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We address the Joint Replenishment Problem (JRP) where, in the presence of joint setup costs, dynamic lot sizing 
schedules need to be determined for m items over a planning horizon of N periods, with general time-varying cost and 
demand parameters. We develop a new, so-called, partitioning heuristic for this problem, which partitions the complete 
horizon of N periods into several relatively small intervals, specifies an associated joint replenishment problem for each 
of these, and solves them via a new, efficient branch-and-bound method. The efficiency of the branch-and-bound method 
is due to the use of a new, tight lower bound to evaluate the nodes of the tree, a new branching rule, and a new upper 
bound for the cost of the entire problem. The partitioning heuristic can be implemented with coinplexity 
O(mN2loglogN). It can be designed to guarantee an e-optimal solution for any e> 0, provided that some of the model 
parameters are uniformly bounded from above or below. In particular, the heuristic is asymptotically optimal as N -X oo 

for any fixed number of items m, and it remains asymptotically optimal when both m and N are simultaneously increased 
to infinity. Most importantly, a numerical study shows that the partitioning heuristic performs exceptionally well. Even 
for small problems, the average optimality gap is only 0.38% and in none of the problem categories is it larger than 0.78%. 

T his paper addresses the Joint Replenishment 
Problem (JRP), one of the most basic multi-item 

lot sizing models. In the JRP, the need to coordinate 
planning for the different items arises from the poten- 
tial to exploit economies of scale when placing orders 
for more than one item at a time. 

The model specifies a horizon divided into a finite 
number of (say N) periods, each with a known de- 
mand for m items, all of which must be satisfied. An 
unlimited amount may be ordered (produced) in each 
period. The cost structure consists of fixed-order 
costs, variable order costs which are proportional 
with the order sizes, and holding costs which are 
proportional with the end-of-the-period inventory lev- 
els. The fixed-order costs consist of a joint setup cost 
incurred for any order, regardless of its composition, 
and item-specific setup costs for any specific item 
included in the order. Demands and all cost parame- 
ters may vary over time. The objective is to determine 
an ordering policy that will minimize total costs while 
satisfying all demands without backlogging. 

Arkin, Joneja and Roundy (1989) proved that the 
JRP is NP-complete. Indeed, existing exact solution 
methods are of a complexity which grows exponen- 
tially with the number of periods or the number of 
items, and therefore may be used only for problems 
of small size. Even for the case where all parameters 
are constant over time, no polynomial-time solution 
methods are known. Indeed, at least since Brown 
(1967), attention has focused on heuristics, primarily 
for the case where all cost and demand parameters are 
constant over time, and, more recently, for settings 
that allow for time-varying demands (while continuing 
to assume constant cost parameters). 

We first develop an exact branch-and-bound 
method for the JRP with time-varying parameters. 
This method is efficient for problems of moderate 
size, i.e., it is capable of solving problems with 20-30 
periods and 20-30 items in a reasonable amount of 
time (see Section 2). 

The efficiency of the branch-and-bound method is 
due to the use of a new, tight lower bound to evaluate 
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the nodes of the tree, a new branching rule, as well as 
a new upper bound for the cost of the entire problem. 
To obtain the upper bound, we formulate the JRP as 
a problem of minimizing a supermodular set function, 
apply a greedy procedure to this set minimization 
problem, and use the associated cost value. This 
greedy heuristic comes close to being optimal as we 
demonstrate both numerically and on the basis of a 
worst-case analysis. 

The results on forecast horizons for single item, 
dynamic lot sizing models, reported in Federgruen 
and Tzur (1994), suggest that optimal or close-to- 
optimal initial decisions can be made by truncating 
the horizon after a relatively small number of periods. 
In all instances of the problem investigated there, a 
forecast horizon is found in which at most three and, 
usually only two, orders are placed (the obligatory 
order in the first period included). It is reasonable to 
expect that similarly short forecast horizons continue 
to prevail in the presence of joint setup costs. This, 
together with the attractiveness of our branch- 
and-bound procedure for relatively short problem ho- 
rizons, suggests that a close-to-optimal solution may 
be generated by partitioning the horizon into smaller 
intervals. 

Therefore, we develop a new heuristic for the JRP, 
which we refer to as the partitioning heuristic. This 
heuristic partitions the complete horizon of N periods 
into several intervals, and specifies an associated JRP 
for each of these. The lengths of the intervals permit 
the use of the exact branch-and-bound method men- 
tioned above. The JRP associated with a given inter- 
val is obtained from the restriction of the complete 
problem to the periods of that interval, with an option 
to choose starting conditions that appropriately com- 
plement the solutions obtained in prior intervals. 

The partitioning heuristic can be implemented with 
complexity O(mN2loglogN), where m denotes the 
number of items and N the length of the horizon. It 
can be designed to guarantee an c-optimal solution for 
any E > 0, provided that some of the model parame- 
ters are uniformly bounded from above or from be- 
low. In particular, the heuristic is asymptotically 
optimal as N -> oo for any fixed number of items 
m, and it remains asymptotically optimal when 
both m and N are simultaneously increased to infin- 
ity. Most importantly, a numerical study reported in 
Section 3 shows that the partitioning heuristic per- 
forms exceptionally well. Even with very small inter- 
vals, the average optimality gap, when measurable, is 
only 0.38% and in none of the problem categories is it 
larger than 0.78%. 

Exact solution methods which are based on dy- 
namic programming (with exponential complexity) 
have been proposed by Zangwill (1966), Veinott 
(1969), Kao (1979), and Silver (1979). These exploit 
the zero inventory ordering property, which states 
that there exists an optimal solution in which no order 
is placed for any item unless its inventory is down to 
zero (see Veinott). Erenguc (1988) developed a 
branch-and-bound procedure which differs from ours 
in the choice of lower and upper bounds, as well as in 
its branching rules. This author reports numerical 
results for problems with up to 12 periods and 20 
items. An exact cutting plane method was recently 
developed by Raghavan and Rao (1991); these authors 
report numerical results for problems with up to 30 
periods and 20 items. A more recent version 
(Raghavan and Rao 1992) reports on problems with up 
to 40 periods and 100 items (see Section 2 for a 
detailed discussion). 

As mentioned, most of the proposed heuristic 
methods deal with the special case where all cost and 
demand parameters are constant over time. Jackson, 
Maxwell and Muckstadt (1985) showed that in this 
special case, a simple, so-called, power-of-two policy 
can be constructed whose long-run average cost 
comes within 6% of the minimum cost value. Roundy 
(1985) showed for a more general model, i.e., the one 
warehouse multiretailer problem, that the worst-case 
optimality gap for power-of-two policies is, in fact, 
limited to 2% only. Federgruen and Zheng (1992) 
extended the 2% optimality gap result to joint replen- 
ishment problems with general (submodular) joint 
cost structures. We refer the reader to the latter paper 
and to Aksoy and Erenguc (1988) for a detailed review 
of previous heuristics for models with constant pa- 
rameters. Kao (1979) and Leopoulos and Proth (1985) 
propose heuristics for models with time-varying de- 
mands. Both papers report results for the two-product 
problem; it is unclear how their complexity grows 
with the number of items. The optimality gap of Kao's 
heuristic can be arbitrarily large, as demonstrated in 
Joneja (1990). Silver (1976) reports on a single-pass 
heuristic with a three-product example. 

Atkins and lyogun (1988) extend the well-known 
Silver-Meal heuristic of the single item model to joint 
replenishment problems with time-varying demands 
but constant cost parameters. They also derive a 
lower bound for the minimum cost value which pro- 
vides the foundation for ours. The only heuristics 
with known worst-case optimality gaps are due to 
lyogun (1987, chap. 4) and Joneja (1990) which apply 
to models with constant cost parameters. To our 
knowledge, our heuristic is the first with a bounded 
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worst-case optimality gap for models in which both 
the demand and the cost parameters vary over time. 
(As mentioned, it is possible to design this heuristic to 
achieve an E-optimality gap for any E > 0.) 

The remainder of this paper is organized as follows: 
In Section 1 we develop our lower and upper bounds. 
The branch-and-bound procedure is described in 
Section 2. Section 3 is devoted to the partitioning 
heuristic. 

1. LOWER AND UPPER BOUNDS 

In this section, we describe lower and upper bounds 
for the minimum cost value z* . These bounds may be 
used in the branch-and-bound procedure described in 
Section 2. Alternatively, they are useful in evaluating 
heuristics, e.g., those described in Section 3. 

The JRP is specified by the parameters: 

N = the number of periods; 
m = the number of items; 

For i = 1, ..., m and t = 1, ..., N: 

di, = the demand for item i in period t (we assume, 
without loss of generality, that di, a 0); 

.K = the fixed-order cost for item i in period t; 
K =t = the fixed joint order cost in period t; 
Cit = the variable per unit order cost of item i in 

period t; 
hi, = the cost of carrying a unit of inventory of 

item i at the end of period t; 

We also assume that orders are filled instanta- 
neously. (We can easily adjust our planning methods 
to the case where each order for item i arrives after #? 

periods, i = 1, ... , mi.) 
The following is a mixed integer programming for- 

mulation of the problem: For i = 1, ...m, and t = 

1, .. ,N, let 

Xit = the production volume of item i in period t; 
Iit the ending inventory of item i in period t; 

= { 
1 if Xit > O 
0 otherwise 

Yt3 1 if Xit>0 

{ otherwise 

N m m 

Z* = mmin [KotYt + Kit Yit + c itXit 
t=1 = i=1 

m 
+ h itIht]} 

subject to 

Iit = Iit-1 +Xit -dit i = 1, ... , m, t = 1, N, N 

N 
xit <, I dir Yit i=1,...m, t=1,..N 

r=t 

m 
( m )/'t t= 1 .., N 

IiO = IiN = 0; Xit ? 0; Iit ? 0; 

Yit = , 1; Yt =O, 1. 

1.1. Lower Bounds 

Atkins and lyogun observed that a lower bound can 
be obtained by replacing the joint setup cost structure 
by one with separable costs, i.e., modified item spe- 
cific setup costs: 

Kit = Kit + ait i = 1,..., m, t = 1, ..,, (1) 

where 

m 
E Kot t = 1, N... ,N 

i=l (2) 

atit 0 i i= 1, . m, t = 1, ., N. 

(Note that for any given strategy and associated order 
periods, the setup cost incurred in any order period in 
the transformed model is no larger than the setup cost 
incurred in the original model.) 

Let zi(ail, ... , aiN) denote the minimum cost for 
item i in the single item dynamic lot sizing model with 
modified setup costs K't specified by (1). Observe that 

m 
zi(a/il, * a SOiN) Z* (3) 

i=l1 

for any collection of allocated setup costs {ait: i = 

1, ... ,m;t = 1, . N. ,N}which satisfy (2). The best 
lower bound of this type is clearly obtained by 
determining: 

m 
max E zi(ail, .., aTiN) (4) 

a: a satisfies (2) i=1 

We also observe the following: 

Lemma 1. Each of the functions zi, as well as the 
function z, is jointly concave. 

Proof. Each of the functions zi can be represented as 
the minimum of a number of affine functions in the 
a-variables (one for each of the 2N _ 1 possible sets 
of order periods). 

Evaluation of (4) requires computing the maximum 
of a concave, but nonseparable, objective on the 
polyhedron described by (2). Standard concave 
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programming techniques may be invoked. Alterna- 
tively, (4) may be evaluated by solving the linear 
programming relaxation of the integer program- 
ming formulation in Joneja (1990), straightfor- 
wardly extended to allow for nonstationary cost 
parameters. Joneja (1989, Theorem 2.3) establishes 
that the optimum value of this linear program 
equals that of a specific Lagrangian dual and the 
latter reduces to (4). The linear program uses 
O(mN2) variables and mN constraints. No efficient 
exact solution method for (4) is known. 

One may consider evaluating (4) by the greedy 
procedure. The discrete version of this procedure 
starts with a = 0 and in each iteration increments by 
one unit an ai, variable for which this is feasible 
(i.e., does not violate (2)) and for which the result- 
ing objective function value improvement is 
maximal; the procedure terminates when no ai, 
variable can be incremented. The polyhedron 
in (2) is a so-called polymatroid (see Edmonds 1970 
or Nemhauser and Wolsey 1988); the greedy 
procedure results in an optimal solution for any 
separable concave objective, as well as certain 
types of nonseparable objectives. Since the objective 
in (4) fails to be one of these types, the greedy 
procedure is likely to generate a good, but not 
necessarily, optimal solution. (See Federgruen and 
Groenevelt 1986 for more details.) 

The greedy heuristic is also quite expensive! It 
consists of max K0, iterations; in each iteration one 
needs to evaluate the impact of incrementing up to 
mN variables, each of which requires the solution 
of a single-item dynamic lot sizing model. Thus, 
the total complexity of the greedy heuristic is 
O((max,K0,)mN2logN). We therefore describe a 
simpler heuristic procedure. 

For each period we determine the best allocation 
vector a*t = (alt,..., a* t) for the joint setup 
cost value K0o, i.e., the allocation vector which 
maximizes the total cost over all single-item 
dynamic lot sizing models that arise when all 
setup costs in the ith model are increased by a*t 
(i = 1, ...M, ). The advantage of this heuristic is 
that each period's allocation vector is determined 
separately, even though its choice continues to be 
based on maximization of a total cost criterion 
over the complete planning horizon. A second 
advantage is that the maximization consists of 
optimizing a separable concave objective, subject 
to a single budget constraint. Indeed, the allocation 
vector a*t = (*t, . a. , t) is chosen to achieve the 
maximum in: 

m 

max 2 Zi(ai) 
a=(ai ..m ) i=l 

subject to (5) 

m 

ai = Kot; ai ? 0, 
i=l1 

where for all i = 1, * , m; Zi(a) = zi(a, a, * , a) 
= the minimum cost in item i's dynamic lot sizing 
model with setup costs K', = Kit + a for all t = 

1, ... , N. (See the definition of zi(, ... , ) above.) 
(Note that the optimum value of (5) may, in itself, fail 
to be a lower bound for z* unless Ko0 = min{K0,: 
X = 1, ..., N}. However, z(a*', ..., a*N) is a 
lower bound by (3).) 

Observe that each of the functions Zi() is concave 
as well because it too can be represented as the finite 
minimum of a number of affine functions. Problem 5 
thus amounts to determining the maximum of a sep- 
arable concave objective subject to nonnegativity 
constraints for the individual variables and a single 
budget constraint. It is well known (see Gross 1956 
and Fox 1966) that the greedy procedure described 
above terminates with an optimal solution. In other 
words, the vector a*t determines the optimal station- 
ary allocation of the joint setup cost value Kot. We 
refer to the resulting lower bound as ZLB- 

This procedure needs to be applied to the single 
instance of (S) with Kot replaced byK = max{K0: 
X = 1, ..., N} as all other required allocation vec- 
tors a (for smaller values of Kot) are obtained from 
intermediate iterations of this procedure. The greedy 
procedure requires 2m solutions of single-item dy- 
namic lot sizing models to evaluate Zi(O) and Zi(1) for 
all i = 1, ... ., m, and one additional such solution in 
each of the (K " - 1) subsequent iterations. Each 
single-item dynamic lot sizing model is solved 
in O(NlogN) time using one of the methods in 
Federgruen and Tzur (1991), Wagelmans, Van Hoesel 
and Kolen (1992) or Aggarwal and Park (1993). The 
overall complexity is thus O((m + K"a)MogN). 
Polynomial-time discrete algorithms for (5) are due to 
Galil and Megiddo (1979), Frederickson and Johnson 
(1982), and Groenevelt (1986) (see also Zipkin 1980). 

1.2. Upper Bound (The Greedy-Add Heuristic) 

We now describe the implementation of the so-called 
greedy-add heuristic (see Cornuejols et al. 1977) to 
the JRP. The value of this heuristic's solution will be 
used in the branch-and-bound procedure as an upper 
bound to the optimal cost. The greedy-add heuristic 
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determines the set of order periods as follows: Start- 
ing with an empty set, this set is incremented in each 
iteration by a single period, say period j, whose ad- 
dition as an order period results in the largest cost 
savings, i.e. F(S U {j}) = miniosP(S U {i}). The 
heuristic terminates when S = {1, .. ., N} or when 
the cost cannot be reduced by the addition of a period 
to S, i. e., (S U {fj}) > 4?(S) for all]j S. 

Note that the greedy-add heuristic is likely to give 
good results by itself. This follows from the following 
characterization of the optimality gap of the greedy- 
add heuristic. Let ZG denote the cost value of this 
heuristic. 

Proposition 1 

(z G - 
z*) 1 

1 _. 

(4({Q }) - z*) e 

Proof. It suffices to show that the set function (*) is 
supermodular, i.e., (P(S U {j}) - (F(S) < (F(T U 
{j}) - ?F(T) for all S C T andj 0 T. The proposition 
then follows from Nemhauser, Wolsey and Fisher 
(1978) who proved it for general set minimization 
problems with supermodular set functions. Note that 

4)(S)= > Kot +z(a 1, a . N). (6) 
tES 

where the z function was defined in Section 1, at 

(alt, - , amt) and for all i = 1, ..., m 

JO if tES 
ait = oo otherwise. 

Note that the first term in (6) is modular in S. The 
supermodularity of the last term follows from the joint 
concavity of the z-function (see Lemma 1). 

The greedy heuristic has complexity O(mN3logN) 
because it terminates after at most N iterations and at 
each iteration at most N values of the function P( - ) 
need to be evaluated. As we show in our computa- 
tional study in the next section, the greedy heuristic 
may be used to obtain an excellent upper bound for 
the problem. 

2. AN EXACT BRANCH-AND-BOUND METHOD 

The JRP clearly can be solved in O(m2NNlogN) time 
by enumerating all possible sets of periods in which 
some order is placed, and solving for each such set the 
resulting m independent, single-item, dynamic lot siz- 
ing problems. This is prohibitively expensive for all 
but small values of N. 

In this section, we describe an exact branch-and- 
bound procedures, an implicit enumeration method 

for the JRP. As our numerical results below indicate, 
this method can be used comfortably for problems 
with 20-30 periods and 20-30 items. More impor- 
tantly, it is used to solve the subproblems which arise 
in the partitioning heuristic described in Section 3. 

Each node of the branch-and-bound tree is charac- 
terized by a partition of {1, ... , N} into three sets 
Sa, S, and So. The set S+ includes all periods in 
which one is committed to incur the joint setup cost, 
the set S - includes the periods in which one is com- 
mitted not to incur the joint setup cost, and the set 
So = {1, ..., N}\(S+ U S ) includes the periods in 
which one is not committed yet. For each node in the 
tree, we evaluate the lower bound 

m 

> Kot + zi (ail, a, aTi) (7) 
tES+ i=1 

with 

(0 if t ES+ 
ait - if t E S-, 

(a7t if tESs 

where a*t is computed from the lower bound de- 
scribed in the previous section. The expression in (7) 
provides a lower bound in view of (3). It requires m 
solutions of single-item lot sizing models. Each of 
these lower bounds is associated with a feasible col- 
lection of schedules for the m items. The cost of the 
feasible solution provides an upper bound for z* and 
is easy to obtain by adding to (7) the unaccounted part 
of the joint setup costs in the periods in So in which 
some order is placed. At any stage of the branch-and- 
bound procedure, the best available upper bound may 
be used to eliminate parts of the tree. 

Every node in the tree has two successor nodes; the 
first (second) successor node has an additional period 
in So shifted to S- (S+). Therefore, the branch-and- 
bound procedure is completely specified by the 
choice of the branching rule, i.e., a rule to select a 
period from the set So. Our proposed branching rule 
employs a fixed ranking of the periods {1, ... , N} 
and chooses the highest ranked period in So. 

2.1. The Branching Rule 

Rank the periods t E {1, ... , N} in increasing order 
of the value 

m m di [m +ol 
dithit- - cit - Kit +Kot (8) 

i=l i=l ~~~hi _i=l 

where ki, hi, di are averages over the N periods of 
item i's individual setup cost, holding cost, and de- 
mand, respectively. This value represents a proxy for 
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the potential savings obtained when deciding on a 
joint setup in period t, and is based on the assumption 
that all items are included in the joint order. The first 
term represents the savings in holding costs at the 
end of period t - 1, i.e., at the beginning of period t. 
The second term denotes the variable order costs 
in the same period t, assuming that the items' order 
sizes in this period are chosen as if all cost and de- 
mand parameters are stationary and equal to their 
average value over the planning horizon, i.e., assum- 
ing the order sizes equal the optimal order quantities 
in the corresponding EOQ models. The third and 
final term denotes the total setup cost of this period 
(the remaining cost component of period t). Thus, the 
index value of (8) is a measure for the relative attrac- 
tiveness of a joint setup in a given period. Note that 
the branching rule only depends on the relative rank- 
ing of the period measure in (8). 

In the proposed branching rule, any element in So 
with the lowest index value is shifted to S- and S+ 
when specifying the two successor nodes for a given 
node in the branch-and-bound tree. In our proposed 
depth-first method, we investigate the first successor 
node and its subtree before turning to the second 
successor node. 

We have investigated several other branching rules 
which almost always led to inferior results to those 
reported here. (See Tzur 1992, Section 7.2 for more 
details.) 

2.2. Computational Study of the Branch-and- 
Bound Procedure 

We evaluated the performance of this branch- 
and-bound method with respect to a collection of 
hundreds of problem instances, partitioned into sev- 
eral sets. These problem sets are generated from a 
basic class of problem instances by systematically 
varying one, or sometimes two of the parameter sets. 
This basic class of instances has a planning horizon of 
N = 18 periods, and m = 5 items. Its cost and 
demand parameters are generated from the first-order 
autoregressive equations: 

di1 -ed, ci1 = ec, hi1 = eAh (i = 1, ...,m); 

Kil eiK (i =o 0 ,m); 

and for t > 1: 

dit = adi,t_1 + (1 -)eit; 

cit = Ci,t_1 + (1 -)eit 

hit = ahi,t_1 + (1 a)ei- t 

Kit= aKi,t_1 + (1 -a)ei 

where the sequences: {e': i =1,...,m, t = 1,... 
N}, {e': i = 1,..., m, t = 1,..., N}, {eZ: h = 

1, ..., m, t = 1, ..., N}, and {eK: i = , ... m, 

t = 1, ..., N} are independent random variables, 
uniformly distributed on the integer values of a pre- 
specified interval. The autoregressive patterns reflect 
correlations between consecutive parameter values, 
as typically observed in most practical settings. The 
extreme case where a = 0 corresponds with fully 
independent and random parameter values; in the 
other extreme case where a = 1, the parameter values 
stay completely constant over time. 

In practice, one tends to find that cost parameters 
are more stable than demands. On the other hand, the 
opposite relationship may apply when, for example, a 
significant part of the variable cost rates consist of 
widely fluctuating costs of raw materials, energy 
sources, or seasonally available labor. We investigate 
the performance for five distinct values of a, the 
adjustment factor (the extreme values a = 0 and a = 
1 included). The four autoregressive equations which 
describe the dynamics of the demand and cost param- 
eters have been specified to employ the same value 
for a, even though, in most practical settings, 
equation-specific values of a would apply. Note, how- 
ever, that scenarios generated with a high value for a 
and large ranges for the parameter values, represent 
settings with some items consistently more expensive 
(in one or more cost parameters) than others. Scenar- 
ios with a high value for a and small ranges for 
the parameter values, represent settings in which the 
items are virtually identical and with small parameter 
variations over time. Finally, scenarios with a low 
value for a and large ranges for the parameter values 
represent settings with large nonstationarities but 
with none or few of the items systematically more 
expensive than others. (Systematic variation of 
equation-specific a-values would greatly increase the 
number of problem instances.) 

In our basic class of instances, a - 0.5 and the 
random variables e d, ec, eZh and eK (i = 1,..., m, 
t = 1, .. , N) are uniformly distributed on the inte- 
ger values of the intervals [1, 10], [5, 10], [1, 5], and 
[10, 30], respectively. The random variables eft (t = 

1, ..., N) are uniformly distributed over the integer 
values of the interval [80, 120]. 

In problem set 1 we vary the horizon length N from 
N = 12 to N = 36, and in problem set 2 we vary the 
number of items from m = 5 to m = 35. In the third 
problem set we vary the number of items from m = 

10 tom = 20 for a horizon length N = 24. In problem 
set 4 we vary the value of a, i.e., the degree of 
correlation between consecutive parameter values 
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between 0 and 1. Finally, in the rest of the problem 
sets we vary the ranges of the demand and cost pa- 
rameters (one at a time). Each problem set consists of 
10 independently generated instances for each of the 
considered combinations of N, m, a, and demand 
and cost parameters. 

We executed the branch-and-bound method on an 
IBM 4381 in FORTRAN. Tables I-IV report on the 
method's performance with regard to the four prob- 
lem sets, respectively. We report both the CPU times 
in seconds, and the number of nodes investigated in 
the branch-and-bound tree. The numbers reported 
within parentheses express the number of nodes as a 
percentage of the 2N- 1 possible nodes. (Since the first 
period demand is positive in all of the considered 
problem instances, there are 2N- 1 distinct sets of 
periods in which a joint setup cost is incurred.) We 
characterize in addition the performance of the 
greedy heuristic and the lower bound ZLB, reporting 
the values ZG/Z* and Z*/ZLB. 

We are pleased to conclude that the branch-and- 
bound method is capable of solving in a reasonable 
amount of time problems with as many as 20-30 
periods and 20-30 items. 

Tables I-IV exhibit that the greedy heuristic by 
itself is extremely close to optimal, with an over- 
all average optimality gap of 0.47%; moreover, the 
average optimality gap is always less than 1.2% for 
all considered combinations of N, m, and a. The 
lower bound ZLB is relatively accurate as well. For 
the base value of a (a = 0.5) the average accuracy 

gap is remarkably stable across all considered 
combinations of N and m, varying between 1.9% 
and 4.5% with the vast majority in the 2.4-2.8% 
range. The accuracy gap is, however, much more 
sensitive to the value of a, as exhibited in Table IV. 
Large (small) values of a, i.e., a higher (lower) 
degree of intertemporal correlation, result in a 
significantly lower (higher) accuracy gap: e.g., for 
a = 1 (constant parameters) the average accuracy 
gap is only 0.07%: This case is comparable to the 
stationary model with the long-run average cost 
criterion in which even the worst-case accuracy gap 
of this lower bound is 6%, but the empirically 
observed average is one or two magnitudes smaller 
(see Jackson, Maxwell and Muckstadt). For a = 0, 
i.e., when the parameters are completely independent 
over time, the average accuracy gap is 7%. The 
increased gap is likely to be due to the stationary 
allocation heuristic discussed in Section 1, exhibiting 
a more considerable optimality gap vis-ai-vis the best 
possible lower bound in (4). 

The branch-and-bound tree requires the investiga- 
tion of a small percentage of the possible number of 
nodes, only. Moreover, this percentage decreases 
rapidly with the horizon length N, i.e., by a factor of 
about 10 each time the horizon length is increased by 
six. Problems with up to 24 periods and 5 items can be 
solved to optimality in less than a CPU minute; prob- 
lems with 36 periods and 5 items require about 
20 CPU minutes on average. 

Table I 
Problem Set 1, m = 5 

N 12 18 24 30 36 

Average CPU 0.4 4.0 40.1 231.7 1,401.2 
time 

Average number 90 378.8 2,855.2 12,595.2 74,774.4 
of nodes 

(4.4%) (0.29%) (0.03%) (0.002%) (0.0002%) 
zG/z* 1.0124 1.0038 1.012 1.0054 1.0071 
Z*/ZLB 1.0447 1.0254 1.0268 1.0254 1.0278 

Table II 
Problem Set 2, N = 18 

m 5 10 15 20 25 30 35 

Average CPU 4.0 19.4 48.0 116.3 195.6 149.3 87.9 
time 

Average number 378.8 973.2 1,678.6 3,073.4 4,100.4 2,744.2 1,377.6 
of nodes 

(0.29%) (0.7%) (1.3%) (2.3%) (3.1%) (2.1%) (1.1%) 
z /z * 1.0038 1.0047 1.0025 1.0018 1.00057 1.00012 1.0 
Z*/ZLB 1.0254 1.026 1.0244 1.0252 1.0245 1.0217 1.0186 
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Table III 
Problem Set 3, N = 24 

m 10 15 20 

Average CPU 250.4 727.1 1,402.5 
time 

Average number 9,163.2 19,396.8 34,108.0 
of nodes 

(0.11%) (0.23%) (0.41%) 
zGIZ* 1.0097 1.0065 1.0034 
Z*IZLB 1.0279 1.0276 1.0265 

Tables II and III exhibit that the computational 
effort is quite sensitive to the number of items in- 
volved, even when measured by the average number 
of nodes evaluated in the branch-and-bound 
tree. (Recall that the computational effort involved in 
evaluating a single node is roughly proportional to the 
number of items.) Observe, for example, in Table II 
that the percentage of nodes evaluated increases 
when the number of items is increased from m = 5 to 
m = 25, even though the quality of both the upper 
and the lower bounds is insensitive to the number of 
items. This increase is probably due to our chosen 
branching rule which applies depth-first and shifts 
periods, characterized by the index (8) as unlikely 
setup periods, into S- first; problems with a low 
number of items have a relatively small number of 
setup periods so that the periods initially shifted into 
S - are more likely to be classified correctly as periods 
without setups, compared to problems with a large 
number of items. Indeed, it might be desirable to 
choose the branching rule as a function of the "ex- 
pected" cardinality of the set S+ in the optimal 
solution. 

Observe also that the percentage of nodes evalu- 
ated decreases when the number of items is larger 
than 25. Here we observe that the accuracy gap of the 
upper bound, small as it already is when m = 25, 
decreases by more than a factor of four when m is 
increased from 25 to 30, and to zero when m is in- 
creased from 30 to 35. This decrease is due to both the 

optimal solution and the greedy heuristic prescribing 
setups in all but an ever decreasing, small number of 
periods. (For m = 35, setups are prescribed in all 
periods across all 10 problem instances: Hence, the 
0% optimality gap.) 

We conclude that for fixed N, and under our chosen 
branching rule, the number of investigated nodes in 
the branch-and-bound tree varies as a function of the 
relative sparsity of the optimal collection of setup 
periods S+ in {1, ... , N}. If the optimal S+ is very 
sparse or dense in {1, ..., N} the percentage of 
investigated nodes is low, and it is highest for inter- 
mediate levels of sparsity. The same phenomenon 
would thus arise if Ko were increased along with m, 
with the number of evaluated nodes varying with m 
as a unimodal function, reaching a similar maximum 
value for a larger maximizing value of m. 

Given the prevalence of a large number of ex- 
tremely close-to-optimal nodes, we conjecture that a 
significant reduction in computational effort can be 
achieved if the branch and bound procedure is termi- 
nated as soon as a solution is found to be within a 
given reasonable gap E of the optimal value. 

Table IV indicates that the computational require- 
ments of the branch-and-bound tree vary significantly 
with the value of a. This phenomenon can be ex- 
plained by the above-discussed variations in the ac- 
curacy of the lower bound. 

In the rest of the problem sets we investigated the 
performance of the branch-and-bound procedure with 
respect to changes in the ranges of the demand and 
cost parameters. We conclude that the results are 
insensitive to those changes (see Tzur, Section 7.2). 

The best alternative exact solution method appears 
to be Raghavan and Rao's (1991) cutting plane algo- 
rithm. They implemented their algorithm on a Sun 490 
Server, and tested problems ranging in size from 3 
items and 12 periods to problems with 20 items and 30 
periods. These problems were solved to optimality 
with CPU times ranging between 2.75 seconds for the 
smallest problem to 5,054 seconds for the largest 

Table IV 
Problem Set 4, N = 18, m = 5 

a 0.0 0.2 0.5 0.8 1.0 
Average CPU 25.1 13.2 4.0 1.2 1.1 

time 
Average number 2,703.0 1,304.4 378.8 95.8 91.0 

of nodes 
(2.1%) (1.0%) (0.29%) (0.73%) (0.69%) 

z /z* 1.0018 1.0017 1.0038 1.0049 1.0056 
Z*/ZLB 1.07 1.05 1.025 1.0047 1.0007 
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problem. Where exactly comparable in the number of 
items and the number of periods, our branch-and- 
bound procedure is slightly faster. Upon final accep- 
tance of this paper, we became aware of significant 
improvements in Raghavan and Rao's method, as 
reported in Raghavan and Rao (1992). The latter also 
describe a new solution approach based on a multi- 
commodity formulation of the problem using 
Dantzig-Wolfe decompositions. The latter method 
solves problems with 30 periods and 20 items in 480 
seconds on the Sun 490 Sparc station. Moreover, this 
method is capable of solving problems with up to 40 
periods and 100 items. (The latter sized problems 
require an average of approximately 7,500 seconds 
and involve linear programs with approximately 
86,000 variables and constraints.) The partitioning 
heuristic described in the next section can be imple- 
mented with any exact solution method for the sub- 
problems associated with each interval, i.e., the 
branch-and-bound method described in this section, 
or alternatively, the method of Raghavan and Rao 
(1992). 

3. THE PARTITIONING HEURISTIC 

In this section, we describe and analyze our proposed 
partitioning heuristic. The exact full or implicit enu- 
meration procedures described in the previous sec- 
tion are only attractive if the length of the horizon is 
relatively small. This, together with our observation 
that forecast horizons tend to be small, suggests the 
following type of heuristic: Partition the complete 
horizon of N periods into relatively small intervals, 
and specify associated joint replenishment problems for 
each one of them. The lengths of these problems 
permit the use of the exact branch-and-bound method 
described in the previous section. The JRP associated 
with a given interval is obtained from the restriction of 
the complete JRP to the periods of that interval (see 
Figure 1). In addition, for each interval we add an 
option to choose starting conditions that appropri- 
ately complement the solutions obtained in prior 
intervals. 

Indeed, we show below that an efficient partitioning 
heuristic of this type can be designed to be asymp- 
totically optimal, or e-optimal for any prespecified 
E > 0. We also show that the partitioning heuristic 
compares favorably with the heuristics described in 
Section 2. 

We now specify the proposed partitioning heuris- 
tic. We need the following auxiliary quantities: 

Di(t) = Yt=, di, = the cumulative demand for 
item i up to period t (i = 1, 
m; t = 1, ... , ); 

Si(s, t) = Yt- hir Yk=r+1 dk = Y-t1 hir(Di(t) - 

Di(r)) = the total inventory carrying cost 
for item i under zero-inventory ordering 
in periods s,..., t when placing an 
order in period s to cover demands through 
period t (s < t). 

We partition the complete horizon {1, ... , N} into 
I intervals of lengths n1, n2, * * , n, (i.e., Y= = 

N) and specify associated joint replenishment prob- 
lems denoted by (JRPh). Let Nh = _k 1 nk, h = 

1, ... , I. We discuss possible choices for I, the 
number of intervals and their length, later in this 
section. 

For i = 1, , m let fi(Nh - 1) denote the last order 
period for item i in the partial solution constructed 
thus far, i.e., the solution constructed from (JRP1) up 
to (JRPh-)- 

Let e(Nh-l) - maxi{-i(Nh-l)} denote the last of 
all order periods in the partial solution constructed 
thus far, and Lh- {i: i(Nh-1) = e(Nh -)} be the 
set of items ordered in that period. These quantities 
are clearly known after solving {(JRPh -)} i.e., when 
specifying (JRPh). (JRPh), the joint replenishment 
problem specified for the hth interval, consists of 
(nh + 2) periods: The periods Nh-l + 1, ..., Nh 
preceded by two dummy periods with zero demands 
and holding cost rates, which we refer to as periods 
-1 and 0 (see Figure 2). 

Orders in period 0 represent additions to the orders 
placed in period f(Nh - 1) to cover demands of some of 
the initial (or possibly all) periods in the hth interval. 
For items in the set Lh -1 such additional orders can 
be made without any additional setup costs. For any 
product i ? Lh- 1, if additional orders are placed, only 
the item-specific setup cost Ki,.e(Nhl_) needs to be 
incurred, while saving a fixed (not necessarily posi- 
tive) amount of variable order and holding costs over 
the periods ti(Nh - l), X * * * t(Nh ) - 1 for the units 
demanded in periods t(Nh-l), ... , Nh-1. The de- 
mands in these periods are, in the optimal solution for 
(JRPh- 1), covered by an order in period Ci(Nh - 1) and Figure 1. Time, partitioned into intervals. 

Figure 2. Construction of the hth interval. 
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can now be covered by a liater order in period 
f(Nh -1). We thus specify the setup costs in period 0 
as: 

Koo = 0; 
Kio =0 for iELh-1; 

Kio = Kie(Nh -) + Kio for i 0 Lh.1; 

where 

Kio (Cie(Nh-1 Ciei(Nh-1)) 

* [Di (Nh - Di (E(Nh-1) - 1)] 

+ Si(ti(Nh-l), t(Nh-1) - 1) 

+ Si (f(Nh-l ), Nh-1) 

-Si (ti (Nh-1 ), Nh-i). (9) 

Observe that Kio > 0 for i 0 Lh-1 because other- 
wise f(Nh- l) is a better last order period in (JRPh -) 
than fi(Nh-l). 

The variable cost per unit of item i ordered in 
period 0 (for demands in the hth interval) consists of 
Cif(Nh )' the variable order cost of the corresponding 
period in the (h - 1)st interval, plus the cost of 
holding a unit over the interval [e(Nhl1), Nh-1] i.e, 

Cio = Cif(Nh-1) + hif(Nh-l) + .+ hiNh1 - 

Orders in period -1 represent additions to the or- 
ders for items i 5 Lh-1 in their respective last order 
periods (<f(Nh- 1)) in the optimal solution of 
(JRPh- 1). This period only considers additions to 
orders for items i 0 Lh-1 and these additions can be 
made with no (additional) setup costs involved. We 
thus specify the order cost parameters for period -1 
as: 

Ko,_1 = 0; 
Ki,_ - =oo for i E Lh-l; 

Ki,_1 =0 for i OLh-l; 

Ci,l 
=Ciei(Nh-1) 

+ hiei(Nh-l) + + hi,Nh -I 

As mentioned, dio = di, -1 = hi,O hi,-1 = 0 for all 
i = 1, ... , m. 

After solving (JRPh) exactly (e.g., via the branch- 
and-bound method described in Section 2) we update 
the partial solution for the horizon investigated so far. 
Updating the solution consists of two steps. In the 
first step we add the order quantities determined in 
JRPh to the appropriate periods. Orders in periods 
1, ..., nh of the hth interval correspond with order 
quantities in periods Nh-1 + 1, ... , Nh. For every 
item i, the order quantities for periods -1 and 0, if 
any, are added to the order quantities in periods 
fi(Nh-1) and e(Nhl1), respectively. (Note that for 

every item i, one of the order quantities in periods -1 
or 0 must be zero, in view of the zero inventory 
ordering policy discussed in the Introduction and the 
fact that dio, = 0.) 

The second step of updating the solution consists of 
determining the values of e(Nh) and #ei(Nh) for all i, 
according to the definitions of these quantities, with 
the understanding that for every i, periods -1 and 0 
correspond with periods Ci(Nh- 1) and C(Nh_ - 

Finally, let z(JRPh) denote the optimal cost for 
problem (JRPh). We conclude: 

Lemma 2. The solution obtained by the partitioning 
heuristic is feasible and has a cost value zH = YI =1 

z(JRPh)- 

We now derive worst-case bounds for the optimal- 
ity gap which arises when I intervals are used in the 
partitioning heuristic. We do so under mild conditions 
with respect to the cost and demand parameters, 
specified in Assumptions 1 and 2. 

Assumption 1. There exist for all i = 1, ... , m inte- 
gers Mi > 1 and constants KO*, Ki., di., hi* and ci. 
such that for all t ? 1 and all i = 1, ,m: 

N 

(dit + + dit+M.) > Midi. and > dit Ndi*; 
t=1 

Kot _> Ko*; Kit _> Ki*; hit _> hi.; cit _> ci*. 

Assumption 2. There exist for all i = 1, ... , m an 
integer Mi > 1 and constants K*, Ko*, K, Ki*, d , 
di*, hi*, c and ci* such thatfor all t > 1 and alli = 

1, ., m: 

(dit + * *+ dit+mi Midi*; dit <_ d ; 
N 

E dit Ndi*; t=1 

Ko* < Kot SK* Ki* NKit d K*; 

ci* < cit < C i; hi* hit. 

Note that Assumption 1 is weaker than Assumption 2. 
We first need to derive a lower bound for z*. 

Theorem 1. (The lower bound theorem) Given 
Assumption 1, 

a. If Mi= 1for alli =1,...,m 

m(rn m m 
z N maxt 

m 
F2kihi*di*: ki = Ki*, 

i=1 i=O 

ki Ki*j} + c ci*di*) _Ny1. 
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b.IfMi , 2forsomei =1,...,m 

z* ? N maxf 2 +2kih*d~ i + > i(k1) 
,i:M = 1 i:Mi 3> 2 

m m 

: 2 ki - , Ki* , ki ? Ki* 
i=1 i=O 

m\ 
+i E ci*di*) -NY2, 

where 

fki/2Mi if Ki < ki - MIhi* di* 

Oi(ki) = 2(k + hi*M2di* )hi*di* - 1.5hi*Midi* 

I if ki > M ihi*di*. 
Proof. a. A lower bound for z* is obtained by se- 
quentially implementing the following steps: 

i. Replacing all cost and demand parameters by 
their corresponding lower bounds. 

ii. Allocating the joint setup costs to the item- 
specific setup costs such that (see Section 1): 

m m 
> ki = Ki* 
i=1 i=O 

ki >, Ki* i = 1, ..,m. (10) 

iii. Transforming the problem into a continuous one, 
i.e., into a finite horizon EOQ problem, allowing 
for continuous rather than discrete review. It fol- 
lows from Carr and Howe (1962) that this step 
represents a further lower bouind for the optimal 
costs. 

Finally, the lower bound stated in the theorem is 
obtained by choosing in step ii the vector k that 
maximizes the sum (over all items) of the minimum 
cost in each of the resulting m separate single item 
dynamic lot sizing models. 

b. See the Appendix. 

It is easy to verify that the functions q() are 
concave and continuously differentiable (by evaluat- 
ing the left and right hand limits and derivatives in 
the breakpoint ki = M2hi*di*). Thus, to evaluate the 
bounds in parts a and b one needs to maximize a sum 
of concave and differentiable functions subject to a 
single budget constraint and lower bound constraints 
for the individual variables. The ranking method in 
Zipkin is ideally suited for this purpose; it requires 
O(mlog m) elementary operations and at most m 
evaluations of square roots. 

We are now ready to derive a worst-case bound for 
the heuristic's optimality gap. This bound serves, in 
addition, to suggest proper choices for the interval 
lengths to be employed in the heuristic; it is also the 
essential foundation for establishing that the heuristic 
can be designed to be asymptotically optimal, or 
e-optimal for any e > 0. Without loss of generality we 
assume that a constant h * exists such that hi, > hi* = 
h* for all i = 1, ..., m and t = 1, ..., N, and that 
di, > 1 ordi, = O for alli = 1, ..., m andt - 1,... 
N. (This can be achieved by an appropriate choice of 
the units in which the items are measured. First, units 
are chosen so that all nonzero demands are B 1; next, 
items i's unit is decreased by the factor 
(mini<femhe*hi*) < 1, which results in an increase 
of all demands by the reciprocal factor so that all 
nonzero demands continue to be > 1.) 

The worst-case bound and its proof are particularly 
simple if no speculative motive exists for carrying 
inventory for any of the items, i.e., in terms of vari- 
able costs, it is never advantageous to order some 
future period's demand in the current period, or 
Cit+ + ci, + hi for all i = 1, ... , m and t = 2, 
N. We therefore deal with this case first. 

Theorem 2. Let I denote the number of intervals em- 
ployed by the partitioning heuristic. Assume that no 
speculative motives for canying inventory prevailfor 
any of the items. Assume that Assumption 1 is satis- 
fied, and in addition there exist for all i = 1, ... , m 
constants Ko and K* such that for all t ? 1, Kot 6 

K*; and Kit < K*. Then 

zH - z * -1)P 
z*N y' 

where 
P' = K*an y Yi if all Mi = 1 
=E>K~ andy= 

i=O Y2 otherwise 

(yi and Y2 defined as in Theorem 1). 

Proof. We show that (zH - z*) < (I - 1)p'. The 
theorem then follows from Theorem 1. Consider an 
optimal solution of the JRP on the entire N-period 
horizon. If this optimal solution fails to be achievable 
by the partitioning heuristic, we can transform it into 
one that is achievable by this heuristic, adding no 
more than o K* = p' to the total cost. This can be 
achieved by adding a setup for each item in the 
first period of each of the (I - 1) intervals (except 
the first one, in which the optimal solution is clearly 
achievable by the partitioning heuristic). Since in the 
transformed solution some of the orders are post- 
poned, and no speculative motives are assumed, this 
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transformation does not add to the total variable or- 
der and/or holding costs. 

The following theorem characterizes the worst- 
case upper bound for the case where speculative mo- 
tives for carrying inventories may exist. 

Theorem 3. Let I denote the number of intervals em- 
ployed by the partitioning heuristic, and assume that 
Assumption 2 is satisfied. Let 'q = max{c * 
ci. -h*}. Then 

zH_-z* (I - 1) p 

z* N y 

where 

m m m I 

p = K* + L >d* + K* hh* 

L = [max{c* - cj*}/h*1 and y 

Y{1 if all Mi= 1 

Y 2 otherwise 

(yl and Y2 defined as in Theorem 1). 

Proof. See the Appendix. 

Remark. The bound for the optimality gap in 
Theorems 2 and 3 applies, in fact, to the more sim- 
plistic version of the partitioning heuristic in which no 
dummy periods (O and -1) are added to any interval. 
Recall that these periods are added in the proposed 
version to allow for appropriate starting conditions. 
An alternative upper bound may be constructed by 
perturbing the optimal solution to the complete prob- 
lem as follows: Instead of postponing the orders of 
any units carried into a given interval (say, interval h) 
to the first period of that interval (period Nh- 1 + 1), 
we may, for all items involved, augment the size of 
their last order as determined by the solution to the 
partitioning heuristic for intervals 1, . . . , h - 1. This 
type of perturbation results in a solution achievable 
under the proposed version of the partitioning heu- 
ristic, and avoids any increase in setup costs. The 
increase in variable costs can be bounded by a 
technique similar to, though more tedious than, the 
one employed in the proof of Theorem 3. Moreover, 
the resulting bound is sometimes better, but some- 
times worse, than the value of p in Theorem 3. 

2.3. Possible Choices of Interval Lengths for the 
Partitioning Heuristic 

Theorem 3 suggests the following choice for the in- 
terval lengths nh (h = 1, ... , I) to be employed in 
the partitioning heuristic: (If no speculative motives 

for carrying inventory exist, the arguments below are 
valid with p' replacing p, based on Theorem 2.) 

nh = max{Y, flogNl}, h = 1, , I - 1 (11) 
I-1 

nI= N- nh (12) 
h=1 

with Y an arbitrary integer. 
Theorem 3 shows that an E-optimal solution may be 

guaranteed by choosing Y = Y(E) where 

Y(E) min{[p/ Eyl, N}. (13) 

Corollary 1. Given Assumption 2, the partitioning 
heuristic results in an E-optimal solutionfor any given 
E > 0 if the intervals nh (h = 1, . . ., I) are specified 
as in (11) and (12) and Y = Y(E). 

Proof. Assume without loss of generality that Y(E) = 

[pIEyl. If Y(E) = N, we clearly obtain an optimal 
solution. It follows from Theorem 3 that 

zH _Z* (I - 1 ) p ([N/Yl - 1 ) p 
z* N Y N Y 

(N/Y)p 
Ny Yy 

because Y > pley. 

Theorem 3 also allows us to conclude that the par- 
titioning heuristic is asymptotically optimal as N in- 
creases to infinity. 

Corollary 2. Consider the partitioning heuristic with 
interval lengths specified by (11) and (12) for any 
integer Y. 

a. The heuristic has complexity O(mN2loglogN). 
b. Given Assumption 2, for fixed m, the heuristic is 

asymptotically optimal as N increases to infinity. 
c. Given Assumption 2 with values K*, d*, c1 uni- 

formly bounded in i, and K,*, di., c,* uniformly 
bounded away from zero, the heuristic is asymp- 
totically optimal as m -> oo and N -> om. 

Proof 

a. The partitioning heuristic requires, to compute its 
solution for the hth interval, at most 2nlh solutions 
of m single-item dynamic lot sizing models, each of 
which can be solved in O(nhlog nh) time. The 
above complexity bound then follows because 
nh = O(logN) and I = O(N/logN). 

b. Asymptotic optimality for fixed m is immediate 
from Theorem 3. 
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c. Note that p is 0(m) while y = fl(m), i.e., there 
exists a constant a > 0 such that y > am. Thus, 
ply = 0(1) as m -* oo, and part c follows from 
part b. 

The following example illustrates the magnitude of 
the upper bound for the worst-case optimality gaps 
associated with a given horizon length n, as deter- 
mined by Corollary 1. 

Example 1. Consider a problem instance with m = 3, 
h* = 1, Mi = 1 (i = 1,2,3), Ko* = 70, andK*0 = 

80. Bounds for the remaining parameters are speci- 
fied as: 

Item K* K1* 
c* ci di di* 

1 30 20 12 8 15 5 
2 25 20 9 6 12 8 
3 40 25 10 7 10 5 

It is easy to verify (from the Kuhn-Tucker conditions) 
that y = 322.4, while p = 1,144. This results in the 
following bounds for the optimality gaps, as a func- 
tion of the chosen interval length n: 

n 3 4 5 6 7 8 9 10 11 12 13 

e(%o) 118 89 71 59 51 44 39 35 32 29 27 

If no speculative motives for carrying inventories pre- 
vail, p' = 175 which results in these bounds for the 
optimality gap: 

n 1 2 3 4 5 6 7 8 9 10 

e(%) 54 27 18 14 11 9 7.8 6.8 6 5.4 

Observe that even for small interval lengths of n = 

5 or n = 10 the bound for the optimality gap is no 
larger than 71% and 35%, respectively, when specu- 
lative motives prevail. When they do not, the bounds 
reduce to 11% and 5.4%, respectively. 

Equations 11 and 12 describe a static procedure for 
the determination of the interval lengths to guarantee 
a specific optimality gap of the partitioning heuristic. 
These are, however, based on an a priori worst-case 
upper bound for (zH - z*) and a worst-case a priori 
lower bound for z*. 

We conjecture that efficiency improvements may 
be achieved by specifying the interval lengths in a 
dynamic way. Dynamic specification of the interval 
lengths requires the upfront evaluation of the lower 
bound z(a*l, ... , a *N ), as discussed in Section 1. 
Assume, therefore, that the vectors a*' (t = 1, .... 
N) have been determined by solving (5) via the greedy 
procedure. Evaluation of the lower bound can now be 
performed by parallel executions for each of the m 
items of the forward single-item solution method of 
Federgruen and Tzur (1991). This permits keeping 
track, for t = 1, . .. , N, of a lower bound zLB(t) for 
the minimum cost z* (t) in the JRP over the t-period 
horizon. 

Assume now that the first No periods have been 
partitioned into Io intervals, and that the partitioning 
heuristic has been applied to these, with an associated 
cost (for the first No periods) zH(No). It follows from 
the proof of Theorem 3 that if the length of the next 
interval is n, then zH(NO + n) - z*(No + n) S 
zH(NO) _ ZLB(NO) + p. Thus, if an E-optimal overall 
solution is desired, the length of the next interval may 
be specified as 

I z H(NO) - ZLB (NO) + p } n* = min- n: LB '< ' 
I Z B(No + n) 

We have evaluated the performance of the parti- 
tioning heuristic with respect to a collection of 190 
problem instances, grouped into 8 problem sets. 
These problem sets are generated from the same basic 
class of problems utilized in the numerical study of 
the branch-and-bound method in Section 2. The par- 
titioning heuristic is applied twice or three times to 
each problem instance, for as many choices of the 
number of intervals I. We always choose intervals of 
equal length, the value of which is denoted by n in 
Tables V-XII. 

In problem sets 1 and 2 (Tables V and VI) we vary 
the horizon length from N = 18 to N = 24 for 
problems with m = 5 and m = 10 items, respectively. 
In Table VII we return to the basic set (with N = 18 
and m = 5) and vary a, the degree of intertemporal 

Table V 
Problem Set 1, m = 5 

18 24 30 
N n = 6 n = 9 n = 6 n = 8 n = 12 n = 6 n = 10 n = 15 

z /z* 1.0041 1.00066 1.0058 1.0044 1.0016 1.0069 1.0028 1.0019 
% opt. 40% 80% 0% 10% 50% 0% 30% 50% 
CPU z 0.47 0.71 0.65 0.92 2.52 0.83 1.89 6.47 
CPU z* 4.0 40.1 231.7 
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Table VI 
Problem Set 2, m = 10 

18 24 30 
n = 

N n = 6 n = 9 n = 6 n = 8 12 n = 6 n = 10 n = 15 

zH/z* 1.00082 1.0028 1.0017 1.0015 1.001 1.0015 1.0009 1.0011 
% opt. 60% 30% 50% 50% 60% 60% 70% 70% 
CPU z 0.81 1.84 1.18 1.9 12.74 1.46 3.94 18.24 
CPU z* 19.4 250.4 1112.75 

correlation between the cost and demand parameters, 
from 0 to 1. In problem sets 4-7 we vary the ranges of 
the demand and cost parameters (one at a time). 
Finally, in problem set 8 we consider the basic prob- 
lem class with m = 5 items and large horizons, i.e., 
N = 100 and N = 500. Each problem set consists of 
10 independently generated instances for each of the 
considered combinations of N, m, a and demand and 
cost parameters. 

Like the branch-and-bound method, the partition- 
ing heuristic has been encoded in FORTRAN and 
executed on an IBM 4381. Tables V-IX report on the 
ratio zH/z *, and the percentage of problem instances 
for which an optimal solution is found. The value of 
z* is obtained from the numerical study of Section 2. 
In addition, for Tables V-VII we report the CPU time 
(in seconds) for the partitioning heuristic -and the ex- 
act branch-and-bound method. In Table XII we report 
the ratio ZH/ZLB instead of zHlz* because the opti- 
mum value z* is unavailable for the large horizon 
lengths considered there. 

We are delighted to conclude that the partitioning 
heuristic performs exceptionally well, even when an 
interval length n of only six periods is employed. The 

average optimality gap (where measurable) is only 
0.38% and in none of the problem categories is it 
larger than 0.78%. An optimal solution is found in 
41.8% of the problem instances in this implementation 
of the partitioning heuristic. If intervals of length 9 or 
10 are employed, the average optimality gap (where 
measurable) equals 0.23% and in none of the problem 
categories is it larger than 0.49% and in 52.67% of the 
instances is an optimal solution found. 

There is even a problem category in which the 
partitioning heuristic obtains an optimal solution in all 
ten problem instances. This category has a = 0 (see 
Table VII) and n - 9. As shown in Federgruen and 
Tzur (1994), forecast horizons are particularly small 
when a is small, i.e., when a high degree of intertem- 
poral variability prevails in the cost and demand pa- 
rameters. We believe this to be the explanation for the 
perfect performance of the partitioning heuristic in 
this problem category. Tables VII-XI exhibit a slight 
increase in the optimality gaps when the ranges of the 
parameters are increased. 

For the last problem set the true optimality gap 
cannot be assessed, but its upper bound ZH/ZLB iS 

still, on average, 3.3% and always smaller than 3.5%. 

Table VII 
Problem Set 3, N = 18, m = 5 

0.0 0.2 0.5 0.8 1.0 
a n = 6 n = 9 n = 6 n = 9 n = 6 n = 9 n = 6 n =9 n = 6 n = 9 

z ff/z* 1.0035 1.0 1.0054 1.0014 1.0041 1.00066 1.0007 1.0042 1.00006 1.0049 
% opt. 60% 100% 40% 70% 40% 80% 80% 10% 90% 10% 
CPU z 0.52 1.45 0.52 1.17 0.46 0.71 0.32 0.57 0.35 0.5 
CPU z* 25.1 13.2 4.0 1.2 1.1 

Table VIII 
Problem Set 4, N = 18, m = 5 

(15, 25) (10, 30) (5, 35) 

Ki n = 6 n = 9 n = 6 n = 9 n = 6 n = 9 

z /z* 1.0034 1.0027 1.0041 1.00066 1.0063 1.0034 
% opt. 50% 40% 40% 80% 30% 40% 
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Table IX 
Problem Set 5, N = 18, m = 5 

(90, 110) (80, 120) (70, 130) 

Ko n = 6 n = 9 n = 6 n = 9 n = 6 n = 9 
ZHIZ* 1.0026 1.0019 1.0041 1.00066 1.0064 1.002 
% opt. 50% 70% 40% 80% 20% 50% 

Given our observation in Section 2 that the lower 
bound ZLB almost invariably comes within 2.4-2.8% of 
z* for problems with N < 36, and the same value 
of a as the one used in problem set 8, we believe that 
the true average optimality gap for this problem set is 
no more than 0.7%. 

As can be expected from the complexity analysis in 
this section and the numerical study in the previous 
one, the partitioning heuristic requires far less time 
than the branch-and-bound procedure. When inter- 
vals of length 6 are employed, the CPU time is always 
of the order of a single CPU second, even for prob- 
lems with N = 30. Even when intervals of length n = 
9 or 10 are used, the average CPU time is always less 
than 4 CPU seconds in all problem categories with 
N < 30 and no larger than 38.6 seconds forN = 500. 
As expected, larger intervals almost invariably result 
in smaller optimality gaps. 

The overall desirability of the partitioning heuristic 
is perhaps best illustrated by considering the problem 
category with N = 30 and m = 10 in Table VI. An 
optimal solution requires more than a thousand CPU 
seconds, and with the partitioning heuristic one can 
get within 0.15% of optimality after approximately 1 
CPU second only. 

We conclude this section with some comparisons 
with alternative heuristics. Joneja (1990) implemented 
his heuristic (designed for the case of constant cost 

parameters) on an AT&T 6300 personal computer. On 
average, for his chosen set of problem instances, the 
heuristic has a solution that is 1.8% higher than a 
lower bound; the maximum deviation from the lower 
bound is 10.8%. 

Likewise, the partitioning heuristic compares fa- 
vorably with three alternative heuristics discussed in 
this paper: the greedy heuristic; a version of the 
branch-and-bound method of Section 2, designed to 
terminate as soon as a solution is found whose cost 
value comes within a prespecified relative gap e of (a 
lower bound for) the optimum cost value; and the 
integer programming method of Raghavan and Rao 
(1992), again designed to terminate within an E- 
optimal solution. As explained in Section 2, the 
greedy heuristic has complexity O(mN31ogN) while 
the complexity of the partitioning heuristic with interval 
lengths specified by (11) and (12) is O(m N21oglogN) 
only (see Corollary 2). The partitioning heuristic 
is asymptotically optimal while the greedy heuristic is 
not. The former can be designed to generate an E- 

optimal solution for any e > 0 while the greedy heuristic 
cannot, Proposition l's interesting worst-case bound 
for the optimality gap of the greedy heuristic and its 
remarkable empirical performance, reported in Section 
2, not withstanding. As mentioned in Section 2, the 
branch-and-bound method developed there, and 
the method of Raghavan and Rao (1992), can be used 

Table X 
Problem Set 6, N = 18, m = 5 

(7, 8) (5, 10) (1, 14) 
c, n = 6 n = 9 n = 6 n = 9 n = 6 n = 9 

Z7/z* 1.003 1.0017 1.0041 1.00066 1.0078 1.0016 
% opt. 50% 30% 40% 80% 10% 80% 

Table XI 
Problem Set 7, N = 18, m = 5 

(4, 7) (1, 10) 
di n = 6 n = 9 n 6 n = 9 

z /z * 1.0039 1.0031 1.0041 1.00066 
% opt. 20% 40% 40% 80% 
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Table XII 
Problem Set 8, m = 5 

100 500 

N n = 10 n = 20 n = 10 n = 20 

ZH/ZLB 1.033 1.03 1.035 1.034 
CPU zHf 7.2 123.8 38.57 757.5 

comfortably (as an exact method or e-approximation 
scheme) for problems of up to moderate size, but their 
theoretical complexity is exponential, and their empir- 
ical complexity is several orders of magnitude larger 
than that of the partitioning heuristic. 

APPENDIX 

Proof of Theorem lb 

Before proving part b we need to derive a lower 
bound for the minimum cost in a single-item dynamic 
lot sizing model, when sporadic demand is allowed. 
To derive this lower bound we merely assume that the 
cumulative demand over a large enough time interval 
is uniformly bounded away from zero (see Lemma 
Al). 

Lemma Al. Consider a single-item dynamic lot sizing 
model over a horizon of N periods, and let z denote 
the minimum cost for this model. Let Kt, ct, ht, and 
dt denote the setup cost, per unit order cost, holding 
cost rate and demand in period t (t = 1, ... , N). 
Assume that there e-xists an integer M > 2, and 
constants h*, K* c* and d* such that (dt + *. + 
dt+M) ? Md*, Z1 dt > Nd*, ht ? h*, ct > c* and 
Kt > K* for all t = 1, ..., N. Then, 

((K*/2M) + c *d *)N if M > K*/h d * 

Z > (l2(K* + h*M2d*)h*d* -1.5h*Md*+c*d*)N 

L if M k~*/hd.*d 

Moreover, if M S K*/h*d, then 

(V2(K* + h*M2d*)h*d* - 1.5h*Md*)N 

? (1/2 h*d*M)N. 

Proof. We clearly obtain a lower bound by replacing 
all cost parameters by their corresponding lower 
bounds. We refer to the resulting model as the trans- 
formed problem. Consider a zero inventory ordering 
solution in which I ? 1 orders are placed. For # = 
1, ... , I let ne denote the number of periods in the 
#th order cycle, i.e., the interval which contains 
the #th order period and all subsequent periods prior 

to the next order period (if any). (The Ith interval 
terminates with period N.) 

We first derive a lower bound for the total holding 
costs incurred in a single order cycle of n periods 
in the transformed problem. Renumber the periods in 
this cycle as 1, , n and let n = vM + f with 0 < 
# < M, i.e., v = 1n/MJ. Assume first that v > 1. 
Observe that in each interval [(j - 1)M + f + 1, 
jM + E] (j = 1,9 ..., v) at least Md*, units are 
demanded. Since all those units are ordered in 
period 1, the lowest holding costs for these demands 
arise when all Md * units are demanded in period 
(j - 1)M + # + 1 (i.e., in the first period of this 
interval) and none in the remaining periods of 
the interval [(j - 1)M + # + 1, jM + #]. It follows 
that the holding costs in a single-order cycle of n 
periods are bounded from below by 

v-1 

h *(Md *) 2 (C + jM) 
j=O 

= h*Md*[iv + 112Mv(v - 1)] 

= h * (Md *)[ In/MJ # + 1/2-M 4n/MJ ( In/MJ -1)] 

? 1/2h *M2d *[(nIM - 1) +(n/M - 2) +]. (A. 1) 

Clearly, the lower bound in (A. 1) continues to hold 
when vi= 0. 

This lower bound for the holding costs in a single 
order cycle implies the following lower bound for the 
total cost over the complete horizon, associated with 
the above described zero inventory ordering solution: 

I 

K*I + 2 1/2h *M2d *(ne/M - 1) +(ne/M - 2) + 
.e=l 

+ c*d*N. (A.2) 

(The last term in (A.2) represents a lower bound for 
the variable order costs.) We conclude that 

z ? c*d*N 
(I I 

+ min K*I + min g(ne): 2 ne 

=N; ne integers}}, 
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where g(x) 1/2h *M2d* (x/M - 1) + (x/M - 2) + is 
convex. 

A further lower bound is obtained by relaxing the 
integrality constraints for the ne-variables. It is well 
known (in view of the convexity of g )) that II. 1 
g(ne) is minimized by setting all ne = N/I(e = 

1, ... , I). We thus obtain: 

z c*d*N + min 

* K*I + (112h*M2d *)I(NIIM - 1) +(NIIM - 2) +} 

(A.3) 

Note that the minimum in (A.3) cannot be achieved 
for I ? N/2M because for such values of I, the term 
K*I can be decreased without increasing the other 
terms in I. Thus, 

z c*d*N+ min 
I<-NI2M 

* {K*I + (1/2h*M2d*)[N2/M21 - 3N/M + 2I]} 

=c*d*N+ min 
I NI2M 

* {ki + (HM2)[N2/M21 - 3N/M]}, (A.4) 

where K = K* + h*M2d* and H = h*d*. 
The minimum in (A.4) is clearly achieved for 

I = N min {(H/k)112, 1/(2M)}. 

Substituting this value of I into (A.4) we obtain after 
some algebra, 

(K*/2M)N+c*d*N if (H/K) 112> 1/(2M) 

Z 2 i (2H-3HMM+c*d*)N ? (HM+c*d*)N 

if (H/K)12 < 1/(2M). 
(A.5) 

(To verify the inequality in (A.5), note that 

2VKH -3HM =H(2 1Kft - 3M) > H(4M - 3M) 

=HM. 

The proof of Theorem lb now follows from allo- 
cating the joint setup costs to item-specific setup costs 
as in (10), applying Lemma Al to each of the m 
resulting separate single-item dynamic log sizing 
models, and taking the vector k in (10) that maximizes 
this bound. 

Proof of Theorem 3 

We show that (zH - z*) , (I - l)p. The theorem 
then follows from Theorem 1. Consider an optimal 
solution of the JRP on the entire N-period horizon. 
We show that this solution can be transformed into 

one which is achievable by the partitioning heuristic, 
adding at most (I - 1)p to the total cost. 

If the optimal solution to the complete JRP fails to be 
achievable by the partitioning heuristic, there must 
be order cycles for some or all items which start at some 
interval, say interval h (h = 1, . . ., I), and terminate in 
a later one. To transform the solution into one which is 
achievable by the partitioning heuristic, add an order in 
the first period of the (h + 1)st interval for all such items 
(with a crossing order cycle) (see Figure 3). This trans- 
formation adds at most >,m 0 K7*to the total setup costs. 
In case speculative motives prevail for some of these 
items, the variable cost may increase as well, but only 
for units demanded in the (h + 1)st interval because the 
units demanded in periods belonging to the hth interval 
continue to be ordered in the same period as before the 
transformation. 

Let S = {i1, .l. , ilsl} denote the set of items with 
a crossing order cycle, and let te denote the number of 
periods in the (h + 1)st interval which are included in 
the crossing order cycle of item ie (see Figure 3). 
Assume the items are numbered such that ti1 S 

t'2 '< ... <' t'ISi- 
Let Die (#? = 1, ..., IS) denote the number of 

units of item ie carried in inventory at the beginning 
of the (h + 1)st interval. Renumber the periods in the 
(h + 1)st interval from 1, ... , nh+1 and let Se 
{ie, ils}. Note that for all 1 S r S te: 

rh E(D - Xr) 
iESe 

KSe + K*o + E (cS -ci*)(D' Xr) 
iESe iESe 

<, I K*i + K*o + Lh* (Di-X) (A.6) 
iE:Se iE:Se 

where Xr denotes the cumulative demand for item i in 
the first (r - 1) periods of the (h + 1)st interval. 
(If the first inequality is violated, then a strict cost 
improvement can be achieved by placing an order for 
all items in Se in period r, thus cutting each crossing 
order cycle for these items into two. Note that the 

Figure 3. Transformation of the optimal solution. 
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additional setup costs incurred due to this transfor- 
mation are bounded by >uiEse K* + K*. The addi- 
tional variable costs are bounded by LiESe (C*i - 

ci*)(D' - X,') because exactly (D' - X' ) units of item 
i are now ordered in period r rather than at period be, 
the beginning of the crossing order cycle. The trans- 
formation reduces the inventory level of item i by 
(D' - X,) in each period from be until (r - 1), i.e., 
in at least r periods, resulting in a cost saving of at 
least rh*(D' - Xr).) 

Let X D = - X' . It follows from (A.6) that 

(r -L)H* I XCr K*i + K*o (A.7) 
icSe icSe 

Thus, for r > L, 

> Ki + K 

icS 
r 

(r -L)h* 
A8 leS 

and 

I Xr' (r - ) I di* (A.9) 
icSe iCSe 

Adding (A.8) and (A.9) and taking the minimum over 
r in the interval [L + 1, te] we get: 

> D min >(r - l) E di 
icSe L+ 1r te icS.e 

> K* + Ko 
+ 

iS . (A. 1 O) 

The expression within curled brackets is clearly a 
convex function of r which decreases for 

[ 2( E Ki* + K7 o 

L +1 r < r* = L + I 

(h* 2 d*) 
L iCS e 

or 

[ K7 + K*) 
r*-=_L + 1/1 

(h* > d*) 
iCSe 

Assume first that te ? L + 1. It follows that the 
minimum in (A.1O) is achieved for r = min(te, r*), 
i.e., 

2 D< [min(te, r*) - 1]( 2 d~) 
iCSe icSe 

iCSe 
+ te?L+l. (A.11) 

(min(te, r*) - L)h* 

If te < L we clearly have the bound 

E Di S,t, E d* (A. 12) 
icSe icSe 

Let be(te) denote the right-hand side of (A.11) when 
te ? L + 1 and of (A.12) when te S L. For each 
demand unit of item i E S whose procurement costs 
are increased due to the transformation, the increase 
is clearly bounded by (c - - h *). A bound for 
the increase in variable costs due to the transforma- 
tion is thus given by the value of the linear program: 

D(tl, ., tlsl) max > (c* - Ci*-h )D' 
icS 

subject to 

E D' be(te), t = 1, *f S| (A. 13) 
i?Se 

D' 0. 

Note that the function be( *) achieves its maximum 
for te = L + 1, because it is increasing for te < L, 
see (A.12), decreasing for te ? L + 1 and 

be(L + 1) = L E d* + ( Kz +Ko)/h* 
icS'e icS'e 

>L E d* = b,(L). 
icSe 

The optimum value of the linear program is clearly 
nondecreasing in the values {be: ? = 1, . .. , ISI}. It 
follows that PD (L + 1, L + 1, L + 1) = 
max{P(t1, * , tlsl) : t1 < t2 % * tIS1} because 
the function cD achieves its unconstrained maximum 
in the point (L + 1, . .. , L + 1). Thus, substituting 
t = L + 1 in (A. 13) we obtain the following bound 
for the total increase in variable costs due to the 
transformation: 

maxE(ci*- ci* - h*)D 
ics 

subject to 

ED> L Ed* 
iCSe iCSe 

D 0. (A.14) 
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The objective function of (A. 14) can clearly be 
bounded from above by q >iEs Di. The latter objec- 
tive is clearly maximized when 

> Di=L > d*+ +Ko* 
iES ics iEs/S 

Thus, the resulting bound is clearly maximized when 
S = {1, .. ., m} in which case it equals to 

7 L 2> d* + Ki + Ko } 

(The optimum value of (A.14) itself can be obtained 
in closed form because the polyhedron described 
by its constraints is a polymatroid (see Edmonds 
1970 or Frank and Tardos 1988). The linear program 
(A.14) thus can be solved by the greedy procedure. 
The resulting optimum value, when maximized over 
all permutations (i1, , i,m) results in the same 
bound.) 
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