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We consider a production/distribution system represented by a general directed acyclic network. Each node is associated with a 
specific "product" at a given location and/or production stage. An arc (i, j) indicates that item i is used to "produce" item j. 
External demands may occur at any of the network's nodes. These demands occur continuously at item-specific constant rates. 
Components may be assembled in any given proportions. The cost structure consists of inventory carrying, variable, and fixed 
production/distribution costs. The latter depend, at any given replenishment epoch, on the specific set of items being replenished, 
according to an arbitrary set function merely assumed to be monotone and submodular. It has been shown that a simply 
structured, so-called power-of-two policy is guaranteed to come within 2% of a lower bound for the minimum cost. In this paper, 
we derive efficient algorithms for the computation of an optimal power-of-two policy, possibly in combination with this lower 
bound. These consist of a limited number of polymatroidal maximum flow calculations in networks closely associated with the 
original production/distribution network. 

W ork by Maxwell and Muckstadt (1985), Queyranne 
(1985), Roundy (1986), and Federgruen, 

Queyranne and Zheng (1992) addressed the problem 
of determining replenishment strategies for a general 
production/distribution system represented by a 
general directed acyclic network. Each node is associ- 
ated with a specific "product" at a given location and/or 
production stage. External demands may occur continu- 
ously at any node and at item-specific constant rates. An 
arc (i, j) indicates that product i is used to produce 
product ]. Components may be assembled in any given 
proportions. Orders are delivered instantaneously and no 
backlogging is allowed. The cost structure consists of 
inventory carrying, variable, and fixed production/distri- 
bution costs. The above network representation under- 
lies many popular commercial planning systems, in 
particular, Material Requirements Planning (MRP) and 
Distribution Requirements Planning (DRP) systems. 

Federgruen, Queyranne and Zheng showed that when 
minimizing long-run average costs, a simply structured, 
so-called power-of-two policy is guaranteed to come 
within 2% of being optimal for the general network 
model with standard inventory carrying and variable re- 
plenishment costs and a general joint setup cost structure 
assumed to be monotone and reflecting economies of 
scale in the sense of submodularity. (Submodularity 
means that the marginal increase of the setup cost due to 
the addition of a new product to a given collection of 
jointly replenished items, is no larger than if the same 

product were added to a subset of this collection.) This 
result generalizes those discovered by Roundy's pioneer- 
ing papers (1985, 1986) for the case of separable setup 
costs or joint setup costs specified by a "family model" 
(see Section 4). 

This paper develops solution procedures for the gen- 
eral model discussed in Federgruen, Queyranne and 
Zheng. We present efficient algorithms for finding opti- 
mal power-of-two policies. These consist of a limited 
number of maximum flow computations in subgraphs of a 
so-called route-product network whose topology is in- 
duced by the topology of the product network and with 
capacity constraints imposed only on the arcs emanating 
from the source and those terminating in the sink. The 
capacities on the former set of arcs are determined by 
the demand and inventory cost parameters. The capacity 
constraints with respect to the latter reflect the setup cost 
structure. If the latter is inseparable, upper bounds pre- 
vail on the total flow in all subsets of the arcs that point 
to the sink node. These upper bounds constitute a sub- 
modular set function closely related to the setup cost 
structure. 

An earlier approach for the general model considered 
here is due to Queyranne. The approach uses Maxwell 
and Muckstadt's divide-and-conquer method and re- 
quires up to (2N - 1) calls to an expensive oracle for 
minimizing a general submodular set function (e.g., by 
the ellipsoid method, see Grotschel, Lovasz and 
Schryver 1981). Our algorithms consist of a limited number 
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of maximum flow computations, and the only oracle re- 
quired is to check whether a given vector of setup costs is 
a proper allocation of the joint cost structure (i.e., is a 
member of the so-called setup cost polyhedron defined be- 
low). In contrast with Queyranne's approach, this oracle 
can be tailored to the specific submodular setup cost func- 
tion being used (as discussed in Section 4). 

The algorithms presented here may be viewed as gen- 
eralizations of those developed for joint replenishment 
models with joint setup costs and general networks with 
a separable cost structure (see Zheng 1987 and Federgruen 
and Zheng 1992, 1993) which, in turn, are related to 
Maxwell and Muckstadt's divide and conquer algorithm. 
Compared to the separable cost case, a moderate increase 
in complexity is required for the most general model, 
while, in some important special cases, the same order of 
complexity is maintained. See Muckstadt and Roundy 
(1993) for a survey of numerous papers on algorithms for 
special network topologies and cost structures. 

The remainder of this paper is organized as follows. 
Section 1 specifies the model and a number of prelimi- 
nary results. Section 2 develops two general algorithms, 
with specific advantages for each. The general complex- 
ity of these algorithms, specified as an upper bound on 
the number of elementary operations and calls to the 
above mentioned oracle (or a related oracle), is discussed 
in Section 3. Section 4 discusses the computational com- 
plexity for specific types of cost structures. 

1. THE MODEL 

Let the production/distribution system be represented by 
a general directed acyclic network (N, A), with node set 
N and arc set A. We use N and A both to represent 
the node and arc set as well as their cardinalities. For 
each node i E N, let P(i) denote the set of its immediate 
predecessors in the network, i.e., P(i) = {l E N: 
(1, i) E A}. External demands occur at node i E N at 
constant rate do; for any arc (i, j) E A, Aij represents the 
number of units of product i required to produce one unit 
of product j. Orders are delivered instantaneously. Vari- 
able order costs are proportional to order volumes. Let 
h' denote the cost per unit of time for carrying one unit 
of product i in inventory. The incremental holding cost 
rate for product i is given by hi = h! - ijEp(i) )Ajyh and 
is assumed to be nonnegative. 

The general joint setup cost structure is represented by 
a general set function K: 2N R+ which specifies for 
any subset of products S C N a setup cost K(S) to be 
incurred whenever this specific collection of "products" 
is replenished together. The function K(*) is assumed to 
satisfy these structural properties: 

i. (Monotonicity) K(S) < K(T) if S C T; 
ii. (Submodularity) K(S U {i}) - K(S) ? K(T U {i}) - 

K(T) if S C T. i (T; 
iii. (Nontriviality) K({i}) > 0, i E N. 

A power-of-two policy replenishes a product only 
when its inventory is down to zero and prescribes for 
each product i a constant replenishment interval ti, such 
that a replenishment for this product occurs at times 0, 
ti, 2t1, 3ti, ... . Moreover, all product replenishment 
intervals are chosen as power-of-two multiples of a com- 
mon base planning period TL. A route is any directed 
path in G ending at a product with external demand. A 
route is specified by a sequence of nodes r = (il, i2, ... 

im). Let R be the collection of all routes in G. (As with 
N and A, we use R both to denote the set and its cardi- 
nality.) For any r E R, we say that product i E r, if 
route r passes through node i. For each route (ij, .... 

im) E R, let Hr = '/2hildr, where dr = Ail2, Ai 23, , 

Ai", idi. is the rate at which units of product il are 
requested to follow route r. Let 

K={kERN: ZkiK(S)forallSCN;kO}. 
iES 

We note that because the set function K(*) is monotone 
and submodular the polyhedron K is a so-called polyma- 
troid which we refer to as the setup cost polyhedron. The 
long-run average cost of any given power-of-two policy t 
is given by 

c(t) = max > kilti + 2 Hr max ti, (1) 
kCK iEN rEER iEr 

where the first term is the total setup cost (see 
Federgruen and Zheng 1992) and the second term is the 
total holding cost (see Roundy 1986). 

Definition 1. For any partition {N,, 1 = 1, ... , M} of N, 
let El - U 1 Nj; RI _ J{r E R: r C El, r7 El-1}. For 
S C N,, let: 

HI (S)- E H,: r CEIl- U S. r ~Z Ezl- 

K,(S) K(El-1 U S) -K(EI-1). 

Lemma 1. For any power-of-two vector t = (ti, i E N), 
suppose that {NG, 1 = 1, . . ., M} is a partition of N and 
t(1) < t(2) < t(M) a set of values such that ti = t(l) for 
all i E N, and all = 1, ...,M. Then, 

M 

c(t) = C(t(l)) 

where Cl(t) = K,(Nl)/t + H,(Nl)t. 

Proof. The fact that the total setup cost can be written as 
-1=1 K,(N,) was shown in Lemma A2.3 in Federgruen 

and Zheng (1992); that the total holding cost is -I=1 
H,(N,)T(l) is due to: 

M 

, Hr max t, = A Hr max t1 
rCR iEr 1=1 rEi ijEr 

M M 

> Hrt(l) E H(NI)t(l), 
/=1 r?E, 1=1 
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where the second equality follows again from t(1) S 

*- * t(M). 

Let T d?ef {t > 0: ti = 2miTL, mi integer} denote the set 
of all power-of-two vectors. (TL is sometimes predeter- 
mined, but may be varied continuously in other settings.) 
The problem of determining an optimal power-of-two 
policy can thus be written as follows. 

Problem P 

c* = min c(t) 
tET 

and its continuous relaxation is as follows. 

Problem RP 

c* = min c(t). t>O 

It follows from (1) that 

c*= min maxf kilti + > Hr max it 
t>O kEK iEN rEER iEr (2) 

? max minm kilti + E Hr max tidfCD- 
kEK t>O I iEN rER iEr J 

(The inequality is easy to verify and applies to any min- 
max problem; it is referred to as weak duality.) We refer 
to the problem to the right of the inequality as the dual 
problem. 

Federgruen, Queyranne and Zheng (1992, Lemma 3) 
show that this dual problem may be written in the follow- 
ing form. 

Problem D 

CD = D(k, x, v) = max > 2(kivi)1/2 (3) 

subject to 

kEK (4) 

Xri = Hr (5) 
iEN 

E Xri -Vi (6) 
rER 

x 0 v30. (7) 

The dual program D also suggests that x can be viewed 
as a flow in a bipartite network with node set N = R U 
N and arc set A = {(r, i): r E R, i E r}. Such a network 
was introduced in Federgruen and Zheng (1990), where it 
is referred to as the route-product network. The latter 
paper shows, for the separable cost case, that the re- 
laxed problem D can be solved via a limited number of 
maximum flow computations in subnetworks of the 
route-product network with arc capacities specified by 
the demand and cost parameters. We show for the gen- 
eral model treated here that RP continues to be solvable 
via a limited number of maximum flow computations in 
similar networks. The essential difference is that to rep- 
resent the joint-cost structure, joint capacity bounds 
need to be imposed on collections of arcs rather than on 

individual arcs only. Networks with such (monotone, 
submodular) upper bounds on sets of arcs that emanate 
from or point to a common node are referred to as poly- 
matroidal network flow models. 

We first define a class of networks with polymatroidal 
capacity constraints. 

Definition 2. Let {NI: 1 = 1, 2, ..., M} be a partition of 
N and {R,: 1 = 1, ..., M} be the corresponding parti- 
tion of R; see Definition 1. For any v > 0, the associated 
network G(v, N,) is the bipartite network with node set 
{s} U R, U N, U {t} and arc set 

Al =f{(5, r): rERE} 

U {(r, i): r ER I, i E:-N, IU (i, t): i EN, I. 

Joint capacity constraints are imposed with respect to 
the arcs {(i, t): i E N,} only; these are specified by the 
submodular and monotone set function Kl(-)/v. Each arc 
(s, r)(r E RI) has capacity Hr; all other arcs have 
infinite capacity. 

Note that the above defined flow network G(v, N,) is a 
special case of the so-called polymatroidal networks in- 
troduced by Lawler and Martel (1982) and Hassin (1982). 
Many fundamental properties of ordinary flow networks 
carry over to these polymatroidal networks. Our deriva- 
tion below is based on the well-known max flow-min cut 
theorem. 

Let (RT, Rj') and (NT, Nj ) be partitions of RI and 
N,, respectively. We define the capacity of a cut (S, T) 
with S = {s} U R7 U Ny and T = Rj U N/ U {t} by 

C*(RT U N-, Rj U Nj) 

I Hr + K,(Nif)/v, if there are arcs (r, i) (8) 
trCRh with r E&R, i E Nj 

oo, otherwise. 
Let 

C(NT, Nl ) d fmin{C*(RT U NT, R + U Nj ): RT, 

I1 is a partition of R,}. 

It clearly follows from (8) that the above minimum -is 
achieved by RT = {r C El-, U NT, r !Z El-1} and 
R1 = {r C El, r %; El-, U NT}, and hence 

C(NT, Nj ) = H, (N,) - H (N) + K, (N)/v. (9) 

A node partition (NT-, NIF) is said to be a min-cut of 
G(v, N,) if C(NT, Nl j) C(N7-, Nl+t) for all parti- 
tions (NT , Nj+ +) of N,. 

A flow from s to t in G(v, N,) is the sum of the total 
outflow from the source node s, or the total inflow to the 
sink node t. 

Lemma 2. MinN7-,N,+ C(NT-, Nl ) = Max flow. 

Proof. This identity follows from the fact that MinN7, N+ 

C(NT, Nt ) equals the minimum capacity of any arc parti- 
tion cut (see Lawler and Martel, or Zheng for details). 
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2. GENERAL SOLUTION METHODS 

In this section we describe two solution methods. The 
first is a two-stage method, which first determines an 
optimal solution to RP and then transforms this solution 
by simple rounding to an optimal solution of P. Our sec- 
ond algorithm generates an optimal solution of P directly; 
its complexity is 0(N) smaller than that of the two-stage 
method. The advantage of the former is that the rounding 
procedure, similar to those used in Maxwell and 
Muckstadt and Roundy, can be designed to generate a 
power-of-two policy whose cost comes within 2% of be- 
ing optimal, as opposed to a 6% bound for the policy 
generated by the direct method. A second advantage is 
the fact that c *, the optimum value of RP obtained as an 
intermediate result, is a lower bound for the minimum 
cost (see Federgruen, Queyranne and Zheng). 

We first derive a characterization theorem that estab- 
lishes necessary and sufficient conditions for an optimal 
solution of the relaxed problem RP. The proof applies 
the max-flow min-cut theorem to the polymatroidal net- 
works G(v, N,) defined in the previous section. 

Theorem 1. (Characterization theorem for RP) For t > 
0, with component values t(1) < t(2) < *. t(M), let 
{N,, 1 = 1, ... , M} be a partition of N, such that N, = 
{i E N: t1 = t(l)}(l = 1, ... , M); t is an optimal 
solution of RP if the following conditions are satisfied: 
For 1 = 1, ... , M: 

i. t(l) = [K,(NA)/IHI(N)]1/2 
ii. K,(S)IH,(S) ? t2(l) for all S C N,. 

Also, if conditions i and ii are satisfied, then c* = CD. 

Proof. To prove the sufficiency part, we have by Lemma 
1, that 

M 
c(t) = , [K,(NlA)It(l) + H(Nl)t(l)] 

M 

= 2(Kl (Nl )H(Nz ))112, 

where the second equality is due to condition i. In view 
of (2) it suffices to construct a triple (k*, x*, v*), which is 
feasible for D and with 

M 
D(k*, x*, v*) = 2 2(Kl(Nl)H(Nl))1/2. 

1=1 

For each 1 = 1, 2, ..., M consider the associated 
polymatroidal network G(t2( ), N,); condition ii implies 
that for any S C N,, K,(S)1t2(l) - H,(S) > 0 or 

K,(S)lt2(1) + [H,(Nl) - H(S)] H,(Nl) 

= K,(N)1t 2(l) 

that is, (N,, k) is a minimum cut in the associated net- 
work G(t2(1), N,). By Lemma 2 there exists a maximum 
flow (x', v') in the network with 

I vi = K, (Nl)It(l)2, 1 = 1, ..., M. (10) 
iEN, 

For all = 1, ...,M let 

k' = t'(l)vl. (1 1) 

Let k* = (k', kM), v* = (v', ..., vM), and con- 
struct x* as follows: For all 1 = 1, . . ., M and i E N, let 
X*i = xi, if r E R, and x* = 0 otherwise. Since the pair 
(xl, v') is a feasible flow in the polymatroidal network 
G(t2(l), NA) (1 = 1, 2, ... , M), it follows that (x*, v*) 
satisfies (3)-(5). Also, for all 1 = 1, ... , M and S C N1, 
v'(S) _ K,(S)1t2(l), i.e., k*(S) % K,(S). It follows from 
Lemma 1 in Federgruen and Zheng (1992) that k*(S) % 

K(S) for all S C N, i.e.,k* V K. Finally, 

M M 

2(00v)1/2= 2(00v)1/2= 2t(l) E v* 
iEN 1=1 iEN, 1=1 iEN, 

M M 
= 2, 2K,(NlA)It(l) = , 2(K,(NA,)HI,(NA,))1/2 

1=1 1=1 

where the second and the third equality follows from (10) 
and (11) and the last equality follows from condition i. 
Since the necessity part of this theorem is not directly 
used for the development of our algorithms, we refer the 
interested reader to Zheng for a proof. 

For a given partition (N1, * , NM) of N, let the 
associated vector t be defined by: 

ti = [K(A(NT)/H11(N1)]1/2 i EN1, 1 = 1, M.., A. 

A partition will be referred to as optimal if the associated 
t-vector is an optimal solution for RP. 

The following lemma, whose proof follows easily from 
the definition of a minimum cut, is useful in generating an 
optimal partition. 

Lemma 3. Let {N,: 1 = 1, ..., M} be a partition of N 
and fiU I = 1, ... , M. Let (N, N) be a min-cut of an 
associated polymatroidal network G (v, N,) for some v > 
0. Then 

K, (N) K, (N )-K, (N) 

Hi (N) H, (N,) - Hi (N) 

ii. If (N1, N2) is a partition of N. then 

K, (N) -K, (N1) 

Hi (N) - H,(l ( 

Similarly, if (N1, N2) is a partition of N, then 

KH(NUN,) -KH(N) 

Theorem 1 and Lemma 3 suggest the following algo- 
rithm for solving RP. 
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Algorithm RP 

STEP 0. M:= 1, 1:= 1, N1 := N. 

STEP 1. (Let H,(.) and K,(.) be defined as in Definition 
1.) Set v = K,(N,)IH,(N1). Find a maximum flow in the 
associated polymatroidal network G(v, N,); if (N,, 0) is 
a min-cut, go to Step 2. Otherwise, we have a nontrivial 
min-cut (NL,, N,) of G(v, N,). Renumber (N,, N,, 
N,+1, ..., NM) as (N,, N,+1, .., Nm+1); M M + 
1 and repeat Step 1. 

STEP 2. If 1 = M, stop, (N1, N2, ..., NM) is the 
desired partition; otherwise 1 = 1 + 1 and go back to 
Step 1. 

Algorithm RP results in an optimal partition, i.e., the 
associated vector t is an optimal solution of RP. 
The vector t can be rounded off to obtain optimal power- 
of-two policies by using procedures similar to those used 
by Maxwell and Muckstadt and Roundy. See Federgruen 
and Zheng (1991) for a proof. 

Note that after the first execution of Step 1, each sub- 
sequent execution follows an increase of either M or 1 by 
one unit. Since M represents the number of sets in the 
final partition {N1, ... , NM}, we must have M S N. 
Thus, at most (2N - 1) maximum flow computations are 
needed in associated polymatroidal networks. The com- 
putational complexity of the algorithm is thus given by 
O(FN), with F a bound for the complexity of determining 
a maximum flow in one of the polymatroidal networks 
G(v, N,)(v > 0, N, C N). The magnitude of F will be 
discussed in detail in Section 3. 

When the base planning period TL is predetermined, 
the two-stage algorithm can be reduced to the following 
integrated algorithm which generates an optimal power- 
of-two policy directly. 

Algorithm P 

Let v? = 22j-1T2, with j the unique integer such that 

V ? K(N)!H(N) < 4 v (H(N)-= E Hr)- 
rCR 

STEP 0. v v?. Find a min cut (N1, N2) of G(v, N). 
M:= 2; 

STEP 1. If N1 = , , then begin v = 4V?; go to Step 2 
end 
V =V14. Find a min cut (N1, N1) of G(v, N1). 
Rename (N1, N1, N2, , NM) as (N1, N2,... 

NM+ 1); 
M := M + 1; t7* :\-2v, i E N2; go back to Step 1. 

STEP 2. If NM = (4, then stop. 
Find a min cut (NM, NM) of G(v, NM). 
Rename NM, NM as NM, NM+1; t* = \/V/2, i E NM 
M := M + 1; v := 4v; go back to Step 2. 

The power-of-two vector t* generated by algorithm P 
specifies an optimal power-of-two policy. This is easy to 
verify by the characterization theorem below. Clearly, 

the computational complexity of algorithm P is (M + 1) 
0(F), where M is the number of distinct power-of-two 
values in the vector t*. In practice, M would be a small 
number, say, no more than 10. We conclude that the 
overall complexity of algorithm P is O(F), as opposed to 
algorithm RP with complexity bound O(NF). 

Algorithm P is based on the following characterization 
theorem for the integer program P. 

Theorem 2. For t E T, suppose that {N,: 1 = 1, ... , M} 
is a partition of N such that N, = {i E N: t1 = t(l )}(l = 
1, ... , M), and t(1) < t(2) < .. < t(M). Let K1(), 
Hl,() and El be defined as in Definition 1, (1 = 1, 
M). Then t is optimal for P if the following conditions 
hold for all I = 1, . . ., M: 

i.1 [Kl (Nl )/HI(Nl )]112 S tyl) ' A/2 [Kl (Nl )/HI(Nl )]112; 

ii. t(l) S (K,(S)/H/(S))1/2 for all S C Nj; 

([Kl (Nj) - K, (S) ]I[Hl (Nj) - H, (S)) 1/2 

<, 12 t(l ) for all S C N1. 

We refer to Federgruen and Zheng (1991) for proofs of 
Theorem 2, and the claims that the algorithms generate 
optimal power-of-two policies. Readers familiar with 
Federgruen and Zheng 1990, 1992 may observe similari- 
ties in the development of parallel results for special 
cases. 

3. COMPUTATIONAL COMPLEXITY OF 
THE ALGORITHMS 

Algorithms RP and P have complexity 0(NF) and 0(F), 
respectively, with F a bound for the complexity of deter- 
mining a minimum cut (or maximum flow) in one of the 
associated polymatroidal networks G(v, Nl) (v > 0 and 
N, C N). In this section we discuss efficient implemen- 
tations of these maximum flow problems tailored to the 
specific structure of the associated polymatroidal net- 
works. We refer to Tardos, Tovey and Trick (1986) for a 
review of augmenting path algorithms for general poly- 
matroidal network flow problems. 

As pointed out in the Introduction, the polymatroidal 
flow network G(v, Nl) is of a rather special type: Only 
the flows on the arcs pointing toward the sink are con- 
strained by general polymatroidal capacity constraints; 
all other arcs are constrained by individual capacity 
bounds only. We exploit this special structure and the 
general results in Tardos, Tovey and Trick to design a 
maximum flow algorithm whose complexity bound is 
O(RN3d). 

We first review some of the basic results in Lawler and 
Martel, and Tardos, Tovey and Trick. In the terminology 
of the latter, a class of augmenting path methods for a 
given polymatroidal network flow problem in a graph 
(N, A) with source s and sink t is specified as follows: 
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1. For a given feasible flow y, let A UG(y) be the set of 
all augmenting paths. An augmenting path is an undi- 
rected path in the network starting at the source s and 
terminating at the sink t; each augmenting path has a 
capacity 5(> 0) which denotes the maximum amount 
by which the flows on the forward arcs in the path 
may be increased (and the backward arcs decreased). 

2. Each augmenting path method in the considered class 
has the following structure: 

STEP 0. (Initialization) Set y yo, an initial feasible 
flow. 

STEP 1. If A UG(y) = /, stop; otherwise, select an 
augmenting path in AUG(y) and determine its capacity 
S. 

STEP 2. Augment the flow on all forward arcs by 8 and 
decrease the flow on the backward arcs by S. Return to 
Step 1. 

Thus, within a given class of augmenting path methods 
only the choice of a specific augmenting path in A UG(y) 
and the computational procedure employed for its identi- 
fication may vary. An auxiliary network associated with 
a given graph (N, A) and a given class of augmenting 
path methods is a graph (N, A) with node set N (con- 
taining again a source s and a sink t) and arc set A with 
the following properties: 

i. associated with each feasible flow y in (N, A) is a 
nonnegative capacity by(e) for each arc e E A and 
a set of s-t augmenting paths defined as all directed 
paths from s to t on which all capacities by(e) are 
positive; 

ii. for each feasible flow y in (N, A), there exists a one- 
to-one correspondence between A UG(y) and the set 
of s-t augmenting paths in (N, A). 

Let d denote the time required to evaluate one of 
the capacities {by(e), e E A} for any given flow y, n the 
maximum length of an augmenting path, and A the total 
amount of work required to compute the by(*) numbers 
for any subset of n arcs. 

Tardos, Tovey and Trick show that a specific augment- 
ing path method (within the given class of methods) may 
be designed with complexity O(n Aj1A) provided that 
three properties are satisfied. Before stating these, we 
first need the following definitions. 

For any feasible flow y in (N, A), let o-Y(i)[rY(i)] be 
the length of the shortest s - i [i - t] augmenting path 
in the auxiliary network. (If no such path exists let 
o-y(i) = oo[iry(i) = oo].) Consider a specific indexing of 
the nodes in N. Given two paths P and P' in (N, A) 
with the same number of arcs, we say that P is lexico- 
graphically smaller than P' if the vector of node indices 
in P, placed in reverse order, is lexicographically smaller 
than the vector of node indices in P' (also placed in 
reverse order). 

Property 1. If the augmenting paths in Step 1 are chosen 
to correspond with shortest s-t augmenting paths in (N. 
A), then o-y(i) and ry(i) are nondecreasing for all i. 

In view of Property 1 the algorithm may be partitioned 
into phases according to the value of uy(t). 

Property 2. If all augmentations correspond with mini- 
mum length s-t augmenting paths in (N, A), then after 
an augmentation changing y to y', the first arc on the path 
with 8Y(e) minimal will have by8(e) = 0. 

Property 3. In each phase, apply a specific indexing of 
the nodes in N. If augmentations are chosen to corre- 
spond with lexicographically minimal shortest paths in 
(N, A) with respect to this indexing, then the paths that 
realize ax-(i) are lexicographically nondecreasing during 
this phase for each node i. 

Lemma 4. (see Theorem 4.3 in Tardos, Tovey and Trick) 
Consider a graph (N, A), a class of augmenting path 
algorithms and an auxiliary network (N, A) satisfying 
Properties 1, 2 and 3. There exists an augmenting path 
method in the considered class with complexity 
O(nA 1A). 

Now consider an associated polymatroidal network 
flow problem in G(v, N,) for some v > 0 and N, C N; 
see Definition 2. Note that all networks G(v, N,) have a 
similar bipartite structure and that the associated capac- 
ity set functions Kl( )/v, are simple transformations of 
the basic set function K(?). The complexity of the pro- 
posed maximum flow algorithms, as applied to the net- 
works G(v, N,) is thus bounded by their performance 
with respect to the full network G(v, N). Therefore, in 
the remainder of this section we focus on the latter. If 
S C N and u E RN, we write u(S) instead of >uies uj. 

Given a feasible flow y = (x, v), a set S C N is said to 
be tight if >Ljesy(i, t) = >LiEs vi = K(S)/v and an arc (i, 
t) is said to be saturated if there is some tight set con- 
taining i. It follows from Lemma 2.2 in Lawler and 
Martel that if arc (i, t) is saturated there exists a minimal 
tight set containing i, which we call U(i). In view of the 
special structure of the associated polymatroidal network 
G(v, N), Lawler and Martel's definition of the set of 
augmenting paths A UG(y) for a given feasible flow y 
amounts to the collection of undirected paths from s to t 
with the properties: 

a. each backward arc e on the path is nonvoid, i.e., 
y(e) > 0; 

b. for a forward arc e on the path which does not point 
to the sink, the flow y(e) is smaller than the arc's 
capacity; 

c. if a forward arc (i, t) is saturated (i E N), then the 
following arc on the path is a backward arc (t, ) with 
] E U(i). 



464 / FEDERGRUEN AND ZHENG 

Observe that the flow on an arc (i, t) which is satu- 
rated for a given feasible flow y, may nevertheless some- 
times be increased by an equal reduction of the flow on 
some arc (j, t) (j ? i). The amount by which the flow 
on (i, t) may be increased is thus dependent on the 
specific backward arc (t, j) which is chosen as the suc- 
cessor arc of (i, t). This suggests the following auxiliary 
network G = (N, A). 

Note first that only arcs which start at a product node 
are incident to the sink t. Thus, let 

N={NU{s}U{t}U{ti: iEN}} 

with cardinality O(R + N) and 

A = {A U A -1} U {(s, r), (i, t), (ti, i): r E R, i E N} 

U{(i, tj): ij, i, jEN} 

with cardinality O(RN). For any arc e E A and feasible 
flow y define 

by(e) 

Hr -Xsr e =(s, r) 

I0 e =(r, i) E A 
y(e -1) e E A-' 

= min{K(S)/v - v(S)Ii E S CN{j}} e = (i, tj) 
y((i, t)) = vi e = (ti, i) 

kmin{K(S)/v - v(S)ji E S C N} e = (i, t). 

(12) 

We first show that for any feasible flow y, there is a 
one-to-one correspondence between AUG(y) and the 
collection of s-t augmenting paths in G: Any arc (s, r) 
with r E R and e E A U A-1 corresponds to the "same" 
arc inA. The same applies to any arc (i, t) (i E N) when 
it is used as the last arc on the path. If (i, t) is followed 
by a backward arc (t, j) (j E N) the corresponding 
arc in the auxiliary network is (i, tj) and the arc corre- 
sponding to (t, j) is (tj, j). With this one-to-one 
correspondence, we have for any feasible flow y that an 
undirected path from s to t in G(v, N) belongs to 
A UG(y) if and only if the corresponding path in the aux- 
iliary network consists of arcs with SY(e) > 0. 

Lemma 5. For any v > 0 consider an associated poly- 
matroidal network G(v, N). The above defined class of 
augmenting path methods and the auxiliary network 
G(N, A) with the capacity function { Y: y feasible flow in 
G(N, A)} satisfy Properties 1, 2, and 3. 

Proof. Property 1 follows immediately from Lemma 11.1 
in Lawler and Martel and the observation that for any 
feasible flow y, each augmenting path in A UG(y) and its 
corresponding s-t augmenting path in the auxiliary net- 
work have the same number of arcs. Lawler and Martel 
define in the network G for any feasible flow y and each 
arc pair (e, e), such that e and e are incident to a com- 
mon node, a capacity number $,(e, e) (see Section 9 in 
Lawler and Martel). For arcs e in A which are not 

incident to one of the nodes {ti: i E N}, it is easy to 
verify that by(e) = &,(e', e), where e' is the correspond- 
ing arc in G(v, N) and e is any arc that shares a node 
with e'. Likewise, if e = {i, tj} for i, j E N, then Sy(e) 
= 5((i, t), (t, j)) and if e = (t1, i), then Sy(e) = 

i), e) for any arc e in G(v, N) with node i as its tail or 
head. These identities and Theorem 9.1 in Lawler and 
Martel establish Property 2. 

Finally, to prove Property 3 recall first from Theorem 
8.1 in Tardos, Tovey and Trick that when all augmenting 
paths are chosen to be of minimal length in a given phase 
of the algorithm, no arc in G(v, N) may be used simul- 
taneously as a forward and backward arc. In a given 
phase, assign an index i(w) for each node w in N as 
follows: i(t) = 0, i(t,) = 1, i(l) = 21 for l E N; the 
nodes r E R are arbitrarily indexed from 2N + 1 to 
2N + R. and i(s) = 2N + R + 1. Let A be the 
collection of directed arcs in the original network which 
are used in some augmenting path during this phase. As- 
sign an index i(e) to each arc e inA so that for e = (w1, 
w2) and e2 = (w3, w4)(e1l ? e2) X i(el) < i(e2) if i(w2) < 

i(W4) or i(W2) = i(W4) and i(wl) < i(w 3). 
Lemma 11.3 in Lawler and Martel establishes that for 

any indexing of the arcs in A (and thus, in particular, 
for the above constructed indexing) Property 3 is satis- 
fied with respect to the vector of arc indices. Property 3 
now follows from this result and the following observa- 
tion: For any node i E N consider a pair of equal length 
paths (in G(v, N))P1, P2 from s to i using arcs inA and 
let P1, P2 be the corresponding pair of paths from s to i 
in the auxiliary network. If the vector of arc indices of P1 
placed in reverse order is lexicographically smaller than 
the vector of arc indices of P2 (also placed in reverse 
order), then the vector of node indices in P1 is lexico- 
graphically smaller than the vector of node indices in P2 
(when both vectors are again placed in reverse order). 

Observe that the maximum length of a shortest aug- 
menting path in this network is bounded by 2N + 1. 
This follows because, with the exception of the first two 
nodes, every other node along the path must be one of 
the product nodes of which there are at most N. By 
Lemma 4, with n < 2N + 1, =A = O(RN) and A S 

(2N + 1)d, we conclude that F - O(RN3d). 

4. COMPLEXITY BOUNDS FOR SPECIFIC TYPES 
OF COST STRUCTURES 

The complexity bound F = O(RN3d) for algorithm P 
applies to all (submodular) joint cost structures (and all 
network topologies). Only the magnitude of d depends 
on the specific cost structures employed. In this section, 
we discuss the magnitude of d for the most important 
special structures (see subsection 4.1). 

For some cost structures, it is possible to replace poly- 
matroidal network flow problems by equivalent (classi- 
cal) maximal flow problems on an expanded graph, i.e., 
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with capacity restrictions on individual arcs only, as in 
the case of separable cost structures. (Such networks are 
often referred to as modular networks.) The resulting 
increase in the number of nodes and arcs is usually vastly 
compensated for by the fact that large efficiency im- 
provements can be obtained for ordinary (modular) max- 
imum flow problems. The latter have the additional 
advantage of permitting the use of generally accessible 
maximum flow routines. In subsection 4.2 we discuss 
some of the cost structures which allow for a transforma- 
tion into ordinary maximum flow problems. 

In the discussion below, we assume that a single type 
of joint cost structure applies to all nodes in N. The 
transformations and optimization routines are easy to ex- 
tend to settings, where the nodes in N are partitioned 
into several classes, each with its own type of cost 
structure. 

In assessing the order of magnitude of d, note from 
(12) that the computation of by(e) is trivial (0(1)) for all 
cases except when e = (i, tj) or e = (i, t) with i, j E N. 
If e = (i, tj) define v E RN by vi = X (X is large), = 

0 and vI = vI for all 1 ? i, j. If e = (i, t) define v^ by 
Vi = X (X is large); V', = vl ? i. Note that in both cases 

by(e) = X - vi- _v(N) + min{K(S)/v + V(M\S); S C N} 

= min{K(S)/v + vi(N\S): S C N} 

VI, if e=(i,tj) 

V1, if e = (i, t). 

The first term to the right of this equation is a special 
instance of the so-called minimum oracle problem for 
polymatroids. 

Minimum Oracle Problem 

For a given vector u E RN and submodular set function 
K(*) defined on 2N (the subsets of N) determine a set S* 
achieving 

min{K(S)+ >2 ui: SN}. (13) 

It is well known (see Edmonds 1970) that a solution to 
the minimum oracle problem may be obtained by solving 
the "dual" maximum element problem. 

Maximum Element Problem 

For a given vector u E RN and submodular set function 
K(*), determine a solution x* E RN, achieving 

max 2 xi (14a) 
iEN 

subject to 

A, Xi _- K(S), S -C N (1 4b) 
i 0s 

Xi ' Ui, iCEN (14c) 

and select S* as the largest set S for which (14b) is 
binding when x = x*. 

(A largest binding set exists because if (14b) is binding 
for SI, S2 5 E, then it is binding for S SI U 52 as 
well.) In particular, we have the following lemma. 

Lemma 6. Max{x(N): x satisfies (14b)-(14d)} = min{K 
(S) + XicNW ui S 5 NJ. 

Another related problem is the so-called membership 
test problem, which consists of verifying whether a given 
vector x E RN satisfies (14b) and (14d). Grotschel, 
Lovasz and Schryver developed polynomial general solu- 
tion methods for the above three problems (the minimum 
oracle, maximum element, and membership test prob- 
lems) which apply to general submodular set functions 
(and the corresponding polymatroids). These methods, 
however, are based on repeated use of the ellipsoid 
method and therefore appear cumbersome. (A 
pseudopolynomial, combinatorial procedure is due to 
Cunningham (1986); see also Bixby, Cunningham and 
Topkis (1985).) 

4.1. Special Cost Structures: Efficient 
Implementations of the Polymatroidal Maximum 
Flow Algorithm 

In this subsection, we discuss efficient implementations 
of the general polymatroidal algorithm of Section 3 for a 
number of important special cost structures. 

The First-Order Interaction Model 

Ko + X Ki if S~e 
K(S)= ics 

0 if S=+- 

The first-order interaction model is the most frequently 
used cost structure in models with joint costs. The liter- 
ature on the so-called joint replenishment problem con- 
fines itself almost exclusively to this structure; see 
Federgruen and Zheng (1992) and the many references 
and survey articles cited therein. 

Generalized Symmetric Structure 

As in the first model, each node i E N is characterized 
by a single value Ki ' 0 and K(S) = f(Eics Ki) with f 
an arbitrary, nondecreasing concave function. The first- 
order interaction structure represents a special case with 
f(x) = Ko + x if x > 0 and f(O) = 0. It is easy to verify 
that K(0) is monotone and submodular. The term "gener- 
alized symmetric" was first introduced in Federgruen 
and Groenevelt (1988). (This structure generalizes the 
"symmetric" case discussed in subsection 4.2, where all 
Ki = 1, i.e., where K(S) = f(S I); see Topkis (1984) and 
Lawler and Martel (1982).) 

Generalized Symmetric Structures of Order m 

This structure provides a further generalization of the 
second model. There are m ' 2 distinct attributes at1 

Caf... , Cmassociated wiheach node iEN e t 
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R' --> R be continuously differentiable everywhere and 
twice differentiable almost everywhere, with Vf the gra- 
dient and V2f the Hessian. Assume that f(O) = 0, Vf - 
0, and V2f ? 0 (almost everywhere). If 

K(S) =f( E:~ a1, 2 2I E >aT) S CN, (15) 
ics ics ies 

the structure is called generalized symmetric of order m. 
For example, when m = 2, ca may be a measure for 

the production setup and a 2 for the transportation setup 
involved when item i is included in the production batch. 
A special case arises when a generalized symmetric 
structure (of order 1) is modified by a quantity discount 
which is a function of the number of items included in the 
replenishment batch, i.e., 

K(S) = g( X Ki -h(JSj) 

with g( ) concave and h(-) convex. (Let m = 2, a' = Ki 
and aU = 1, i E N; f&x, y) = g(x) - h(y).) Andres and 
Emmons (1975) consider a special case of this structure 
with h(l) = 1 if l = N and h(l) = 0 for l < N. 

More generally, generalized symmetric functions may 
be used to approximate more general cost structures, in 
a similar way that polynomials or rational functions are 
used to approximate general nonlinear functions. Ob- 
serve that a generalized symmetric function is specified 
by Nm numbers as opposed to 2N values required to 
specify a general set function. The a-numbers may be 
estimated by standard regression techniques, using indi- 
cator variables to represent set membership. This ap- 
proximation technique is similar in spirit to that 
employed in Herer and Roundy (1990) to approximate 
(submodular) vehicle routing costs by a family structure; 
see subsection 4.2.3. 

The following lemma, establishing that K(*) is mono- 
tone and submodular, is due to Federgruen and 
Groenevelt. (See the Appendix for its proof.) 

Lemma 7. Let f(-) be continuously differentiable every- 
where, and twice differentiable almost everywhere. As- 
sume that f(O) = 0, Vf ? 0, and V2f < 0 (almost 
everywhere). The set function f( ) specified by (15) is 
monotone and submodular. 

If x* is an optimal solution to (14), let sat(x*) denote its 
saturated set, i.e., the largest set S for which (14b) is 
binding when x = x*. 

4.1.1. The First-Order Interaction Structure 

Let N1 = {i E N: ui > Ki}. We distinguish between two 
cases: 

a. (u(N1) ? XiE-N Ki + KO) In this case, S* = N1 is a 
minimizing set. To verify this, note that for any S C 
N with S ? 0 

K(S)-u(S) = Ko + Ki-u(S) 
ics 

= Ko + ki- u i 
iefsnNi iesN ) 

+ > (Ki-uj) Ko+ > Ki- > Ui 
ieS\NVa i EN1 iEN1 

=K(N1) -u(Nj) 

also 

K(N1) - u(N1) _0 = K(+) - u(0). 

b. (u(Nj) < >Yi=N Ki + Ko) In this case, St = 4 is a 
unique minimizing set since for any S ? 4, 

K(S) - u(S) (Ko + 2 Ki - > ui 
iesnNi iefsnNi 

+ (Ki - u) > 0. 
iESWi 

For both a and b, the minimum oracle problem thus 
reduces to N comparisons only. 

4.1.2. Generalized Symmetric Structures of Order 1 

The maximal element problem can be solved by the fol- 
lowing procedure developed by Federgruen and 
Groenevelt (1988). 

STEP 1. Find a permutation (a1, a2, *** aN) of N 
for which 

Uaj /Ka1 U a2 /Ka2 = = UaN /KaN 

Let xal :min (f(Kal), Ual) 

STEP 2. For l = 2 to N do 
if U < f(YJ= Ka) - YL14Xa 
then xal := Ual 
else :=I; xl f(>l= Kai) - -i 1 Xal. 

The procedure ends up with a maximal x in (14) and 
sat(x) = {a1, ... , aj}. See Federgruen and Groenevelt 
(1988) for a proof. The complexity of this procedure is 
obviously O(N log N). It is easy to verify that only one 
ranking of the nodes in N, i.e., one execution of Step 1 is 
required to compute capacity numbers {by(e)} for a given 
feasible flow y and a complete collection of arcs in the 
auxiliary network. Thus, invoking the complexity bound 
in Lemma 3 we have A = 0(N2), so that F = O(RN4). 

4.1.3. Generalized Symmetric Structure of 
Higher Order 

We restrict ourselves to structures of order 2, i.e., 

K(S) = f Kim , Mi) 
ics ics 

where f(O) = 0. Then Vf _ 0 and V2f C 0, and Ki, 
Mi -' 0 for all i E N. 

An efficient solution procedure for the maximum ele- 
ment problem was obtained by Federgruen and 
Groenevelt under the additional assumption that f is con- 
cave. This procedure employs an O(N2 log N) member- 
ship test described in the Appendix. 
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Minimum Oracle Procedure for Generalized 
Symmetric Structures of Order 2 (GS2) 

STEP 1. T := 4; 
STEP 2. For j = 1 toN do 
begin find x = min{K(S U {j}) - >2Es xl: T C S C 
{1, ... , ] - 1}, 

and let S' be the largest subset for which this mini- 
mum is achieved 
if x > uj, then x =Uj 

else x; :=x; T S' U {j}. 
end. 

Lemma 8. The GS2 procedure terminates with x repre- 
senting a maximal element in (14) and T = sat(x) solves 
the minimum oracle problem. 

Proof. It is well known from Edmonds that F* = (x: x 
satisfies (14b), (14c)} is a polymatroid. A maximal ele- 
ment x may thus be obtained by the greedy procedure: 
first x1 is set at its maximal value; in the jth iteration, xi 
is set at the highest feasible value given the values for 
x1, ... , xj- 1. The above procedure represents an imple- 
mentation of this greedy procedure in which sat(x) is 
simultaneously constructed. 

In the jth iteration of the procedure, given fixed values 
for x1, ..., xj-1 the maximum feasible value for x; is 

min{uj, x}, where 

x = min K(S U {jj) - E xi: S C {1, *, -1}} 
ies 

Let S be a set which attains this minimum. Note 
by induction that at the start of the jth iteration of 
Step 2, T C {1, ... , j - 1}. Also (14b) is a binding 
constraint for the set T and the vector (x1, ... , xj_1, t, 
0, ... , 0) for any t > 0. We refer to such a set as a tight 
set. Thus, both S and T are tight sets in F* for x = 

(x1, ...,xj1, x, 0., O) and, hence, So = S U T is 
tight as well. Thus, x = f(S0 U {h}) - >,ESo xl and 
{1, ..., j} D So D T. So x = x. If x > uj, (14b) is 
redundant for every set S C N with j E S and x = 
(x1, ... I xj, 0, ... , 0); thus, T remains the largest tight 
subset of {1, ..., j}. Alternatively if x ! uj, S' U {]} is 
the largest tight subset of {1, ..., j,. 

It is easy to verify that in Step 2 of GS2 x may be 
found by the membership procedure for generalized sym- 
metric polymatroids of order 2, restricting oneself to per- 
mutations of {1, ... - j 1} in which the elements of T 
precede those in {1, . j. ,] - 1}\T. Since N membership 
tests need to be performed in a single execution of the 
procedure, the complexity of GS2 is O(N3 log N). 

4.2. Special Cost Structures: Efficient Solution Via 
Equivalent Ordinary Maximum Flow Problems 

In this subsection, we describe a number of cost struc- 
tures for which the polymatroidal maximum flow prob- 
lems can be solved efficiently via transformation into 
ordinary maximum flow problems. 

4.2.1. Symmetric Structure 

The setup cost structure K(a) is said to be symmetric if 

K(S) = f(|SI), S C N 

with f a concave nondecreasing function and f(O) = 0. 
(As mentioned above this is a special case of the gener- 
alized symmetric structure.) See Federgruen and 
Groenevelt (1987) for a description of a transformation of 
G(v, N) into an equivalent ordinary network flow prob- 
lem, with at most N additional nodes and N2 additional 
arcs. By a generalization of the arguments in Gusfield, 
Martel and Fernandez-Baca (1985) one verifies that a 
maximum flow in G(v, N) is computable in O(RN2) op- 
erations; see also Ahuja et al. (1988). 

4.2.2. Tree Structured Partially Dedicated Machines 

In some settings, the production plant consists of several 
(say M) machines, each of which is suitable for a specific 
set of products. Let Nm denote the set of products which 
can be manufactured on machine m (m = 1, . . ., M) and 
assume that the machines represent nested levels of spe- 
cialization or flexibility, i.e., for any pair of machines m, 
m' we have either Nm C Nm, (m' is more flexible than 
m); Nm D Nm, (m is more flexible than m') or Nm n 
Nm, = 4 (m and m' are dedicated to disjoint collections 
of items). Let Km denote the setup cost incurred when 
starting a production batch on machine m (m = 1, ... 

M), regardless of the specific composition of the batch. 
Let C1 denote an additional setup cost incurred whenever 
product i(i = 1, ... , N) is included in a batch. The 
setup cost set function K(g) is thus given by: 

K(S)= Ci + min{ Km: (U Nm) DS. 
ics mEJ mEJ 

Federgruen and Groenevelt (1987a) show that this struc- 
ture is submodular and that it may be represented by a 
modular one via the addition of at most 2N nodes and 
2N arcs. We observe that the transformed network is 
still multipartite. By a generalization of the arguments in 
Gusfield, Martel and Fernandez-Baca, one concludes 
that maximum flow algorithms exist with F = O(RN2); 
see also Ahuja et al. 

The above structure may be generalized to settings 
where for every pair of machines (m, mi') either Nm n 
Nm, = 4 or there exist machines mi" and mi"' (not neces- 
sarily identical to m and mi') such that Nm = Nm n Nm, 
and Nm = Nm U Nm'. To ensure submodularity, the 
machine setup cost numbers now need to satisfy the ine- 
qualities Km' + Kmin" < Km + Km,. This case is referred 
to as an intersecting family structure. No transformation 
into modular networks is known for this generalized 
structure, but it can be handled efficiently with the poly- 
matroidal algorithm of Section 3 with d = O((N + M) 
log (N + M) + MN), solving minimum oracle problems 
via a bottom-up algorithm, the details of which we omit. 
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4.2.3. The Family Model (see Roundy 1986) 

A list of item families F is given. The setup cost Kf 
associated with a family f E F is incurred whenever at 
least one of the items in f is replenished in a joint replen- 
ishment. Thus, 

K(S)={> Kf:fEFffnS?4, SCN. 

It is easy to show that K(+) is monotone and submodular. 
To obtain a simple, rather than a polymatroidal network 
flow representation, remove arcs {(i, t), i E N}. Add a 
node for each f E F. Add an infinite capacity arc (i, f ) 
for each node i E f; connect each node f E F with the 
sink t by an arc with capacity Kf. Roundy (1986) de- 
scribed a transformation into an ordinary network model. 
Our transformation uses a route-product network that is 
different from his. As a result, the transformed network 
is a tripartite network. By a generalization of the argu- 
ments in Gusfield, Martel and Fernandez-Baca, it can be 
shown that F = O((R + F)N2), where F denotes jFj; see 
also Ahuja et al. The first-order interaction model may be 
viewed as an important special case with F = {N, {1}, 
{2}, ..., {N}}. Approaching the first-interaction model 
this way implies adding (N + 1) additional nodes to the 
original network, instead of a single additional node in 
the approach described above. 

APPENDIX 

Proof of Lemma 7. Define ai(S) = XAgs aj, i 1, ..., 

m, and a(S) = (a'(S), ..., a'm(S)); then K(S) = 

f(t(S)). Let T C S C E. Let 

def 

?(A) =- f(a(T) + A[a(S) - a(T)]), A ? 0. 

Here 4( ) is differentiable in view of the differentiability 
of f (invoking the chain rule); 1D(1) = f(a(S)) and PD(0) 
= f(t(T)). Thus, 

f(S) =f(t(S)) = (I) = CP(O) + { (A) dA 

=f(ca(T)) + > {(at(S) 

- af(a(T) + A[a(S) - a(T)])} dA 
-a1(T)) aid 

ft(a(T)) = K(T) 

since the integrand is nonnegative. (Note that ai(S) ? 

a'(T) and afbaxi 0 for all i = 1, m.., i.) This proves 
monotonicity. 

To verify submodularity, let j ? S. By the above 
derivation, 

K(S U {]}) - K(S) 

- M 2 { af(S(S) + A ({j})) 
- I:aiti)d 

and 

K(S U {j}) - K(T) 

1 a 
I 

af(a (T) + Aa({ ]j))l 

I 

I 
J\\I c3X dA. 

0 i-l axi 

ForanyO 0 A < 1 andi 1, ..., m, let 

d) e, cf(Y + A1k 1) > ti(A, Y) - x -i , y .O 

Note that P1(A, ') is continuous everywhere because Vf 
is continuous everywhere; moreover, by assumption it is 
differentiable with 

aPj (Ay) m a 2f(y + A ce 

ay 1-1 axi axi 

almost everywhere. Thus, 

[K(S U {j}) - K(S)] - [K(T U {j}) - K(T)] 

- > 2 taJ[Pi(Ak, a(S)) - 4i(A, a(T))] dA 

1 m a(S) 3(A, Y) 

-I ai I tdy dA 
JOi=1 iJ(T) dyd 
1 a(S) +y 

= 
M a Ctji M P df(y + Aaj) 
E a] faT)~y dA <1 0 

i-= ae) = axi axi 

because V2f S 0 (almost everywhere), a(T) c a(S) and 
a 0 for alli 1,..., m. 

Lemma A.1, (Membership test for generalized symmet- 
ric polymatroids of order 2). Let K(S) = f(>ias Ki, 
>LjE3s Mi) be a submodular function on N, where f is 
concave with f(O) = 0, Vf ? 0, V2f < 0. Then x E F def 

{x: x satisfies (14b) and (14d)}, if and only if for every 0 
St*S 1 

Xa, x <_ K(ja 1, * ,a jj })-f Ka KXI Mal 

j=1, *. .,n (A.2) 

holds for some permutation (a1, ..., an) of N that sat- 
isfies 

Xa1 /[tKaj + (1 - t)AMal] Xa,1 I[tKa,+I + (1 - t)laM+ ]. 

1 =1, ... -, n 1. (A.3) 

Proof. Consider the collection 

Z = K1, I Mi,>xi):SCN} 
i GS i G i ES 

of points in R4+ Obviously, x E F if and only if the 
region fQ = {(a, b, (): f(a, b) ? ;} contains Z. Let Z be 
the convex hull of Z. In view of the concavity of f, it 
suffices to verify that all extreme points of Z lie in fQ. 
Each extreme point is the (unique) optimal solution of 
the linear program: 
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LPAk,,,, = max - Aa - fub + v; 

subject to 

(a, b, ) EEZ. 

for some A, /.t, v. Recall that f(O) = 0 and f( ) nonde- 
creasing. Thus, if x E F, then there exists an extreme 
point of Z outside fl which is the optimal solution of 
LPA,,} for some A > O. A > O and v = 1. (Such an 
extreme point is incident to a facet of Z, where the out- 
ward normal (n1, n2, n3) satisfies n1 S 0, n2 - 0 and 
n3 0 .) Set t = A + A and t = A/(A + j4 Thus, if x E F 
there exists an extreme point of Z outside 0 which is the 
optimal solution of LPt,,(lt),l with co > 0 and 0 < t < 1. 
Note that for fixed co > 0 and 0 < t < 1, LPt,,(l-t),l may 
be solved via the parametric programming problem 

LPout = max I zi(xi - co[tK1 + (1 - t)Mi]) 

subject to 

? < zi < 1, i E E. 

Next, fixt, 0 S t < 1 and let (a1, , a )be apermu- 
tation of E which satisfies (8). Note that for a) > 0, the 
largest solution z(w) of LP' t is given by z(w)i = 1 if 
xi c (tKi + (1 - t)Mi) and z(co)i 0 otherwise. 
Define 

[K, M, x](co) = > z(w)i(K, Mi, xi) 
iEE 

and note that 

Z' {[K, M, x](w): A) > O} 

I I MalI n 

It thus suffices to test whether the n points in Z' lie in fQ. 
This test corresponds with (8). 

Lemma Al implies that there are at most O(n2) differ- 
ent permutations to be tested: When t is gradually in- 
creased from 0 to 1 a new permutation is encountered 
only at those values of t, 0 < t > 1, for which 

[tK1 + (1 - t)MI ]/xl = [tKm + (1 - t)Mm ]/Xm 

for some pair (m, 1), m < 1. This occurs for at most 
n(n - 1)/2 critical values of t. These critical values 
determine the endpoints of at most n(n - 1)/2 + 1 
subintervals of [0, 1] such that on each subinterval a 
given permutation satisfies (A.3). 

Determining and sorting these critical values can be 
done in O(n2 log n) time. Let a = (a1, .* , an) be the 
permutation satisfying (A.2) on a given subinterval and 
let 

i i 
xi)= xa, KU) Kai 

1=1 1=1 

and M(' =) -t 1 Ma for j - 1, ..., n. The permutation 
ag' which prevails on the next subinterval differs from ag 

by just one interchange of two neighboring components, 
say the jth and j + 1st one. Thus, all partial sums x 
K(r), M(r) with r ? j remain unaltered, and xfi), K(j) and 
Mi) may be updated by three additions and three sub- 
tractions only: 

xU):-x) + jl-xctj; K(') Kfi) + Kaj~ Ktj; 

M3 M(i) + Ma, -Ma. 

Thus, if x satisfies (A.2) for the permutation a, it does so 
for permutation a' as well provided the jth inequality in 
(A.2) holds. To test the latter one updates x(j), K(j) and 
M~i) and performs the single test f(K('), M(U)) 3 x j). 
Thus, the incremental amount of work on each new sub- 
interval consists of 0(1) operations and a single evalua- 
tion of the function f. 

We conclude that the entire membership test for gen- 
eralized symmetric polymatroids of order 2 takes a total 
of O(n 2 log n) operations. 
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