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We consider a single-item, periodic-review inventory model with uncertain
demands in which each period's production volume is limited by a capacity
level. The demand distributions, capacity levels, and cost parameters vary
according to a periodic pattern. We prove that modified base-stock policies are
optimal for the finite-horizon planning model and for both the infinite-horizon
discounted and undiscounted cost criterion. We further show that the optimal
base-stock levels can be calculated via a simple but efficient value-iteration
method. Finally, we have conducted a comprehensive numerical study to ascer-
tain the efficiency of this solution method as well as various qualitative prop-
erties of the performance of capacitated production/inventory systems under
periodically varying demand and cost patterns.

1. INTRODUCTION AND SUMMARY

We consider capacitated, periodic review production/inventory systems in which
demands fluctuate from period to period, partially because of systematic peri-
odically varying factors and partially because of intrinsic uncertainties. The
combination of stochastic seasonal demand and capacitated production is com-
mon in many industries, as demonstrated by Krane and Braun [16], Fair [6], and
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Bush and Cooper [4]. It is further complicated when cost structures and capac-
ities vary according to a periodic pattern.

We study in particular the single-item model in which demands are indepen-
dent across time and in which each period's production volume is limited by a
(possibly period-dependent) capacity level. Production costs are proportional
to the production volume. All other cost components (in particular, holding and
stockout costs) can be expressed as a function of the system's inventory posi-
tion, equal to inventory on hand plus outstanding orders minus backlogs. The
capacity, all cost parameters and cost functions, as well as the demand distri-
butions, follow a periodic pattern, with periodicity K. We assume that unsat-
isfied demand is (fully) backlogged.

We address both the finite- and infinite-horizon models. In the former, the
objective is to minimize expected total (discounted or undiscounted) costs; in
the latter, we address both the objective of minimizing total expected discounted
and long-run average costs. We prove that a periodic modified base-stock pol-
icy is optimal for each of these models and associated objectives, under the
assumption that the one-step expected costs depend convexly on the inventory
position and a few additional regularity conditions. Such a base-stock policy
specifies a target base-stock level for each of the K period types; it prescribes
in each period a production order to increase the inventory position to a level
as close as possible to the period's base-stock level. In the infinite-horizon mod-
els, the base-stock levels only depend on the period type; in the finite-horizon
models, they depend in addition on the number of periods until the end of the
horizon. We also prove that a simple successive approximation method can be
used to efficiently compute the optimal base-stock levels. Finally, we have con-
ducted a comprehensive numerical study to ascertain the efficiency of this solu-
tion method as well as various qualitative properties of the performance of
capacitated production/inventory systems under periodically varying demand
and cost patterns. We have focused in particular on the following:

(a) the impact of demand variability on the system-wide costs and optimal
base-stock levels,

(b) the impact of the relative cost of carrying inventories versus the cost of
backlogs, on the optimal base-stock levels, and

(c) an assessment of the trade-off between capacity and inventory
investments.

One of the biggest challenges in managing production/inventory systems is the
efficient matching of capacities and demands when their patterns fail to be syn-
chronized (e.g., when demands vary greatly due to seasonal and promotional
factors). (In many industries, 30-50% of annual sales are concentrated in a
1-2-month period.) There are two mechanisms to alleviate the problems and
costs incurred by this synchronization problem: (a) smoothing of the demand
pattern by, for example, the elimination of price promotions or by the imple-
mentation of off-peak-load pricing schemes (consider, e.g., Wal-Mart's "everyday
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low prices" sales philosophy and price discounts offered during off-seasons),
and (b) the adoption of flexible capacity, that is, adjusting the capacity on a
periodic, seasonal basis in (partial) synchronization with the demand pattern.

To date, few if any analytical tools are available to quantify the benefits of
the preceding synchronization programs. In fact, if flexible capacity can be
adopted, it is not even clear how these capacity levels are most effectively var-
ied over time, that is, how a total capacity budget is best allocated over the indi-
vidual periods. The last part of our numerical study focuses on the benefits of
the preceding pair of synchronization efforts.

Our structural results generalize those obtained for simpler models. In par-
ticular, Federgruen and Zipkin [8,9] have proven the optimality of base-stock
policies in the stationary version of our model where demands are identically
distributed and all parameters and cost functions are constant across time.
Karlin [14,15] and Zipkin [27] have proven this optimality result for the
uncapacitated version of the model, that is, where no capacity limits prevail.
(Karlin [14] addressed the discounted cost objective, while confining himself to
the case of stationary cost parameters; Zipkin extended Karlin's results to the
general uncapacitated model.)

As far as computational methods are concerned, Tayur [26] developed for
the stationary version of this model an exact solution method, Glasserman and
Tayur [11] gave a simulation-based heuristic, and Glasserman [10] provided
approximations and bounds for the optimal base-stock levels. The papers by
Karlin [15] and Zipkin [27] proposed exact solution methods for the uncapaci-
tated special case of our model, however, with no numerical or theoretical char-
acterization of their efficiency. All of these methods are tailored to specific
model assumptions; the algorithm proposed in this paper is an application of
a general-purpose method that is very easy to code and easy to adjust to vari-
ants of the model.

Other related work includes that by Song and Zipkin [25] and Sethi and
Cheng [24] dealing with the uncapacitated special case of our model, in which
the parameters are Markov-modulated; that is, they fluctuate as a function of
an underlying Markov chain. (The periodic structure treated in this paper can
clearly be modeled within this framework, the state of the modulating Markov
chain representing the period type.) Metters [18] presented heuristics for a multi-
item version of our model. (After completing the initial version of this paper,
we became aware of Kapuscinski and Tayur [13], who independently established
the optimality of a modified base-stock policy in the special case of our model
where costs are linear and only the demand varies periodically, while all other
model parameters are stationary. These authors also proposed a simulation-
based method for identifying optimal base-stock levels.)

The remainder of this paper is organized as follows. In Section 2, we spec-
ify the model and introduce notation. Section 3 addresses the finite-horizon
problem models and Section 4 the infinite-horizon discounted cost problem.
Section 5 characterizes the asymptotic behavior of the discounted cost model for
large discount factors; the results here are of interest by themselves, while pro-
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viding the foundation for the analysis of the infinite-horizon long-run average
cost objective, the subject of Section 6. In Section 7, we develop the successive
approximation method and prove its convergence to an optimal policy. Finally,
Section 8 reports on the numerical study described earlier.

2. MODEL DESCRIPTION AND NOTATION

In this section, we specify the model and introduce the basic notation. At the
beginning of each period, a decision is made about whether or not to place an
order and, if so, of what size. Demands in consecutive periods are independent.
Those arising in the yth period of any cycle of K periods are identically distrib-
uted as the random variable Dj, j — 1,...,K. We use the following notation:

x = the inventory position at the beginning of a period, before ordering,

y = the inventory position at the beginning of a period, after ordering,

bj = the capacity in periods of type j ,

Cj = the variable production cost rate in periods of type j .

We assume that the expected value of all other cost components that are
charged to a period of type j can be expressed as a function Gj{y). Assume,
for example, that production orders become available after a lead time of
L > 0 periods and that the carrying (backlogging) cost incurred for an inven-
tory (backlog) of x+ (x~) units at the end of a period of type / is given by a
function hi(x+) [pi(x~)]. Using a standard accounting device, we charge to
each period the expected holding and backlogging costs incurred one leadtime
later; that is,

Gj(y) = E{hj+L([y-Dj-Dj+l • • • -Dj+L] + )+pj+L([Di+ • • • +Dj+L-y]+)\

(1)
where all subscripts in Eq. (!) are taken mod A".

We make the following assumptions regarding the growth rate of the func-
tions Gj and the finiteness of moments of the demand distributions: we write
o(.v) = O(yj/(x)\ for any pair of functions 0(-), \p(-) if a constant C exists
such that 4>(x) < C[\f/(x) + 1] for all x. For any pair of sequences of functions
[</>/(-))/°i 1, we write <f>,(-) = O(iA/(0) if the same bounding constant C can be
used for all I = 1,2

Assumption 1: Gj is convex and l imi, .^ Gj(y) = \\m\r\-.o,[cJy + Gj(y)] - 00
for all y = l,...,K.

Assumption 2: Gj{y) = 0(|.vl") for some positive integer p (7 = 1,. . . ,K).

Assumption 3: E[Df] < °° {j = 1,... ,K).

Convexity of the one-step expected cost functions [Gj-.j = 1,... ,Ar) is sat-
isfied under most commonly used cost structures; for example, in Eq. (1) it
holds whenever the functions \hj,pj\ are linear or more generally convex. The
second part of Assumption 1 is satisfied whenever the asymptotic marginal
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backlogging cost is in excess of the period's variable production cost rate; it pre-
cludes the trivial and unrealistic case where it is never beneficial to carry stock
in anticipation of demands. Assumption 2 is similarly general; if the G, func-
tions are of the form given by Eq. (1), it is satisfied with p = 1 when h/(-) and
Pj(-) are linear or piecewise linear and with p > 2 when these functions are
bounded by polynomials. Assumption 3 is necessary to guarantee that the ex-
pected cost over a single-period or multiperiod horizon remains finite; it is often
required to ensure that the functions Gj() themselves are finite; see Eq. (1).

Our model can be formulated as a Markov decision problem (MDP) with
countable state space5 = [(x,j):xinteger; j= l,...,K] and (finite) action sets
Y(x,j) — (y:x< y < x + bj). The state of the system at the beginning of any
period is given by the prevailing inventory level x and period typey. Finally,
we write j + = (jmodK) + 1. Also, 1 = (1,1,...) denotes the infinite vector
of ones.

3. THE FINITE-HORIZON PROBLEM

In this section, we prove that a (modified) base-stock policy is optimal for the
finite-horizon problem. Let v*(x,j) be the minimal expected discounted cost,
over a horizon of n periods when starting in state {x;j) E S. The functions v*
satisfy v£ = 0 and

min Jn(y,j), n > 1, (2)
b

where Jn(y,j) = c}y + Gj(y) + a-Efi^, (y - Dj,j+)}.

THEOREM 1:

(i) The functions Jn(y,j) are convex in y and O(\y\") and have a finite
minimum for all n>\ and j = 1 , . . . , K. Let /3*y denote the smallest
minimizer of Jn(-,j).

(ii) The base-stock policy with base-stock levels (j8*,,.. . ,(8*^) achieves
the minima in Eq. (2); v^(xj) is convex in x and is O(\x\").

PROOF: Note that E[(^ - Dj)>] < E[(|j>| + Dj)>] = S ^ o ^ E t f O I - H ' =
Od^l") by Assumption 3. The remainder of the proof is by standard in-
duction, employing Assumptions 1-3 and verifying that lim^^JniyJ) =
l\ml,l^mv*(x,j) = oo. m

A standard induction proof also establishes the following corollary.

COROLLARY 1: For all n > 1 and (x,j) G S, v*(x,j) is nonincreasing and
jointly convex in the capacity vector b.

This corollary has important implications for static resource-allocation
problems, such as where a common capacity pool (of Bj units in period j —
1 K) needs to be shared by multiple items; it also has important implica-
tions when allocating capacities over the cycle, as in flexible capacity schemes;
see Sections 1 and 8.
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4. THE INFINITE-HORIZON DISCOUNTED COST PROBLEM

In this section, we show that a (modified) base-stock policy is optimal, when
minimizing the expected discounted costs over an infinite horizon and that this
policy satisfies the infinite-horizon optimality equation:

v(x,j) = (Tv)(x,j) for all (xj) E S, (3)

where

(Tv)(x,j)= min [Cj(y - x) + Gj(y) + aE[v(y - DJtj
+)]\

xsysx+bj

for all v:S->R. (4)

(A policy is said to satisfy the optimality equation for some solution v if in every
state (x,j) G S it prescribes an action achieving the minimum in Eq. (4).) These
results are obtained by showing in addition that {v *„ ) converges to a solution
of Eq. (3), when a < 1. For MDPs with bounded one-step expected costs, the
latter convergence result is usually obtained by showing that the T-operator is
a contraction mapping with respect to the regular /^-norm. Because the one-
step expected costs in our model are unbounded, we follow the approach of
Lippman [17] and show that T is a contraction mapping with respect to the
norm | • fl,,,, defined as follows: for any function u: S -* R,

II"IU= sup — r 1 ^ - . where w(x) = max(|x|,l).
(xJ)SS W(X)P

We first need the following lemma: let r? = max {VE [(.£>,• + bj)'] :i = 1 , . . . ,p;
j = 1, . . . ,K} < oo, by Assumption 3.

LEMMA 1: For all m = 1, . . .,p and all (x,j) e S,

sup E[max(\y-Dj\,l)m] < (max(|jr|,l) + r, + l)m.

PROOF:

sup E [ m a x ( | ^ - Z ) y | , i r ] < 1 + sup E[\y - Dj\m]
ysx+b xsysx+bj

+ sup E[(\y\+Dj)'"].

I + % (m)E[(bj + Dj)'}\x
;=0 \ ' /

'}\xr-'

/=0

< (max(|x|,l) + 7]
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Let B be the Banach space of all real-valued functions v:S'-> R with
||v||,,. < oo (endowed with the corresponding metric d(u,,u2) = \\u{ — w21]„.
for all W|,w2 E B). Also, let v*(x,j) denote the minimum expected total dis-
counted costs over an infinite horizon when starting in state (xj) E S.

THEOREM 2:

(a) v* = lim^o, v* (pointwise).

(b) v* is the unique nonnegative solution in B of optimality Eq. (3).

(c) There exists a policy f* that satisfies optimality Eq. (3) for v = v*,
which is a stationary modified base-stock policy {say, with (3* as the
vector of base-stock levels) and which minimizes the expected total dis-
counted costs over an infinite planning horizon.

(d) The sequence of finite-horizon optimal base-stock vectors \/3* ] is
bounded, and every one of its limit points is an optimal base-stock vec-
tor in the infinite-horizon model.

(e) v* is nonincreasing and convex in b.

PROOF: Note that the set of feasible actions in any state (x,j) E S is finite.
a < 1 and Lemma 1 show that Assumptions 1 and 3 in Lippman [17] are satis-
fied. Also, by Assumption 2 in this paper we have for any (x,j) G S that
sup.v3;.vs.v+67-[c/(7 - x) + Gj(y)} < cjbj + max/=0 b.Gj(x + l) = O(\x\") so
that ls\xpxsysx+b.[Cj(y -x) + Gj(y)] ||M. < oo, verifying Assumption 2 in Lipp-
man [17]. Lippman showed that, under his Assumptions 1-3, T is an /v*-stage
contraction mapping with respect to the Q |,,.-norm for N sufficiently large;
hence, limn_oo v% = u* (see Denardo [5]). Theorem 1 in Lippman implies part (b)
and the fact that any policy satisfying the optimality equation for v = v* is op-
timal. Because v* is convex inx and lim|A.|_oo v*{x,j) = °° for all n > 1 and,/ =
1 K(see Theorem 1 and its proof), the same properties apply to v*. It follows
that a modified base-stock policy is optimal, completing the proof of part (c).

To prove part (d), assume to the contrary that {/3,?) fails to be bounded;
then, in view of Assumption 1, there exists n > 1 and j E. ( 1 , . . . ,K\ with
GJW*J) > 2v*(0,j), which implies that

oo > v*(0j) > v;(0,j) > vtWZjJ) > Gjiftj) > 2v*(0,j),

which is a contradiction. (The first inequality follows from part (a); the second
inequality results from (v* | being nondecreasing, which is easily verified by
induction; the third inequality follows from the definition of 13*j; and the
fourth inequality follows from vWnJ,j) = GJWJ) + aE[t/*_,(/?;,, -
Dj,j+)].) Thus, (/3,t) has at least one limit point. If /3* is a limit point, and
because fa is integer-valued, there exists a subsequence [nk)™=, such that fi*k —
/3*. For any (x,j) E S: v*k(x,j) > v*k(&*,j) and, taking limits for k -* oo,
v*(x,j) > v*(P},j). This implies that j3* is an optimal base-stock vector in the
infinite-horizon model.

Part (e) is immediate from part (a) and Corollary 1. fl
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5. THE ASYMPTOTIC BEHAVIOR OF THE DISCOUNTED
COST MODEL FOR LARGE DISCOUNT FACTORS

In this section, we investigate the asymptotic behavior of the optimal base-stock
vector /3* and the minimum cost function v* as the discount factor a converges
to 1. (We make the dependency on a explicit by writing v* for v* and (3* for
/?*.) To this end, we need the following additional assumption.

Assumption 4: Let /*, = E[£>,•], n = SjLi iij, and B = EjLi bj. Then, 0<n<B.

Assumption 4 is the necessary and sufficient condition for the system to be
stable under some (e.g., base-stock) policy (see Glasserman and Tayur [11]). In
addition, we require the finiteness of one additional moment of the [Dj] vari-
ables beyond those required in Assumption 3.

Assumption 3': E[DJ+i] < oo (j = 1 K) has finite moments of all orders
up to p + 1.

Assumption 3' guarantees that the long-run average cost of some (e.g., base-
stock) policies exists and is finite; see also Glasserman and Tayur [11], who
required finite demand variances to ensure the existence of a finite long-run
average cost value under linear holding and backlogging costs.

In Markov decision processes with finite state and action sets, it is known
that a so-called Blackwell-optimal policy exists, that is, the same policy is opti-
mal for all sufficiently larger discount factors a, and that the minimum cost
function v* = O((l - a)"1), as a -* 1. (In fact, in finite MDPs, v* can be
expanded as a Laurent series in (1 — a) of the form v* = E/°l_, w,(l — a)1; see
Miller and Veinott [19].) In our model, we show that v* = O((l — a)"1) con-
tinues to apply. Moreover, even though a Blackwell-optimal policy fails to exist
in general MDPs with infinite state or action sets, we show that the optimal
base-stock vector /3* is at least bounded in a.

THEOREM 3:

(a) There exists a function w,: 5 -+ R and a constant g such that

v*(x,j) < w, (xj) + l , for all (x,j) 6 S.
(1 - or)

(b) /?* is bounded in a.

(c) For every sequence [an] of discount factors converging to 1, there
exists a subsequence (anA)"_, and a base-stock vector /3* such that

To prove this theorem as well as the existence of an optimal base-stock pol-
icy under the long-run average-cost criterion, we need to show that under cer-
tain policies, certain finite subsets of 5 can be reached with finite expected cost
from any starting state. More specifically, for every modified base-stock pol-
icy /3, we construct a specific nonstationary modified base-stock policy w((3) and
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an associated finite set of states such that the expected cost incurred until reach-
ing this set from any state (x,j) G S is finite and O( |x | P + I ) .

Let rj = min[d > 0: Pr(Z)y = d) > 0) denote the essential infimum of D/s
distribution, j = 1 K, and let R = Y,f=i /y- For each period j = 1 , . . . ,K, we
define a finite interval of states Sj(@) = {(x,j) G S: tj - fy < AT < (,), where the
upper bounds (2):./' = 1,...,K] are recursively defined by

tK = $K\ tj = tJ+l + rj, j=l,...,K-l. (5)

S(/3) = UjLj 5y(/3) constitutes a finite 6 W within the state space S. Let S(/3) =

x < /,- - 6,) denote the sets of states "above" and "below" S(@), respectively.
The band S(@) is constructed in such a way as to guarantee the following
properties.

LEMMA 2:

(a) 5(0) cannot be reached from S(j3) without entering 5(/3), under any
policy.

(b) Under the base-stock policy with base-stock vector t = t(@) (defined
as in Eq. (5) for any vector /3), SK((3) can be reached from any state

PROOF:

(a) Assume the system is in state (xj) E S(P) and the next period in state
(y,j+) <£S(0). Then, tJ+ -bj*<y<x + b}-r, < tj-bj + bj-rj< tj+,
that is, (y,j+) G S(/3). (The last inequality holds as an equality for
j — 1 , . . . , K — 1 and it holds fory = K because the /^-values are non-
increasing in j ; see Eq. (5).)

(b) We show for every state (x,j) G 5(^)\SA:(/3) that the state (fiK,K)
can be reached in (K — j) periods, for example, by following the
path (tj+i,j+l),.. .,{tK,K) the likelihood of which path equals to
II/Ly1 Pr{A = /•/) > 0, because rt is the essential infimum of Dh I =
1,.. .,K, and using Eq. (5). •

The (nonstationary) policy ir(/3*) starts out prescribing actions according
to the (stationary) modified base-stock policy t = /(/3*) (defined as in Eq. (5)
for (3 = PZ), until the first entrance to the set SK(P*) and switches to the pol-
icy /3* thereafter. (If the starting state is in SK((3*), /3* is used throughout.)

For any set of states UcS, and any policy w, let C'j(U) be the expected
undiscounted cost incurred under policy ir until the first visit to the set U, when
starting in state (xj) G S. We now show the following proposition.

PROPOSITION I:'For all (x,j) G S\SK((3),

(a) c;,{f\ M 1

(b) C*
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PROOF:

(a) We distinguish among three cases:

(i) (x,j) G S(/3): Let/6 denote the policy that places full capacity
orders throughout. Note that

Cif(S(0)) = C&(S(/3)) < C&MyJ) :y>tj- bj}). (6)

(The equality follows from 7r(/3) prescribing the same actions as
fb until the first exit from S(0), which by Lemma 2 coincides
with the first entry into S(/3). The set {(y,j) :y > tj - bj) is
entirely outside 5(j3) so that (again by Lemma 2) it cannot be
reached without passing through S(/3), justifying the inequality in
Eq. (6).) The upper bound in Eq. (6) represents the expected cost
on a random walk, which makes transitions after a full cycle (of
K periods) and whose increments are distributed as (B — D),
where D = EjLiDy. (This random walk has positive drift by
Assumption 4.) The path traveled by the random walk from level
x to [tj - bj + l,oo) can be decomposed into consecutive ladder
epochs (where a ladder epoch T is defined as the time required to
advance by at least one unit; note that the distribution of Tis inde-
pendent of the starting state). Let C(x) denote the expected cost
incurred until the first ladder epoch in the random walk when start-
ing at level x. Note that C(x) = E£/"=o' £jL, [cjbj + Gj{xiK+j)),
where xIK+j is the inventory level at the beginning of the (IK+j)th
period in the ladder epoch. Clearly, x - TB < x,K+J < x + B for
all / = 0 , . . . , T- 1 andy = 1,. . . ,K. Also, by Assumption 2, there
exists a constant A > 0 such that Gj(x) < A\x\'+I + A for ally =
1, . . . , K. Thus, because the function |jr|'+1 is convex,

c(x) < ( f ; Cjbj + AK]ET + AE s E \xIK+jl'+l

\y=i / /=o j=\

T-\
/ 4 A C ^_, m a x ( \ x — ia i , i x •

/=0

because E7/+1 < oo. (The latter follows from (1.6) in Janson [12]
because, for the random walk's increment, E(|5 - D\l+i) <
E\(B + D)'+l) < oo, by Assumption 3'.) Thus, there are constants
Kl,K2>0 such that
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_
:y > tj - bj\) < £ C(y)

y=x

* 2 (Kl\y\'
,v=.v

(ii) (x,j) G S(j8)\SA-(j3): Under -n-(/8) we increase the inventory level
to tj both in state (*,./) and in state (tj - bJtj) G S(j3); hence,

C!.,{f\S(l3)) = CffijiStf)) - ( x - tj + bj)cj = O ( | j 8 * | p + I ) by
part (i).

We conclude from cases (i) and (ii) that constants K3,K4 > 0 exist such
that

.^ K3

for all x < tj and j=\,...,K. (7)

(iii) (*,./) G 5(/3): Let Clj(S(0)) denote the expected (undiscounted)
cost incurred under policy T(/3), when starting in state (xj), until
the first exit from the set S(0) and C^(S(/3)) = C*^'(S(/3)) -
Clj(S(P)). (Clj(S(P)) > 0 may occur because after exiting S(/3)
the next state may be in S(/3).) Observe first that Cj_y(S(/3)) rep-
resents the expected costs incurred on a trajectory d during which
•ir(j3) does not prescribe any orders; that is, the inventory level is
nonincreasing. Let p0 = Pr(£>| + • • • + DK = 0) < 1, by Assump-
tion 4. While the system state is in S(/3), the number of full cycles,
during which a given inventory level y < x is maintained is sto-
chastically smaller than a geometric random variable with mean
(1 - /?o)~' (it is stochastically smaller because for fiK<y<tx one
exists S(jQ) during a cycle even in the absence of any demand).
This implies that the expected cost incurred while maintaining
a given inventory level y < x during the trajectory 6 is bounded
by [(1 - A))"1 + l]SjLi Gj(y). Because the set of inventory lev-
els encountered during 8 is a subset of (/3/c + 1,. . . ,JT), we have
for appropriate constants KS,K6> 0

x S EG|/(j ')£/f3inax[|j3,| '>+l, |jr| ' '+I)+tf4.

(8)

To obtain a bound for C$j(S(fi)), let ((*„,./„)) denote the states
visited under ir(/3), where (xo,jo) = (*,./). Define the function
C : S - R by C(yJ) = C*f '(SdS)) if ( W ) 6 S ( « and 0 other-
wise. Thus,



118 Y. Aviv and A. Federgruen

<maxE[C(xn-DJa,jn+1)l

x (tjn <xn<x and xn - DJn < tJn+l

max E[C(xn - DjHJH+l)l[frK < xn < x}]

max max E[C(y - Dhj
+)]

x max max [K}hj(y) + K4],
j=\ K 0sys

by Eq. (7), where for ally = 1 , . . . ,K, hj{y) = E[max(|j> -Dj\p+I,
l l l 1

K-, 10K |"+' + K, < 2Ky max(\y \"+', | j3K \"+') + K8, for appropriate
constants K-,, Ks > 0. (The second upper bound for hj (•) is obtained
using Binomial expansions of (\y\ + Dj)p+l and {\QK\ + Dj)p+i

and invoking Assumption 3'.) Thus,

max max [2K3K7
7=1 K e

3 | x | ' > + l
> | ^ | ' ) + l ) +KA + K2KS, (9)

where the second inequality follows from the fact that the function
max(|><|'>+l,|i3A-|p+1) is convex in.y as the maximum of a convex
function and a constant. Case (iii) thus follows from Eqs. (7)
and (9).

(b) In view of part (a), it suffices to show that the total expected costs from
the first entry into S(/3) until the first visit to SK{fl) is uniformly
bounded in the starting state (x,j) E S. Note that until the first visit to
5A-(J3), 7r(/3) prescribes the exact same actions as the stationary base-
stock policy t{@).

Consider now the process embedded on consecutive visits to S(/3).
This is a semi-Markov process on the finite state space S(/3), with finite
one-step expected costs and transition times, in view of part (a). (To
show that the transition times have finite expectations, repeat part (a)
with Gj{-) replaced by G(y) s 1 for all (yj) GS.) By Lemma 2(b), we
know that the set SKU3) can be reached from any state in S(/3)\5^(j3).
Thus, let F denote the maximum first passage time to SK{P) (in this
embedded semi-Markov process) for any state in S(f3)\SK((3), and let
C = rnax(J,;)eS(g)N5it.(g) C£jP\S((5)) denote the maximum expected
cost incurred between consecutive visits to S(/3) (before reaching
SK(0)). We conclude that for all (x,j) e S\SK(0): C^fH
C*f\S(p)) + FC. Part (b) thus follows from part (a).
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We are now ready to prove Theorem 3.

PROOF OF THEOREM 3:

(a) Consider an arbitrary base-stock vector /3°, and let /?' = /(/3°). Note
that f(/3') = 0 ' (seeEq. (5)) so that the policy i ( /3 ' ) is the stationary
base-stock policy /31. Clearly, for all (x,j) 6 5,

) + a max iv*l'l){

i f ) + av;{l3'H^-bl<,K). (10)
The last inequality follows from v^0X\y,K) = v*{pt\^l

K,K) +
CK(PK ~ y) f°r aH PK ~ ^K ^ y ^ fik because TT(/3' ) is the base-stock
policy P'. To verify the second inequality, note that the total expected
discounted cost under policy ifdS1) can be decomposed into two
terms: (i) the discounted cost over the first (T — 1) periods with Tthe
period in which the set SA'(/3') is visited first (which is bounded by the
undiscounted cost on this trajectory) and (ii) the infinite-horizon dis-
counted cost from the first entry state in SK{(1') multiplied by aT< a.
Proposition 1 shows that the upper bounds in Eq. (10) are finite for
(x,j) G S\5A'(/3'); moreover, because 7f(j3') is the stationary base-
stock policy /31 we have Cif'\SKW1)) < oo for (xj) e SK(0l) as
well, following the proof of part (b) of Proposition 1. Substituting
(xj) = (Pie ~ bK,K) into Eq. (10), we obtain v^'HPk - bK,K) <
(1 - a)-[C;l^KK(SK(l31)) so that part (a) follows with w^xj) =
Cif\SK(P1)) and g = Ctli^SAP1)).

(b) and (c)
Fix ; £ ( 1 , . . . ,K). Because for all / = 1 , . . . ,K, )3* , is a minimum

of the function v*a(-,l), we have v*(0J) > v*{fi*j) > Gj(fcj) +
®va(Paj+J+)- Iterating this inequality, we obtain

(
/=0 / Kj \/=

;=0

I -a* K(l-a)'

where the last inequality follows from K — aK> 1 — aK because K >
S/IV a ' = (1 - aK)/{\ - a). Combining this lower bound for
Va(0,j) with the upper bound in Theorem 3(a), we get [GydS',)]/
[K(l - a)] < v*(0J) < w, (0,y) + | / ( 1 - a) so that for all a < 1
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jj - a) fw,(0,y) + y - ^ | < tfw,(0,./) + Kg. (11)

In view of Assumption 1, this implies that (/3*y) is confined to a finite
interval, proving part (b) and hence part (c). •

6. THE AVERAGE COST CRITERION

In this section, we show that a base-stock policy continues to be optimal under
the long-run average cost criterion. In fact, we show that any of the base-stock
policies that arise in part (c) of Theorem 3, that is, any base-stock policy that
is optimal under the discounted cost criterion for a sequence of discount fac-
tors approaching one, is optimal under the average cost criterion as well. To
prove these results, we need to verify one of several sets of sufficient conditions
for the existence of an optimal stationary policy and the existence of a solution
to the average cost optimality equation:

h(x,j)= min \j j j
xsysx+bj ( £ = 0

(12)

where g* denotes the minimum long-run average cost value.
We verify the existence conditions in Sennott [22]. In addition to the min-

imum total discounted costs being finite, that is, v*(x,j) < <x> for all a < 1 and
all (x,j) 6 5 (which we showed in Theorem 2(b)), the remaining conditions
(Assumptions 2 and 3*) in Sennott consist of a characterization of the relative
discounted cost difference with respect to a given reference state. More pre-
cisely, we choose (0, K) as the reference state and derive upper and lower bounds
for the values of the cost functions {v*(-,-) — v*(0,K)}.

PROPOSITION 2: For all (xj) G S and all 0 < a < 1

(a) (see Assumption 2 in Sennott [22]), there exists a constant N > 0 such
thatv*{x,j)-vW,K)-> -N,

(b) (see Assumption 3* in Sennott [22]), there exists a nonnegative function
M-.S^K with M(x,j) = O(\x\e+I) such that v*{x,j) - v^(0,K) <
M(x,j). Moreover, for all x < y < x + bj,

£=0

PROOF: Fix a < 1. Hitherto, all of our results apply regardless of which of the
periods is chosen as period 1. Therefore, number the periods such that

v:ip;K,K)= min [vZixJ)).- (14)
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(Recall that the minimum is achieved in one of the states (/3* , , 1 ) , . . . ,
((3*j(,K).) With this numbering, let (0,K') denote the selected reference state,
previously referred to as (0,K).

Following the proof of Theorem 3(a) (see Eq. (10)) one verifies that for
all (xj) E S

1 <y.

*f\ max [v*a(y,K)]
K s f > Z

(15)

(The first equality follows from the policy i(j8*) switching to the policy |3*
upon entering the set SK(P*) and the definition of |3*; this base-stock policy
places, in all states in SK(^*), an immediate order to increase the inventory
level to j3* #, thus justifying the second equality.)

(a) Apply Eq. (15) to the state {0,K'). In view of Proposition l(b) and
Theorem 3(b), we have that [1((O,A") £ S ^ O - Q u P ^ O +

— 1)] is uniformly bounded in a by some constant N. Hence,

(b) Again, byEq. (14), v*(# K,K) < v*(0,K'). This, together with Eq. (15),
implies v*(x,j) - vZ(0,K') < l{(x,j) $ 5 (̂j3a*)J • C J # 0 ( S J f < 0 +
c*(bK - 1) < M(xJ) = Mi|jr|p+I + M2 for appropriate constants
M|,M2 (independent of a ) , again in view of Proposition l(b) and
Theorem 3(b). Finally, Eq. (13) follows immediately from Assump-
tion 3' (see, e.g., the proof of Theorem 1). •

We are ready for the main result for the average cost model. Let /3* de-
note any base-stock vector such that /3* = 0*n for a sequence of discount fac-
tors (a,,) converging to 1, which exists in view of Theorem 3(c).

THEOREM 4:

(a) lim^,(l - ct)vZ(xJ) = g* for all (xj) e S.

(b) Let P* = Knfor a sequence of discount, factors (a,,) converging to 1.
The sequence of relative cost functions {v*n(x,j) — v*n(0,K)} has at
least one limit point and each limit point is a function h*(-,-):S->R,
with -N < h*(x,j) < Mx\x\p+l + M2 for appropriate constants
MUM2 > 0, which satisfies the optimality Eq. (12); moreover, )3* is
average cost optimal and satisfies the optimality equation for any such
solution h = h*.

(c) g* is nonincreasing and convex in b.
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PROOF: Theorem 2(b) shows that v*(x,j) < oo for all (xj) G S and all a < 1,
that is, Assumption 1 in Sennott [22]. Propositions 2(a) and 2(b) verify Assump-
tions 2 and 3* in Sennott, respectively. Parts (a) and (b) of Theorem 4 now fol-
low from the theorem in Sennott [22]. Part (c) is immediate from part (e) in
Theorem 2 and part (a) of this theorem. •

7. AN EFFICIENT SOLUTION METHOD FOR
THE AVERAGE COST MODEL

In this section, we show that a slight modification of recursive scheme (2),
employed with a = 1, can be used to identify an optimal base-stock policy 0*
for the average cost model. More specifically, we propose a modified value-
iteration scheme, generating the functions vn as follows:

vn+\(xj)= min \TCj(y -x) + TGj(y) + (I - T)Dn(x,j)
xsysx+bj (

J A y J } 06)
i=o )

with T an arbitrary constant such that 0 < r < 1. We show in particular that
(vn - nrg* )"=| converges to a solution of optimality Eq. (12).

Recursive scheme (16) is a modification of the standard value-iteration
method in which the functions [v^} are generated via Eq. (2). The modified
scheme transforms the transition probability matrix P of any of the Markov
chains, induced by a stationary policy, to P = (1 - r ) / + TP, with / the iden-
tity matrix. Note that Pixj).{xj) s (1 - T) > 0 for all (xj) G S; that is, all
matrices P are aperiodic. Indeed, the modified scheme can be viewed as the
standard value-iteration method applied to the transformed MDP in which all
one-step expected costs and one-step transition probabilities are multiplied by
0 < T < 1, with the residual probability mass of (1 — T) added to the probabil-
ities of transitions from any state to itself. The transformed MDP has the same
set of solutions to the optimality equation as the original MDP has, with a long-
run average cost value g = rg* (see Schweitzer [21], Federgruen and Schweit-
zer [7], and Remark 2 in Aviv and Federgruen [2]). (In contrast, the sequence
(v^ — ng*) derived from standard value-iteration scheme (2) fails to converge
because in the original MDP all stationary policies induce a Markov chain that
has a periodicity of K or larger.)

The value-iteration method (in its basic form or with the preceding data
transformation) is used as a general-purpose solution method for general MDPs
with finite state and action sets. As shown in Sennott [23] and Aviv and Feder-
gruen [2], the method is also applicable in many MDPs with a countable state
space in which the existence of a solution to the average cost optimality equa-
tion, bounded by an appropriate order function, can be verified.

To prove that value-iteration scheme (16) converges to a solution v* of
optimality Eq. (12), it is in fact necessary to apply a second modification, this
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time with respect to the set of feasible actions in some of the states. In partic-
ular, we restrict orders in states with a sufficiently high (low) inventory level to
be of zero (full-capacity) size only. This second modification is only needed to
prove theoretical convergence. In practice, we have observed that the sequence
[vn - nrg*} converges even when the preceding restriction of the feasible
action sets is not implemented. More specifically, fory = 1 , . . . ,K, let

uj = supl*: Gj{x) < K[C*lJm(SK(t(0))) + Ct<b'™(SK{t(O)))]) + 1,

Ij = infix: Gj(x) < /r[C0*y(O))(S^(/(0))) + C f ^ S ^ f <0)))]) - bj.

Recall that /(0) denotes the base-stock vector (SfLl1 n.ZfsJ n, • • -,rK-i,0)
(see Eq. (5)) and that C*y(0))(S/r(/(0))), which denotes the expected total
cost incurred under this base-stock policy until the first entry into the interval
((£,AT): -bK < £ < 0) when starting in a state (x,j) outside this interval, is
finite by Proposition 1. It follows that —oo < Ij < u} < <x by Assumption 1.
We restrict the feasible action set in states (xj) with x > Uj to the singleton
Y(x,j) = [y = x] and in states (x,j) with x < lj to the singleton Y(x,j) =
\y — x + bj}. In all other states (x,j), we maintain the action set Y(x,j) —
[x < y < x + bj\. We refer to the resulting model as the restricted model.

This restriction is without loss of optimality.

LEMMA 3: Let h*: S -> R be any function and (3* be any base-stock policy as
defined in Theorem 4. Then,

(a) h* is a solution of optimality Eq. (12) both in the original and in the
restricted models,

(b) (3* satisfies the optimality equation both in the restricted and in the
original model, for the solution h = h* and is average cost optimal in
both models. In particular, any base-stock policy that is average cost
optimal in the restricted model is average cost optimal in the original
model.

PROOF: Any base-stock policy /3* that arises in Theorem 4 is the limit of a
sequence (jS *n J with (an} converging to 1, where /3 *n is an optimal base-stock
policy in the original model, discounting future costs with a factor an. Apply
Eq. (11) with /31 = t(0) to obtain for all j= l,...,K,

K(t(O)))] • (17)

Taking limits as n -» oo and because Gj is convex and hence continuous (see
Assumption 1), we conclude that Gy(/3/) is bounded by the right-hand side of
Eq. (17) as well. Thus, by the definition of /, and Uj, we have lj + bj < /3/ < Uj.
This implies that the base-stock policy /?* is feasible in the restricted model
and, hence, optimal for that model as well. It remains to be shown that h* is
a solution to the bptimality equation of the restricted model and that /3* satis-
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fies this optimality equation for the solution h = h*. Because h* satisfies Eq.
(12) in the original model,

j y-ZJ+); (x,j)eS, yEY(x,j). (18)
{=0

Because 0* satisfies Eq. (12) in the original model for h = h*, and because
lj + bj < 0/ < Uj for all j = 1, . . . , K, we have

h\x,j) = Gj{x)-g* + S Pr[Dj = Z}h*(x-ZJ+), 0/ < x, (19)
f=0

,./) = c,-(min{0;,jc + bj\ - x) + Gj(min\p;,x + bj\) - g*

+ Yi VrWj = £}/i*(min(0;,x + bj) - $J+), lj<x< 0/, (20)

,y) = cy6y + Gj(x+bj) - g* S
{=0

xslj. (21)

Thus, Eqs. (19)-(21) establish that, for all (xj) G S, Eq. (12) holds as an equal-
ity for some y E Y(x,j), namely, the action y prescribed by the policy 0*. This
implies that h* is a solution to optimality Eq. (12) in the restricted model and
that 0* satisfies this equation for h - h*. •

We conclude in particular that in the restricted model there exists a solu-
tion to average cost optimality Eq. (12) such that h* is bounded by a simple
order function that is known in closed form. In particular, h*{x,j) < r(x) =
Mi \x\p+i + M2 for all (x,j) E S. Aviv and Federgruen [2], building on earlier
results by Sennott [23], showed that for such MDPs convergence of the value-
iteration method can be established by verifying a single, relatively simple addi-
tional condition: for any policy IT, let (Xn,Jn) denote the sequence of states
visited.

Condition (C): E[r(Xn) \ (X0,J0) = (xj)] = O(\x\p+l) for all (xj) G S
and n > 1; that is, there exists a constant C such that for all n > 1 B[r(Xn) \
(X0,J0) = (xj)} <C( |x | " + l + 1).

We now verify Condition (C) assuming that all demand distributions (£),•}
have finite moments of order p + 2, a slight refinement of Assumptions 3 and 3'.

LEMMA 4: Assume E[Df+2) < oo for all j = 1, . . . ,K. Condition (C) applies.

PROOF: Let u = max(0,W|,... ,uK); I = min(0,/i,... ,/#) and b = max, 6,.
Fix a policy ir in the restricted model and a starting state {X0,J0) = (x,j).
Observe that

mm[Xn,l_) < Xn < maxU.w + 5] for all n > 1. (22)
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(Let nQ = min( n > 0: Xn < u); Xn is nondecreasing during the first n0 periods
and thereafter the inventory level after ordering is never in excess of it •¥ 5,
thus verifying the upper bound in Eq. (22).) By the convexity of the function
|x|p + 1 , we obtain

\Xn\"
+l < max{(-min(*,I ,/)) '+ I ,(maxUi/ + b))p+x)

< (-m\n{XnJ_])"+x + max||jr|p+l,(fi + b)p+i). (23)

Thus, to show that E[r\Xn) | (X0,J0) = (x,j)] = O(r{x)), it suffices to show
that E[(-min(Ar

n,/))p+1 \(X0,J0) = (x,j)] = O( |x | p + 1 ) . To do so, define
a nonstationary reflected random walk as follows: Ro — min(x,/j; Rn+l =
min[Rn + bin — Djn,l_\. We show by induction that

R,,<mmlXn,l}+5. (24)

Observe first that Ro = min(x,/) < minlA'o,/) + b. Now assume that Eq. (24)
holds for some n > 0. Consider the following two cases:

Xn>l_> Rn : Rn+1 = mm[Rn + bJa - DJa,l\ < min( Xn + bjn - DJm,[}

< min{Xn - DJn,[] + b < min(Ar
n+1,/) + b,

Xn<h Rn+i = min(R,, + bjn - Dja,l)

/) + b + bjn - Djn,[)

bjn - DJn + b,[) = minf^+i + B,[}

<min{Ar
n+,,/) + 5,

thus concluding that (-min{Xn,l})p+i < (\Rn\ + b)p+i.
To show that E[(-mm{Xn,[})p+l | (X0,J0) = (x,j)] = O(\x\p+i), it thus

suffices to verify that E[ |^n|"+11 (X0,J0) = (x,j)] = O(\x\p+[). To do so, we
compare the random walk R with one in which reflection occurs only once every
K periods, that is, once per cycle, and at the possibly lower level Ro =
min[x,l}. More specifically, let

RnK = min[RnK_t + bJK_t -DjK_t,R0], n>0,

R«K+n, = RnK+m-l+bjM_,-DJm_l, n > 0, m = 1, . . . , K - 1,

with Ro = Ro = min(jf,/). Note, however, that the embedded process {&„/<} is
a translation of a standard reflective random walk with positive drift and incre-
ments distributed as / = (B — S/L, Dj). Moreover, the random walks R and R
"move" in "close" proximity. More specifically, we shall show that

RnK+m>R(n+])K-2B ( a . s . ) f o r a l l n > 0 . a n d / n = = l t . . . , t f - l , (25)

which implies that E[|/?„*+,„|p+1 ] < E[(\R(n+l)K\ + 2B)p+l ]. Now, for all n > 1,
RnK =d mini*,/1 + min{Sn,Sn - SuSn - S2,... ,S,, - Sn_,,0), where Sn de-
notes the sum of n independent increments all distributed as / (see Asmussen
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[1, Proposition 1.1 on p. 181]). The sequence (/?„*•) is thus stochastically de-
creasing with a limiting distribution equal to that of [min(jr,/J + R*], where
E[\R* |p+1]<oo because E[|/|p+2]<oo (see Asmussen[l, Theorem 2.1 on p. 184]).
We conclude that a constant C exists such that for all n > 1 E[|£nA-|p+l] <
C(\x\p+l + 1).

It remains to be shown that Eq. (25) holds. By the construction of the process
R, it is clear that, for all 1 < m < K, R(n+l)K = min[RnK+m + £?=„,+ , {bj, -Dh),
Ro\ < RnK+m + B. Hence, to verify Eq. (25) it suffices to show that /?„*+,„ s
n̂/r+m + B (a.s.) for all n > 0 and m = 0 , . . . ,K - 1. The proof is by induction.

For n,m = 0 the inequality holds because ^ 0 = ^o; assume now that it is
true for some n > 0 and 0 < m < K — 1, and note that

RnK+m+l ~ RnK+m+\ ^ RnK+m + bj,,, ~ DJm - mill{/?„*+,„ + bjm - Djm,[)

+m - RnK+m,RnK+m + bJm - /)

< max\B,y.bj.\ = B. •
(. /=o ')

Thus, let \vn\ denote the sequence of functions generated by recursive
scheme (16) in which the action set Y(x,j) - [x,x + bj] is restricted to Y(x,j)
for all (x,j) E S.

THEOREM 5: (vn — mg* 1) converges to a solution h* of average cost optimal-
ity Eq. (12), with h*(x,j) = O(\x\p+l).

PROOF: Lemma 4 establishes Condition (C). Also, the data transformation in
Eq. (16) ensures that the Markov chain induced by each of the stationary pol-
icies is aperiodic (as already explained). The theorem now follows from Theo-
rem 1 in Aviv and Federgruen [2]. •

We now describe how the sequence {vn) can be generated in an efficient man-
ner. First, to apply the restriction of the action sets to the sets [Y(x,j):(x,j)ES]
we need to compute the values (i//,/,-; j = 1, . . . ,K}. This can be achieved by
the following value-iteration scheme: let z(x,j) = C^Jm{SK(t(fi))). Then,
z = Wm^nZn by Corollary 9.17.1 in Bertsekas and Shreve [3], where for all
(xj) with x < E/Ly1 r, = t(O)j

j j * K - \ , (26)
£=0

,K- l))

, A : - l ) - $ , * ) , (27)
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with y(x,j) = min{x + bj^fj/ n) and z0 = 0. (Note that the set SK(t(O)) can
only be reached from states (x,j) with j = K — 1. Also, by a slight modifi-
cation of the proof of Lemma 2(a), one easily verifies that the set S(t(O)) is
never reached, when starting outside this set. This explains why the summation
in Eq. (27) should be started at £ =y(x,K- 1) + bK.)

Also, instead of the functions vn, which grow linearly in n, one should
generate the normalized value functions wn defined by wn(x,j) = v,,(x,j) -
Vn(xoJo) for some reference state (xo,jo) E S (e.g., (xo,jo) = (Q,K) as in Sec-
tion 6). Note that (w,,} can be generated from the recursion

= min \rCj{y - x) + rGjiy) + (1 - T)wn(x,j)

- min j rcKy + rGK(y) + (1 - T)W,,(O,K)

(28)
£=0

that these functions remain bounded in n in the course of the algorithm and that
the same sequence of base-stock policies is generated by Eq. (28) as by the orig-
inal scheme. Finally, (wn) converges to a solution of optimality Eq. (2) and
lim^^fw^ - wn_|] = lim,,^[*)„ - *)„_,] = rg*l.

Remark: We have observed that, in practice, it is neither necessary to restrict
the action sets upfront to the sets [ Y(x,j)} nor to apply data transformation
(16). In other words, the sequence [v* — ng*l] itself converges where v* is
defined in Eq. (2) with a — 1. Because in practice convergence occurs signifi-
cantly fast, it is not necessary to generate the normalized functions wn to avoid
numerical instability.

The computational effort associated with the value-iteration scheme,
low as it is for general MDPs, can be reduced significantly by exploiting all
of the properties stated in Theorem 1, in particular, the convexity of the func-
tions Jn(y,j) in y and the fact that their minimizers \y*j:j = 1,... ,K] can
be used as optimal base-stock levels in the nth iteration of the algorithm.
Thus, with u*_, known at the beginning of the «th iteration, it suffices to
compute the values y*j—for example, via a simple bisection method. There-
after, one evaluates v*(x,j) for all required inventory levels x, via v*(xj) =
-Cjx + Jn(m\n[y*j,x + bj},j), thus completing the «th iteration.

Finally, as for all numerical methods used to solve infinite state space mod-
els, it is of course necessary to truncate the state space at certain sufficiently high
and low inventory levels Uj and L,, j = 1,. . . ,K. A basic implementation
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would simply truncate the summation in Eq. (16) at the level £ = y — Lj. This
can, however, result in significant evaluation errors. Instead, we propose replac-
ing the uncomputed values v,,(x,j+) for x < Lj (i.e., for states outside the trun-
cated state space) by an appropriate extrapolation of the values [vn(x,j)\
inside this truncated space. In Theorem 5, we have shown that the limit func-
tion of the sequence {vn(x,j) — nrg*l] is O(|x|p + 1). It is therefore appropri-
ate to extrapolate the functions vn by a polynomial of degree p + 1; for
example, when holding and backlogging costs are linear functions, p = 1 and
extrapolation by a quadratic function is called for.

8. NUMERICAL STUDY

In this section, we report on the numerical study described in Section 1. We have
evaluated a total of 57 different problem instances, all with K = 6 periods, lin-
ear holding and backlogging costs, and zero leadtimes (see Eq. (1)). In addition,
all variable production cost rates (c,), holding cost rates \hj), and backlogging
cost rates [pj] are taken to be stationary, that is, Cj = c, hj = h, pj = p for all
y = i K.

First, in terms of computational times, we have observed that the se-
quence of optimal base-stock levels [yZ) converges quite rapidly; that is, the
same base-stock policy is generated after at most 20 iterations, or several scores
of CPU seconds on a 486-based PC. Obtaining convergence of the sequence
[vn — mg*\] within a precision of 0.1% can require up to several minutes of
CPU time on 486-based PCs; the computational times increase with the utili-
zation rate. We have validated the accuracy of the estimate of g*, obtained via
the sequence (vn — vn-\), with that achieved via high precision simulations.

In our basic set of problem instances, the vector of mean demands n is given
by n = (30, 35, 50, 60, 40, 25); this represents a pattern with a single mode and
with sales within the peak month 2.4 times the volume in the slowest month.
Within this set, we have evaluated all 35 combinations of seven capacity levels,
assumed to be stationary, that is, b\ = bt = • • • = bk = b, ranging from 45 to
100 (corresponding with a utilization rate ranging from 40 to 88.89%) and five
types of demand distribution: a Geometric and Negative Binomial distribution
representing the number of "failures" in a series of Bernoulli trials until the first
and fifth "success," respectively; a Poisson distribution and two compound
Poisson distributions where the compounding order size has a Binomial distri-
bution with mean 1 and n = 2 and n = 5 trials, respectively. Table 1 reports the
maximum and minimum coefficient of variation of one-period demands over
all period types, as well as the optimal base-stock levels /3j\ . . . ,/3£.

We conclude that in all periods optimal base-stock levels are nonincreasing
in the capacity of the system. The sensitivity of the optimal base-stock levels
with respect to the system's capacity is relatively small when the demand vari-
ability is relatively low (e.g., the instances with Poisson and compound Poisson
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TABLE 1. Optimal Base-Stock Levels: K = 6, n = (30, 35, 50, 60, 40, 25),
h = 0.5, a n d p = 1.0

Optimal Base-Stock Levels
Utilization

Distribution Type b Rate 1 2 3 4 5 6

Geometric 45 88.89% 138 162 181 164 124 109
min CV = 0.98, max CV = 0.99 50 80.00% 91 116 139 124 84 63

60 66.67% 54 75 102 92 57 37
70 57.14% 42 58 86 80 49 31
80 50.00% 37 50 76 74 46 29
90 44.44% 35 45 70 70 44 28

100 40.00% 34 43 66 68 43 27

Negative Binomial (r = 5) 45 88.89% 70 89 104 96 59 47
min CV = 0.44, max CV = 0.44 50 80.00% 45 63 82 80 48 31

60 66.67% 35 47 69 73 45 28
70 57.14% 34 42 63 70 45 28
80 50.00% 33 40 60 69 44 28
90 44.44% 33 39 58 68 44 28

100 40.00% 33 39 57 68 44 28

Compound Poisson [Bin (n = 5,0 = 2)] 45 88.89% 40 55 68 66 43 28
min CV = 0.17, max CV= 0.27 50 80.00% 34 46 62 65 43 27

60 66.67% 33 39 57 64 43 27
70 57.14% 33 38 54 64 43 27
80 50.00% 33 38 54 64 43 27
90 44.44% 33 38 54 64 43 27

100 40.00% 33 38 54 64 43 27

Compound Poisson [Bin(w = 2,0 = O.5)] 45 88.89% 39 54 67 65 43 28
minCV = 0.16, max CV = 0.24 50 80.00% 33 45 62 64 43 27

60 66.67% 33 39 56 64 43 27
70 57.14% 33 38 54 64 43 27
80 50.00% 33 38 53 64 43 27
90 44.44% 33 38 53 64 43 27

100 40.00% 33 38 53 64 43 27

Poisson 45 88.89% 37 52 66 64 42 27
min CV = 0.13, max CV = 0.20 50 80.00% 32 44 60 63 42 27

60 66.67% 32 38 55 63 42 27
70 57.14% 32 37 53 63 42 27
80 50.00% 32 37 53 63 42 27
90 44.44% 32 37 53 63 42 27

100 40.00% 32 37 53 63 42 27

Abbreviations: min CV = minimum coefficient of variation; max CV = maximum coefficient of variation.
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distributions). On the other hand, for instances with a relatively high demand
variability, the optimal base-stock levels may be reduced by a factor of 3-4
when the capacity is changed from b = 100 to b = 45. The results also suggest
that the optimal base-stock levels vary convexly with the system's capacity b.
Similarly, we observe that the base-stock levels increase as the demand variabil-
ity increases; as can be explained, the increase is particularly large when the uti-
lization rate is high. These observations indicate the importance of appropriate
and accurate forecasting systems, in particular under high utilization rates.

Considering the base-stock levels for a given instance, one observes that the
periods with the largest and most variable demands (i.e., those with the high-
est standard deviations) may fail to have the largest base-stock level, even
though the production lead time is zero. This occurs because of the need to build
up inventories in advance of peak demand periods. Consider, for example, the
instances with Negative Binomial demand distributions. Under low-capacity vol-
umes (e.g., b = 45), the base-stock level for period 3 is higher than that of the
peak period, period 4; when the capacity b is increased to b = 60 the relative
order of the base-stock levels is reversed, as the safety stock requirements to
cover the larger and more variable demand in the peak period now dominate
over the need to build up inventories in response to the capacity constraints.

Figure 1 displays the long-run average system-wide costs as a function of
the capacity level for the five demand distributions considered. As proven in

140

— CP (5,0.2)

FIGURE 1. Long-run average cost as a function of the capacity limits,
for various demand distributions: h = 0.5, p = 1.0, c = 0. Geom. =
Geometric; NB = Negative Binomial; CP = Compound Poisson;
Pois. = Poisson.
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Theorem 4(c), the average cost value, g*, is nonincreasing and convex in b.
Observe that the cost increases dramatically as the demand variability increases,
in particular under high utilization rates. These observations suggest that major
benefits can be reaped by reducing the variability of demands. This can be
achieved, for example, by improved coordination with customers, receiving
advanced notice of future orders as in many quick response or vendor-managed
replenishment programs. Figures 2 and 3 display the average inventory and aver-
age backlog sizes as a function of the system's capacity, again in five different
curves, corresponding with the five types of demand distributions considered.
The former represent capacity/inventory investment tradeoff curves. The obser-
vations made with respect to Figure 1 apply here as well. Notice in particular
the large inventory reductions that can be achieved by capacity expansions, in
particular when demands are highly variable.

In our second set of instances, we investigate the impact of the ratio h/p,
that is, the relative magnitude of holding versus backlogging costs. Starting with
the four instances in the first set, in which the capacity b = 50 and b = 100, and
the demand distributions Negative Binomial and Poisson, we systematically con-
sidered three alternative values of h, in particular h=\, 0.2, and 0.1. Table 2
displays the optimal base-stock levels for the new set of 24 instances. As can be
expected, the base-stock levels increase as the ratio h/p decreases. We observe
that the base-stock levels decrease convexly with h, throughout. As already men-
tioned, the optimal base-stock level for period 3 is often larger than that of

40 50 60 70
b

80 90 100

-*• Geom. — NB (r = 5) — CP (5,0.2)
-o-CP (2,0.5) — Pois.

FIGURE 2. Average inventory on hand as a function of the capacity
limits, for various demand distributions: h = 0.5, p = 1.0, c = 0. See
caption of Figure 1 for abbreviations.
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100

40 50 60 70
b

80 90 100

^Geom. — NB(r = 5) — CP (5,0.2)
^-CP (2,0.5) — Pois.

FIGURE 3. Average backlog occurrences as a function of the capacity
limits, for various demand distributions: h = 0.5, p = 1.0, c = 0. See
caption of Figure 1 for abbreviations.

TABLE 2. Optimal Base-Stock Levels for Different h/p Ratios:
H = (30, 35, 50, 60, 40, 25), p = 1.0, and h = 0.1, 0.2, 0.5, 1

Optimal Base-Stock Levels

Distribution Type h

1.0
0.5
0.2
0.1

1.0
0.5
0.2
0.1

1.0
0.5
0.2
0.1

1.0
0.5
0.2
0.1

1

33
45
66
85

30
32
36

39

27
33
42
49

30
32
35
37

2

47
63
88
107

39
44
51
57

32
39
50
58

35
37
41
43

3

66
82
107
125

56
60
67
72

46
57
72
84

50
53
57
59

4

66
80
100
116

60
63
68
71

55
68
85
97

60
63
67
70

5

39
48
62
74

40
42
46
48

36
44
56
65

40
42
46
48

6

24
31
44
59

25
27
30
32

22
28
35
41

25
27
30
32

Negative Binomial (r = 5) 50

Poisson 50

Negative Binomial (r = 5) 100

Poisson 100
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period 4 in spite of the latter's demand distribution having a higher mean and
standard deviation. The relative ranking /33* > frj1 occurs primarily when h is
small (relative top) as the incentive to respond to capacity constraints by build-
ing inventories in advance, decreases with h. Notice that j33* > &% only occurs
when the capacity is relatively low (b = 50); in case the demand distributions
are Poisson, /?3* > j34* when h = 0.1, but /33* < j34* for all h > 0.2.

We conclude this numerical study with an assessment of the benefits that
can be achieved when synchronizing the capacity and the demand profile. As
already mentioned, this can be done in two ways: in Table 3 we investigate the
benefits of demand smoothing, starting from our base vector n = (30, 35, 50,
60, 40, 25) and replacing it by a pattern of constant mean demands, with the
same aggregate n = 240. In doing so, we maintain the variances of the individ-
ual periods' demands (a2 = (40, 40, 50,60, 40, 40)). As already noted, under
seasonal demand fluctuations the base-stock levels as well as the long-run aver-
age cost decrease considerably as capacity is expanded; on the other hand, the
benefits of capacity expansion are significantly smaller when the demand pat-
tern is smooth. Alternatively, one observes that in the basic instance system-wide
costs can be reduced by 43.6% when expanding capacity from b = 45 to b = 80.
However, most of these savings (i.e., 34.6%) can be achieved by introducing a
smooth demand pattern, and the latter may in certain settings be implemented
with a far smaller investment.

The alternative mechanism to synchronizing the demand and capacity pat-
terns is to adopt flexible, that is, period-dependent, capacity levels. As shown
in Theorem 4(c), the long-run average cost is convex in the vector b. Given an
aggregate budget constraint with total capacity B used in a cycle, an optimal
capacity allocated can be determined by solving the convex program

TABLE 3. Optimal Base-Stock Levels and Optimal Long-Run Average Costs,
under Fluctuating and Constant Mean-Demand Patterns, for Different

Capacity Limits (b): a2 = (40, 40, 50, 60, 40, 40), p = 1.0, and
h = 0.5; demands follow compound Poisson distributions

Optimal Base-Stock Levels

Pattern b 1 2 3 4 5 6 g*

Fluctuating demand.! 45 38 52 66 64 42 28 6.54
50 33 44 60 63 42 27 4.90
80 32 37 53 63 42 27 3.69

Smooth demand (constant means over time) 45 44 44 45 45 44 44 4.28
50 43 43 43 43 43 43 3.76
80 42 42 43 43 42 42 3.69
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(P)min g*(bu...,bK)

K

s.t. 2 bj, = B
j=\

bj > 0.

We postpone a discussion of effective solution methods for (P) to a future
publication. We have experimented with capacity allocations of the type bj =
y(fij•, + krj) for appropriate factors y and k. Allocations of this type appear to
result in modest cost reductions; for example, in the instance of our basic set
(see Table 1) in which b = 50 and demands have Negative Binomial distribu-
tions, we have observed cost savings of approximately 5% by allocating capac-
ities proportional to the periods' mean demands. It remains an open question
whether or not and under what circumstances significantly larger cost savings
can be achieved under an optimal capacity allocation.
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