be independent of the batch size Q, but instead are 
proportional with the required number of pallets; thus, 

Ki(Q) = K[Q/(bidi)l (1) 

where Fxl represents the smallest integer greater than 
or equal to x. It is easily verified (see Appendix 1) that 
an optimal nested power-of-two policy can be found 
for this setting, assuming a simple fixed setup cost K 
(instead of the step function (1)) prevails and imposing 
the constraint Ti ? bi. 

There are many other settings where the cost asso- 
ciated with a production run or distribution delivery is 
a step function of the production (distribution) volume, 
as in (1). Examples include production with containers 
or vessels or distribution with vehicles of given, stan- 
dardized sizes. Order cost structures of this type have, 
for example, been considered in Lippman (1969, 1971), 
Swoveland (1975), Aucamp (1982) and Joneja (1989). 

We refer to Zheng (1987) for a description of a 
branch-and-bound method which may be used when 
the bi numbers fail to be nested power-of-two multiples. 
An instance of the model in this paper is used to evaluate 
each node of the branch-and-bound tree. 

In addition, upper bounds for the replenishment cy- 
cles are often self-imposed in Just-in-Time programs be- 
cause of the increasing realization that inventory re- 
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ductions which result from shorter cycles have benefits 
far beyond those of reduced direct inventory carrying 
charges. For example, warehouse and floor space needs 
are reduced significantly to the point where complete 
warehouses can be closed down and significant amounts 
of plant floor space become available for alternative 
uses. Material handling costs can be cut. Reduced in- 
ventories imply shorter leadtimes, which in turn allow 
for faster responses to changing customer needs and 
faster feedback with quality problems, thereby reducing 
scrap losses and rework costs. We refer to models with 
such capacity constraints as capacitated models, and 
those without such constraints as uncapacitated models. 

As mentioned above, the uncapacitated model was 
introduced in a seminal paper by Maxwell and Muck- 
stadt (1985). These authors identify an O(N4) (Divide- 
and-Conquer) algorithm for the determination of an 
optimal nested power-of-two policy. Under a nested pol- 
icy, each node j places an order each time any one of 
its immediate predecessor nodes i does. (Node i is a 
predecessor of j, if (i, j) E A(G).) 

Roundy (1986) shows that the cost of the best nested 
power-of-two policy may be arbitrarily bad compared 
to the optimum cost value, but that the cost of the best 
unrestricted (i.e., nested or unnested) power-of-two 
policy is guaranteed to come within 6% or 2% of the 
optimum cost value (depending upon whether the base 
planning period is fixed or may be varied respectively). 
He also shows that the Divide-and-Conquer algorithm 
can be used to determine an optimal power-of-two pol- 
icy in 0(R3N) time with R the number of routes in the 
network, i.e., the number of directed paths in G that 
start at an arbitrary node and terminate at a node with 
external demand. In this paper we consider a fixed base 
planning period. 

As mentioned above, we derive a pair of algorithms 
capable of determining an optimal power-of-two policy 
for the general capacitated model. The fastest of these 
algorithms determines an optimal power-of-two policy 
in O(RN2) elementary operations. When used to de- 
termine the best nested power-of-two policy, its com- 
plexity is O(N3). The complexity of these algorithms, 
even when applied to the uncapacitated model, com- 
pares favorably with that of existing alternative meth- 
ods, which, we recall, is 0(R3N) to find the best un- 
restricted power-of-two policy and 0(N4) to find the 

best nested power-of-two policy. Both of the proposed 
algorithms consist of a limited number of maximum flow 
computations thus enabling the use of standard software 
packages. 

As shown in Maxwell and Muckstadt (1985) and 
Roundy (1986), the problem of determining an optimal 
power-of-two policy may be formulated as a nonlinear 
integer program with the replenishment intervals as 
decision variables. As is the case for the Maxwell and 
Muckstadt algorithm, the first of the two algorithms 
proposed in this paper is based on a two-stage procedure: 
the first stage constructs a solution of the continuous 
relaxation of the problem; in the second stage this so- 
lution is rounded to a power-of-two vector. When ap- 
plied to uncapacitated models, the two-stage procedure 
may in fact be viewed as a variant of Maxwell and 
Muckstadt's Divide-and-Conquer algorithm. We de- 
velop in addition a direct algorithm which solves the 
integer problem directly. Its complexity is smaller than 
that of the two-stage algorithm by a factor N. The two 
stage procedure on the other hand, has the advantage 
of generating (as an intermediate result) a solution to 
the continuous relaxation, the cost of which provides a 
lower bound for the minimum cost value. 

The two-stage algorithm is based on a characterization 
theorem describing necessary and sufficient conditions 
for an optimal solution of the relaxed program. This 
characterization theorem extends the corresponding 
theorem for uncapacitated models, as obtained in Jack- 
son et al. (1988). Our proof is based on two simple 
duality results only: the duality theorem for convex 
programming and the max-flow min-cut theorem. The 
proof motivates our maximum flow based algorithm. A 
similar characterization theorem may be obtained for 
the original integer program and motivates the direct 
algorithm. 

The remainder of this paper is organized as follows. 
In ?1, we introduce the uncapacitated and capacitated 
model and discuss various settings in which bounds 
arise for the items' replenishment frequencies. Section 
2 states the characterization theorem for the relaxed 
problem and the two-stage algorithm; in ?3, we describe 
the direct algorithm and the underlying characterization 
algorithm for the original integer program. In ?4 we 
describe how our algorithms specialize when applied 
to the uncapacitated model. 
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1. The Model 
In this section we introduce notation and preliminaries 
required for the remainder of this paper. We first specify 
a mathematical programming formulation for the model 
without capacity constraints (subsection 1.1 ); next, ca- 
pacity constraints are added to the model. 

1.1. The Uncapacitated Model 
Since the network G is acyclic, assume without loss of 
generality that the products are numbered such that 
(i, j) E A(G) only if i < j. 

For each node i E N(G), let P(i) [S(i)] indicate the 
set of its immediate predecessors (successors) in the 
network, i.e., 

P(i) = I j E N(G) I (j, i) E A(G)} and 

S(i) = { j E N(G)I(i, j) E A(G)} 

For each arc (i, j) E A (G), Xij represents the number of 
units of product i required to produce one unit of prod- 
uct j. Let d' represent the rate at which external demands 
for product i arise; h' denotes the cost per unit of time 
for carrying one unit of product i. The incremental 
holding cost rate for product i is given by 

hi = ht E Rji hj. (1) 
jEP(i) 

These incremental holding cost rates are assumed to 
be nonnegative, i.e., hi ? 0, i E N(G). Let No be the set 
of products with no predecessors. Without loss of gen- 
erality, we assume that hi > 0 for all i E No: if hi = 0 
for some i E No, infinitely large quantities of this product 
may be ordered from external sources with zero result- 
ing inventory costs. Such a product may clearly be 
eliminated from the model. 

Let Ki denote the fixed cost of replenishing product 
i. Recall that the variable production / distribution costs 
are assumed to be proportional to the corresponding 
production / distribution volumes. The value of these 
cost components is thus constant under any reasonable 
replenishment strategy, i.e., any strategy under which 
the items' long run average production rates equal the 
corresponding demand rates, and may hence be ignored. 

The long-run average holding costs under a power- 
of-two policy are most easily assessed by charging the 

incremental holding cost rates to echelon inventories. 
The echelon inventory of product i is the number of 
units of that product in inventory at node i, or as "com- 
ponents" of units of inventory at any of product i's 
direct or indirect successor nodes. 

Note first that if a power-of-two replenishment policy 
T is nested, the echelon inventory of any product i 
reaches zero at each of its replenishment epochs, since 
these epochs represent replenishment epochs for all 
successor nodes as well. This is a consequence of the 
zero-inventory ordering property discussed in more de- 
tail in Roundy (1986) and Zheng (1987). It is also easily 
verified that, under a nested power-of-two policy, the 
echelon inventory of any node i is increased by a con- 
stant amount at each of its replenishment epochs, and 
decreases in between at a constant so-called induced 
demand rate di. This rate can be computed recursively, 
starting with i = N, via: 

di = d'i + E Xijdj, i E N(G). 
j>i 

Thus, each node's echelon inventory follows a saw- 
toothed pattern, and the long run average holding costs 
are thus given by 

H[T] = I HiTi, where Hi dihi= (2) 
iEN(G) 2 

The computation of H[T] becomes more involved when 
T fails to be nested. In this case, replenishment quan- 
tities fail to be constant for at least some nodes. How- 
ever, these quantities follow a periodic pattern which 
may be determined by solving a recursive linear system 
of equations. Theorem 2.4 in Zheng (1987) shows that 
the solution of this system requires at most 

2(A + N)(log2(Tmax/Tmin) + 1) 

+ 2A(log2(Tmax / Tmin )) 

operations. Neither the echelon inventories nor the 
physical inventories need to follow simple saw-toothed 
patterns. However, it is shown in Roundy (1986) that 
echelon inventories may be decomposed into several 
components which do follow such patterns. 

Let R(G) denote the set of routes in the network G 
where a route r = (ij, . . . , in,) is a directed path in G 
starting at an arbitrary node and terminating at an end- 
product. Let R = IR(G)I. For each route r = (i1, . .. 
in,) E R(G), let dr = Xi1i2 * int d', and Hr = rdr 
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denote its demand and holding cost rate respectively. 
It is shown in Roundy (1986) (see also Lemma 2.7 in 
Zheng (1987)) that 

H[T] =E H,(max Ti). (3) 
rER(G) iEr 

The problem of finding the best nested power-of-two 
policy may thus be formulated as (see Maxwell and 
Muckstadt 1985): 

(NP) min m [KiTi + HiTJ 
T>O iEN(G) 

s.t. Ti 2 Tj; (i, j) E A(G), 

Ti = 2t.iTL; mi integer; i E N(G) 

where TL is a fixed-base planning period. 
The problem of finding the best (unrestricted) power- 

of-two policy may be formulated as (see Roundy 1986): 

(P) min E KiITi + I HrTr (4) 
T>O iEN(G) rER(G) 

s.t. Tr =max Ti, rER(G), (5) 
iEr 

Ti= 2.'iTL; miinteger; iEN(G). (6) 

We observe that (5) may be replaced by 

Tr> Ti; i E r; i E N(G), r E R(G). (5') 

Since Hr> 0 for all r E R (G), if T minimizes (4) subject 
to (5') and (6), then (5) is satisfied as well. 

We conclude that both (P) and (NP) represent special 
cases of the generic problem: 

(GP) min m [KilTi + HiTJ (7) 
T>O iE-N 

s.t. Ti 2 Tj; (i, j) E- A, (8) 

Ti = 2n'iTL; mi integer (i E N). (9) 

For (P), N = R(G) U N(G) and A = {(r, i): r 
6 R(G), i E r}. We call (N, A) the route-product net- 
work. (We continue to use N and A both to denote the 
node and arc sets as well as their cardinalities.) Note 
that this network differs from the original network G, 
in that it is bipartite with arcs going from the route nodes 
to product nodes only, see Figure 1. It is also different 
from the "route network" used in Roundy (1986); our 
algorithms take essential advantage of its bipartite 
structure. 

Figure 1 Route Product Network 

R N 

1 di 
2 

d4~~~~~~~~~ 

The number of routes in a general product network 

may clearly grow exponentially with the number of 

products; in most practical production /distribution 

settings, however, the product network is extremely 

sparse, and R is of reasonable size. The route-product 
network can be generated in O(R) time, see Zheng 
(1987). It is noteworthy that the complexity of the al- 

gorithms developed in this paper remains linear in R. 

1.2. The Capacitated Model 
The above model assumes that no restrictions apply to 

the products' replenishment frequencies. As explained 
in the introduction, there are many settings where such 

frequency constraints need to be enforced. When re- 

stricting oneself to the class of power-of-two policies, 
these frequency constraints can often be translated into 

simple upper bounds (or lower bounds) for the prod- 
ucts' replenishment intervals. When added to (7)-(9), 
the formulation of (GP) becomes: 

(GCP) min (7) 

s.t. (8), (9); 

Ti 'bi; i EN. (10) 

If lower bounds Ti 2 bi are required rather than ( 10), 
the resulting model remains equivalent to (GCP) as is 

easily verified by applying the substitution of variables 

Ti = Z il(i EE N). The results of this paper can easily 
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be extended to include the case of both upper and lower 
bounds. We assume that all bi are power-of-two mul- 
tiples of TL. Since TL is fixed, this assumption is without 
loss of generality, as each bi may be replaced by the 
largest power-of-two multiple of TL, that is smaller than 
or equal to bi (i E N) without changing the feasible 
region. 

Problem (GCP) is a special case of a more general 
model in Jackson et al. (1988) which, for a given par- 
tition of the T-variables, imposes an upper bound on a 
weighted sum of the variables in each set of the parti- 
tion. This more general problem is much harder to solve. 
The authors suggest a Lagrangean relaxation heuristic 
with (GP) instances or (GP) instances plus a single lin- 
ear constraint as the relaxed problems. 

1.3. A Preliminary Duality Result 
The continuous relaxation of (GCP) is obtained by re- 
laxing the power-of-two integrality constraints: 

(RCP) c* = min c(T) = I (Ki/Ti + HiTi) (11) 
T>O iEN 

subject to Ti 2 Tj, (i, j) E A, (12) 

< Ti cbi, i CN. (13) 

A dual of the convex program (RCP) is: 

(CD) max D(X, x, v) 

= E 2(Kivi)12- E biXi (14) 
iEN iEN 

subject to Xi + Hi + I x,i - E xij = vi, 
IEPi jESi 

i E N, (15) 

X?0, x20, vO0. (16) 

LEMMA 1. 

(a) (CD) is the Lagrangian dual program of (RCP). 
For any T > 0 and feasible solution (X, x, v) for (CD) 
c(T) 2 D(X, x, v); 

(b) T* is optimal for (RCP) if and only if there exists 
a feasible solution (X*, x*, v*) for (CD) such that c(T*) 
= D(X*, x*, v*); 

(c) the complementary slackness conditions 

x*j(Tj*- T*) = O, (i, j) E A, 

hold for any optimal solution T* of (RCP) and optimal 
solution (X*, x*, v*) of (CD). 

PROOF. To prove part (a) let xij and Xi be Lagrange 
multipliers associated with constraints (12) and (13) 
respectively. The Lagrangian of (RCP) is given by 

L(X, x, T ) = (KilTi + HiTi) 
iEN 

+ xij(T1-Ti) + Xi(Ti-bi). 
(i, j)E A iEN 

The Lagrangian dual program is given by (see Geoffrion 
1971) 

(CD) max inf L(X, x, T). (17) 
x,1\?O T>O 

Collecting the terms in Ti (i E N), we have 

L Ki / Ti + Xi + Hi + E xli - xij )Ti-bi Xi) 
i.GE IEPi jES/Si 

Let 
def 

vi = Xi + Hi + I xli- I xij (i E N). 
IEPi jGSi 

Since L(X, x, T) is unbounded below when some vi 
< 0, we may impose the constraint v ? 0 without af- 
fecting the value of the maximum in (14). Under these 
additional constraints, 

inf L = i 2(Kivi)1/2- b bXi. 
T>O iEN iGN 

Parts (b) and (c) follow from Theorem 3 in Geoffrion 
(1971) and the stability of (RCP). To verify the latter, 
it suffices to show that Slater's condition holds, i.e., there 
exists some T > 0 which is an interior point to the fea- 
sible region described by (12) and (13); note that 

T = {Ti = E(N - i + 0.1), i E N} 

is an interior point for e sufficiently small. O 
In the remainder we need the following definitions. 
DEFINITION 1. G, is a subgraph of G if (i) N(G,) 

C N, (ii) (i, j) E A(GI) whenever (i, j) C A and 
i, j E N(G). 

DEFINITION 2. (G1, G2, . . ., GM) is a partition of G 
if the node sets of subgraphs Gl, G2, ..., GM form a 
partition of N. 
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DEFINITION 3. A partition (Gl, G2, . . ., GM) is di- 
rected if there is no arc(i, j) E A with i E N(Ga), 
j E N(Gb ), and a < b. 

DEFINITION 4. For any given subgraph G, of G, we 
define the extended graph G, of G, as the graph obtained 
by adding a source node s and a sink node t and con- 
necting these with all of the nodes in N(G,) by arcs(s, 
i) and (i, t) (i E N(G,)). 

In the uncapacitated model, the dual program (CD) 
has X = 0 and the constraints (15) may thus be viewed 
as flow conservation constraints in the extended graph 
GI, with xij as the flow on arc(i, j) E A, vi as the flow 
on arc (i, t) and the flow on arc (s, i) is Hi. The objective 
is to maximize a specific separable concave function of 
v, the vector of outflows to the sink. Network flow 
problems of this type have been studied by Veinott 
(1971), Fujishige (1980), Groenevelt (1985), and Fed- 
ergruen and Groenevelt (1986, 1987). Efficient algo- 
rithms for this more general class of network flow prob- 
lems have been proposed by Groenevelt (1985) and 
Federgruen and Groenevelt (1986, 1987). 

In the case of uncapacitated nonnested models, G rep- 
resents the route product network (see Figure 1) and 
problem (CD) takes the form 

(D1) max E 2(Kivi)112 
iEN(G) 

subject to I Xri = Hr, r E R(G), 
iEr 

EXri = Vi, i E N(G), 
r:iE-r 

x, v > 0. 

These above network flow problems are thus bipartite, 
a special structure which may be exploited to achieve 
considerable efficiency improvements. 

2. A Two-stage Procedure Based on 
a Characterization Theorem 
for (RCP) 

In this section we derive a two-stage procedure for the 
general capacitated problem (GCP). In the first stage 
an optimal solution of its continuous relaxation (RCP) 
is determined. As pointed out in the introduction, the 
optimal value of (RCP) is a lower bound, not only for 

the minimum cost among all power-of-two policies but 
also for the overall minimum cost among all (feasible) 
policies. For the uncapacitated model this result is shown 
in Roundy (1986). For the capacitated model this is 
proved in Appendix 2. From this lower bound result, it 
follows (see Theorem 3) using standard arguments that 
the average cost of an optimal power-of-two policy 
comes within 6% of this lower bound and hence of 
optimality. 

We start with a theorem characterizing optimal so- 
lutions of the relaxed problem. The proof of this char- 
acterization theorem is based on a simple application 
of the duality theorem of convex programming and the 
max-flow min-cut theorem. Throughout this and the 
following section, we need to discuss maximum flows 
in the following associated networks G'(i-) and their 
"relaxed" associated networks G ( -). 

DEFINITION 5. For any subgraph G, of G and any -r 
> 0, define the associated graph G'(i-) as the extended 
network G' with upper bounds Hi and Kil/r 2 on the 
arcs(s, i) and (i, t) respectively, and with infinite ca- 
pacities on all other arcs. 

For any subgraph G, C G, let 

b(G,) = min bi, N?(G,) = {i N(G,): bi = b (Gl) 
iEN(G1) 

K(G,) = E Ki and H(G,)= E Hi. 
iEN(GI) iEN(GI) 

DEFINITION 6. For a given subgraph GI C G and i- 

> 0, a relaxed associated network Gt (T) is a network 
obtained by relaxing the upper bounds on { (s, i): i 
E N?(G) } in the associated network G(i-). 

THEOREM 1. Let T* E RN and (G1, G2, . . ., GM) be 
a partition of G such that N(G,) = {i E N: T* = T(l)} 
with T(1) < T(2) < ... < T(M). T* is an optimal 
solution of (RCP) if and only if the following three con- 
ditions hold: 

(i) (G1, . . . , GM) is a directed partition, 

(ii) T(l) = min { b(GI), (K(G,)/H(G,))1/2 }, 
(iii) for each 1 = 1, . . . , M, any directed partition (GI, 

G,) of G, satisfies 

(a) min((K(G,)/H(G,)1/2, b(G,)) < T(l), and 

(b) (K(G,)/H(G,))1/2 > T(l). 

PROOF. We show the sufficiency part first. Suppose 
T* satisfies (i), (ii) and (iii). Feasibility of T* follows 
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immediately from (i) and (ii). To prove optimality, it 
suffices in view of Lemma 1 to show that there exists a 
feasible dual solution (X*, x*, v*) such that D(X*, x, v*) 
= c(T*). By (ii) and some algebra 

c(T*)= Z 2(K(GI)H(G1))1/2 
IeL, 

+ E (K(G,)/b(G,) + H(G,)b(G,)), where 
IEL2 

LI = { I & {1, . . . }, Ml: T(l) = (K(G,)/H(G,))112 }; 

L2= {l E {l, ,M}: 

T(l) = b(G1) < (K(G1)/H(G1))1/2 } 

To construct a dual feasible solution achieving the ob- 
jective function value c(T*), let xi = 0 for (i, j) E A 
with i E N(Ga), j E N(Gb), a * b. By doing so, we 
completely decompose (CD) into M separate subprob- 
lems of the same type as (CD) itself: 

(CD,) max DI(X', x', v') 

= 2 E (Kivi)1/2- E biXi (18) 
iEN(GI) iEN(GI) 

s.t. Xi + Hi + E Xji- Z xij =Vi, 
jEPi jESi 

iEN(GI), (19) 

XI 2 0, XI > 0, VI 2 0, (20) 

where X' = {X: i E N(GI)}, x' = {xij: (i, j) E A(GI)} 
and v' = { vi: i E N(G,)}. 
Also let 

X(G,)= X Xi, v(G,)= E vi. 
iEN(GI) iEN(GI) 

It thus suffices to show that for every I E L, there 
exists a feasible solution of (CD,) such that 

D,(X', x', v') = 2(K(G,)H(G,)) /2 

and for every I E L2, 

DI(X', x', v') = K(G,)/b(G,) + H(G,)b(G,). 

For I E Ll, it suffices to set X' = 0 (as suggested by 
the complementary slackness conditions in Lemma 1 
part (c)) and vi* = Ki/T(1)2, i E N(G,): 

D,(X', x', v') = 2( Ki)/T(l) 
i CN (GI) 

2 2(K(GI) H(GI)) 1,2 

by (ii) and 1 E L1. 
It thus suffices to show that a vector x' exists such 

that (X', x', v') satisfy (19) and (20), i.e., that a flow 
exists in the extended network G' with the flow on 
arc(s, i) equal to Hi and the flow on arc(i, t) equal to 
vi (i E N(G,)). Alternatively, imposing Hi and vi* as 
upper bounds on the arcs(s, i) and (i, t) respectively 
(i E N( GI)) and infinite capacities on all arcs in A (GI), 
it suffices to show that a maximum flow exists in the 
thus capacitated extended network G' in which all 
arcs from the source and all arcs to the sink are satu- 
rated, i.e., in which the minimum cut capacity equals 
ZiEN(G) Hi= -iEEN(G) Vi . Note, however, that any 
finite capacity cut in this network must be of the type 
(G, U { s }, G1 U { t }) with (G,, G1) a directed partition. 
The capacity of such a cut is given by 

E iv* + Hi 
iEN(GI) iEN(G1 ) 

= K(G1)/T(l)2 + H(G,) - H(G,) ? H(G,) 

since K(G,)/H(G,) 2 T(l)2, by (iii) (b). 
For 1 E L2, T(l) = b(G1). We construct a feasible so- 

lution (X', x', v') for (CD) such that 

D(X', x', v') = K(G,)/b(G,) + H(G,)b(G,). (21) 

Note that due to (iii) and 

T(l) = b(G,) < (K(G,)1H(G,)) 

we have for any directed partition (GI, G1) of GI 

(K(G1)/H(G1))1/2 b(GI) 

> min((K(G)/H(G ))112, b(G)). 

We construct (X', x', v') in the following two-step pro- 
cedure: 

Step 1. Find a maximum flow y? in G'(b(GI)). 
Step 2. Find a maximum flow y in Gt (b(GI)) by 

using any shortest augmenting path algorithm starting 
with initial flow y?. Then let Xi = ysi - ySi, Vi = y3it, 
E N(GI); also let xij = yij((i, j) &A(GI)). We show that 
(X', x', v') is a feasible solution of (CD,) and that (21) 
is satisfied. It is easily verified that (20) is satisfied: 

MANAGEMENT SCIENCE/VOL 39, No. 6, June 1993 717 



FEDERGRUEN AND ZHENG 
Optimal Power-of-Two Replenishmenit Strategies 

xi >0 and v' 2 0 hold while X, = . - l/( > 0 
(i E N(G,)) because a shortest augmenting path algo- 
rithm never reduces the flow on any arc(s; i). (In other 
words, arc(s, i) never serves as a backward arc in a 
shortest augmenting path.) 

To see that (19) is satisfied, we need to show 

ysi = Hi + Xi or equivalently y2. = Hi i E N(G). 

(22) 

By the max-flow min-cut theorem, it is equivalent to 
show that { 0, G }is a minimum cut of G'(b(GI)), i.e., 
for any directed partition (GI, G1) of GI, H(GI) ' H(G1) 
+ K(G_)/b 2 (GI), and the latter follows from (iii) (b). 
Thus (X', x', v') is feasible, and it remains to be shown 
that (21) is satisfied. For the latter, it suffices to show 
that 

Vi = Ki/b2(GI), i E N(GI) (23) 

because (22) and (23) imply that 

X(GI) = y Ysi - H(GI) = v(GI) - H(GI) 
iEN(GI) 

= K(G1)/b2(GI) - H(GI). 

bi * b(GI) implies that i 5f N?(G,), and hence that Xi 
= 0. Therefore, 

b(GI)X(GI) = Xi bX. 
iEN (GI) 

Thus, 

DI(X', x', v') 

= 2K(GI)/b(GI) - b(GI)X(GI) 

= 2K(GI)/b(GI) - b(GI)(K(GI)/b2(GI) - H(GI)) 

= K(GI)/b(GI) + H(GI)b(GI). 

To verify (23), it suffices to show that the arcs { (i, t): 
i E N(GI) } are saturated by y' or equivalently that 
{(i, t): i E N(GI)} is a minimum cut of G +(b(GI)). 
Note that the capacity of any directed partition (GI, G1) 
of GI, with N(G,) f N?(G,) = 0, is 

H(G,) + K(G1)/b2(GI) > K(G1)/b2(GI) 

since K(G,)/H(G,) ' b2(GI) in view of (iii) (a). All 
other cuts have infinite capacity. 

We prove the necessity part via the following simple 
perturbation argument. Let T* be an optimal solution 
of (RCP). (i) is necessary for feasibility. Suppose to the 
contrary that (ii) does not hold for some G,. If T(l) 
> (K(G1)/H(G1)) )1/2 take E sufficiently small such that 
T(l) - e > T(l - 1) and let T, = T*- if i E N(G1) 
and T = T* otherwise. (We refer to T' as a negative 
e-perturbation of T*.) T' is clearly feasible for (RCP) 
and c(T') < c(T*), a contradiction. Similarly, if 

T(l) < min(b(G,), (K(G1)/H(G1))1/2) 

then a positive e-perturbation of T * on GI would improve 
c(T*). This proves (ii). 

For (iii), assume to the contrary that there exists a 
directed partition (GI, G1) of GI (for some 1) such that 
(a) or (b) is violated. If (a) does not hold, a positive E- 

perturbation of T* on G1 would improve c(T*); oth- 
erwise, a negative e-perturbation of T* on GI would 
improve c(T*). C 

Theorem 1 suggests that solutions to (RCP) may be 
characterized by partitions of the node set N. For a given 
partition (G1, G2, . . ., GM) let the associated solution T 
be defined by: 

Ti = min[b(G1), (K(G1)/H(G1))1/2], 

i E N(G1), I = 1,... ,M. 

A partition will be referred to as optimal, if the as- 
sociated T-vector is an optimal solution of (RCP). In 
view of Theorem 1, a partition (G1,. . . , GM) is optimal 
if and only if the partition is (i) directed; (ii) monotone: 

min[b(GI), (K(GI)/H(GI))1/2] 

? min[b(G,+1), (K(GI1?)/H(G+1))1/2], 

(iii) maximally fine: for each I = 1, ..., M and any 
directed partition (GI, G1) of GI, 

min[b(G1), (K(G )/H(G1))1/2] 

? min[b(G,), (K(G1)/H(G1))1/2]. 

It is easy to find a partition which is directed and 
monotone: the singleton { G }, for example, represents 
such a partition. (The associated solution T has all com- 
ponents equal to min[b(G), (K(G)/H(G))1/2].) As 
shown in Lemma 2 and Lemma 3 below, maximum 
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flow (or minimum cut) calculations may be used to check 
whether each set in a given partition is maximally fine; 
otherwise a refined partition may be generated from the 
computed minimum cut, which remains directed and 
monotone. This suggests an iterative algorithm which, 
starting with the singleton { G }, results in an optimal 
partition after a limited number of maximum flow com- 
putations and as many partition refinements. Indeed, 
algorithm (RCP) below generates a finite sequence of 
progressively refined, directed and monotone partitions. 

Algorithm RCP 
Step 0. M:= 1;1 := 1; G1 := G. 
Step 1. Let T = min (b(G,), (K(G1)/H(G1))1/2); find 

a maximum flow in G'(T). If (0, GI) is a minimum cut 
go to Step 2. Otherwise we have a nontrivial minimum 
cut (G1, G1) of GI. Renumber (G1, GI, GI+,, . . ., GM) as 

(GI, GI+,, G1+2., . , Gm+,); M:= M + 1. Repeat Step 1. 
Step 2. If T = (K(G1)/H(G1))1/2 go to Step 3; oth- 

erwise find a maximum flow in G+ (T). If (GI, 0) is a 
minimum cut, go to Step 3; otherwise we have a non- 
trivial cut (G1, G1) of G,. Renumber (G1, G1, G+1, .+ 

GM) as (G,, GI+1, G1+2, . . ., Gm+,); M:= M + 1. 
Step 3. T(l) := T, T* = T(l) (i E N(G1)). If I =M 

stop. Otherwise I := I + 1, go back to Step 1. 
In Theorem 2 we show that the above algorithm 

solves (RCP). We first need the following lemmas which 
characterize minimum cuts in the associated networks 
G (vT) and G + 

(iT) respectively. These lemmas are proven 
in Appendix 2. 

LEMMA 2. Let G, be a subgraph of G and T > 0; let 
(G1, G2) be a minimum cut of G&(r). Then, 

(i) (G1, G2) is a directed partition of GI. 
(ii) K(G1)/H(G1) < T2 < K(G2)/H(G2). If the cuts 

Figure 2 A Minimum Cut in the Associated Network G/(T) 

s t 

(0, GI) or (GI, 0) are not minimal, these inequalities 
are strict. 

(iii) Let T2 = K(G,)/H(G,). GI is maximally fine if the 
cuts (0, GI) and (GI, 0) are minimal in G'(T). 

(iv) If(G1, G1) is a directed partition of G1, then K(G1)/ 
H(G1) ? T2. Similarly, if (G2, G2) is a directed partition 
of G2, then T2 c K(G2)/H(G2). 

LEMMA 3. Let GI be a subgraph of G, and T > 0. Let 
(G1, G2) be a minimum cut of G(+(T). 

(i) (G1, G2) is a directed partition of GI. 
(ii) b(G1) = b(G1); if G2 7 0, b(G2) > b(G1), i.e., 

N(G2) f N?(G,) = 0. 
(iii) K(G2)/H(G2) 2 T 

(iv) (a) If (G1, G1) is a directed partition of G1, K(G1)/ 
H(G1) c T2 or b(G1) = b(GI). 

(b) If (G2, G2) is a directed partition of G2, K(G2)/ 

H(G2) > T. 

THEOREM 2. The vector T* generated by Algorithm 
RCP is an optimal solution for (RCP). 

PROOF. It suffices to show that T(1) ? T(2) ? * 
c T(M) and that (i), (ii), (iii) of Theorem 1 are satisfied. 
(i) is easily verified by induction using Lemma 2 (i) and 
Lemma 3(i). (ii) holds by the specification of T and 
T(l) (I = 1, . . . , M) in the algorithm. In order to show 

(iii), for 1 = 1, . . . , M let (GI, G1) be any directed par- 

tition of GI. Note (0, GI) is a minimum cut of 
G;(T(l)). In view of Lemma 2(iv) we have K(GI)/ 
H(G,) ? T2(1), i.e., (iii)(b) holds. To prove (iii)(a) and 
in view of the specification in Step 2, we only need to 
distinguish among the following three cases: 

(1) T(l) = (K(G1)/H(G1))1/2. Since K(G1)/T2(1) 
= H(GI), (GI, 0) is also a minimum cut of G'(T(l)). 
By Lemma 2(iii), we have K(GI)/H(GI) < T2(l), so 
that (iii) (a) follows. 

(2) T(l) = b(GI) < (K(G1)/H(G1))1/2 and (GI, 0) is 
a minimum cut of Gt(T(l)). ApplyingLemma 3(iv)(a) 
with G1 = G1, G2 = 0, G1 = G,, we have K(G1)/H(G1) 
< T2(1) or b(G1) = b(G,) which is (iii)(b). 

(3) T(l) = b(GI) < (K(G1)/H(G1))1/2 and (GI, GI+1) 
is a minimum cut of (GI U GI+1)+(T(l)). Applying 
Lemma 3 (iv) (a) with G1 = GI, G2 = GI+1, G1 = G1, we 
have (iii)(b) again. 

It remains to be proven that T(1) < T(2) < ... 

? T(M). Consider a pair (GI, GI+1) (I = 1, . . . , M - 1). 
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At some execution of Step 1 or Step 2 some subgraph 
of G, e.g., G5, containing GI and GI+1 is partitioned into 
(Gs, Gs) with GI C Gs, GI,, C Gs. Note that (Gs\Gl, GI) 
and (GI+,, Cs\GA+G) are directed partitions of Gs and Gs 
respectively. Consider the following two cases: 

(a) (Gs, Gs) is generated in some execution of step 1. 
In view of Lemma 2(ii), 

K(G1)/H(G1) < min(K(Gs)/H(Gs), b2(Gs)) 

< K(G1+1)/H(G1+1). 

Since b(G1+1) ? b(Gs) we have 

min(K(GI)/H(GI), b2(GI)) 

< min(K(GI)/H(GI), b2(Gs)) 

< min(K(G1+?)/H(G+1?), b2(GI+,)) 

or T(l) ? T(l + 1). 
(b) (Gs, Gs) is generated in some execution of step 2. 

In this case (0, Gs) is a minimum cut of G (T(l)) with 
T(l) = b(Gs), and (Gs, Gs) is a minimum cut of 
G (b (Gs)) with Gs = GI. The former implies by Lemma 
2(iii) and Lemma 3(ii), that 

K(G1)/H(G1) 2 b2(Gs) = b2(GI); 

the latter implies by Lemma 3 (iv) that 

K(G+1 )/H(G1+1) 2 b2(Gs) = b2(GI). 

Therefore by Lemma 3 (ii) 

min((K(GI/H(GI))1/2, b(GI)) 

= b(G1) < min((K(G1+?)/H(Gl+l))'/2, b(G1+?)), 

i.e., T(l) < T(l + 1). CL 

The Second Stage: Rounding Up Procedure 
Let (G1, . . . , GM) be the partition obtained by the first- 
stage procedure (Algorithm RCP) and let T be the as- 
sociated solution vector. The following well-known 
rounding procedure transforms T into a power-of-two 
vector T*. 

Rounding procedure. For all I = 1,.. , M, find the 
unique integer ml such that 

2 '(/ )TL ' T(l) < 2 )TL, 

and set the common reorder interval for N(GI) as T*(l) 
= 2n"TL. 

Note that the power-of-two vector T* satisfies the 
capacity constraints since every component Ti, when 
increased, is rounded up to the smallest power-of-two 
value ? T1; hence T* < bi for all i. Also, when Ti = bi, 
T* = Ti = bi. It is also easily verified that every nested 
vector T is transformed into a nested vector T*, thus 
maintaining feasibility. 

The complexity of the two-stage algorithm is clearly 
determined by that of (RCP). To characterize the latter, 
note that each execution of Step 1 follows an increase 
of either M or I by one unit and Step 2 is executed M 
times. Since M cannot exceed N, at most (3N - 1) max- 
imum flow computations need to be performed. The 
complexity of the algorithm is thus given by O(NMf) 
where Mf is the effort required for a single maximum 
flow computation. If the network G were dense, Mf 
= O(N3), see, e.g., Malhotra et al. (1978). Below we 
argue, however, that the network G is sparse for both 
the nested and nonnested model considered. 

Complexity of Algorithm RP for Nested Models. 
In the original production / distribution network the in- 
degrees and/or out-degrees of the nodes may be as- 
sumed to be uniformly bounded (by a small number 
usually), i.e., A = 0 (N). Thus, the algorithm by Sleator 
and Tarjan (1983) or Goldberg and Tarjan (1986) for 
sparse networks is to be preferred, with 

Mf = 0(NA log N) and Mf = 0(NA log(N/A)) 

respectively, i.e., Mf = O(N2 log N). (See Ahuja et al. 
(1989) for a recent survey of efficient max-flow algo- 
rithms.) 

Complexity of Algorithm RP for Nonnested Mod- 
els. Since G is bipartite in this case, the same is true 
for all associated networks G,, see Definition 5. Some 
care is required when constructing the relaxed associated 
networks G' (see Definition 6), in particular to ensure 
that these are bipartite as well. Since no direct arc(s, i) 
exists for any product i E N?(GI), one needs to relax 
the upperbound on the arc(s, r) for r = { i }. (If di = 0, 
so that r = {i} f R, a node r and an uncapacitated 
arc(s, r) need to be added to the network.) We conclude 
that all associated and relaxed associated networks are 
bipartite so that special maximum flow algorithms by 
Gusfield et al. (1985) or Ahuja et al. (1988) may be 
invoked, with Mf = 0(RN2) and Mf= O(NA + N3) 
respectively. If the number of nodes per route is uni- 
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formly bounded, A = O(R) and the Ahuja et al. algo- 
rithm has Mf = 0 (NR + N3). 

Note in addition that each of the subgraphs GI (I = 1, 
. , M) generated by Algorithm RCP must contain at 

least one product node, i.e., M < N. To verify this, note 
first that when (G,, C,) is a nontrivial cut of some as- 
sociated network G, or relaxed associated network 
GC, G, must contain at least one product node, since 
the cut would otherwise be of infinite capacity. We con- 
clude that in the final partition (GC,. . . , GM) generated 
by RCP, G, contains at least one product node. Thus, 
by Theorem 1, 

O < min[b(Gl ), (K(Gl )IH(G 1 )/ 2] 

0 < min[b(GC), (K(GC)/H(GC))1/2] 

for all 1 = 1, . . . , M so that each of the disjoint sets GC 
contains at least one product node. The overall com- 
plexity of the algorithm is thus O(RN3) or O(N2R + N4) 
if A = O(R) and the Ahuja et al. (1988) max-flow al- 
gorithm is used. In other words, even when R > N, the 
complexity of the algorithm remains "linear" in R. (Re- 
call that the generation of the route product network G 
requires O(R) operations itself.) We have in fact: 

THEOREM 3. The two-stage algorithm, i.e., (RCP)fol- 
lowed by the rounding procedure generates an optimal so- 
lution of (CP). 

The proof of Theorem 3 is similar to that given in 
Zheng (1987, Theorem 3.6) for uncapacitated models. 

3. An Integrated Algorithm Based 
on a Characterization Theorem 
for the Model's Integer Program 

In this section we derive a characterization theorem for 
optimal solutions of the integer program (GCP), based 
on which a direct solution procedure is derived. 

THEOREM 4. If the components of T* take on M distinct 
power-of-two values T(1) < T(2) < ... < T(M), and 
if (GC, G2, . . . , GM) is a partition of G such that N(G,) 
= { i E N: T* = T(l) }, then T* is an optimal solution of 
(CP) if and only if the following three conditions hold: 

(i) (GC, G2, .. ., GM) is a directed partition of G; 

(ii) T(l) = min(b(GI), T*(l)) where T*(l) = 2"'ITL (MI 

initeger); anid 

( 1/ 2) (K(GI)/ H(GI)) 1/2 

< T*(1) < f2i(K(G,)IH(G,))'/2 

(iii) For any directed partition (G,, C,) of G,, 
(a) T(l) ? V2(K(G,)/H(G,))1/2; 
(b) min(b(G,), ( 1 / 152)(K(G,)/H(G,))1/2) ? T(l). 

PROOF. We first prove the necessity part. Let T* be 
an optimal solution of (GCP). (i) follows from the fea- 
sibility of T*. To prove (ii), assume to the contrary that 
for some 1 = 1, . . . , M, T(l) =A min(b(GI), T*(l)). The 
feasibility of T* implies T(l) < b(GI). It suffices to con- 
sider the following two cases: 

(1) T(l) < min(b(G1), (1 / Vi)(K(GI)/H(GI))1/2); 
(2) T(l) > l/2(K(G1)/H(G1))1/2. 

Let C,(t) = K(GI)/t + H(GI)t. 
It is easily verified that in case ( 1) 

C,(2T(l)) < C(T(l)) 

while in case (2) 

CI(1T(1)) < CI(T(1)) 

(see Figure 3). In case (1), define T' by T, = 2T* (i 
E N(G,)), T. = T. (i f N(G,)). T' is feasible 

Figure 3 Function C,(t) 

C,(t) 

CIM~~~ 

_ _ I 

t, V2_ t, T(I) 

t, T(I) 

tl (K(G,)/H(G,)) 1/2 
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(if T(l) < b(G,), 2T(l) ? b(G,)) with C(T-) > C(T'), 
contradicting the optimality of TK. 

In case (2) let T'be defined asT =T T, (i E N(G,)), 
T= T*( i NN(G)). T' is feasible with C(T *)> C(T'), 
again contradicting the optimality of T*. A similar ar- 
gument, doubling Ti for i E N(G,), if (b) fails and mul- 
tiplying Ti by 1/2 for i E N(GI), if (a) fails, estab- 
lishes (iii). 

We now prove the sufficiency part. Suppose that a 
vector T * satisfies (i), (ii), (iii). Feasibility follows from 
(i) and (ii). To show optimality, define subproblems 

(CPI) (I = 1, . . . , M): 

(CP,) C, = min (Ki/Ti + HiTi) 
T>O iEN(G1) 

subject to Ti 2 Tj, (i, j) E A(G,), 

Ti = 2 "i TL, i E N(G,), 

Ti ' bi, i E N(G,). 

Clearly E m i C* is a lower bound for the optimal value 
of (GCP). Thus it suffices to show that {Ti =T(l): i 
E N(GI) } is an optimal solution for (CP,), 1 = 1, .... 
M. Assume there is an optimal solution T** for (CP,) 
such that its components take on distinct power-of-two 
values T(11) < * < T(la). Let (GC1, ..., C,) be a 
partition of G, such that 

N(Gir) = {i & N(G,): Ti* = T(lr)}, r = 1,..., a. 

We show that T(11) 2 1T(1). By the proved necessity 
part of the present theorem, 

T(11) = min(b(G,l), T*(11)), 

which implies 

T(11) ? min(b(G,1), (1/V2)(K(G,1)/H(G,l))1/2). 

(24) 

Since (GC1, GC \Gi1) is a directed partition of GC, we have 
in view of (iii) 

(K (GI,) / H (GI, ? (1/ V2)T(1). (25) 

Note 

b(GI,) 2 b(GI) 2 T(1) > 1 T(1). (26) 

We have 

T(11) 2 min(b(GI1), 'T(l)) = 'T(l). 

If T(11) = 2T(l), it follows from (26) that b (GI1) > T(11) 
so that by (24) and (25), 

T(11) 2 (1/Vi)(K(G,)/H(G,1)) /2 

2 2T(1) = T(11), i.e., 

VhiT(l1) = (K(G,1)/H(G,1))1/2 - (1 /Vi)T(l). 

In this case, if we replace the common reorder interval 
T(11) of N(G,,) by T(l), the new solution T' is easily 
verified to remain feasible and the objective value re- 
mains the same, i.e., T' is optimal. We thus conclude 
that an optimal solution T' for (CP,) exists with (G,1, 
. . ., GIa) as the associated partition, and T(l) < T(11). 
We now show that an optimal solution T" of (CP,) exists 
with 

T(l) < T(11) < < T(la) < T(l). 

From the necessity part of this very theorem, 

T(1l,) < min(b(GI), 2[K(G,,)IH(G,a,)] 1/ 2 

see (ii). In view of (iii), 

min(b(GIa), (1 /l/[K(GIa)/H(GIa)]1 /2) < T(l) 

since (G, \GIa, GIa) is a directed partition of G,. 
Thus 

(1 /)T(la) < min(b(GIa), (K(GIa)/H(GIa))1 /2) 

< VT(l) (27) 

or T(la ) < 2T(l). T(la ) = 2T(l) holds only if the in- 
equalities in (27) hold as equalities. In this case, 

b(Gla) > (K(G,a,)IH(G la))1. 

(Otherwise 

min(b(Gla) [K(GIa)/H(Gla)I)1/2 = b(Gla) =ViT(1) 

but the equality b(Gla) = VliT(l) cannot hold since both 
b(Gla) and T(l) are power-of-two multiples of TL.) 

Therefore 

(1/V2)T(1a) = (K(Gla)/H(Ga))1/2 = V2T(l). 

One now verifies as above that an alternative optimal 
solution exists with T(l) < T(11) < T(la) < T(l). * 

The above characterization theorem suggests the fol- 
lowing integrated algorithm: Let r0 = ( 1 / ) b (G). 
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Algorithm DIRECT (C) 
Step0. Let r:= r0. Findamincut(G, G2)of G'(r). 

M:= 2. 
Step 1. If G, = 0, then begini : 2rro, go to Step 2 

end; r :=r/2; find a min cut (GC, G,) of G'(r). Rename 

(Gl, C1, G2, . .. , GM) as (GC, G2, .. ., GM+,). M := M 
+ 1. T* := 1/Ir, i E N(G2). Go back to Step 1. 

Step 2. If GM = 0. then stop; otherwise, if 
(1/V2)r < b(GM) then GM GM(r) else GM 

CG(r). Find a min cut (GM GM) of G'M. Rename 
(Gi, GM GM) as (G,. . . GM, GM+,). Let M:= M 
+ 1. T* := (1/ /2)r, i E N(Gm-1). Go back to Step 2. 

THEOREM 5. The vector T* generated by algorithm 
DIRECT(C) is ani optimal solution of (GP). 

PROOF. It suffices to show that conditions (i), (ii) 
and (iii) of Theorem 4 are satisfied. The fact that (GC, 

* , GM) is a directed partition follows by complete in- 
duction using Lemma 2(i) and Lemma 3(i). We show 
(ii) and (iii) for those sets G,,, that were generated in 
Step 1 first. For fixed mn, consider the iteration in which 
G,, is generated. In this iteration a min cut (G, C1) of 
G' ( T) is found where G1 becomes G,, at the end of 
the algorithm and T = (1/Vi)T(m). Note that T 

< (1/V2)b(G) < (1/V2)b(G,), which implies 

T(m) < b(Gnl). (28) 

Moreover, it follows from Lemma 2(ii) that 

K(Gn)/H(Gill)> 2 = T2(m)/2 = 22l-'TL. (29) 

Observe that the set G, is generated either in the pre- 
vious execution of Step 1, or in the one time execution 
of Step 0, i.e., there exists a set G, such that (GC, G) is 
a minimal cut of (GC U G)'(2T). Applying Lemma 2(iii) 
we conclude that 

K(G,,,)IH(G?,) < (2T)2 = 2T2(m) = 22ni+lTL. (30) 

Formula (28), (29) and (30) imply (ii). For any directed 
partition (Gn1, G,1), (28), (29) and (30) imply (ii). For 
any directed partition (G,,', C,,,) of GC., we have from 
Lemma 2 (iii) 

(K(G,,)IH(Gn,)2 ? (1 /V2i)T(m), (31) 

(K(0n)1H(6n,)) ? < ViT(m). (32) 

(31) and (32) imply (iii). 

Next we show (ii) for those Gk that were generated 
in step 2. Fix k and consider the iteration in which Gk 

was generated. Gk is, in that iteration, GM in a min cut 

(GM, GM) of GM, where GM = GM(T) or GM = GM(T) 
and r = lIT(k). On the other hand the subgraph GM 
itself is generated either in the previous execution of 
Step 2 or in the one time execution of Step 0. In either 
case, applying Lemma 2 (iii) or Lemma 3 (iv) we have 

(K(Gk )/H(Gk ))1/2 > 2 = (1/ V) T(k). (33) 

We distinguish between the following two cases: 
Case (1). GM = GM(T). In this case we have 

b(Gk) 2 b(GM) > (1/V2)T = T(k) (34) 

and in view of Lemma 2 (ii) 

(K (Gk) /H(Gk) l 35< 

(33) and (35) imply 

(1 / V2)(K(Gk)/H(Gk)) 1/2 

< T(k) < V(K(Gk)/H(Gk))/2. (36) 

In view of (34), (ii) is verified. 
Case (2). GM = GM(T). In this case we have in view 

of Lemma 3(i) 

b(Gk) = b(GM) < (1/ V)T. (37) 

To prove (ii), it suffices in view of (33) to show that 
T(k) = b(Gk). Due to (37), we only need to show that 

b(Gk) > 2. Since b(Gk) = b(GM), it suffices to show that 
b(GM) > '. We prove this by complete induction. For 
M = 2, b (GM) ? b (G) = V To > To. Assume that 
b(G U GM) 2 4 holds. We prove b(GM) > T. If (G, GM) 
is a minimum cut of (G U GM)'(2), we have 

b(GM) ? b(G U GM) > (1/(2V2))T, 

i.e., b (GM) ? . If (G, GM) is a minimum cut of 
(G U GM)'(2), we have, in view of Lemma 3(ii), b(GM) 
> b (G). Combining this inequality with b ( Gk_ ) ? 4, 
we have b(GM)> 2. 

Finally we show (iii) for Gk. Let (Gk, Gk) be any di- 
rected partition of Gk. (iii) (a) is true in view of Lemma 
3(iv) and Lemma 2(iii). In case GM = GM{(T), we have 
in view of Lemma 2 (iii) 

(K(Gk)/H(Gk))1/2 ? r. (38) 
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In case G'M = GM(T), we have in view of Lemma 3(iv) 

(K(Gk)/H(Gk))1/2 < T or b(Gk) = b(Gk) = T(k). 

(39) 

(38) and (39) imply (iii)(b). O 

Complexity of DIRECT (C) 
The complexity of the DIRECT (C) algorithm is O (Mf L) 
with L the number of possible distinct reorder intervals 
in the optimal power-of-two vector. We refer to ?2 for 
a discussion of the magnitude of Mf in various special 
cases (in particular in nested versus nonnested models). 
In practice, L is a small number; L < 10 (say). Thus it 
is reasonable to assume that L = 0(1). Under this as- 
sumption the DIRECT algorithm achieves an order of 
magnitude efficiency improvement over the two-stage 
procedure. 

4. Algorithms for the Uncapacitated 
Model 

In this section we describe how the algorithms (RCP) 
and DIRECT (C) simplify when applied to the unca- 

pacitated model. We refer to the simplified version as 
RP and DIRECT respectively. 

Algorithm RP 
StepO. M:= 1, 1:= 1, G,:=G. 
Step 1. T = (K(G,)/H(G,))1/2. Find a maximum flow 

in G,(T); if (G,, 0) is a minimum cut, go to Step 2. 
Otherwise, we have a nontrivial minimum cut of G,, 
(G,, G,). Renumber (G,, G,, GI+,1, ... , GM) as (G,, G,+1, 

.., GM+,); M M + 1 and repeat Step 1. 
Step 2. If 1 = M, stop; (G,, G2,. . . , GM) is the desired 

partition; otherwise 1 := 1 + 1 and go back to Step 1. 

Algorithm DIRECT 
Let ro = ( / V2)(K(G)/H(G)) 
StepO. Let-r:=-r0.Findamincut(G1,G2)of G'(r); 

M:= 2. 
Step 1. Same as Step 1 in Algorithm DIRECT (C). 
Step 2. If GM = 0 then stop; otherwise, find a min 

cut (GM, GM) of GM(T). Rename (G1, . . , GM, CM) as 
(G,, . ,GM, GM+,); Let M := M + 1. T* := ( 1 /1/;Yr, 
i E N(GMI1). Go back to Step 2. 

The worst case complexity of the algorithms does not 
reduce below the bounds identified in ??2 and 3. As 

Figure 4 Optimal Partition for (RP) 
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a~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~9 43 42 41 40E 
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F 
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Figure 5 Optimal Solution Generated by DIRECT 

I 
G 

discussed in the introduction, these complexity bounds 
compare favorably with the best existing alternatives. 

We conclude this paper with an application of the 
DIRECT algorithm to the example model in Maxwell 
and Muckstadt (1985). This model represents a pro- 
duction system of a major U.S. automobile manufacturer 
with 94 distinct operations, i.e., N = 94. As pointed out 
above, Maxwell and Muckstadt restrict themselves to 
nested policies and report that their algorithm requires 
13 iterations. In each a network flow problem is solved, 
the complexity of which is equivalent to that of a max- 
imum flow computation. The partition corresponding 
to the obtained optimal solution of (RP) is depicted in 
Figure 4; it consists of seven node sets. An optimal 
power-of-two policy, however, uses only 3 distinct 
reorder intervals, 128 days, 64 days and 32 days. The 
DIRECT algorithm finds this solution in 4 iterations 
only. The solution is shown in Figure 5.' 

' We wish to thank two anonymous referees for their most helpful 
comments. 

Appendix 1. Lemma A.1 
LEMMA A.l. Consider the setup cost structure described by (1) and 

assunie bi = 2 "i TL ( ii integer) and bi 2 bj for all (i, j) E A (G) where b 
= Bi /di. There exists an optimlal niested power-of-two policy T with T1 
< bi for all i E N(G). 

PROOF. Note that the long-run average costs of an arbitrary power- 
of-two policy T is given by 

I, Ki(diTi)lTi + 7_ HiTi. 
iEN(G) iEN(G) 

Let the vector [TN, TN,. T*] be the lexicographically smallest 
optimal nested power-of-two vector. Assume to the contrary that 
T > bi for some i E N(G) and let 12 be the largest indexed component 
of T* for which this is the case. Let T' be defined by T' = bn and 
T' = T* otherwise. Clearly T' 2 T, for all (i, 12) E A(G) while for 
(12, j) E A(G), T, = b,, 2 b1 2 T> = Tj. Thus, T'is feasible. In view 
of (Al), its average setup costs are identical to those of T' while its 
average holding costs are no larger than those of T'. We conclude 
that T'is optimal and lexicographically smaller than T*. O 

Appendix 2. A Lower Bound Theorem 
for Capacitated Models 
In this appendix, we show that in complete similarity to uncapacitated 
problems, the minimum value of the continuous relaxation (RCP) 
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constitutes a lower bound for the minimum average cost achievable 
by any feasible policy, i.e., any policy which orders product i with a 
frequency less than or equal to by- (i e N). 

Even though in nonnested models the general formulation of (CP) 
allows for specific upper bounds on the auxiliary variables { Tr: r E R }, 
in addition to upper bounds on the products' replenishment intervals 

Ti: i E N(G) J, we assume in Theorem A2 below that only the latter 
upper bounds prevail. (This is the case in all of the examples mentioned 
in ?1.) 

THEOREM A2. LOWER BOUND THEOREM. Conisider the general non- 
niested niodel, anid assumle the systenm starts zvith zero inventory. The 
ni uiiilutl value c* of (RCP) is a lower bound for the average cost of any 
feasible policy over aniy finiite hlorizon [10, T), i.e., aniy policy which re- 
pleniishes product i's inivenitory at least bT1 T tinmes (i E N(G), T > 0). 

PROOF. Fix T > 0 and a feasible policy with c as its average cost 
in [0, T). For the general nonnested model (CD) can be written as 

(CD,) max D(X, x, v) = Z (2(Kivi)1/2 - biX)i 
iEN(G) 

subject to i Xri Hrl r E R, 
iEr 

Z Xri = Vi-Xi, i E N(G), 
r:iEr 

X0, x20, v20. 

Let (X*, x*, v*) be an optimal solution of (CD,). Consider a given 
policy, time t > 0, and route r = (i1, . . . , im). Define, as in Roundy 
(1986), route r's echelon inventory E' as the total number of units 
of product il which are held in stock somewhere along the route r at 
time t (perhaps as components of more advanced products) and which 
have been specified to follow route r, measured in multiples of ldr, 

i.e., as the number of time units of demand for route r's (unique) end 
item which this inventory is capable of supporting. For each i E N(G) 
and t > 0 define 

i= min Er: r E Ri J- 

We have 

Z HrE' xZ:E= x:*Et rER rER iEr iEN(G) r:iEr 

rE X11ni = Z (v' -ki)n1. 
iEN(G) r:iEr iEN(G) 

The inequality follows since for any route r = (i1.. , ..., im) 

E i, n! < Et< < Et where r' = (i, . . ., im). Let Ii denote the number 
of times product i is ordered in [0, T]. Thus, 

T 

TC 2 (KiJji + (v*-X*)ndt 
iEN(G) 

>2E (KjJj + (v7 X_ )T2/Ji) 
iEN(G) 

>2E min{Kizi + (v - T2/Zi Z b T} 
iEN(G) 

= z T min{KI/t, + (v7 - X)ti: t, c bi } 
iEN(G) 

>_2 (2(Kiv*) 1/2 - X* b) =TO* 
iEN(G) 

where the first inequality holds in view of v* -X* > 0 (i E N(G)). 
We show the last inequality as follows: Let T* be an optimal solution 
to (RCP) and let (GI, . .., GM) be a corresponding partition of the 
node set N(G), i.e., N(G,) is the set of nodes which share the i-the 
smallest replenishment interval. As in the proof of Theorem 1, let LI 
= :1 I M and K(G)/H(G) c b2(G) I and L2 1,. .M L. 
For i E N(G1) with I E LI, X* = 0 (see (23)), hence, 

Kl/ti + (v* - X*)tj = Kl/t, + v*tj > 2(Kiv*)l/2 - X*bi. 
For i E N(G,) with I E L2, we have v* = Kl/b?, see (31). Note 

that X* > 0 implies that K/(v* - X*) = Ki/(Ki /b? - X* ) > b2 . 
Therefore, since the function K, / t, + (v X7 _ x ) t, is nondecreasing 

for ti ' (K /(vi _ \<;P ))1/2 we have for t, c bi: 

Kl/ti + (Kl/b? - X*)bi 2 2KI/bi - Xbi = 2(Kiv*)2 - X*bi. a 

Appendix 3. Proof of Lemmas 2 and 3 

PROOF OF LEMMA 2. 
(i) Immediate from the fact that in G'(T) all arcs in A(G) have 

infinite capacities. 
(ii) The capacity of the minimum cut (GI, G2) is no larger than 

that of the cut (0, GI). Thus H(G2) + K(GI)/T2 c H(G,) or K(GI)/ 
H(GI) c T2. Similarly, since (GI, 0) is also a cut, H(G2) + K(GI)/ 
T2 c K(G2)/T2 or T2 c K(G2)/H(G2). 

(iii) Let T2 = K(G,)/H(G,). K(G2)/H(G2) c T2_< K(G1)/H(GI) 
for every directed partition (GI, G2) if the cut (0, GI) or (GI, 0) is 
minimal in G' (T). 

(iv) The capacity of the minimum cut (GI, G2) is no larger than 
that of the cut (GI, G2 U GI). Thus 

H(G2) + K(GI)/T2 < H(G2 U Gl) + K(GI)/T2, 

or K(GI)/T2 c H(GI) or K(G0)/H(GI) c T2. The second part of (iii) 
follows similarly from the observation that the capacity of (GI, G2) 
is no larger than that of (GI U G2, 02). 0 

PROOF OF LEMMA 3. 
(i) Note (GI, 0) is a cut with finite capacity, while any undirected 

partition of G, has infinite capacity. 
(ii) If N(G2) n N?(G,) # 0, the capacity of (GI, G2) is infinite. 
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(iii) The capacity of (G, 0) is no smaller than that of (GI, G2), 
i.e., K(G)/T2 > H(G2) + K(GI)/T2 or K(G2)/H(G2) 2 T2. 

(iv) Assume Gfl nN?(G) = 0, i.e., b(0I) # b(G1). The capacity 
of (GI, GI U G2) is not smaller than that of (GI, G2), i.e., 

H(0I U G2) + K(GI)/T2 > H(G2) + K(GI)/T2, 

i.e., K(01)/H(01) c T2. Similarly the capacity of (GI U G2, 02) is no 
smaller than that of (GI, G2). Since 02 C G2, we conclude in view of 
(ii) that 

K(GI U 2)/T2 + H(02) 2 K(GI)/T2 + H(G2) 

or K(G2)/H(G2) 2 T2. 
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