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In this paper we address periodic base-stock policies for stochastic economic lot scheduling problems. These represent manufactur- 
ing settings in which multiple items compete for the availability of a common capacity source, in the presence of setup times and/or 
costs, incurred when switching between items, and in the presence of uncertainty regarding demand patterns, production, and setup 
times. Under periodic base-stock policies, items are produced according to a given periodic item-sequence. This paper derives 
effective heuristics for the design of a periodic item-sequence minimizing system-wide costs. This sequence is constructed based on 
desirable production frequencies for the items, obtained as the solution of lower bound mathematical programs. An extensive 
numerical study gauges the quality of the proposed heuristics. 

In this paper we consider manufacturing settings in 
which multiple, say N, items compete for the availability 

of a common capacity source, i.e., production facility, in 
the presence of setup times incurred when switching be- 
tween items. In addition to a setup time, switching may 
involve an explicit out of pocket setup cost as well. We 
focus in particular on settings where uncertainty prevails 
regarding the demand patterns, production times as well as 
the setup times. Such settings are often referred to as 
Stochastic Economic Lot Scheduling Problems (SELSP). 
A variety of strategy classes have been proposed to govern 
these systems effectively; these can be partitioned into (i) 
static and (ii) dynamic strategies. Dynamic strategies deter- 
mine at any point in time which of the items, if any, is to 
be produced in the facility on the basis of the complete 
state of the system (which includes the inventory levels of 
all items and the most recent assignment of the facility). 
Static policies, on the other hand, use only state informa- 
tion that pertains to the item currently being produced. 

One important class of static strategies are the so-called 
periodic base-stock policies: when the facility is assigned to 
a given item production continues until either a specific 
target inventory level is reached or a specific production 
batch has been completed; the different items are pro- 
duced in a given periodic sequence, possibly with idle 
times inserted between the completion of an item's pro- 
duction batch and the setup for the next item. Other exam- 
ples of static policies include variations in which the 
sequence of items produced by the facility is determined 
by a state-independent random process (see, e.g., Klein- 
rock and Levy 1988) as well as time-window policies in 
which the assignment of the facility is completely deter- 
mined by the time of day, the day of the week, etc. 

The exact optimal policy under most common perfor- 
mance measures or cost criteria is often of the dynamic 
type. Such criteria include the minimum average system- 
wide setup-, holding-, and backlogging costs or the mini- 
mum of average setup and holding costs under specific 
service level (e.g., fill rate) constraints. Unfortunately, 
identification of an optimal dynamic policy requires the 
solution of a dynamic program with an N-dimensional 
state space; this is feasible only when N = 2 or 3. More- 
over, the structure of an optimal policy tends to be highly 
complex, prohibiting their implementation even if such 
strategies could be computed in a reasonable amount of 
time. See, e.g., Ha (1992) and Qui and Loulou (1995) for a 
characterization of an optimal policy in the special case of 
two products, with zero and positive setup times and costs, 
respectively. Thirdly, coordination with other related activ- 
ities (e.g., procurement of raw materials, input compo- 
nents, externally performed setups) is often difficult under 
dynamic policies as opposed to some of the above classes 
of static policies. Indeed, under many of the latter (e.g., 
the periodic base-stock policies) predictability of the plant 
is greatly enhanced. As pointed out in Tayur (1994), in- 
creased predictability promotes more accurate due-date 
quotations and thus reduces the need for expediting and 
schedule changes and associated ad-hoc setups, effectively 
improving the production capacity. 

Finally, there is now evidence that the restriction to 
static policies comes with only a moderate loss of optimal- 
ity: Markowitz et al. (1995) recently proposed a class of 
dynamic cyclic policies as a dynamic alternative to the cy- 
clic base stock policies. Under a dynamic cyclic policy, the 
facility continues to cycle through the products in a fixed 
sequence or permutation; however, when engaged in the 
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production of a given item, the facility may switch to the 
next item or go idle as a function of the system wide vector 
of inventories, not just when reaching a given target level. 
The authors propose a specific rule within this class, based 
on heavy traffic approximations. They compare the perfor- 
mance of their dynamic cyclic rule with a minor static 
variant of the cyclic base-stock policies. Where possible, 
i.e., in the case of two product problems (only), they also 
provide a comparison with the optimal (dynamic) policy. 
See Section 4 for a summary of the comparison results. 
Moreover, Markowitz et al. (1995) only consider cyclic 
strategies. We shall demonstrate that significant improve- 
ments can be achieved by replacing cyclic by general peri- 
odic strategies, producing different items with different 
relative frequencies. The magnitude of these improve- 
ments is on average similar, but sometimes significantly 
larger than those achieved in going from static to dynamic 
cyclic rules. 

To overcome part of the difficulties associated with fully 
dynamic policies several classes of so-called semi-dynaniic 
policies have been proposed; see, e.g., Browne and 
Yechiali (1989a, b), Duenyas and Van Oyen (1995, 1996) 
for the special case of systems without inventories, and 
Zipkin (1986), Leachman and Gascon (1988), Leachman 
et al. (1991), and Bourland and Yano (1991, 1994) for the 
more general case of make-to-stock systems. (See Feder- 
gruen and Katalan 1995, 1996a for a more detailed review 
of these policy classes.) However, no accurate analytical 
methods are known to evaluate policies or to identify the 
optimal policy within any of these classes, except for stan- 
dard dynamic programming methods which, as mentioned 
above, are practical only when N = 2 or N = 3. Indeed, to 
our knowledge, the only class of policies permitting such 
evaluation and optimization methods for general values of 
N is the above described class of (static) base-stock poli- 
cies. Federgruen and Katalan (1995, 1996a) describe an 
efficient method to accurately evaluate any given base- 
stock policy and to identify optimal base-stock levels for a 
given periodic sequence. The latter confines itself to cyclic 
sequences in which the facility rotates among the items 
according to a specific permutation; Federgruen and Kata- 
lan (1995) deals with general periodic sequences and cer- 
tain semi-dynamic extensions in which part of the items 
are made-to-order, with dynamic priority rules governing 
their insertion into the schedule for the make-to-stock 
items. Anupindi and Tayur (1998) recently developed a 
simulation based method to compute optimal base-stock 
levels for a given, cyclic sequence, under somewhat more 
general demand processes than those considered in Feder- 
gruen and Katalan (1995, 1996a). 

In this paper we complement Federgruen and Katalan 
(1995, 1996a) by showing how an effective periodic item- 
sequence can be selected among all such sequences and 
this periodic schedule outperforms cyclical base-stock pol- 
icies quite significantly. Identifying an effective periodic 
item sequence represents an exceedingly difficult combina- 

torial problem as there are O(N!(m)j)NM-N) potential se- 
quences of a given periodicity M (_N) alone. The same 
question has been addressed by Dobson (1987) and Zipkin 
(1991) in the context of deterministic ELSPs in which de- 
mands for all items occur at constant rates and the produc- 
tion and setup times are constants as well. Boxma et al. 
(1990, 1991, 1993) and Bertsimas and Xu (1993) develop 
heuristics for the determination of an optimal polling table 
in periodic polling systems with exhaustive and gated ser- 
vice. A polling system consists of several (say N) stations 
and a server who at any point in time can be assigned to at 
most one of them incurring setup times when switching 
between stations. Under a periodic polling system, the 
server travels between the stations according to a given 
periodic sequence described by the so-called polling table; 
under exhaustive (gated) service the server continues at a 
given station until its queue is emptied out (until all cus- 
tomers present upon his arrival to the station are served). 
Polling systems thus correspond with the special case of 
our model in which no positive inventories are allowed. 
Boxma et al. (1990, 1991) and Bertsimas and Xu (1993) 
focus on the objective of minimizing a weighted average of 
the steady-state waiting times at the different stations, 
while Boxma et al. (1993) are concerned with the weighted 
average of the steady-state workloads. 

The remainder of this paper is organized as follows. In 
Section 1 we first introduce the general model and its 
notation as well as a brief review of the method to evaluate 
a specific periodic base-stock policy. We then give a brief 
outline of a three-phase approach to generate effective 
production tables. In Section 2 we address the question of 
determining optimal production frequencies of the differ- 
ent items (Phase I). (The production frequency of an item 
is specified as the frequency with which a new production 
batch for this item is initiated.) In Section 3 we generate, 
with these frequencies determined, a periodic item- 
sequence (or production table) (Phase III). Section 4 con- 
cludes the paper with an extensive numerical study, 
gauging the quality of the proposed strategies. 

1. MODEL DESCRIPTION; A THREE-PHASE 
APPROACH TO GENERATE EFFECTIVE 
PRODUCTION TABLES 

We consider a production system with N distinct items, 
demands for which are generated by independent Poisson 
processes, with Ai the rate at which demand arises for item 

(i 1, . . . N). Let A = i A1. (The results in this paper 
easily carry over to the more general case where all de- 
mand processes are compound Poisson.) The N items are 
produced in a common facility that can produce only one 
unit of one of these items at a time. Production times for 
individual units are assumed to be independent; those of 
item i are identically distributed with cdf SX(:) and mean si 
< oc (i = 1, . N). A possibly random setup time with cdf 
R1Q) and mean r1 < cc (i 1 N), is incurred when 
setting up to produce item i, i.e., whenever the facility 



FEDERGRUEN AND KATALAN / 885 

starts producing item i after being idle or after producing 
some other item. Consecutive setup times are indepen- 
dent. The utilization rate for item i is pi = Aisi; that of the 
system equals p = pN 1 pi and we assume the system is 
stable, i.e., p < 1. 

If a demand cannot be filled from existing inventory, it is 
backlogged. Three types of costs are incurred. Let: 

hi = the inventory carrying cost rate for item i per unit 
of time (i = 1, . . ., N); 

pi = the backlogging cost rate for item i per unit of time 
(i = I1,...,IN); 

Ki= the setup cost incurred per setup of item i (i 
1, . . .,I N)- 

The objective is to minimize the long run total of average 
holding-, backlogging-, and setup costs. 

A periodic base-stock policy is specified by: 

(a) a vector of base-stock levels b = (b1, . . ., bN); 
(b) a table T = {T(j); j = 1, ..., M} of length M - N; 

for all j = 1, . .. , M T(j) denotes one of the items in 
{1, ..., N}; and 

(c) a vector of inserted idle times A = (Al, . . ., IAM). 

At time 0, the facility starts to produce the first item listed 
in table T, i.e., item T(1) and continues its production 
until its inventory level is increased to a base-stock level 
bT(1) (the exhaustive case). Alternatively a batch is pro- 
duced, the size of which is given by the difference between 
bT(1) and the starting inventory level (the gated case). The 
facility then switches to the second item in the table, T(2), 
after a possible idle time A2 and setup time RT(2). This 
protocol continues until the Mth production run for item 
T(M). Thereafter the facility returns to the beginning of 
the table, producing its first item T(1) after a possible idle 
time Al and setup time RT(1), and continuing the above 
protocol. (To facilitate the exposition, we confine our- 
selves to the case where the exhaustive production disci- 
pline is applied to every entry of the table. All our results 
are straightforwardly extended to the case where the gated 
discipline is applied to some or all of the table's entries.) 

For a given table T, vector of base-stock levels b and 
inserted idle times Al we define for all i = 1, ... N the 
(steady-state) shortfall distribution Li by: 

Li = bi- ILi, (1) 

where ILi denotes the steady-state inventory level of item 
i. 

The shortfall variables {Li} have the advantage of being 
independent of the base-stock levels. A method to com- 
pute the shortfall distribution is developed in Federgruen 
and Katalan (1994); it is based on a well-known decompo- 
sition result due to Fuhrmann and Cooper (1985). More 
specifically, fix i = 1, ..., N; a nonproduction epoch for 
item i refers to any epoch at which the system is not en- 
gaged in producing a unit for this item. Then, as shown in 
Federgruen and Katalan (1994), 

Li = Li + L' (2) 

with L' and Ll independent of each other; 
where 

L' = the steady-state shortfall in a system exclusively 
dedicated to item i, i.e., the steady-state number of 
customers in an M/G/1 system with Poisson arrivals 
at rate A, and i.i.d. service times distributed as Sif(), 

L" = the shortfall distribution for item i at an arbitrary 
tagged nonproduction epoch for this item. 

To further characterize L assume item i appears Mi times 
in the table T and let 

hij[Cii] = the jth intervisit [cycle] time for item i (j 
1,..., Mi), i.e., the steady-state time interval 
between the start of the jth production run of 
item i and the termination [start] of the 
preceding production run of the same item. 

IJCJ] the unconditional intervisit [cycle] time for 
item i, i.e., the mixture of the steady-state 
distributions {Iij:j = 1, . . . , Mj}[{Cij:jI = 

1, . .. , Mi}] with mixing probabilities 

Miw l:i= ,*,M 

[{E 'j=, EIiC , } C.. 
1 ..Im 

Also, for any random variable U, let Ue denote an interval 
of time distributed as the equilibrium excess distribution of 
U, and let 

Nj(U) = the total demand for item i in an interval of 
time distributed like U(i = 1, . . ., N). 

As shown in Federgruen and Katalan (1994, Proposition 2) 

L'I is distributed as a mixture 

of distributions {Ni (Ij): j = 1, . * , Mi } (3) 

with mixing probabilities 

tzM:~~ 11 j-' Mi} { =El i,f 

The method in Federgruen and Katalan (1994) is exact 
except for the fact that the intervisit times are approxi- 
mated by numerically convenient phase type distributions, 
fitting any desired number of moments. The moments of 
these intervisit times are themselves computed within any 
required relative precision E > 0, via a recursive so-called 
descendant set method due to Konheim et al. (1994). To 
compute the first m (say) moments of the intervisit times 
via the descendant set method, it suffices to know the first 
m moments of the production and setup time distributions. 
The overall worst case complexity is O(max{Nk*2, M2 
logpE}) where k* denotes the largest shortfall level that 
needs to be evaluated. As demonstrated in Federgruen 
and Katalan (1994), for tables with up to 50 entries (say), 
the complete method requires only a few seconds on a PC 
and is remarkably accurate as verified in an extensive nu- 
merical study. Most recently Choudhury and Whitt (1994) 
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proposed an alternative evaluation method based on nu- 
merical transform inversions. This method can be designed 
to provide exact evaluations of the shortfall distributions 
up to any prespecified precision, and it is asymptotically 
somewhat faster for fixed k* as M tends to infinity. Its 
complexity is O(Ml?'k*) with a typically in the range 0.6 
to 0.8. The shortfall, and hence inventory level, distribu- 
tions (see (1)) permit us to evaluate all system-wide costs. 

Let C denote the expected length, in steady-state, of a 
complete cycle, i.e., the time between two consecutive re- 
turns to the beginning of the table T. It is well known (see, 
e.g., Takagi 1986), that 

_ 
M 

C = L (rT(j) + Aj)/(1 - p). (4) 
j=1 

The long-run average cost under a given base-stock policy 
is thus given by: 

Ej=1IK T(j) N 
+ {h iE(IL +) + piE(IL i-)}, (5) 

C i=l 

where x+ = max(x, 0) and x- = max(-x, 0). Substituting 
(1) into (5) we obtain: 

Lj1 KT(j) 

C 

N 
+ {hiE(bi - L ) + + p E(Li - bi) }. (6) 

i=l 

Note that the distribution of the random variables {Li: i = 

1, ... , N} is independent of the vector of base-stock levels 

b, but it of course does depend on the production table T 
and vector of idle times A. Thus, for a given table T and 
vector A, the optimal base-stock levels, b* for item i (i = 

1,..., N), can be determined by solving a newsvendor 
problem with Li as the demand distribution, i.e., 

b= min{k: Pr[Li > k] :Pi/(Pi + hi)} (7) 

(See, e.g., Proposition 1 in Federgruen and Katalan 
1996a.) 

Our objective is therefore to characterize the relation- 
ships between the production table T and vector of idle 
times A on the one hand, and the cost expression (6) on 
the other hand, so as to develop heuristics for an optimal 
choice of T and A. 

To describe possible construction procedures for the 
production table we need the following additional nota- 
tion. Let 

M = the absolute frequency with which item i appears in 
the production table T = I{j = 1,..., M: T(j) = 

i} | (note EN 1 Mi = M); 
m = M/M = the relative frequency of item i in the 

production table T (E' 1 mi = 1); 
Fi = the long-run average absolute frequency with which 

a setup for item i is initiated (=MJ/C by the theory 
of regenerative processes); 

6 = the long-run average frequency with which the 
system is idle (= 1E Ai/C). 

Note that 

Mi. MI/C 

f=1 Mt Ef=] (Mf/C) 
Fi 

= eN --, i = 1, . . ., N. (8) 
N I Ff 

We propose the following three-phase approach in con- 
structing an effective production table T: 

Phase (I) (Relative Frequencies): Generate frequency val- 
ues {Fi: i =1, . . ., N} and hence, by (8) relative frequen- 
cies {mi: i 1, . . ., N}. 

Phase (II) (Table Size): Select M, the length of the pro- 
duction table and absolute frequencies {Mi: i = 1, . .. , N} 
with relative frequencies {Mi/M: i = 1, ..., N} closely 
matching the values {mi: i = 1, . . ., N} in Phase (I). 

Phase (III) (Sequencing): Select a table T in which the 
items appear with the frequencies {Mi: i = 1, . . ., N} as 
determined in Phase (II). 

The same three-phase approach was initially proposed 
by Boxma et al. (1990, 1991, 1993) for the construction of 
a polling table in polling systems under which a linear 
combination of the expected waiting times (or workloads) 
at the different stations is minimized. Bertsimas and Xu 
(1993) deal with the same model and objective, however, 
under sequence-dependent setup times, i.e., the setup time 
for a new production run depends both on the new item 
being setup and the item last produced. Under sequence 
dependent setup times it is important to disaggregate the 
Fi- and mi-quantities, i.e., to characterize the quantities 
Fij(mij) which denote the frequency of switching from item 
i to item j per unit of time (in the table T); i, j = 1, .. .. 
N. (Clearly, Fi = 42v l Fij and m- = E7=N mi1 for all i = 

1, ... , N.) Like Boxma et al. (1990, 1991, 1993), Bertsimas 
and Xu (1993) propose the above three-phase approach as 
well, merely replacing {Fi} by {Fi1} and {mi} by {mi1}. 

In Phase (I) we generate production frequencies from 
the solution of mathematical programming models of spe- 
cial structure which approximate the exact system-wide 
cost objective (6). 

As far as Phase (II) is concerned, we propose as in 
Boxma et al. (1990, 1991, 1993) that M be incremented 
sequentially, starting with M = N until the maximum 
rounding error incurred when rounding the numbers 
{Mmi: i = 1, . .., N} to their nearest integer values falls 
below a prespecified precision -q, i.e., M = inf{x ? 

N: min(Fxmil - xini, xmi - Lxmi ) < -q for all i = 1, .... 
N}. As shown by Boxma et al. (1990, 1991, 1993) this 
phase appears to be the least crucial one in the heuristic. 

As far as the sequencing Phase (III) is concerned, we 
propose that an initial sequence be constructed on the 
basis of the Golden Ratio heuristic proposed in Boxma et 
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al. or a machine scheduling heuristic proposed by Dobson 
(1987) for deterministic Economic Lot Scheduling prob- 
lems. The former attempts to space all items i with Mi - 2 
equidistantly in the table T, i.e., it attempts to equalize 
the number of entries between consecutive appearances 
of item i in the table. Dobson's machine scheduling heu- 
ristic, on the other hand, attempts to equalize for all 
items the times between their consecutive production runs. 
Construction of an initial sequence is potentially followed 
by iterative sequence improvement routines, described in 
detail below. 

2. PHASE (1): DETERMINING OPTIMAL 
PRODUCTION FREQUENCIES 

In this section we focus on Phase (I). It is clear that the 
exact system-wide objective (6) can not be determined on 
the basis of the values {Fi} and 6 alone. As in other 
problems of determining optimal priority schemes (see, 
e.g., Bertsimas and Ninio-Mora 1993, Bertsimas et al. 
1994, Bhattacharya et al. 1991, Coffman and Mitrani 
1980, Federgruen and Groenevelt 1988a and b, Katehakis 
and Veinott 1987, and Shanthikumar and Yao 1992) as 
well as Boxma et al. (1990, 1991, 1993) and Bertsimas and 
Xu (1993), we develop a lower bound approximation for 
the exact objective which is determined by the vector F 
and 6, and for which a minimizing pair (F, 6) can be 
obtained. For objectives which are linear and increasing 
in the vector of mean waiting times or mean queue sizes 
or shortfalls {ELi: i = 1, . . . , N } (as is the case in 
Boxma et al. and Bertsimas and Xu), it suffices to obtain 
a lower bound for each of the mean shortfalls {ELi: i = 

1, . . . , NJ: 

Lemma 1. Fix i = 1, . . ., N. 

EL, Ai { E(1S-P) + Si + 2 (1 pi} 

Proof. It follows from (2) that E(Li) = E(L') + E(Lj'). 
By the Pollaczek-Khintchine formula, 

E(L - = ? E(S p) + Pi, (9) 
2(1 - pi) 

and by (3): 

E(L ') = 
EjE(Ni (Iie Ije), 

where J is a discrete random variable, with 

Pr[J j] E(I ,) 

Thus, 

E(Lw) = Ej[AiE(Iie)] = EJ E(Ij 1 

?- A1Ej[E(Ij] = i 
A2E(Ii), (10) 

where the inequality follows from E(Ih2) i E2(I,j). Ob- 
serve also that Fi = 1/E(Ci), with E(Ci) = (1 - pi) E(Ci) 
+ piE(Ci) = E(I) + piE(CQ). (AiCi is the expected number 
of units of item i demanded in a cycle of length Ci and 
siAiCi = piCi the expected amount of production time re- 
quired to satisfy this demand.) It follows that 

E(Ii) = (1 - pi)/Fi. (11) 

Lemma 1 now follows by substituting (11) into (10) and 
adding (9) to the resulting inequality. D 

Remark 1. The proof of Lemma 1 is similar to that used in 
the derivation of Bertsimas and Xu's lower bound. 

The objective (6) in our model depends on the entire 
distribution of the variables {Li: i = 1, . . . , N}, not just on 
their means. Our approach in developing a lower bound 
approximation is therefore to (i) develop lower bounds for 
a given number (say m : 2) of the moments of {Li: i = 
1, ... , N}, and (ii) to develop an approximation of (6) in 
terms of these m moments only. Here we confine ourselves 
to the case m = 2. We therefore start with a lower bound 
for the variance of the shortfall distributions {Var(Li): i = 

1, ...,I NJ. 

Lemma 2. Fix i = 1, . . ., N. 

(a) Var(L1) V V + 2 (1-) (1 2 F,. 12 F? 

where 

Vi = Var(Li)= A(E2(S?) 
4(1, - pi) 2 

+ A(2E(S) - 6siE(Sb) + 9A]E(S7) + p( (1- ) 
6(1-pi) 

(12) 

(b) E(Li )~ ? E2 (SI')2 2A7 E(S7 ) + 9A7-E(S?) 

Ai(I -pi)(l + si + A1E(SfI)) 
2Fi 

0 -p P) 2(,k 2 

12F?; 

Proof. (a) It follows from (2) that Var(Li) = Var(Li') + 
Var(L '). We first show that Var(L') = Vi'. 

Let Lq denote the number of customers in queue in an 
M/G/1 system with arrival rate Ai and service time distribu- 
tion Si(-). Note that 

Pr[L = 0] + Pr[L' = 1] = Pr[Lq = 0] 

so that 

Pr[L = 1] = Pr[Lq = 0] + Pi - 1, 

while for k L 2, Pr[LI = k] = Pr[L7q = k - 1]. This implies 
that 
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E(L'i2) = , k2 Pr[Li = k] = Pr[L Y 0] + pi - 1 
k=1 

+ E k2 Pr[L? = k - 1] 
k =2 

= Pr[LZ = 0] + Pi - 1 

+ E (k + 1)2 Pr[L = k] Pi- 1 

x 

+ 7 
(k+1)2Pr[LY= k] 

k=O 

= - 1 + E([Li'+ 112) 

= pi + E(LY(Ly - 1)) + 3E(LY). 

It is well known that 

A 2E(S72) 
E(LY) =- 

2(1 l ) 

and 

E(L Y(L Y - 1)) = A?(S7) + 2E 2(L ) 
3(1 -p,)I 

(see, e.g., (4.32) in Tijms 1986). Together with (9) we ob- 
tain (12). 

It thus suffices to derive a lower bound for Var(L.). 
Defining the discrete random variable J as in the proof of 
Lemma 1, we obtain from (3) that 

Var(L ') = Var(Ni (I')) 

- EJ Var[Ni (Iifj) IJ = j] + VarjE[Nj (IfJ) IJ = ] 

J EJ{E1, Var[Ni(I' ) II', J = )] 

+ Var, E[Ni (Ife) IIe,J J ]} 

=~~~ E !2E( [ E (I) _ [ 2E (?IJ) 12119 
- A2E (I~2 ) L 3E(IiJ) L 2E(-j) 111 

-EJ{2 + 7 I [E(I.j) k2E 2(Ii?) B 

A2E (Ii) + [ I 2E (Ij) E (2 

D EJ { 2E E(I)iJ + 12 E(I,) } 

- 2 E(Ii) + 1 2E(17) ? j E(I,) + 2 Ei2(I). (13) 

To verify the second equality, note that [N1(Ii ,) Is,, J = j] 
has a Poisson distribution whose mean and variance equal 
A,Ii, while Elj(AI,,) = A E(2I3,) and 

VarE E(AIij) = [E(I)2 -_ { 

finally, recall that E((Ue)k) = E(Uk?l)/(k + 1)E(U) for 
any random variable U. The last three inequalities in (13) 
follow from Jensen's inequality and E(I1 )E(171) > E2(171), 
an application of Holder's inequality E(XY) . (13) 
E(Yh)a/P for any pair of nonnegative random variables X, Y 

and p, q with I/p + l/q = 1. (Take X = Iij2, Y= I!/2 and 
p = q = 2.) Part (a) now follows by substituting (11) into 
(13) and adding the resulting expression to (12). Part (b) is 
immediate from part (a) and Lemma 1. D 

Remark 2. Fix i = 1, . . ., N. It follows from the proof of 
Lemma 2 that the bound for Var(Li) is accurate if (a) 

VarjE[Ni(Iie,)JJ = j] is small and (b) the intervisit time 
distributions {Ii,j: j = 1, . . ., M} have relatively low vari- 
ability. As discussed in Section 3, equalization of the indi- 
vidual intervisit time distributions, and hence reduction of 
VarjE[Ni(Il )|J = j] can be promoted by appropriate spac- 
ing of the items in the table T (Phase III). 

We are now ready to derive a nonlinear program, with 
the quantities {Fi:i = 1,..., N} and 5 as the primary 
decision variables, the value of which provides a lower 
bound for the exact objective (6). Our approach is to re- 
place the true distributions of the Li-variables by those of a 
set of variables {Li: i = 1, . .., N} achieving a minimal 
value for the objective (6) among all distributions with the 
same first and second moments. A similar approach has 
been followed by Klincewicz and Whitt (1984) to obtain 
bounds for the mean queue length in a GI/M/1 queueing 
system as a function of the first two moments of the inter- 
arrival time distribution. Thus let 

Xik = Pr[Li = k], k = 0, 1, ... 

N 

(LB) Z = min X E pi[k - b.] + hi[b- k]+Xik 
i=l k 

N 

+ E K1Fi, (14) 

subject to 

E XXk = 1, i 1, N, (15) 
k 

E A E(S,) 

k 2(1 -pi) 

+ 2- F 
. 

= I,... N, (16) 2 F,J 

k2 xE 2(S79) 2A7'E(S7) + 9AJE(S7) 

k 2(1 - pi)2 6(1 - pi) 

Ai(l -pi)(] + si + AiE(S-)) 

2Fi 

(1 -p1)(A7+ 3) 
(+ -P2F , 

+ 1 
. 

, N, (17) 
12FI 2 

N 

E riFi + 5= I-p, (18) 

all Xik, b1, Fi, 6 0. (19) 

The objective (14) coincides with (6), with expectations 
written explicitly in terms of the minimizing probabilities 
{Xik}. Equation (15) ensures that for all i = 1 . - - - N, the 
quantities {xi;k} correspond with a proper density function. 
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The inequalities (16) and (17) follow immediately from 
Lemmas 1 and 2(b), since lk kxik = ELi and Ek k2Xik - 

ELi for all i = 1, ... , N while Equation (18) is immediate 
from the definition of {Fi} and 6; the fraction of time 
available for all setups is clearly given by 1 - p - 6 and 
the fraction of time devoted to setups for item i is given by 
riFi, (i = 1, ... , N). We conclude: 

Theorem 3. The optimal value of the nonlinear program 
(LB) provides a lower bound for the best periodic base- 
stock policy, i.e., Z - Z*. 

(LB) represents a fairly large nonlinear program (de- 
pending upon the level at which the distributions {Xik} are 
truncated) which fails to be convex. A natural solution 
approach employs Lagrangean Relaxation of the single 
constraint (18) since the relaxed problem decomposes into 
N separate nonlinear programs each with only three con- 
straints (in addition to nonnegativity constraints for all 
variables)! Since (LB) is not convex, the Lagrangean dual 
may exhibit a duality gap, thus representing a further lower 
bound. 

Remark 3. In many inventory models, analyses are per- 
formed on an item-by-item basis with setup cost parame- 
ters determined, in whole or in part, from estimates of the 
(marginal) time value of the associated setup times, usually 
an exceedingly difficult task. Observe that in the Lagran- 
gean relaxation of (LB) the setup cost parameters {Ki: i = 
1, ..., N} are transformed to {Ki = Ki + Ari: i = 1,..., 
N} with A the Lagrangean multiplier. Using the values K1 
= Ki + A*ri with A*, the maximizing value of the Lagran- 
gean multiplier in the Lagrangean dual, provides a rigor- 
ous foundation for the computation of such "allocated" 
setup cost parameters. 

We observe that each of the minimizing distributions in 
the lower bound problem (LB) are concentrated on at 
most three points. (Let (x*, b*, F*, 6*) denote an optimal 
solution for (LB); fix b = b*, F = F* and 6 = 6* and note 
that for all i = 1, . .., N{x*: k = 0, 1, . ..} is an optimal 
solution of the resulting Linear Program with three con- 
straints only.) The Li-distributions which arise under peri- 
odic base-stock policies are much smoother; see, e.g., 
Federgruen and Katalan (1994). As in Klincewicz and 
Whitt (1984) a significantly improved approximation to the 
exact objective (6) can be expected when adding extra 
shape constraints to the constraint set (15)-(19). For ex- 
ample, we have observed that the shortfall distributions 
tend to be unimodal. Thus, for any given i = 1,..., N, 
there is an integer ko(i) such that 

Xik -Xik1I for k - k0(i) andX k Xik -1 for k > ko(i). 
(20) 

Likewise, we have observed that the shortfall distributions 
tend to be IFR (Increasing Failure Rate), which implies 
the constraints: 

k-I 

XikXik-I ) Xik-lXik whereXik = 1 - Xit, (21) 
1=0 

i =1 , ...,N, k = 1 2,. 

If the shortfall distributions are known to be log-concave, 
the following constraints are satisfied: 

X7 X2 k Xik+1, i = 1, . . . , N, k = 1, 2,.(22) 

Thus, improved lower bounds can be obtained by adding 
one or more of the constraint sets (20)-(22) to the con- 
straints (15)-(19), albeit at the expense of considerably 
enlarging each of the subproblems in the Lagrangean re- 
laxation procedure. As a result these nonlinear programs 
may potentially be prohibitively large. We therefore seek 
to simplify the mathematical program (LB). 

A Simplified Mathematical Program for Phase (I) 

A vastly simplified mathematical program for the determi- 
nation of optimal production frequencies (Phase (I)) 
would be available provided the optimal cost values of the 
newsvendor problems associated with (6) could be ob- 
tained as closed form expressions of the first m moments 
(say) of the Li-distributions (i = 1 ... , N). Recall Li 
serves as the demand distribution in the corresponding 
newsvendor problem for item i, the minimal cost of which 
depends unfortunately on the complete distribution of the 
Li-variable. However, several reasonable closed form ap- 
proximations can be obtained as a function of Li's mean 
and standard deviation only. 

One such approximation is due to Scarf (1958), which 
surprisingly received little attention until its recent resur- 
rection by Gallego (1998) and Gallego and Moon (1993). 
Fix i = 1, ..., N. Note that 

INVi =piE[Li - bi]+ + hiE[bi -Li], 

the long-run average holding and backlogging cost for item 
i, can be written as 

INVI = (pi + hi)E[Li - bi]+ + hi[bi - E(Li)] 

INV -- (p + hi)[ \1Var(Li) + (b - 

- (bi - E(Li))] 
+ hi(bi -E(Li)), 

since 

(Li -bi) = {Li - bi + (Li-bi)112 

and since 

E - bj i E (LI - = \/Var(L ) + (bi -E(Li)) 

by the Cauchy-Schwarz inequality; see Lemma 1 in 
Gallego and Moon (1993). Observe that the approxima- 
tion INVis depends on the distribution of Li only via its 
mean and standard deviation. Moreover, the minimum 
value of INV i under the optimal base-stock level b*can be 
obtained in closed form, as we show in Lemma 4 below. 
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An alternative approximation for INVi, the cost of the 
newsvendor problem associated with item i, can be ob- 
tained by approximating the Li-distribution by one in a 
class of two-parameter distributions %, e.g., the Normal 
distributions or any other class in which every distribution 
G(O) with parameters v and T can be written as G(t) = 
G?((t - v)/I); here Go is a unique standard distribution. 
Such classes include (in addition to the Normals) (i) the 
delayed (or shifted) exponentials with v the delay (or shift) 
and T the standard deviation of the distribution, as well as 
(ii) all classes of delayed Gamma, Weibull, or Pareto dis- 
tributions with a common shape parameter. Let INVG de- 
note the minimum cost of the newsvendor problem under 
the class of distribution %. Also, let Go-,(.) denote the 
inverse of Go() and ac) the associated loss function, i.e., 
ao(x) = fxj (u - x) dG0(u). 

Lemma 4. Fix i = 1,..., N. Let /xi = E(Li) and = 
Var(Li). 

(a) infb INVs = tsori where Os = Vp1h1. 
(b) infb INVG = GTi + hi(v, - /xi) where 

((Pi + h-)co (Go +h)) + h,G (7hi)1. 

(c) Let F(D) denote the cdf of the standard normal and a() 
the associated loss function. Let X denote the class of 
normal distributions. Then, infb INVN = 3No-i where 

PiN ((p +hi)a (-1(p Pi/ ) 

+ hiYl(p ' h,) 1P 

Proof. (a) The proof of this part is given in Gallego and 
Moon (1993). To keep the presentation self contained we 
give a brief argument here. Let bi = bi - /xi. Note that 

no1 + bi' - bi(3 INVf= (pi +hi) ' + hib1 (23) 

is convex in bi. The minimum value of bi is thus obtained 
as the unique root b7 of the first derivative of INVs: 

1 ~ ~~~~2 12 (h-p1)0 
2 (pi + hi)bi(o-1; + bi2)-1/2 + 2 

so that 

V 0-i~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~. 

Part (a) thus follows by substituting this value of bi into 
(23). 

(b) Let bi = bi - vi. It is well known and easily verified 
that the optimal value of bi is given by 

Also, 

INVf= (pi + hi)E[Li vi -bi] 

+ hibi + hi(vi -/i) 

= (p1 + hi){ (u -bi)dG (u) 

+ h i G ? (l Pi hT)i + hi (vi - /xi) =(Pi + hi)Ti 

{ (p/l(pf+h )) ( - GO (Pi)) dG (u) 

J= " (pl(? hi))0(o ~'h) 
+ h iGo(?-' ( )i ?+ h (vi - xi) 

= ( Pi +hi)c? (G- pi + hi. 

+ h -GO-'( Pi hlTi + hi(vi - /x) 

Part (c) is immediate from part (b). D 

We thus conclude that both under the Scarf and under 
the Normal approximation, the minimal newsvendor cost 
associated with item i, can be obtained as a closed form 
expression proportional to o-i, the standard deviation of Li; 
for the other two parameter classes of distributions, infb 
INVG is likewise expressed as a simple closed form func- 
tion of /xi and o-i, the mean and standard deviation of Li. 
The usefulness of the above classes of two-parameter dis- 
tributions in terms of generating closed form expressions 
for minimum inventory costs was first observed in Zipkin 
(1982). 

We henceforth confine ourselves to the Scarf and Nor- 
mal approximations. Under these approximations and in- 
voking Lemma 2, the lower bound mathematical program 
(LB) for the determination of the optimal production fre- 
quencies drastically simplifies to: 

N N 

(P) min E fiii(Fi) + E KiFi, (24) 
i=l i=l 

subject to 

N 

E rEi F 1 -p, (18) 
ill 

F i >O:-0; i = 1, . ,N, (25) 

where 

~~p~(F~)= xi A (-pi) AX2(1-poi)2 qi (Fi ) =8Vi+ 2(1FP')+ A p 2 F,. 1 2 F7~ 

and under the Scarf (Normal) approximation , = 

pS( = 1N) (i = 1,..., N). Exceedingly simple solution 
methods are available to solve this simple nonlinear pro- 
gram. This follows from Lemma 5. 

Lemma 5. The objective (24) of (P) is separable and con- 
vex in the decision variables {Fi}. 

Proof. Each of the q1i-functions is of the form 
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+j(X) = 
+ + X 

with A, B, C - 0. Taking the second derivative if' of i/, we 
obtain: 

tfr"(x) 1LA2+ B + Cf 1[6A + 2 
2 2 x ] x4 X3] 

~~?B?cf3/2[ ?_]A _1 WA + B + C] +X2 

4 2 X ]3 x 

_ LS+X+]X X] [X X] 
1 + C _ + 3/2~?~ 

4 2 X ] 

= A{jjB C+ 
3/ 

{8A2 12AB + 3B2 + 12AC + 4BC} > o 

Observe also that the nonnegativity constraints (25) are 
never binding. To find the optimal solution for (P), we first 
solve the unconstrained problem by finding for all i = 
1,..., N, the unique root of the equation tif(Fi) = -Ki 
(see Lemma 5). (As shown below this amounts to finding 
the unique root of a sixth-degree polynomial.) If the re- 
sulting solution satisfies (18') it is of course optimal. Oth- 
erwise, (18') is binding; let A > 0 denote the (optimal) 
Lagrangean multiplier associated with (18'). For a given 
value of A the optimal corresponding Fi-values are ob- 
tained by determining the unique root of the equation (see 
Lemma 5) 

+f4(F) = - + + c] -1/2[-2Aj + 

_ def 
=-Ki =-(Ki + riA) (26) 

(the time adjusted setup cost; see the discussion above), 
where 

A?;(l - pi)2A(1-p 
i 12 ,i Bi= 2i(1 Pi), and Ci = V, 

or, in terms of x = F-1 the unique root of the sixth degree 
polynomial 

Ki[A1x2 + Bix + Ci] = [2Aix3 + Bix2]2. 

Since, by Lemma 5, the functions pif') are increasing, we 
obtain that the root of (26) decreases with A. The optimal 
value of A can thus be found by simple bisection verifying 
for each trial value of A whether the corresponding Fi 
values satisfy 1 riFi > 1-p or = 1 r1Fi S 1 -p. 

While the above method is simple, it involves repeated 
computations of (unique) roots of sixth-degree polynomi- 
als. As an alternative, we may wish to change variables to y1 
= r1Fi, obtaining the formulation: 

N i N K 
(P') min E 13ii -( + y E , (24') subj oi= ri i=1 ri 

N 

Yi 1- (18"f) 
i=l 

and restrict ourselves to yi-values which are integer multi- 
ples of a given grid size d (e.g., d = 1% or d = M%o). It is 
well known (see Gross 1956 and Fox 1958) that this dis- 
cretized version can be solved by the greedy procedure; 
starting with yo = d(i = 1, . .. , N); we sequentially incre- 
ment by one unit of d a component yi for which this incre- 
ment results in the largest positive reduction of the cost 
objective (24') and terminate when no such value can be 
found or when i=1 Yi = 1 - p. 

The greedy procedure clearly requires at most O(N + 
(1 - p)d-1) elementary operations. Simple and fully poly- 
nomial time algorithms for (P') are due to Galil and 
Megiddo (1979), Frederickson and Johnson (1982), and 
Groenevelt (1986). 

We conclude with a few qualitative observations regard- 
ing the solution of (P). First, note that (18') is always 
binding, i.e., 6 = 0, in the important special case where no 
external setup costs are incurred, i.e., Ki = 0 for all i = 
1, ..., N. (In this case, the objective (24) is decreasing in 
all Fi-variables.) In other words, in the absence of external 
setup costs, it never pays to insert idle times. While intui- 
tive, this result may fail to hold for the exact system-wide 
objective (6), as opposed to its approximation (24), albeit 
that such failures occur rarely, e.g., under extremely vari- 
able setup times. This phenomenon was first pointed out 
by Sarkar and Zangwill (1991) showing that mean waiting 
times can sometimes decrease as mean setup or idle times 
are increased. See also Zangwill (1992, 1994) for further 
discussion on this phenomenon. 

Staying with the important special case of zero external 
setup costs, we also observe that the optimal vector of the 
frequencies (F, 6) is quite insensitive to the specific ap- 
proximation used in (P), i.e., the solution hardly depends 
on which of the above described approximations for the 
newsvendor costs {INVi} is employed. This follows from 
the fact that in most practical settings, the pJ/hi-ratios of 
the different items tend to be equal or close to equal; 
indeed, both the holding cost and backlogging cost rates 
are often set proportional to the unit cost values of the 
items. Observe that if all p/hi-ratios are exactly identical, 
the P3i-coefficients in Lemma 4 obtained under alternative 
approximations differ from each other by a proportionality 
factor only, thus resulting in the same optimal solution for 
(P) (since all Ki = 0). Even more generally, the same 
argument reveals that the relative frequencies {FJ/Fj: i, j = 
1,..., N) are unaffected by the specific approximation 
used in specifying the ,B-coefficients in (24) as long as both 
the {pJ/hi}-ratios and the {KJ/ri}-ratios are (close to) iden- 
tical. These observations regarding the robustness of the 
optimal vector of production frequencies instill further 
comfort in the use of the approximation approach leading 
up to problem (P). 
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Observe also that in problems (LB) and (P), the (ap- 
proximated) cost objective depends on the vector of in- 
serted idle times only via its sum A,,, = XYm A1 = 6C. 
Indeed, Federgruen and Katalan (1996a) proposition 2 
shows for cyclical base-stock policies that this invariance 
result applies to the exact cost objective; in other words, it 
suffices, without loss of optimality, to insert a single idle 
time period and it is immaterial after which of the N items 
this idle time period is inserted. The invariance result fails 
to apply to the exact cost objective for more general peri- 
odic base-stock policies, even though partial invariance re- 
sults continue to apply, see Federgruen and Katalan 
(1996b, corollary 5). In view of the characteristics of the 
approximating mathematical programs (LB) and (P) we 
recommend that a single idle time period of length 8*C be 
inserted at the end of the polling table (with 6* the opti- 
mal value of 6), even when the optimal frequencies result 
in a noncyclical base-stock policy. 

3. PHASE (111): THE ITEM-SEQUENCE IN THE 
PRODUCTION TABLE 

With the table size M and the item frequencies {Mi} de- 
termined in Phases (I) and (II), only the spacing of the 
items in the table T needs to be resolved. This is the 
objective of Phase (III) of our procedure. Several heuris- 
tics have been proposed for this problem in other related 
contexts, in particular, (i) the Golden Ratio heuristic and 
(ii) a machine (makespan) scheduling heuristic proposed 
for deterministic ELSPs. As mentioned in Section 1, the 
former attempts to equalize the number of entries between 
consecutive appearances of each item in the table while 
the latter attempts to equalize the times between consecu- 
tive production runs of the same item. One can think of 
this spacing problem as a scheduling problem with M jobs, 
the first M1 of which are of type 1, the next M2 of which 
are of type 2, et cetera. 

More specifically, the Golden Ratio rule associates with 
job k an index Ik = kY-1 modulol (k = 1, . .. , M) where 

= 0.618034 = (5 - 1)/2 (the so-called golden ratio 
associated with the Fibonacci numbers), and sequences the 
jobs in ascending order of their index values. It appears 
that the Golden Ration rule was first proposed in Knuth 
(1973) where an extensive discussion of its properties can 
be found, see also Boxma et al. (1990, 1993) for a review 
of other spacing problems solved by this method. 

It appears more appropriate to attempt to equalize the 
intervisit times {Ii j: j = 1,..., Mi} associated with any 
given item i (i = 1 . . , N). This is the rationale underly- 
ing Dobson's (1987) makespan heuristic. Indeed, as ob- 
served in Remark 2, the lower bound for Var(Li) in 
Lemma 2 and hence the lower bound in the problem (LB) 
and the approximate lower bound in (P) are all tightest if 

VarjE[N1(Iej)JJ = j] = 0, i.e., if the intervisit times {Ii j: 
j = 1,.. , Mi} are identically distributed. Note that all Mi 
jobs associated with a given item i (i= 1,.. ., N) are of 
the same expected duration r, + p1C/M1 if the intervisit 

times {Ii j: j = 1, , Mi} have identical means; here C is 
the expected cycle time given by (4) with Xj l I j = 6*, the 
optimal value of 8 obtained in Phase (I). Dobson's heuris- 
tic assumes that all {Mi}-frequencies have been rounded 
to power-of-two integers and conceives of the sequencing 
problem as a scheduling problem with M jobs, each with 
the above described duration, and with M+ machines 
where M' = maxi {Mi}. The fth machine (t 1. 
M+} corresponds with the fth of M+ subintervals of the 
full cycle C (each of which is of equal length C/M+). Start- 
ing with t = 0, 1, . . . , log2M' the rule schedules for all 
items with Mi = M+/2t their M+/2t corresponding jobs 
exclusively on one of the machine sets {kM?/2t + f:k = 0, 
1,..., M+/2t - 1} (4 = 1. . 2t), where the specific 
machine set is chosen so as to heuristically minimize the 
machine makespan, e.g., by the LPT (Longest Processing 
Time first) procedure. 

The requirement in the above heuristic that all table 
frequencies {Mi} be rounded to power-of-two values rep- 
resents one of its drawbacks. As an alternative capable of 
handling arbitrary Mi-values, we propose an iterative 
shortest path based heuristic. Starting with an arbitrary 
initial sequence (e.g., the sequence obtained by the 
Golden Ratio rule or the makespan scheduling procedure) 
we attempt, in the kth iteration to improve the positions of 
the Mk entries of item k (modulo N) as follows: as above, 
associate with each entry for item i a duration ri + piC/M1 
(i = 1,..., N). Let ur denote the current periodic se- 
quence after removal of all but the first entry of item k. 
Now, insert the remaining (Mk - 1) entries of item k so as 
to minimize the sum of the absolute deviations of the 
expected intervisit times from their target value (1 - 

pk)C/Mk + rk, using the above durations of the jobs in 
computing the intervisit times. We replace the existing set 
of entries for item k by the newly obtained set only if the 
resulting table T evaluated by the above described method, 
is associated with a strictly lower cost value in (6). 

The above positioning problem can be solved as follows: 
let p denote the first entry of item k and cut the path {p + 
1, p + 2,..., M, 1,..., p} in the sequence -r into Mk 

links so as to minimize the sum of the absolute deviations 
of the arc lengths from the target value (1 - pk)C/MkA + rk. 

The problem of finding the shortest path with Mk arcs 
from entry p back to entry p can be solved exactly in 
O(M2Mk) time; many faster highly effective heuristics can 
be used instead. This iterative repositioning procedure is 
terminated as soon as in a series of N consecutive itera- 
tions, none of the positions of the entries can be improved. 
Note that this procedure terminates after a finite number 
of iterations since the sequence of optimal cost values as- 
sociated with the corresponding table T is monotonically 
decreasing, thus precluding any cycling phenomena. 

4. NUMERICAL STUDY 

We conclude this paper with a numerical study designed to 
test the quality of the proposed heuristics for determining 



FEDERGRUEN AND KATALAN / 893 

Table I 
Ratio of the Largest and the Smallest p-values for 

co-vectors and N 

N COOl) co(2) co (3) 

3 1.60 5.00 20.00 
5 1.67 7.00 33.00 
7 2.00 5.00 29.00 

production schedules. Recall that the optimal production 
schedule represents an exceedingly difficult combinatorial 
problem as there are (N!($m)NM-N) potential sequences of 
a given periodicity M (:z:N) alone, and the optimal M value 
itself may be quite large, resulting in a large number of 
potential absolute frequency vectors, {Mi; =1 Mi = 

Mi - 1}. Therefore, we restrict ourselves to problem in- 
stances with at most seven items. As demonstrated above, 
the heuristics themselves can be used confidently for sys- 
tems with scores or hundreds of items. 

We have confined ourselves to instances with zero exter- 
nal setup costs for all items (i.e., Ki = 0 for all i = 1, . . .. 
N). Recall that the expression for the average setup cost 
component in the objective function of (P') (or (P)) is 
exact. Thus, the approximation of problem (P') is rela- 
tively more accurate in the presence of setup costs. By 
demonstrating that our heuristics come close to identifying 
optimal periodic base-stock policies for settings without 
external setup costs, we thus are able to conclude that the 
same will apply (a fortiori) for general settings with positive 
setup costs. 

In addition to addressing the more limited set of prob- 
lem instances (18 in total) considered in the setup time 
problems of Markowitz et al. (1995), we have evaluated 
312 additional problem instances which are partitioned 
into three sets; set 1 (2, 3) consists of 270 (36, 6) problem 
instances with N = 3 (5, 7); within each set, we vary the 
total utilization rate p; p e {0.15, 0.25, 0.35, 0.45, 0.55, 
0.65, 0.75, 0.85, 0.90} in set 1, p E {0.25, 0.45, 0.65, 0.85} 
in set 2 and p E {0.25, 0.45} in set 3. For a given value of 
p, the demand rates of the individual items are specified by 
a non-negative allocation vector co = (w01,..., (N) with 
,i= lcI 1, i.e., (Pl' , PN) = (w1P,..., wNp). Three 

distinct allocation vectors cw, are considered so as to cover 
relatively balanced and two types of unbalanced systems. 
The ratios of the largest and the smallest p-value are re- 
ported in Table I. 

For each of the (p, co) combinations, we generate 10 (3, 
1) problem instances in set 1 (2, 3) as follows: for a given 
value of p, the traffic intensities of the individual stations 
are specified by a non-negative allocation vector Ct = 

(wJ1, . . . , 
(pN) with i= = 1, i. e., (P1, , PN) = 

(wlp,..., wNp). For each problem instance, we generate 
combinations of production/setup time distributions as fol- 
lows: all production and setup times are of one of the 
following four types: deterministic, exponential, uniform 
and Erlang. We assign to each of the random variables {S1, 
R1; i = 1,.., N} one of the four distributional forms 

independently and with equal probability 1/4. Having deter- 
mined that a specific service time or switching time vari- 
able, Si or Ri (i = 1, *, N) is of one of the four types, we 
select the parameter(s) associated with this distribution as 
follows: the mean si (ri) is selected uniformly on the inter- 
val [0.25, 1.0] ([1.0, 2.5]). For Erlang distributions, we se- 
lect the phase uniformly among the integers between 2 and 
10; finally, for a uniform distribution, we select the lower 
bound of its support uniformly between 0 and the assigned 
mean. For all problem instances, the inventory holding 
(backlogging) cost rates, hi (pi), are selected uniformly on 
the interval [0.1, 10]([1, 100]) for all i = 1, . . ., N. 

For each problem instance, we first determine the rela- 
tive frequency vector {Fi} (Phase (I)) via the mathematical 
program (P') under the Scarf and Normal approximations. 
The problem is solved via the greedy procedure with a grid 
size d = 0.001. The vector of absolute frequencies, {Mi} 
(Phase (IL)) is selected via the simple rounding procedure 
described in Section 1 with a prespecified precision, 7) = 
0.25, and with an upper bound on the maximum table size, 
Mmax(Mmax = 30, 50, 70 for N = 3, 5, 7, respectively). To 
differentiate between the impact of the frequency vector 
{Mi} (Phases (I) and (II)) and the sequence selection 
(Phase (III)), we initially determine the production table T 
via the Golden Ratio procedure exclusively. We denote by 
7is and TN the solutions obtained by the Scarf and Normal 
approximations, respectively. For each of the two initial 
solutions, we perform a limited local search among at most 
2N neighbors by changing only one of the Mi-values by + 1 
or -I for each i (i = 1,..., N) at a time. For each 
production table T, we compute the system-wide long-run 
average cost via the evaluation methods described in Fed- 
ergruen and Katalan (1996a) and select the one which 
achieves the minimum cost. We also conduct an extensive 
local search among all 3N neighbors in the set X'=1 {M1 - 
1, Mi, Mi + 1} of each of the two initial solutions and 
again select the one which minimizes the overall long-run 
average cost. Let TL and TE denote the solution obtained 
by the limited and extensive local search procedures, 
respectively. 

As mentioned above, determining the true optimal pro- 
duction table and its associated cost is impractical even for 
systems with only three items. Therefore, we select the 
best production table within a large neighborhood of our 
best heuristic solution TE; for systems of size 3 (5, 7) we 
search among the 103 (55, 57) neighbors in the set 
X {1, ..., 1O}(XNj{M1 - 2, Mi - 1, Mi, Mi + 1, Mi + 
2}). 

To assess the impact of the sequence selection, we apply 
a pairwise interchange heuristic to the solution TL. In each 
iteration we evaluate the cost improvement associated with 
interchanging each of the pairs of different entries in the 
table T, implementing whichever pairwise interchange re- 
sults in the best improvement, if any. The procedure termi- 
nates with a solution TPI at the first iteration where no 
improvement can be obtained from a pairwise interchange. 
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Let C(T) denote the long-run average cost associated 
with a solution T, and Zs, ZN the approximated cost ob- 
tained in problem (P') under the Scarf- and Normal- ap- 
proximation, respectively. Let Tc denote the pure cyclical 
schedule and COPT_the cost of the best production table 
found, i.e., the table found by the extensive search over the 
103, 55, or 57 neighbors of the solution TE. In each set, we 
have recorded for each problem instance the following 
performance measures: 

r, = the ratio between the minimum approximated cost 
and COPT 

= min{Zs, ZN}/COPT, 

El= the relative optimality gap between the initial 
solution and COPT 

= min{C(TS), C(TN)}/COPT 1, 

E2= the relative optimality gap between the solution 
obtained after the limited search and COPT 

= C(TL)/COPT - 1, 

3= the relative optimality gap between the solution 
obtained after the extensive search and COPT 

= C(TE)/COPT - 1, 

4= the relative optimality gap between the pure cyclical 
schedule and COPT 

= C)ICOPT - 1, 

Al = the relative improvement obtained after the limited 
search 

= min{C(Ts), C(TN)}/C(TE) - 1, 

A2 = the relative improvement obtained after the 
extensive search 

= C( TL)/C( T ) - 1, 
A3 = the relative improvement obtained after the 

pairwise interchange procedure 
= C(TL)/C(TP) - 1. 

Tables II, II, and IV report the averages, standard devi- 
ations, and maxima of these performance measures for all 
categories of problem instances with the same total de- 
mand rate, p, in sets 1, 2, and 3, respectively, as well as 
their summary statistics for the entire set. Figures 1 and 2 
exhibit the histograms of the four E-optimality gap 
measures. 

Focusing first on the results for systems with three items 
(N = 3, set 1) we observe that the initial solution obtained 
from the three-phase procedure is on average only slightly 
better than the cyclical base-stock policy with table T. 
However the performance of this initial solution is already 
significantly more reliable than that of the cyclical policies. 
The standard deviation of the optimality gap vis-a-vis COPT 

is more than six times smaller for the initial periodic table 
as compared to Tr. Our second major observation is that 
the relatively inexpensive limited local search eliminates 
most of the optimality gap vis-a-vis COPT, reducing it to an 

Table II 
Set 1, N = 3 

p r1 El E2 E3 E4 Al A2 A3 
0.15 mean 0.6864 0.0517 0.0213 0.0132 0.1068 0.0300 0.0080 0.0259 

stdev 0.2588 0.0522 0.0229 0.0176 0.1146 0.0522 0.0114 0.0553 
max 1.0892 0.2438 0.0749 0.0722 0.4737 0.2390 0.0492 0.2862 

0.25 mean 0.7396 0.0521 0.0226 0.0099 0.1060 0.0287 0.0125 0.0220 
stdev 0.2586 0.0668 0.0472 0.0290 0.1138 0.0407 0.0362 0.0502 
max 1.1076 0.2772 0.1865 0.1569 0.4036 0.1398 0.1813 0.2045 

0.35 mean 0.7327 0.0570 0.0158 0.0073 0.0773 0.0407 0.0084 0.0386 
stdev 0.2954 0.0547 0.0259 0.0167 0.0741 0.0488 0.0222 0.0692 
max 1.2416 0.2337 0.0960 0.0796 0.2550 0.2282 0.0937 0.2532 

0.45 mean 0.8094 0.0425 0.0180 0.0047 0.0778 0.0240 0.0132 0.0112 
stdev 0.2759 0.0409 0.0307 0.0102 0.0598 0.0267 0.0270 0.0201 
max 1.3611 0.1470 0.1157 0.0398 0.1947 0.0959 0.0869 0.0924 

0.55 mean 0.7845 0.0561 0.0066 0.0012 0.0442 0.0491 0.0055 0.0241 
stdev 0.2834 0.0479 0.0129 0.0037 0.0525 0.0428 0.0128 0.0357 
max 1.1352 0.1452 0.0459 0.0154 0.1640 0.1366 0.0459 0.1205 

0.65 mean 0.8148 0.0516 0.0172 0.0059 0.0426 0.0338 0.0111 0.0322 
stdev 0.3158 0.0524 0.0290 0.0122 0.0634 0.0431 0.0217 0.0436 
max 1.4558 0.1864 0.1380 0.0440 0.3116 0.1549 0.0921 0.1388 

0.75 mean 0.7283 0.0776 0.0173 0.0061 0.0348 0.0588 0.0111 0.0622 
stdev 0.2966 0.0885 0.0397 0.0175 0.0516 0.0676 0.0342 0.1017 
max 1.1591 0.2802 0.1726 0.0699 0.2187 0.2120 0.1726 0.4474 

0.85 mean 0.6778 0.0795 0.0295 0.0127 0.0564 0.0481 0.0161 0.0503 
stdev 0.2140 0.0911 0.0557 0.0300 0.0620 0.0589 0.0305 0.0718 
max 0.9857 0.3156 0.1983 0.1026 0.1927 0.2078 0.1010 0.2625 

0.90 mean 0.6443 0.0629 0.0079 0.0047 0.0292 0.0544 0.0031 0.0628 
stdev 0.2459 0.0766 0.0253 0.0202 0.0379 0.0671 0.0101 0.0932 
max 1.0028 0.2799 0.1283 0.1060 0.1283 0.2333 0.0453 0.3829 

Set 1 mean 0.7353 0.0590 0.0174 0.0073 0.0639 0.0408 0.0099 0.0333 
stdev 0.1056 0.0129 0.0080 0.0059 0.0784 0.0211 0.0021 0.0048 
max 1.4558 0.3156 0.1983 0.1569 0.4737 0.2390 0.1813 0.4474 
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average of 1.74%. (See the summary statistics for the mea- 
sures E2 and A2.) The same relative comparisons apply to 
set 2 for systems with N = 5 items and the more limited 
set 3 for the case where N = 7. Note however that in set 2 
the cyclical base-stock policy is on average 11.15% more 
costly than COPT while the initial table found by the three- 
phase procedure is on average 8.56% more costly. 

The histograms in Figures 1 and 2 show that the average 
optimality gap between TL or TE and COPT, i.e., the aver- 
age value of E2 and E3, is in fact biased upward due to the 
tail of the distributions: for example, in set 1, the limited 
search eliminates the complete optimality gap vis-a-vis 
COPT in more than 50% of the problem instances. 

The above results gauge the impact of determining ap- 
propriate production frequencies. Additional improve- 
ments can be achieved by altering the sequence in which 
the items are produced in the production table. The pair- 
wise interchange procedure achieves in set 1 (N = 3), on 
average, a 3.33% reduction of the cost achieved under the 
table TL and an average cost reduction of 4.66% for set 2 
(N= 5). 

We note, in addition that the above discussed relative 
performance of the different heuristics for Phases I and II, 
i.e., the cost the initial solutions (TS, TN), the cyclical table 
7c, the solutions obtained after the limited and the exten- 
sive search TL and TE, as well as COPT, are relatively insen- 

sitive to the total utilization rate p; no specific patterns are 
apparent as p is varied from 0.15 to 0.9 in set 1 and from 
0.25 to 0.85 in set 2. 

On the other hand the potential for cost improvements 
due to alterations in the sequence in which the items are 
produced, tends to increase as p increases reflecting the fact 
that in systems with a high utilization rate p, the lengths and 
variabilities of the intervisit times {Ii,j} for a given item i 
have a larger impact on system-wide performance. 

We now turn to the eighteen problem instances consid- 
ered in the "setup time" problem study of Markowitz et al. 
(1995). Fourteen of the 18 instances have N = 2 items. For 
these 14 instances, the authors report that cyclic base stock 
policies exhibit an average optimality gap of 11.1%, as 
opposed to an average optimality gap of 6.5% for their 
proposed dynamic cyclic policies. (The cyclical base stock 
policies are referred to as "generalized base stock policies" 
and represent a slight variant of the cyclical base stock 
policies considered here; after setting up for a given item, 
one starts production only if its inventory level is at least 
some y units below the base stock level and idles other- 
wise. The same minimum batch size y is used for all items. 
Partially based on the results mentioned below, we conjec- 
ture that little, if anything, is gained by the adoption of 
these minimum batch sizes as compared to static idle 
times.) The incremental 4.6% optimality gap is somewhat 

Table III 
Set 2, N = 5 

P Al 61 62 63 64 r1 A2 A3 

0.25 mean 1.1209 0.1016 0.0152 0.0064 0.1101 0.0850 0.0087 0.0421 
stdev 0.1295 0.0636 0.0167 0.0139 0.0891 0.0574 0.0045 0.0549 
max 1.2378 0.1956 0.0566 0.0429 0.2793 0.1707 0.0142 0.1449 

0.45 mean 1.1484 0.0864 0.0123 0.0065 0.0831 0.0732 0.0057 0.0685 
stdev 0.1117 0.0666 0.0103 0.0103 0.0648 0.0641 0.0044 0.1104 
max 1.2982 0.1905 0.0308 0.0303 0.2464 0.1684 0.0124 0.3367 

0.65 mean 1.1584 0.0598 0.0097 0.0042 0.1237 0.0494 0.0055 0.0250 
stdev 0.1582 0.0418 0.0085 0.0077 0.0836 0.0352 0.0046 0.0275 
max 1.4761 0.1242 0.0264 0.0228 0.2661 0.0953 0.0131 0.0666 

0.85 mean 1.1039 0.0946 0.0185 0.0113 0.1292 0.0747 0.0071 0.0507 
stdev 0.1896 0.0501 0.0236 0.0230 0.1026 0.0430 0.0052 0.0545 
max 1.2909 0.1412 0.0673 0.0639 0.2518 0.1267 0.0133 0.1341 

Set 2 mean 1.1329 0.0856 0.0139 0.0071 0.1115 0.0706 0.0067 0.0466 
stdev 0.1453 0.0563 0.0156 0.0145 0.0843 0.0507 0.0047 0.0677 
max 1.4761 0.1956 0.0673 0.0639 0.2793 0.1707 0.0142 0.3367 

Table IV 
Set 3, N = 7 

p, (l) ri El 2 E3 E4 5A1 A2 

0.25, 1 0.6438 0.0388 0.0243 0.0000 0.0749 0.0141 0.0243 
0.25, 2 0.7367 0.0098 0.0014 0.0000 0.0108 0.0083 0.0014 
0.25, 3 0.7533 0.0026 0.0026 0.0012 0.0066 0.0000 0.0013 
0.45, 1 0.5533 0.0258 0.0048 0.0004 0.0552 0.0209 0.0043 
0.45, 2 0.5887 0.0260 0.0040 0.0025 0.0501 0.0219 0.0015 
0.45, 3 0.8379 0.0157 0.0157 0.0063 0.0260 0.0000 0.0093 
mean 0.6857 0.0198 0.0088 0.0018 0.0373 0.0109 0.0071 
stdev 0.1087 0.0130 0.0092 0.0024 0.0271 0.0098 0.0090 
max 0.8379 0.0389 0.0243 0.0063 0.0750 0.0219 0.0243 
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inflated by the fact that dynamic cyclic policies allow for 
preemption while base stock policies do not. Note that with 
N = 2 items, only the cyclical sequence is relevant, i.e., no 
improvements can be expected from a noncyclical item 
sequence. 

The remaining four instances have N = 5 items. Two of 
these are symmetric, i.e., the items have identical charac- 
teristics. Here the authors report that the generalized 
base-stock policies (slightly) outperform the proposed dy- 
namic cyclic policies. Below in Table V, we show that the 
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same applies to the standard cyclic base stock policies. 
Clearly, for symmetric instances, the cyclical sequence is 
optimal among all periodic sequences. 

This leaves us with two asymmetric instances with N = 5 
items. Even in these two instances, all items share identical 
demand rates, setup times and production time distribu- 
tions, and zero setup costs i.e., they differ only in their 
holding and backlogging cost rates: hi = i, i = 1,..., 5 
and pi = 5hi, [10hi] for the first [second] instance. For 
these two instances the cyclic base stock policy is 5.2% and 
6.0% more expensive than the proposed dynamic cyclic 
policy. (Note that the standard cyclical base stock policy is 
again somewhat cheaper than the generalized cyclic base 
stock policy.) On the other hand, the nonperiodic se- 
quence (5, 1, 2, 5, 3, 4) with M1 = M2= M3 = M4= 1 and 
M5 = 2 is only 3.8% and 4.3% more expensive. The fre- 
quency vector M* = (1, 1, 1, 1, 2) is optimal among all 55 
vectors {1, 2, 3, 4, 5}5. This vector and the corresponding 
sequence (5, 1, 2, 5, 3, 4) is indeed found by our three- 
phase heuristic. 

Table V 
Comparison for the Five-item Cases with Markowitz et al. (1995) (MRW) 

Cost of Gen. 
Base-stock Cost of Standard Cost of Periodic 

p-/h,- Cost Cost of Dynamic Policy Cyclical Base- Base-stock 
ratio Structure Policy (MRW) (MRW) stock Policy Policy 

5 Symmetric 215.4 (?4.9) 214.1 (?2.6) 214.3 NA 
10 Symmetric 264.7 (?10.4) 260.2 (?4.7) 260.6 NA 
5 Asymmetric 610.8 (?8.9) 661.0 (?9.1) 642.7 633.8 

10 Asymmetric 737.4 (?18.7) 791.7 (?16.1) 781.9 769.1 
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