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In this paper we discuss stochastic Economic Lot Scheduling Problems (ELSP), i.e., settings 
where several items need to be produced in a common facility with limited capacity, under 

significant uncertainty regarding demands, production times, setup times, or combinations 
thereof. We propose a class of production/ inventory strategies for stochastic ELSPs and describe 
how a strategy which minimizes holding, backlogging, and setup costs within this class can be 
effectively determined and evaluated. The proposed class of strategies is simple but rich and 
effective: when the facility is assigned to a given item, production continues until either a specific 
target inventory level is reached or a specific production batch has been completed; the different 
items are produced in a given sequence or rotation cycle, possibly with idle times inserted 
between the completion of an item's production batch and the setup for the next item. An optimal 
strategy within the class can be determined, and all relevant performance measures can be 
evaluated in just a few CPU seconds, using a 486-based PC. We also derive a number of easily 
computable lower bounds for the optimal cost value and establish a comparison with determin- 
istic ELSPs. 
(Multi-item; Stochastic Inventory Systems; Single Capacitated Manufacturing Facility; Setup Times) 

1. Introduction and Summary 
We discuss stochastic Economic Lot Scheduling Prob- 
lems (ELSP), i.e., settings where several items need to 
be produced in a common facility with limited capacity, 
under significant uncertainty regarding demands, pro- 
duction times, setup times, or combinations thereof. We 
propose a class of production/ inventory strategies and 
describe how a strategy which minimizes holding, back- 
logging, and setup costs within this class can be effec- 
tively determined and evaluated. The proposed class of 
cyclical base-stock strategies is simple but rich and ef- 
fective: when the facility is assigned to a given item, 
production continues until either a specific target inven- 
tory level is reached or a specific production batch has 
been completed; the different items are produced in a 
given sequence, possibly with idle times inserted be- 

tween the completion of an item's production batch and 
the setup for the next item. An optimal strategy within 
the class can be determined and all relevant perfor- 
mance measures can be evaluated in just a few CPU 
seconds, using a 486-based PC. We also establish com- 
parisons with several alternative production systems, in 
particular, deterministic ELSPs and settings where each 
item has a dedicated facility. These comparisons char- 
acterize the price that is to be paid for various sources 
of uncertainty or shared capacity units. 

In spite of its importance as a natural and basic model 
for the interaction between related products, little is 
known about the general model. Deterministic versions 
have been addressed via mixed integer models, which 
in general are difficult to solve; see the recent survey by 
Salomon (1990) or the so-called deterministic ELSP in 
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which all items' demands are assumed to occur at a 
constant deterministic rate and all production and setup 
times are assumed to be deterministic as well. Even the 
deterministic ELSP is too hard to be solved: Hsu (1983) 
proved that the problem is NP-Complete. The rather 
sizable literature on this model (e.g., Maxwell 1964, 
Bomberger 1966, Elmaghraby 1978, Dobson 1987, Gal- 
lego 1991, and Zipkin 1991) confines itself to a number 
of simple classes of replenishment rules, e.g., the rota- 
tion cycle strategy: here, the facility follows a cyclical 
schedule in which the items are produced in a fixed but 
arbitrary sequence; each cycle consists of a production 
period (in which the quantity produced of each item 
equals its deterministically known demand during the 
cycle) possibly followed by a single idle period. Most 
importantly, the above deterministic models are ill- 
suited to represent significant sources of uncertainty 
with respect to the demand processes, production, and 
setup times. 

We now briefly review the much more limited and 
more recent literature on stochastic ELSPs. Several pa- 
pers deal with the special case where no setup costs or 
setup times are incurred when switching production 
from one item to the next. These papers focus on dy- 
namic scheduling policies in which at any production 
completion epoch the decision as to which item to pro- 
duce next, if any, is made on the basis of the complete 
system wide state vector, i.e., the vector of the inven- 
tories for all individual items. Optimal dynamic sched- 
uling policies cannot be computed for all but the small- 
est size systems; moreover the structure tends to be 
highly complex prohibiting their implementation even 
if such strategies could be computed in a reasonable 
amount of time. See, however, Ha (1992) for a charac- 
terization of an optimal policy in the case of two prod- 
ucts. All other papers deal therefore with the develop- 
ment of heuristics, e.g., Wein (1992), Veatch and Wein 
(1992), and Penia and Zipkin (1993). 

In spite of concerted efforts to reduce setup times in 
Just-In-Time and related programs, these remain signif- 
icant in most practical production settings. Yet, all stan- 
dard stochastic inventory models are driven by setup 
costs and ignore setup times, even though, as pointed 
out by Karmarkar (1987), often no explicit setup costs 
are incurred, and the latter are used merely to represent 
the opportunity costs of setup times. Such setup costs 

are therefore difficult to estimate and are subject to 
change over time. Moreover, instead of being fixed and 
exogenously given, they are in fact dependent on the 
specific production strategy employed. Finally, systems 
with setup times exhibit important qualitative differences 
as opposed to those without such setup times. On the 
other hand, there are many settings where incremental 
setup costs are incurred in addition to or instead of 
setup times. Duenyas and Van Oyen (1993) describe ex- 
amples in the production of asphalt shingles. Our paper 
simultaneously considers general setup costs and setup 
times. 

A few other papers deal with dynamic or semidy- 
namic scheduling policies for systems with setup costs 
or times. Browne and Yechiali (1989a, b) and Duenyas 
and Van Oyen (1992) deal with the special case of sys- 
tems without inventories. None of their (semi-) dy- 
namic scheduling rules can be evaluated analytically. 
Zipkin (1986) and Karmarkar (1987) address models 
with setup times and costs; they consider settings in 
which the production facility fails to have timely infor- 
mation about finished goods inventories and restrict 
themselves to a class of strategies under which produc- 
tion batches are triggered by independent single item 
(r, q)-rules, and priority between batches is determined 
on a FIFO basis. Leachman and Gascon (1988), Leach- 
man et al. (1991), and Bourland and Yano (1991, 1994) 
consider semidynamic adaptations of the deterministic 
rotation cycle policy. These heuristics can not be eval- 
uated analytically. Graves (1980) proposes a method re- 
quiring the solution of 2N - N - 1 single item Markov 
Decision problems where N denotes the number of dis- 
tinct items. 

As observed by Sarkar and Zangwill (1989), the basic 
cyclical polling model (with exhaustive or gated ser- 
vice) represents the special control rule in our proposed 
class of strategies in which the base stock levels equal 
zero and no idle times are inserted; see Takagi (1986, 
1990) for recent surveys. 

The remainder of this paper is organized as follows. 
In ?2 we describe the model, and in ?3 the proposed 
class of production strategies and an efficient method 
for identifying and evaluating an optimal strategy 
within this class. In ?4 we report on a numerical study 
in which the proposed production strategy and its cost 
value are compared with those arising in deterministic 
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versions, or in settings where each item is produced on 
a dedicated facility. We also comment on the sensitivity 
of various performance measures with respect to certain 
parameters. 

2. The Basic Model 
Consider a system with N distinct items, with demands 
generated by independent demand Poisson processes; 
Xi is the demand rate of item i (i = 1, ..., N) and X 
= zN=1 sX. (See ?3 for generalizations of the results in 
this paper to compound Poisson demand processes.) The 
N items are produced in a common facility which can 
produce at most one item at a time. Production times 
for individual units are independent; those of item i are 
identically distributed with cdf S;( ), mean si < ?? and 
kth moment Sk) (k 2 2) (i = 1, . . ., N). A setup time 
with cdf Ri(-), first moment ri < oo and kth moment 
r(k) (k 2 2) is incurred whenever the facility starts pro- 
ducing item i after being idle or after producing some 
other item. Consecutive setup times are independent. 
(More generally, our results are easily extended to the 
case of sequence dependent setup times; see the discus- 
sion below.) The utilization rate for item i is pi = Xisi; 
that of the system equals p = ,I=I Pi. We assume the 
system is stable, i.e., p < 1. Unfilled demand is back- 
logged. 

Three types of costs are incurred. Let 
hi(x)(pi(x)) = the inventory carrying (backlogging) 

cost for item i per unit of time at which x units of item 
i are carried in stock (backlogged) (i = 1, . . ., N). 

Ki = the setup cost incurred per setup of item i 
(i= 1.,N). 

The functions hi(-) and pi(-) are convex and nonde- 
creasing. The objective is to minimize the long run costs 
per unit time. Often, one prefers to control stockouts via 
service level constraints, e.g., lower bounds on the 
items' fill rate. This variant of the model calls for a mi- 
nor adjustment; see ?3. 

3. A Class of Production Strategies: 
An Efficient Optimization and 
Evaluation Method 

Under a base-stock policy, the facility rotates between 
the items in a fixed sequence, without loss of generality 

the permutation (1, ..., N). When turning to item i, 
either (a) the facility continues to produce this item until 
its inventory level is increased to a base-stock level bi, 
or (b) the facility produces a batch the size of which 
equals the difference between a base-stock level bi and 
the prevailing inventory level. We refer to alternative 
(a) ((b)) as the exhaustive (gated) case. We initially as- 
sume that the same type of service (i.e., exhaustive or 
gated) is provided to all items; see subsection 3.4 for a 
brief discussion of the case of mixed service. When ter- 
minating production for item i-1 (modulo N), a (deter- 
ministic) idle time Ai is inserted prior to setting up for 
item i. Insertion of idle times may be beneficial to reduce 
the frequency of setups and hence the average setup 
cost. More surprisingly and as shown by Sarkar and 
Zangwill (1991), insertion of idle times may even be 
beneficial in the absence of setup costs, in particular 
when some of the setup times are highly variable. (It is 
unknown as yet whether the same phenomenon can oc- 
cur under fully optimal or more sophisticated dynamic 
policies. As demonstrated by Sarkar and Zangwill, the 
phenomenon can occur under the base-stock policies 
considered here.) 

The choice of the above class of base-stock policies is 
motivated by the following considerations. First, base- 
stock policies are easy to implement and can effortlessly 
be monitored with -minimal informational require- 
ments. Indeed, many manufacturing companies have 
adopted some form of cyclical scheduling; see, e.g., Hall 
(1982), Schonberger (1987), Leachman and Gascon 
(1988), and Smith et al. (1993). 

Second, base-stock policies are a natural generaliza- 
tion of the rotation cycle policies advocated for deter- 
ministic ELSPs where they are close to optimal under 
most reasonable parameter combinations; see, e.g., 
Jones and Inman (1989). Also, a base-stock policy gov- 
erns each item's inventory via a variant of a (T, S)-rule. 
Under a pure (T, S)-rule, the item's inventory position 
is increased to a base-stock level S every T time units; 
under a base-stock policy, production of a given item is 
likewise continued until a fixed "target level" is 
reached, but the interreplenishment interval T is some- 
what random. (T, S) rules are among the most widely 
used policies in single item systems; see, e.g., Silver and 
Peterson (1985). They are also effective in coordinating 
replenishments across items so as to exploit economies 
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of scale; see, e.g., Atkins and lyogun (1988). Finally, an 
alternative generalization of the rotation cycle policies 
for deterministic ELSPs would prescribe a cyclical 
schedule with fixed production and idle time intervals 
of appropriately chosen lengths and hence random tar- 
get levels S. However, no acceptable analytical method 
is known (or, as shown in Borst 1994, is even likely to 
exist) to evaluate a single such time-window policy, let 
alone to identify the best N-vector of production win- 
dows. Leachman and Gascon's (1988) heuristic can be 
viewed as a variant of the time-window policies. 

One may consider certain dynamic adjustments of 
base-stock policies, e.g., (i) where an item is skipped 
when it is its turn to be produced but its inventory is 
still at its base-stock level, or (ii) where upon comple- 
tion of an item the facility switches to one with the larg- 
est shortfall from its base-stock level (perhaps weighted 
by the holding cost rate), or (iii) the length of the in- 
serted idle times is determined dynamically. No ana- 
lytical evaluation method is available for any of these 
dynamic adjustments. Moreover, they do not need to 
result in improvements; see, e.g., Duenyas and Van 
Oyen (1992). Also, the event under which an item is 
skipped under policy (i) is rare under reasonably large 
utilization rates and/or cycle times, so that the perfor- 
mance measures of the static base-stock policy may be 
used as a good approximation for those of the dynamic 
policy (i), even if the latter is desired. Bertsimas and Xu 
(1993) show, for make-to-order systems, that policy (ii) 
is often inferior to a static policy. 

Contrary to the case of deterministic ELSPs, the cho- 
sen permutation cycle has an impact on various perfor- 
mance measures, albeit very minor compared to that of 
the base-stock levels and idle times; see ?4 for details. 
Thus, for all practical purposes, a single permutation 
can be chosen arbitrarily. In case setup times are se- 
quence dependent, we suggest to choose the permuta- 
tion which optimizes the Traveling Salesman Problem 
with the mean switchover time between items i and j as 
the distance between them. 

3.1. An Optimization Method for Base-stock 
Policies 

A base-stock policy is specified by an N-vector of base- 
stock levels b = (b,, . . ., bN) and a vector of idle times 
A = (l, J *--J AN). Note that under a given idle time 

vector A the process of system-wide inventories is re- 
lated to the queue size process in a cyclical polling sys- 
tem, i.e., a system with N stations at which customers 
arrive to be serviced by a common server. The server 
visits the stations in a fixed permutation and stays at a 
station until its queue is emptied out (the exhaustive 
case) or all customers present upon his arrival have 
been served, (the gated case). When the server switches 
between stations a station-specific switchover time is in- 
curred. 

For a given vector A, the "corresponding polling sys- 
tem" is specified as follows: each item is identified with 
a station. The arrival processes at the stations are given 
by the items' Poisson demand processes. Unit service 
times at a station are given by the unit production times 
of the corresponding item. The switchover times from 
station i to i + 1 (modulo N) are given by the setup times 
for item i + 1, each augmented by Ai+, 

For a given vector of base-stock levels b, let for all i 
=/ 1...,/N: 
ILM(t) = the inventory level of item i at time t. 
Li(t) = the queue size at station i in the corresponding 

polling system at time t. 
The correspondence between the ELSP and the polling 
system implies: 

ILi(t) = bi - Li(t) for all t 2 0. (1) 

Since the system is stable (p < 1) it is easily verified 
to be regenerative, e.g., at epochs at which production 
of item 1 is terminated while the inventory levels of all 
items equal their respective base-stock levels (i.e., in the 
corresponding polling system, the system is empty). In 
particular, the processes ILi(t)) and Li(t)) converge to 
steady-state distributions ILi and Li (i = 1, .. ., N). Like- 
wise, let 

Ci = the steady-state cycle time i.e., the time between 
two consecutive epochs at which production of item i is 
started (i = 1, . . ., N). 
The Ct-variables may have different distributions but 
their means coincide (see Takagi 1986). 

ECj C i = 1, ..., N 

def I (ri + Ai) 
where C- . (2) 

1 -p 

In view of (1), the long run average cost under a given 
base-stock policy is thus given by: 
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Y,N K N 

N 
iCi+ E E {h (IL j) + pj (IL -) } 

INK N 

=iC i + jE hi([b -Lij+)+pi([L -bj]+)}, (3) 
i~=l 

where x+ = max(x, 0) and x = max(-x, 0). 
The advantage of this representation is that the dis- 

tribution of the random variables {Li; i = 1, . . ., NJ is 
independent of the vector of base-stock levels. We con- 
clude: 

PROPOSITION 1. Consider all base-stock policies with a 
given vector of idle times A. Let (Li: i = 1, . . ., NJ denote 
the steady-state queue sizes in the corresponding polling sys- 
tem. For each item i (i = 1, . . ., N), one obtains the optimal 
base-stock level b* by determining the unique minimum of 
the (single variable) convex function 

ifi(x) = Efhi([x - Li]+) + pi([Li - x1+)}. 

In other words, the optimal base-stock level b* is ob- 
tained by solving a newsboy problem with Li as the de- 
mand distribution (i = 1, . . ., N). 

PROOF. The vector b has no impact on the average 
setup cost, i.e., the first term in (3) and the distribution 
of {Li; i = 1, . . ., NJ is independent of b as well. (3) is 
thus separable in b; in particular b* is obtained by mini- 
mizing the single variable function qfi () which is con- 
vex (since hi(-) and pi(-) are convex and nondecreas- 
ing), and hence has a unique minimum. D 

REMARK 1. In case a minimum fill rate a is to be 

guaranteed for some i = 1, ..., N, one sets b* as the 
lOGath percentile of the Li-distribution. 

It thus remains to be shown how for any given vector 
of idle times A the distributions {Li; i = 1, . . ., N} can 
be computed and in particular how an optimal vector 
A can effectively be determined. We address the second 
question first. 

PROPOSITION 2. -The long run average cost (3) depends 
on A only via A0o, = IN1=1 Ai. 

PROOF. The distribution of {Li; i = 1, ..., NJ and 
hence, the second and third terms in (3) depend on A 
only via A\to = Ai A\; see Theorems 1(a) and 3(a) in 
Federgruen and Katalan (1993). The same clearly holds 
for the first term in Equation (3), see Equation (2). 0 

In other words, a single idle time period, inserted 
prior to the setup of any of the N items, can be used in 
any given cycle without loss of optimality. The search for 
optimal idle times thus reduces to that for a single scalar 
A\0O! An optimal base-stock policy is thus obtained by 
minimizing the single variable function V() where 

VA\) = the minimum average cost when inserting a 
single idle time of length A in every cycle and employ- 
ing an optimal corresponding vector of base-stock 
levels. 

We now show how ?(NA) can efficiently be evaluated. 
In view of (3) and proposition 1, the evaluation is straight- 
forward given the distributions of ILi; i = 1, ..., NJ. 
In the next subsection, we describe a fast method to de- 
termine the Li-distributions for any initial value of Ai. 
An even faster procedure (in subsection 3.3) can be used 
for any subsequent values of A, as required when search- 
ing for an optimal value of A. 

REMARK 2. Based on partial results in Katalan (1995, 
p. 144), we claim that nothing is gained by implement- 
ing random idle times. 

3.2. Evaluation of the Li-distributions 
Federgruen and Katalan (1994) recently developed an 
efficient algorithm to compute the complete steady-state 
queue size distributions in polling systems. While ap- 
proximate, the method is remarkably accurate as veri- 
fied in an extensive simulation study. Here, we confine 
ourselves to a brief description of this method. See the 
appendix for a complete algorithmic description. 

Fix i = 1, . . . , N. Let Xi be the steady-state number of 
customers at station i at a polling instant there, i.e., an 
instant when the server is ready to resume service and 
Bi the busy period at station i, i.e., the amount of time 
service is provided at station i during an arbitrary cycle. 
It follows from Fuhrmann and Cooper (1985) that Li can 
be decomposed as the independent sum of two simpler 
components: 

Li = Lj' + L7. (4) 

Here L' is the steady-state number of customers at sta- 
tion i, if the&server were exclu?ively assigned to this 
station, i.e., the steady-state queue size in an M / G / 1 
queue with arrival rate Xj and service time distribution 
S(-); L' is the number of customers at station i at an 
arbitrary tagged epoch within one of station i's intervisit 

MANAGEMENT SCIENCE/Vol. 42, No. 6, June 1996 787 



FEDERGRUEN AND KATALAN 
The Stochastic Economic Lot Scheduling Problem 

periods Ii. (An intervisit period starts when the server 
completes serving the station and ends at the next epoch 
at which he is ready to resume service there.) The values 
of the pdf of L! can be computed via a simple linear 
recursion, see Tijms (1986). As to LV, under exhaustive 
service, it is the number of Poisson arrivals with rate Xi 
in an interval of time distributed as Ie, the forward re- 
currence time of Ii. The distribution of Ii is approxi- 
mated by a mixture of Erlang distributions chosen to 
match a prespecified number of moments (say m). The 
distribution of Ie is thus approximated as a mixture of 
Erlangs itself and that of L' as a mixture of negative 
binomials with parameters easily computed from the 
first m moments of Ii. But, 

EI = Al rE(Xi(Xi -1) ..(Xi -r + 1)), r 2: 1, (5) 

and the moments of Xi can be obtained efficiently via 
the method in Konheim et al. (1994). 

Under gated service, an intervisit period starts with 
the customers that arrived to the station during the pre- 
ceding busy period. L' is thus the number of arrivals of 
item i in an interval of time Ii ending at an arbitrary 
tagged epoch during an intervisit period and starting at 
the beginning of the preceding busy period. li is again 
approximated by a mixture of Erlangs with parameters 
chosen to match a pre-specified number of moments. 
Close approximations for the moments are obtained 
from the corresponding moments of Ci and Bi; these in 
turn are easily computed from those of Xi, again effi- 
ciently obtained via the method of Konheim et al. 
(1994). 

The approximation method for the distribution of Li 
is both extremely accurate and fast, even when using 
two moment approximations only. Among 1746 prob- 
lem instances, with numbers of items varying from 5 to 
50, and systematic variation from light (balanced) traffic 
to heavy (unbalanced) traffic and with a variety of dis- 
tributional forms for the setup and production time dis- 
tributions, Federgruen and Katalan observe a maximum 
pointwise absolute difference between the approxi- 
mated cdf curves of the variables Li (i = 1, . . ., N) and 
the exact cdf curves, estimated via high precision sim- 
ulation, of no more than 0.018. The relative accuracy of 
the method is of the same order of magnitude, guar- 
anteeing high precision even for rare events. 

To assess how accurately the optimal base stock levels 
are determined, consider for an item i the most preva- 
lent case with hi(x) = hix and p,(x) = pix for given con- 
stants hi, pi > 0. Proposition 1 shows that b* 
= L-1(pi/pi + hi) with L` the inverse of the cdf of Li. 
Federgruen and Katalan show that the difference be- 
tween the approximated and the exact values of L`1 is 
typically less than or equal to one for critical ratios 

pi(pi + hi)-1 varying from 0 to 0.999; differences of more 
than one unit arise only when the relative error is less 
than 3%. 

The approximation method is also extremely fast. 
Even instances with 50 stations and high traffic intensity 
require only a few CPU seconds on a PC. The complex- 
ity of the method, for a given choice of A, is given by 
O(N max(k*2, N logp eD) to evaluate the first k* pdf val- 
ues of the queue sizes in a complete system, with e the 
desired numerical precision. 

3.3. Optimization of the Inserted Idle Time A 
Having shown how V(zA) may efficiently be evaluated 
for a given value of A, we now show how it can be 
minimized efficiently over A. We first describe how af- 
ter an initial evaluation of the function VW) an even 
faster procedure may be used for subsequent evalua- 
tions. Note first from equations (2) and (3) that the av- 
erage setup cost component is an explicit hyperbolic 
function of LA: (I =1 Ki)(1 - p)/(Y.=41 ri + A\). Next, ad- 
dressing the remaining cost components, fix i = 1, ... . 
N and consider the effort to compute the holding and 
backlogging cost for item i under alternative values of 
A\. The distribution of V is independent of A\; i.e., it 
never needs to be reevaluated. As to Li', recall that its 
evaluation starts with the computation of m moments 
of Xi. Thereafter only a few closed form expressions 
need to be evaluated to determine the parameters of the 
mixture of negative Binomials approximation of L7, the 
convolution of this distribution with that of L; is com- 
puted, and holding and backlogging costs for item i are 
determined by the solution of a single newsboy prob- 
lem; see proposition 1. 

We now show that after the initial evaluation of I(D(), 
the required m moments of Xi are available as given 
polynomials of A with known coefficients, reducing 
their reevaluation to a trivial computation. Federgruen 
and Katalan (1993) show: 
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Xi (A) = Xi(O) + Yi (A), 

with Xi(O) independent of Yi(A), (6) 

Here Y, (A) is the number of events in A time units in 
a compound Poisson process with rate X and com- 
pounding distribution Zi, which is independent of A and 

(1) (in whose first m moments zi , ... , zi (m 2 1) are easily 
obtained in the process of computing the first m mo- 
ments of Xi(O) via the method of Konheim et al. (1994). 
In particular: 

PROPOSITION 3. Fix i = 1, ..., N. Let i = E{Xi(O)Ir 
forr= 1,..,m. 

(a) 

E {Xi(A) Ir 

r x ((al+' +a) 171 {Zik)IakA(a1+ +ai) 
1=0 1 x=1 i aj=1 k=1 

i.e., the rth moment of Xi(A) is a polynomial of degree r 
in A. 

(b) In the exhaustive case, E{Ij(A/)}r is a polynomial of 
degree r in A and in the gated case, E{Ci (A)}r is a polynomial 
of degree r in A. 

PROOF. (a) It follows from Xi (A) = Xi(O) + Yi(A) 
that 

E{Xi(A)Ir = ,E ( I)e -E{Yi(A ) '. 

Note that 

M 

Yi (A) = Zi,, (7) 
y=l 

where Zi,l, . .. , Zi,M are independent and distributed as 
Zi. M has an independent Poisson distribution with rate 
XA. Thus, conditioning on M, we obtain: 

E =iA EmE[{XE zi,p} M = n] 
[{M=1 31 ] 

def 

Let n(a) = n (n-- (n -a + 1)foranyintegera 21. 

In any given term in the multinomial expansion of 
{ty=l Zi,}l' and for any k = 1, ..., I let ak denote the 
number of distinct factors of the type (Z Wjp) for some 
index ? p ? n' < p _ n. For any given choice of num- 
bers al, ... I a,k note that EkL ka,k = 1 and that there are 
n (al + +al) distinct terms in the multinomial expansion 

with ak as the number of factors that are kth powers of 
the same random variable, since any such term includes 
(a1 + * * * + at) distinct random variables and there are 
n(a,+ +al) (ordered) combinations of such variables. 
Moreover, each such term in the multinomial expan- 
sion, has expected value { nkH=1 [Z k)Iak . But 
EM(a1+ +al) = (A/)(a,+ +al) since the rth factorial mo- 
ment of a Poisson variable equals the rth power of its 
mean. 

(b) Immediate from part (a) and 

EI = (EC>) = EXi(Xi - 1) (Xi - r + 1) 

under exhaustive (gated) service; see Equation (5). 0 
As far as an appropriate search method for the optimal 

idle time A* is concerned, any standard method for 
minimizing a nonlinear function of a single variable can 
be used; see Rinnooy Kan and Timmer (1989). More- 
over, in our numerical experience, the function 4I( ) is 
always quasi-convex, i.e., it has a unique local mini- 
mum. This property permits the use of a bisection tech- 
nique under which the number of evaluations of V(*) is 
merely logarithmic in the length of the search interval. 
We conjecture that the function W() is quasi-convex in 
general, based on the following partial characterization 
and the above numerical experience. In the remainder 
of this subsection we restrict ourselves to the case of 
exhaustive service. 

PROPOSITION 4. Under exhaustive service, all moments 
of Iq, i = 1, . . , N, are quasi-convex in /X. 

PROOF. We first show that the family { Xi (/): A : 01 
is stochastically increasing convex (SICX) in A, i.e., 
Ef(Xi(zA)) is a nondecreasing convex function of A for 
any nondecreasing convex function f. Xi (O) is clearly 
(SICX) in A\. Also, {Yi(A): A > 01 is (SICX) in view of 
Equation (7) and Theorem 6.8 in Shaked and Shanthik- 
umar (1990). Thus, Xi (A) = Xj(0) + Yi (A) is (SICX) (see 
Theorem 5.6 in Shaked and Shanthikumar). 

Now, fix an integer r 2 1 and note that 

f(x) = x(x - 1)+(x - 2)+- -(x - r + W) 

is nondecreasing and convex as the product of r non- 
decreasing, nonnegative, and convex functions. Thus, 
using (5), 

EI = X-rEf(Xi (A)) 

= XTrEXj(A\)(Xi(A\) - 1). (Xi(A\) - r + 1) 
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is convex in A\. Next, E(I9W = EIiE1 / (r + 1 )EIi; see Tijms 
(1986, p. 6), and by Proposition 3(b) EIi is linear in A, 
so that E(IW)r is quasi-convex in A\. (If f( ) is a convex 

X)def function then g(x) = f(x) /(ax + b) for given nonnega- 
tive constants a, b is quasi-convex, since for any c > 0, 
the set 

def 

AC = {x: g(x) ? c} = {x: f(x) ? axc + bc} 

is convex.) W 
Proposition 4 suggests that {IW(A): A : 01 may be 

stochastically convex, in which case L'(A) and hence 
Li(A\) would be stochastically convex, implying that the 
long run average cost is convex in A for any given vec- 
tor of base stock levels. 

In summary, at the end of ?3.2, we have demonstrated 
that a single value of the function Jr ), i.e., the mini- 
mum cost value for a given idle time, can be evaluated 
in just a few CPU seconds, even for systems with 50 
items and high utilization rate. Since subsequent eval- 
uations of 4J(.) can be performed even faster, and only 
few evaluations are required, an overall optimal strat- 
egy within the class of base-stock strategies can be 
found with comparable effort. 

3.4. Generalizations 
Both the model and the class of base-stock policies are 
easily extended to allow for a number of important gen- 
eralizations. First, consider the case where the demands 
are generated by compound rather than unit Poisson pro- 
cesses. One easily verifies, using Corollary 6 in Feder- 
gruen and Katalan (1993), that without loss of optimal- 
ity, at most a single idle time needs to be inserted in each 
cycle. For a given idle time A and corresponding dis- 
tributions {Li; i = 1, ..., NJ optimal base-stock levels 
can be computed as described in Proposition 1. The 
problem thus reduces once again to that of minimizing 
the function 4( ). The above method for the initial eval- 
uation of 4J() is easily modified; see Federgruen and 
Katalan (1994). Also, (6) continues to apply, see Corol- 
lary 6 in Federgruen and Katalan (1993), allowing for 
the same acceleration in subsequent evaluations of 4b(). 

It is also possible to use mixed service, i.e., to provide 
a different type of service to different items, treating 
some items with exhaustive and some with gated ser- 
vice. Optimality of a single idle time per cycle, the above 
fast initial evaluation method of C() and its enhance- 

ment for subsequent evaluations, all continue to apply 
with minor modifications; see Federgruen and Katalan 
(1993, 1994). 

4. Comparison with Alternative Lot 
Scheduling Systems and 
Numerical Study 

The most common strategies for ELSPs are those de- 
rived for their deterministic version. A straightforward 
adaptation of the deterministic rotation cycle strategy to 
our stochastic setting, specifies a base-stock policy in 
which each item's base-stock level and the idle time per 
cycle are chosen as the maximum inventory level and 
idle time under the deterministic rotation cycle policy. 
In this section, we report on a numerical study which 
compares this heuristic with an optimal base-stock rule. 

We also establish comparisons with several alterna- 
tive production systems, in particular deterministic 
ELSPs and settings where each item has a dedicated fa- 
cility. These comparisons characterize the price to be 
paid for various sources of uncertainty or shared capac- 
ity. We first evaluate the minimum average cost in- 
curred if the facility could be dedicated exclusively to 
each item and if production could be initiated without 
setup time. This is clearly a lower bound for the mini- 
mum system-wide cost under any feasible policy. It de- 
composes into N stochastic single item problems for 
which an (s, S)-policy is optimal; see Federgruen and 
Zheng (1993). Under an (s, S) policy, production of the 
item is continued until a target level S is reached, and 
production is resumed when inventory drops to a level 
s < S. Federgruen and Zheng also show how the opti- 
mal (s, S)-parameters and the corresponding minimum 
average cost value Z(s, S) can be computed with a fast 
optimization procedure. 

The cost of an optimal deterministic rotation cycle is 
another lower bound for the minimum cost value 
among all stochastic base-stock (but not necessarily 
among all feasible) policies. This bound can be repre- 
sented by a closed form expression. Consider, e.g., the 
most prevalent case where all inventory and backlog- 
ging costs are linear, i.e., hi(x) = hix and pi(x) = pix for 
given constants hi, pi > 0 (i = 1, . . ., N). If a rotation 
cycle of length T is employed, one easily verifies that 
the average holding and backlogging cost of item i is 
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given by XiT(l - pi)hipi/2(hi + pi) and the total average 
cost by 

1=1 Ki N i(1 - pi)hipi 
T +T- 2(hi + pi) (8) 

To be feasible, we must have T 2 ?N=1 ri + pT or T 
I N=1 ri/( - p) to allow for YI=1 ri in setup time and 

pT in production time. (The lower bound for T equals 
C when A = 0; see (2).) The minimum cost value among 
all rotation cycles is the minimum of (8) subject to the 
bound on T: 

EN, K, N T i(1 -pi)h)p where 
ZD = IT hr 

T- 2 (h, + pi) 

T* = 2 Y l K' Y vl ri 9 max1 
Xki(l- pi)hipi'1 

N 
p 

2(hi + pi) 

In our numerical study we have evaluated 360 prob- 
lem instances which are partitioned into ten sets of 36 
instances each. All instances have five items, all pro- 
duction times are exponential with mean one, and all 
setup times are Erlangs with five phases and mean one. 
All items share the same cost parameters h, p, and K. 
Sets 1-3 represent our base category with settings with 
relatively high traffic (p = 0.8) and significant imbalance 
in the workload associated with the different items, 
i.e., Pmax/Pmin = 16 where Pmax = max{pi1 and Pmin 
= min{piI. Sets 4-6 represent settings with the same to- 
tal utilization rate p = 0.8 but with relatively balanced 
workloads (Pmax/Pmin = 1.6). With sets 7-9 we return 
to the base category, merely changing the total utiliza- 
tion rate from p = 0.8 to p = 0.5. Finally, in set 10 we 
systematically vary the total utilization rate from p 
= 0.15 to p = 0.9, under a given set of relative utilization 
rates for the different items reflecting moderate imbal- 
ance (Pmax/Pmin = 7). In sets 1, 4, and 7 we systemati- 
cally vary the values of h and p for a fixed value of K; 
likewise, in sets 2, 5, and 8 (3, 4, and 9) we vary the 
values of h and K (p and K), fixing the value of p(h). 
Each of the three cost parameters is systematically cho- 
sen from a list of six possible values: 

h = {1, 5, 10, 15, 20, 25); p = {5, 25, 50, 75, 100, 1251; 

K = {20, 200, 400, 600, 800, 10001. 

(Each possible set consists of 36 instances since two pa- 
rameters are varied in each.) Finally, in set 10 we fix h 
and p and vary p and K, choosing once again six distinct 
values for each. 

The following performance measures have been eval- 
uated. (All these measures refer to the case of exhaus- 
tive service, except for Zgated defined below.) 

ab = the maximum difference across all items be- 
tween the base-stock level in the optimal (stochastic) 
base-stock rule and the base-stock level in the optimal 
rotation cycle in the deterministic version of the ELSP. 

bs = the base-stock level in the optimal stochastic 
base-stock rule for which the maximum difference Ab 
is achieved. 

Cs = the expected cycle length in the optimal sto- 
chastic base-stock rule (identical for all items; see (2)). 

CD = the length of the optimal deterministic rotation 
cycle. 

As = the inserted idle time in the optimal stochastic 
base-stock rule. 

AD = the idle time in the optimal deterministic rota- 
tion cycle. 

Zs = the cost value of the optimal stochastic base- 
stock rule under exhaustive service. 

zgated = the cost value of the optimal stochastic base- 
stock rule under gated service. 

ZSD = the cost value of the stochastic base-stock rule 
obtained by adapting the optimal rotation cycle to the 
stochastic setting, as explained above. 

Finally ZD and Z(s, S) are the two lower bounds de- 
scribed above. 

The specific values of these performance measures for 
all 360 instances can be found in Katalan (1995). Here, 
we display (in Table 1) the results for one of the sets, 
set 1. The results imply a number of important conclu- 
sions: first, to appropriately manage the risk due to un- 
certain demands, production, and setup times, an op- 
timal base-stock policy employs significantly less idle 
time, i.e., significantly shorter cycles than the optimal 
rotation cycle in the deterministic version. In other 
words, reducing the uncertainty in the system results 
not only in a significant cost reduction but allows for a 
larger fraction of the available capacity to be reserved 
for new or unanticipated activities. The value CS/CD 
can be as large as 1.47; that of /D//AS can be as large 
as 4.4. 
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Table 1 Inventory Cost versus Backlogging Cost (Set 1: Unbalanced system (p = 0.8, K = 500)) 

N h p 79b b5 Cs CD l s |zated ZSD ZD Z(s,S) 

1 1 5 2 22 97.2 101.6 14.4 15.3 67.2 71 69.2 49.2 46.1 
2 1 25 6 28 80.8 94.6 11.2 13.9 89.7 94.7 132.2 52.9 49.9 
3 1 50 9 31 79.5 93.7 10.9 13.7 98.9 104 209 53.4 51.8 
4 1 75 9 31 72 93.4 9.4 13.7 103.8 109.4 285.6 53.6 53.1 
5 1 100 10 32 70.6 93.2 9.1 13.6 107.4 112.9 362.1 53.6 53.9 
6 1 125 11 33 71.3 93.1 9.3 13.6 110.1 115.6 438.3 53.7 54.6 
7 5 5 0 0 57.3 58.6 6.5 6.7 109.7 119.6 109.8 85.2 79.8 
8 5 25 2 11 37.4 45.4 2.5 4.1 185.8 199.6 202.2 110 102.7 
9 5 50 4 13 36 43.5 2.2 3.7 220 235.5 295.2 114.9 109.1 

10 5 75 4 14 35.6 42.8 2.1 3.6 240.6 255.7 370.1 116.7 113.8 
11 5 100 5 15 35.6 42.5 2.1 3.5 255.3 270.1 452.6 117.6 118 
12 5 125 6 16 35.6 42.3 2.1 3.5 267 281.5 507.6 118.2 121.8 
13 10 5 -1 0 47 50.8 4.4 5.2 123.8 137.6 124.1 98.4 92.3 
14 10 25 1 7 30 34.7 1 1.9 238.1 258.8 244.3 144.1 136 
15 10 50 3 9 27.5 32.1 0.5 1.4 295 319 347.1 155.6 144.8 
16 10 75 3 10 26.9 31.2 0.4 1.2 332.1 356.5 424.1 160.1 154.1 
17 10 100 3 10 25 30.8 0 1.2 358.6 386.1 509.8 162.5 160.2 
18 10 125 4 11 25 30.5 0 1.1 377.4 406 564.2 164 165.5 
19 15 5 -1 0 47.1 47.9 4.4 4.6 128.9 146 131 104.4 97.7 
20 15 25 0 0 27 30.3 0.4 1.1 - 267.6 294.4 271.2 165.1 154.9 
21 15 50 2 7 25 27.3 0 0.5 345.6 378.8 378 183.1 167.5 
22 15 75 3 8 25 26.2 0 0.2 393.8 430.2 478.5 190.6 180.7 
23 15 100 4 9 25 25.7 0 0.1 431.5 469.8 549.5 194.7 190.2 
24 15 125 5 10 25 25.3 0 0.1 461.9 501 636 197.3 197.2 
25 20 5 0 0 46 46.4 4.2 4.3 132.3 151 132.3 107.8 100.5 
26 20 25 1 5 27.4 27.8 0.5 0.6 287.1 318.6 289.8 179.7 167.8 
27 20 50 2 6 25 25 0 0 382.3 423.5 404.1 203.8 185.2 
28 20 75 2 7 25 25 0 0 446.1 491.4 500.8 214.7 197.4 
29 20 100 3 8 25 25 0 0 491.8 540.3 587.8 221.1 211.9 
30 20 125 4 9 25 25 0 0 529.7 580.9 685.9 225.3 222.1 
31 25 5 0 1 45.8 45.4 4.2 4.1 134.5 154.3 134.7 110 102.7 
32 25 25 1 4 25 26.2 0 0.2 302.6 338.8 305.8 190.6 178.3 
33 25 50 2 6 25 25 0 0 414.6 460.9 421.8 221.1 200.3 
34 25 75 2 7 25 25 0 0 488.3 543 521.3 236.2 212.6 
35 25 100 3 8 25 25 0 0 545.7 602.8 627.5 245.3 230.6 
36 25 125 3 8 25 25 0 0 589.7 650.4 709.8 251.4 241.6 

Second, comparing the Zs and ZD measures, one con- 
cludes that a very significant price is paid for the un- 
certainty in the demand processes, production and 
setup times. The ratio ZS /ZD is sometimes as large as 4; 
this ratio increases significantly in all problem instances 
as the cost of backlogging (p) is increased. In other 
words, the cost of unreliable production or setup times 
or that of variable demands is particularly large when 
a high level of service is required. The cost ratio does 

not vary significantly with h, the cost rate of carrying 
inventories; it decreases significantly as K, the setup 
cost, is increased. This is due to the fact that with larger 
values of K, the average setup cost component becomes 
more dominant and while it is larger than the average 
setup cost in the deterministic version, due to the use 
of less idle times and smaller cycle lengths, the increase 
in this component is less significant than that of the car- 
rying and backlogging cost component. 
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Figure 1 Deterministic versus Stochastic Base-stock Policies 
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Another important observation is that the base-stock 
level rule obtained from a straightforward adaptation 
of the deterministic ELSP version can perform rather 
poorly. This is apparent when comparing Zs with ZSD. 

The ratio ZSD/ZS can be as large as 3.98. Like the ratio 
ZS /ZD discussed above, the latter ratio tends to increase 
significantly with p. It is rather insensitive to variations 
in h, but tends to increase significantly as K decreases. 
(In this case, monotonicity with respect to p and K some- 
times fails to apply.) 

Similarly, significant differences can be observed be- 
tween the base-stock levels employed by an optimal sto- 
chastic base-stock rule and those obtained by adapting 

Figure 2 Deterministic versus Stochastic Base-stock Policies 
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Figure 3 Cost of Variability 
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the optimal rotation cycle in the deterministic version. 
The ratio Ob / bs can be as large as 1 and as small as -1. 

Finally, the above lower bound Z(s, S) can be used to 
assess the increase in operating cost, which is due to the 
fact that the different items compete for the availability 
of the same facility rather than having access to a ded- 
icated facility. This comparison is therefore useful in ca- 
pacity studies. Similar to the ratio ZS/ZD, the ratio Zs/ 
Z(s, S) tends to increase with p, decreases with K and 
is rather invariant to changes in h. 

The above observations regarding the comparison 
of Zs with ZD and Zs with ZSD hold across the board 
under light, moderate, and heavy (total) utilization 

Figure 4 Savings from Having a Dedicated Facility for Each Product 
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rates. The ratios of these cost measures fail to be 
monotone in p. 

We have observed that exhaustive service policies 
outperform gated service policies in all 360 instances; 
however, the gap between the two policies tends to be- 
come smaller as higher levels of service (p/h ratios) are 
required. This leads us to conjecture that exhaustive ser- 
vice is preferred as long as the cost structure is identical 
for all items and as long as the required service level is 
not extremely high. Additional support for this conjec- 
ture is provided by Theorem 3 in Levy et al. (1990), 
showing that the expected total amount of work in the 
system is almost surely smaller under exhaustive ser- 
vice than under gated service. However, under non- 
identical cost structures, gated service may outperform 
exhaustive service more readily. To verify this, we have 
repeated the 36 instances in set 2, merely scaling the 
holding and backlogging cost rates for the fast moving 
items (1, 4) down by a factor of 100, while leaving those 
of the remaining three items unaltered. Gated service 
outperforms exhaustive service, sometimes by as much 
as 4.2%, whenever pi/hi 2 5, i.e., whenever a signifi- 
cantly high service level is required. An example in Ka- 
talan (1995) also exhibits that a mixed policy may both 
be better than or worse than each of the pure alterna- 
tives. 

Figure 1 displays for sets 1, 4, and 7 the percentage 
cost increase incurred when using the deterministic pol- 
icy in the stochastic environment, i.e., 100(ZSD - Zs)/ 
Zs, as a function of the backlogging cost, taking aver- 
ages over the six considered holding cost parameters. 
Similarly, Figure 2 displays for sets 2, 5, and 8 the same 
percentage cost increase as a function of the setup costs. 
Figures 3 and 4 exhibit for sets 3, 6, and 9 the relative 
discrepancies between Zs and the two considered alter- 
natives ZD and Z(s, S), respectively, i.e., 100(Zs - ZD)/ 

ZD and 100(Zs - Z(s, S))/Zs as a function of the back- 
logging costs, taking averages over the six considered 
setup costs. 

As observed in ?3, the specific permutation in which 
the items are produced in each cycle has some impact 
on the cost performance, contrary to the deterministic 
case where the cost of any rotation cycle is invariant to 
the chosen permutation; see (9). However, the cost dif- 
ferences are very small; changing the permutation may 
reduce the cost value by a few percentage points only, 

even for settings with a high utilization rate and large 
imbalance between the items' workloads. Thus for all 
practical purposes, an arbitrary permutation can be se- 
lected. To illustrate these conclusions, we have chosen 
the ninth instance of problem set 1 (with p = 0.8 and 
large imbalance; h = 5, p = 50, K = 500). Cmax / Cmin 
= 1.0039, AS,max/AS,min = 1.0124, ZS,max/ZS,min = 1.0023 
and ZSD,max /ZSD,min = 1.0055 where the subscript max 
(min) refers to the maximum (minimum) value across 
all 4! = 24 permutations. 

Appendix 
In this appendix we give an algorithmic description of the procedure 
described in ?3 to determine the distribution of the L-variables and 

associated optimal base-stock levels lb*; i = 1,... , NJ for a given value 
of A\. We confine ourselves to the case where exhaustive service is 
provided and describe the procedure to calculate the distribution of 

L1 and b*; those for the other items require straightforward adaptation. 
Let 

ir,(j) 
= Pr[L1 = j], 

7ri(j) 
= Pr[L1' = i], 

ir'(j) = Pr[L' = A j = 0, 1. 

Algorithm 

Step 1. (Computing variance of X1, using Konheim et al. (1994)) 
Initialize: sum_beta_2:= 0; alpha[i]:= alpha_2[i]:= 0 (2 - i - N); 

alpha[1]:= alpha_2[1]:= sum-alpha:= sum_alpha_2:= X1; 
9[i]:= sl/(1 - pi); 9-2[i]:= s (2)1/( - pi)3 (1 - i - N); 

for c:= 0 to oo do begin 
for i:= N to 1 by -1 do begin 

sum_beta_2:= sum_beta_2 + (r (2) - r2)(sum-alpha)2 + ri 
sum_alpha_2; 

sum-alpha:= sum-alpha - alpha[i]; 
sum_alpha_2:= sum_alpha_2 - alpha_2[i]; 
alpha[i]:= X19[i] sum-alpha; 
alpha_2[i]:= Xi(092[i] (sum-alpha)2 + U[i] sum_alpha_2); 
sum-alpha:= sum-alpha + alpha[i]; 
sum_alpha_2:= sum_alpha_2 + alpha_2[i]; 

end 
end 

Var(X1) = sum_beta_2; 

Step 2. (Computing first two moments of II) 
EI1:= (1 - p1)Xjri/(1 - p); E(I2):= A2 (Var(X1) + (EX1)2 -EX,); 

Step 3. (Fitting mixture of Erlangs to II, using Tijms 1986) 
cv2:= E(I12)/(EI1)2 - 1; 

if cv2> 1 then (fit via hyperexponential) begin 
p:= (1 + sqrt((cv2 - 1)/(cv2 + 1)))/2; 

,pl:= 2p/EI1; s2:= 2(1 - p)/EI1; 
end 
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else (fit via mixture of two Erlangs with common shape parameter 
,u and phases k, k-1) 

begin 
k:= 2; while cv2 < k-' do k:= k + 1; 
p:= (kcv2 - sqrt(k(l + cv2) - k2cv2)/(l + cv2);p:= (k - p)/EIi; 

end 

Step 4. (Computing b*) 
Initialize: f:= pi/(pi + h1);j:= 0; 

7r (0) = 1 -p; 

if cv2 > 1 then begin 
q1:= XA/(Xi + y1); q2:= \1/0\1 + /s2); pr:= p/(p + (/s1//s2)(1 

- p)); 

suml:=(1 - q1); sum2:= (1 - q2); 
ir'(0) = pr suml + (1 - pr)sum2;; 

end 
else begin 

q:= Xi/(Xi + y); 
suml:= sum2:= sum3:= 1-q; 
for c:= 2 to k - 1 do begin 

sum2:= sum2 (1 - q); 
sum3:= sum3 + sum2; 

end 
sum2:= sum2 (1 - q); 
7r'(0):= sum2 (1 - p)/k + sum3 (p + k -1)/(k(k -1)); 

end 
rli:= 7r,(?):= 7r'(0)7r'(0); 

while rH1 < f do begin 
A[j]:= foo (1 - S(t))e-'(Xjt)J/j!dt; j:= j+1; 
(computable in closed form for deterministic, mixture of Erlangs, 

Uniform etc.) 
7r'(j):= (XA1rI(O)A[j - 1] + Ej2,1 klXr'(l)A[j - 1)(1- XiA[0]); 
if cv2 > 1 then begin 

suml:= suml ql; sum2:= sum2q2; 
ir''(j):= pr suml + (1 - pr)sum2; 

end 
else begin 

suml := suml q; 
sum2:= sum3:= suml; 
for c:= 2 to k - 1 do begin 

sum2:= sum2 ( - q)(j + c - 1)/(c - 1); 
sum3:= sum3 + sum2; 

end 
sum2:= sum2 (1 - q)(j + k - 1)/(k - 1); 
WrM(0):= sum2 (1 - p)/k + sum3 (p + k -1)/(k (k -1)); 

end 
7rl (j):= ,=0 7r'1 ()7r(j - I); 

[ll:= rll + 7r,(j); 
end 

Ib*:=,:; 
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