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We address multi-item inventory systems with random and seasonally fluctuating, and
possibly correlated, demands. The items are produced in two stages, each with its own

lead-time; in the first stage a common intermediate product is manufactured. The production
volumes in the first stage are bounded by given capacity limits. We develop an accurate
lower bound and close-to-optimal heuristic strategies of simple structure. The gap between
them, evaluated in an extensive numerical study, is on average only 0.45%. We use the
model to investigate the benefits of various delayed product differentiation (postponement)
strategies, as well as other strategic questions, including (i) the benefits of flexible versus
dedicated production facilities; (ii) the trade-off between capacity and inventory investments;
and (iii) the trade-off between capacity investments and service levels.
(Multi-Item; Multi-Echelon; Inventory Model; Markov Decision Process; Dynamic Programming;
Design for Postponement; Capacity )

Introduction and Summary
Multi-item production/inventory systems continue to
present major challenges that result from the com-
pounding effects of several complicating factors. First,
demands for the items fluctuate, partially because
of predictable and periodically varying causes and
partially because of intrinsic uncertainties that can-
not be attributed to identifiable or predictable exoge-
nous factors. Determining appropriate safety stocks
as a hedge against the random demand components
is especially difficult under nonstationary parameters
and in the presence of capacity limits requiring inven-
tory buildups to meet peak demands.
The above factors represent a challenge even for

a single item. In addition, it is usually necessary to
address a complete family of items via an integrated
model, e.g., because items share critical bottleneck

resources or have correlated demands. Finally, the
products in the family are often differentiated by a
limited set of features. This can be exploited by a
design for postponement strategy in which a common
intermediate product is manufactured in a first phase,
with the differentiating options and features post-
poned until a second phase.
Take, for example, one of the cases most widely

used in operations management classes to demon-
strate the benefits of postponement, i.e., the redesign
of the European DeskJet Printer line of Hewlett
Packard; see Kopczak and Lee (1993), reprinted, e.g.,
in Flaherty (1996). In the early 1990s, HP Europe sold
six different printers in this line in as many distinct
markets, differentiated in terms of the power supply
module, power cord terminator, and manual.
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Traditionally, localization took place in the Vancou-
ver plant (factory localization). The case demonstrates
the benefits of postponing localization until the print-
ers arrive at the European distribution center (DC
localization). The analysis of the case (see, e.g., the
teaching note by Flaherty et al. 1996) assumes that
(i) the localization process is instantaneous; (ii) the
capacity in the Vancouver plant is well in excess of
demands, even in the peak months; (iii) the monthly
fluctuations are i.i.d. across time, ignoring seasonal
patterns; and (iv) sales of the different items (in
the different European markets) are independent of
each other.
In reality, each of the above assumptions (i)–(iv)

may be violated. The localization process in the DC
requires approximately one week. It is therefore more
appropriate to view the system as a two-stage pro-
cess. Second, as the sales volumes continued to rise,
the Vancouver plant capacity turned into a possi-
ble bottleneck, especially in peak months. Third, it
is well known that the industry experiences several
seasonal peaks, in particular at the end of the sum-
mer (the back-to-school period) and at the end of the
year (because of holiday shopping and year-end bud-
get considerations). These peaks are clearly reflected
in the case’s sample data. As a consequence, a sig-
nificant part of the month-to-month sales variations
is due to seasonal patterns as opposed to represent-
ing noise around a constant year-round mean. Finally,
sales in neighboring European markets are correlated
as well.
The HP case and the surrounding articles have

stirred much interest in postponement among
researchers and practitioners. This paper looks deeper
at the benefits of postponement, seeking to under-
stand the environments in which postponement will
yield major cost reductions. We focus on factors
(i)–(iv) listed above. The specifics are illustrated with
the HP case and, because no existing tractable model
appears to address the combination of the four fac-
tors (i)–(iv), an analytical model is built and analyzed
to provide a tool for estimating the savings in other
settings. The analysis also results in easily imple-
mentable and close-to-optimal strategies for two-stage
production-distribution processes of the above type.

The first major consideration is the extent to which
seasonality exists and can be forecasted. The data
in the HP case are limited to a single year and are
therefore insufficient to arrive at a proper statistical
separation between seasonal fluctuations and intrin-
sic randomness around a predictable seasonal mean
demand curve. The purpose of our numerical investi-
gations is to illustrate that the magnitude of the bene-
fits of postponement can be quite different depending
on what part of the monthly sales fluctuations is due
to the seasonality pattern and what part is intrinsic
randomness. For example, we estimate that if there
is no seasonality, then postponement can reduce total
costs per month by about 16%. If very strong sea-
sonality exists (and can be correctly forecasted), then
the basic costs without postponement can be reduced
by about 32%. An additional 19% can be saved (on
the optimal basic costs, assuming seasonality) through
postponement. (These are compounded savings, so
the total savings from recognizing the seasonality and
implementing postponement is about 45%.) If post-
ponement is implemented but very strong seasonal-
ity is not recognized, so that a stationary policy is
used, then postponement saves only about 13%. This
example shows that the relative benefits due to post-
ponement (i.e., the percentage cost savings) can be
severely underestimated (by as much as 50%) when
failing to detect and account for seasonality patterns.
Moreover, the cost performance under postponement
is 37% lower when the proper seasonality pattern can
be forecasted and accounted for, as compared to when
such seasonality patterns are ignored.
The analysis so far assumes that there is sufficient

factory production capacity at all times. As capacity
becomes more limited, the benefits of postponement
are reduced. For example, if mean weekly demand
equals 90% of factory capacity, postponement reduces
costs by 7% when there is no seasonality and about
10% under very strong seasonality. There is less to
be saved when capacity is limited because the fac-
tory has fewer options and must produce nearly at
capacity most of or all of the time, regardless of the
demand stream.
Next, the analysis up to this point assumes that

demands for the final products are independent of
each other. The presence of correlations between the
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demand processes has a significant impact on the
magnitude of the benefits of delayed product dif-
ferentiation. Assume, for example, that the correla-
tions between all pairs of items are identical. If mean
weekly demand equals 80% of factory capacity, and
in the presence of moderate seasonality, postpone-
ment reduces the basic costs by (i) 16% when product
demands are independent, (ii) 6% if the pairwise corre-
lation is �= 0�5, and (iii) 23% and 33% when �=−0�25
and −0�5, respectively. In fact, the cost improvement
decreases monotonically with the correlation �. This is
explained by the fact that the benefits of postpone-
ment arise from the ability to pool the risks associated
with individual patterns during the first procurement
stage preceding the point of differentiation; the larger
the correlation between the demands, the smaller the
impact of risk pooling.
Finally, in many (re)design processes of produc-

tion/distribution systems, various options may pre-
vail to select the points of differentiation instead of
focusing on two extreme designs, immediate or factory-
localization and postponement to the very end of the
process as in distribution center (DC)-localization. It is
important to understand how the benefits of post-
ponement grow as the point of differentiation is var-
ied. For example, if the mean weekly demand equals
80% of factory capacity, under uncorrelated demands
and moderate seasonality, differentiating the products
after the 1st (2nd, 3rd, 4th) week of a five-week total
lead time reduces costs by 4% (9%, 14%, 20%) when
compared to the case of no product differentiation.
Most of the literature on stochastic inventory sys-

tems with capacity constraints deals with a single
final product; see Ciarallo et al. (1994) and, for mod-
els with periodically varying parameters, Aviv and
Federgruen (1997a) and Kapuscinski and Tayur (1998)
and the references therein. Song and Zipkin (1993),
Cheng and Sethi (1995), and Beyer and Sethi (1997)
deal with the uncapacitated single-item model, in
which the parameters fluctuate as a function of an
underlying Markov chain. (The periodic structure
treated here can be modeled within this framework,
with the period type as the state of the Markov chain.)
Evans (1967) is the first to address a version of the

multi-item model. He characterizes the structure of
an optimal policy in the case of two items, lost sales,

and stationary data. Metters (1998) presents several
heuristics for the special case of the model examined
here, in which both manufacturing stages are instan-
taneous and without characterization or measurement
of the associated optimality gaps (other than for two-
item models). His two basic heuristics determine a
base-stock level for each period as the period’s news-
boy solution, i.e., disregarding capacity limits and
periodic fluctuations. Actual production volumes are
determined by a single-stage linear program in which
demands are replaced by their means. Our general
approach in developing lower bounds and heuristic
strategies bears similarity to that employed in Eppen
and Schrage (1981), Federgruen and Zipkin (1984a,
1984b), and Chen and Zheng (1994) for uncapacitated
stationary models (but possibly more complex pro-
duction costs).
In addition, our paper contributes to the litera-

ture on delayed product differentiation strategies. Lee
and Tang (1997) recently provided a classification
of possible design changes in the production and
distribution processes that result in delayed prod-
uct differentiation, along with a few analytical mod-
els to evaluate some of these design changes. One
alternative mechanism to enhance benefits of delayed
product differentiation is to resequence various dif-
ferentiating manufacturing operations. In the apparel
industry, for example, families of garments are often
differentiated by color and style/size combinations;
a knitting operation specifies the style/size combina-
tion, while a dyeing operation determines the color.
Lee and Tang (1998) initiated an analytical model
to determine which sequence of operations results
in optimal operational performance; see Kapuscinski
and Tayur (1999) and Federgruen (1999) for refine-
ments of the analysis and Aviv and Federgruen (1998)
and Garg and Lee (1998) for recent survey chapters.
In §1 we specify the model and the required nota-

tion. As is the case for almost all multi-item inventory
models, an exact analysis is intractable. We first (§2)
develop a lower-bound approximation and heuristic
strategies for the case of a single-stage production
process, i.e., settings where products need to be differ-
entiated from the onset. In §3 we extend our bounds
and heuristic strategies for the general case where
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product differentiation can be postponed and produc-
tion occurs in two stages. In §4 we report on a numer-
ical study of synthetic problem instances carefully
designed to gauge the accuracy of the lower bounds
and the optimality gap of the heuristic strategies, as
well as to investigate the impact of several system
parameters on various performance measures. The
numerical study is also used to provide insights into
a number of fundamental design questions. In addi-
tion to (i) the benefits of a design for postponement
strategy, these include, characterization of (ii) the ben-
efits of flexible versus dedicated production facilities
and (iii) the trade-offs between capacity, inventory
investments, and service level. In §5 we revisit the HP
DeskJet Printer supply-chain case, addressing all of
the abovementioned complications. In §6, we develop
extensions of our basic model to settings where the
intermediate (undifferentiated) product can be kept
in stock. This section also contains a brief discussion
of settings with unknown parameters for the demand
distributions and intertemporal correlations.

1. A Basic Model
A company produces and sells J products. Inventories
are monitored periodically. Demands in each period
follow a given multivariate distribution with arbitrary
correlations between items. Initially we assume, as in
virtually all inventory models, that demands in dif-
ferent periods are independent and their distributions
are perfectly known.
Production occurs in up to two phases. In the first

phase of L≥ 0 periods, a common intermediate prod-
uct (or blank) is manufactured. Product differentiation
occurs in a second phase of lj periods for product
j = 1� � � � � J . The special case where L= 0 corresponds
with settings where final products need to be differ-
entiated from the onset, i.e., where they are manu-
factured in a single phase, without the intermediary
of a common blank. The size of any period’s order
for blanks is limited by a capacity constraint. No
capacity limit is imposed on the second production
phase. Indeed, in most practical localization or assem-
bly operations, such as Hewlett-Packard’s, capacity
can be increased rather easily, as needed.

We initially assume that, upon release of the batch
of blanks, the batch is allocated among the final
products, i.e., no inventories of blanks are main-
tained. Sometimes it is physically impossible or
highly expensive to store the intermediate product
(perhaps because it is highly perishable, or danger-
ous, as in smelting processes). In other settings, inter-
mediate inventories are avoided as a company pol-
icy to reduce the lead time and minimize material-
handling costs. Moreover, even if intermediate inven-
tories can be maintained, this option only exists if the
production process is designed in two phases, i.e.,
under delayed differentiation. Assessing the benefits
of delayed differentiation under the restriction of zero
intermediate stock thus results in a lower bound on
the full benefits achievable. Gallego and Zipkin (1997)
recently showed, albeit for stationary and uncapaci-
tated systems, that the benefits of intermediate stock
are very minor. Nevertheless, §5.1 extends our results
to allow for intermediate stock.
Unsatisfied demand is backlogged. Production

costs in both phases are proportional with the pro-
duction volumes. (In particular, there are no fixed-cost
components.) All other cost components incurred for
a product (in particular, holding and shortage costs)
are a function of the product’s inventory position =
inventory on hand + blanks being transformed into
units of the final product − backlogs. The capacity
limit, cost parameters and functions, and the demand
distributions vary periodically, with periodicity K.
The objective is to minimize expected discounted
costs over a finite or infinite horizon or their long-run
average value.
We now specify the exact dynamics of the deci-

sion process and introduce the basic notation. At
the beginning of each period t, a decision is made
whether to order a batch of blanks, and if so, of what
size. Any batch ordered in period t−L is completed
at the beginning of period t and needs to be allocated
to the J final products. Demands in the kth period of
any cycle of K periods are identically distributed as
the vector dk = �dk1� � � � � dkJ . Let,
xj = the inventory position of item j at the begin-

ning of a period, before allocation of this
period’s production batch of blanks;
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yj = the inventory position of item j at the begin-
ning of a period, after allocation of this period’s
production batch of blanks; and

bk = the capacity in periods of type k �k= 1� � � � �K.
To simplify the notation, we assume that all cost
parameters are stationary. (The extension where
these parameters depend on the period type k, is
straightforward.)
� = the variable first-stage production cost rate for

blanks; and
cj = the variable second-stage production cost rate

for item j.
� ≤ 1 is the discount factor. We assume that the

expected value of all other cost components for item
j �j = 1� � � � � J  that are charged to a period of type
k �k = 1� � � � �K can be given as a function Gkj �yj.
Assume, for example, that the carrying (backlog-
ging) cost incurred for an end-of-the-period inven-
tory (backlog) of x+j �x

−
j  units is given by a function

hj�x
+
j  �pj�x

−
j . With a standard accounting device, we

charge to each period the expected discounted hold-
ing and backlogging costs incurred a lead time later,
i.e., �Gkj �yj where

�Gk
j �yj = �lE�hj��yj−dkj −dk+1j · · ·−dk+ljj �+

+pj��dkj +dk+1j · · ·+dk+ljj −yj�+�� (1)

and where all superscripts are taken mod K.
We make the following assumptions regarding the

functions �Gkj and the finiteness of moments of the
demand distributions: We write ��x = O���x for
any pair of functions ��·, ��· if a constant C exists
such that ��x≤ C���x+1� for all x.
Assumption 1. �Gkj is convex and lim�y�→
 �Gkj �y =

lim�y�→
�c
k
j y + �Gkj �y� = 
 for all j = 1� � � � � J ; k =

1� � � � �K.

Assumption 2. �Gkj �y=O��y�r  for some positive inte-
ger r �j = 1� � � � � J ; k = 1� � � � �K.
Assumption 3. E��dkj 

r � < 
 �j = 1� � � � � J ; k =
1� � � � �K.

Convexity of the one-step expected-cost functions
��Gkj ! j = 1� � � � � J " k= 1� � � � �K� is satisfied under most
commonly used cost structures; e.g., in (1) it holds
when the functions �hj� pj� are linear or convex.

The second part of Assumption 1 is satisfied when-
ever the asymptotic marginal backlogging cost is in
excess of the period’s variable production cost rate;
it precludes the trivial and unrealistic case where it
is never beneficial to carry stock in anticipation of
demands. Assumption 2 is similarly general; if the
�Gkj -functions are of the form given by (1), it is sat-
isfied with r = 1 when hj�· and pj�· are linear or
piecewise linear, and with r ≥ 2 when these func-
tions are bounded by polynomials. Assumption 3 is
necessary to guarantee that the expected cost over
a single or multiperiod horizon remains finite; it
is often required to ensure that the functions �Gkj �·
themselves are finite; see Equation (1). Finally, we
write k+ = �k mod K+1. These three assumptions are
required in the single-item case as well; see Aviv and
Federgruen (1997a).

2. The Single-Stage Production
Model: Lower-Bound
Approximations and
Proposed Strategies

In this section we specify the model for the case where
L= 0, i.e., where production occurs in a single stage.
The model can be formulated as a Markov Deci-
sion Process (MDP) with countable state space S =
��x�k ! x is integer, k = 1� � � � �K� and (finite) action
sets A�x�k = �y ! x ≤ y and ∑J

j=1 yj ≤
∑J
j=1 xj + bk�.

In other words, the state of the system is given by
the prevailing vector of inventory positions and the
period type k.
Because the state space is of dimension J + 1, it is

impractical to compute an optimal policy. We develop
a lower-bound approximation, which corresponds
with a single-item model, by relaxing the action sets
A�x�k to sets Ã�x�k= �y ! y is integer and ∑J

j=1 xj ≤∑J
j=1 yj ≤

∑J
j=1 xj + bk�; in other words, we replace the

individual lower bounds y ≥ x by the aggregate con-
straint

∑J
j=1 yj ≥

∑J
j=1 xj . The relaxation is equivalent

to assuming that if the initial inventory levels of some
products are inappropriately high, some of these units
can be converted into others. It can be shown (see
Aviv and Federgruen 1999, §1) that the value func-
tions in this relaxed model depend on the vector x
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only via its aggregate sum X =∑J
j=1 xj , and are given

by Vn ! Z× �1� � � � �K� → R, defined recursively via
V0 ≡ 0 and

Vn�X�k = min
X≤Y≤X+bk

{
Rk�Y +�E

×
[
Vn−1

(
Y −

J∑
j=1
dkj � k

+
)]}

� (2)

where

Rk�Y =min
{ J∑
j=1
Gkj �yj !

J∑
j=1
yj = Y

}
� (3)

and where Gkj �yj= �Gkj �yj+�1−�cjyj+�cjE�dk+j �. The
functions Rk �k = 1� � � � �K can be shown to satisfy
Assumptions 1 and 2 (see Aviv and Federgruen 1999,
§1). We observe that Vn�X�k represents the minimum
expected cost over a horizon of n periods in a single-
item capacitated model with periodic parameters. It
has Dk =∑J

j=1 d
k
j , R

k�· and bk as the demand, one-step
expected-cost function and capacity limit in periods of
type k. The following theorem is proven in Aviv and
Federgruen (1997a) and shows that modified base-
stock policies are optimal for the relaxed model for
finite and infinite horizons and whether considering
total discounted or average costs. A modified base-
stock policy initiates in each period a production
batch to bring the aggregate inventory position as
close as possible to a specific, period-dependent tar-
get level. (If the initial aggregate inventory position is
above the target level, no new batch is initiated; if the
difference between the target level and the prevailing
inventory position exceeds the capacity limit, a full-
capacity batch is ordered.)

Theorem 1. (a) (Finite-horizon model) The function
H̃n�Y �k

�= Rk�Y + �E�Vn−1�Y −Dk�k+� has a finite
smallest minimizer ,∗

n�k. The modified base-stock policy
with base-stock levels �,∗

n�1� � � � �,
∗
n�K� is optimal for the

n-period model.
(b) (Infinite-horizon discounted model: � < 1) Let

V ∗
� �X�k denote the minimum expected total discounted
cost over an infinite planning horizon starting in a period
of type k with an inventory position of X units.
(b-i) V ∗

� = limn→
Vn (pointwise).

(b-ii) V ∗
� is a nonnegative solution of the optimality

equation

V�X�k= min
X≤Y≤X+bk

�Rk�Y +�E�V �Y −Dk�k+��� (4)

(b-iii) There exists a policy f ∗ that satisfies the Opti-
mality Equation �4 for V = V ∗

� , which is a modified base-
stock policy and minimizes the expected infinite-horizon
discounted costs.
(c) (Infinite-horizon average-cost model) Assume∑
k

∑
j .

k
j <

∑
k b
k, i.e., the expected average (aggregate)

demand per period is less than the average capacity
per period.
(c-i) There exists a modified base-stock policy that is

average-cost optimal, provided that E��Dkr+1� <
�
(c-ii) For an arbitrary parameter 0 < / < 1, consider

the following value-iteration scheme: for all X ∈ Z� k =
1� � � � �K,

V̂n�X�k = min
X≤Y≤X+bk

{
/Rk�Y + �1−/V̂n−1�X�k

+/E�V̂n−1�Y −Dk�k+�}� (5)

If E��Dkr+2� <
 �k= 1� � � � �K, then the long-run aver-
age cost value of the policies generated by �5, i.e., the poli-
cies achieving the minima in �5 converges to the minimum
average cost value.

Thus, for any of the considered criteria, a modified
base-stock policy is optimal and can be computed via
Scheme (2) or (5); see Aviv and Federgruen (1997a).
To execute these recursive schemes one needs only
to compute for all k = 1� � � � �K the convolution Dk

of the demand distributions of the individual items
�dkj ! j = 1� � � � � J �, as well as the one-step cost func-
tions Rk�·. Because the functions Gkj �· are convex, the
allocation problem in (3) can be solved by the greedy
procedure; see, e.g., Fox (1966). Hence, Rk�· can be
evaluated recursively as follows: Assume Rk�Y0 has
been calculated and y∗�Y0 achieves the minimum in
(3) for Y = Y0. Then,
Rk�Y0+1 = Rk�Y0+min

j

{�Gkj �y∗�Y0j+1
− �Gkj �y∗�Y0j

}
� (6)

while y∗�Y0+1 is obtained from y∗�Y0 by increment-
ing by one any component j that achieves the mini-
mum in (6); see Aviv and Federgruen (1997a).
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It is of interest to compare the one-step cost func-
tions �Rk� in the relaxed single-item model with those
in the original model. The comparison is easiest in the
most prevalent case where the functions Gkj �· are of
the form given in (1) and the demand distributions
�dkj � all belong to the same two-parameter family of
distributions. More specifically, assume that Pr�dkj ≤
x�= F (�x−.kj /3kj ) for a common cdf F �· and appro-
priate pairs of parameters ��.kj �3

k
j  ! j = 1� � � � � J " k=

1� � � � �K�. For example, this is the case if all demand
distributions are normal or (translated) gamma with
a common shape parameter. Zipkin (1982) shows that
when cost rates are identical across items, i.e., hj = h,
pj = p and cj = c,

Rk�Y = E�h�Y − D̂k�++p�D̂k−Y �+�+ �1−�cY � (7)

where Pr�D̂k ≤ x� = F
(
x−Mk/5k

)
with Mk =∑J

j=1
∑lj
r=0.

k+r
j and 5k = ∑J

j=1

√∑lj
r=0�3

k+r
j 2. Thus,

Rk�· is the one-step cost function in a single-item
model with a lead-time demand distribution whose
mean Mk is the sum of the items’ expected lead-time
demands, but whose standard deviation 5k is in gen-
eral larger than the standard deviation of the aggre-
gate lead-time demand. When demands are inde-

pendent, the latter equals
√∑J

j=1
∑lj
r=0�3

k+r
j 2. The

larger standard deviation reflects the penalty paid
for demand being spread over J distinct items. This
penalty increases as the correlation between the items’
demands decreases. Finally, in case hj� pj , or cj are
item-dependent, Rk�· can be approximated closely by
a function of the Form (7) with h�p, and c appro-
priate weighted averages of the parameters (see Zip-
kin 1982).

2.1. Heuristic Strategies
We now describe our proposed strategies. To simplify
the exposition, we confine ourselves to the long-run
average-cost criterion. The lower-bound approxima-
tion suggests heuristic strategies that in each period
determine the production quantities in two steps:

Step 1. (Aggregate Production Quantity) determina-
tion of W , the aggregate production quantity across
all J items, on the basis of the modified base-stock
policy ,∗ = �,∗1� � � � �,∗K, which is optimal for the

lower-bound model. ,∗k represents the (scalar) base-
stock level to be employed in periods of type k �k =
1� � � � �K.

Step 2. (Disaggregation) disaggregation of W into
production quantities for the individual items by solv-
ing a specific allocation problem.
W can be specified strictly in accordance with ,∗;

i.e., in periods of type k �k = 1� � � � �K
WA =min�bk� �,∗k−X�+�� �k = 1� � � � �K� (8)

A potential drawback of this specification is that it is
made on the basis of the aggregate inventory position
X only, even when x, the vector of the items’ inven-
tory positions, is highly unbalanced, i.e., when some
items are at critically low levels while others are in
ample supply. (As we shall show, this situation arises
only when the base-stock levels are nonstationary.)
As an alternative to (8) we therefore propose spec-

ifying W on the basis of disaggregate base-stock lev-
els (and the discrepancies between individual inven-
tory positions vis-à-vis them). To this end, we first
disaggregate the aggregate base-stock levels �,∗k ! k=
1� � � � �K�. More specifically, for k = 1� � � � �K, let s∗k
denote the optimal disaggregation of the base-stock
level ,∗k in the (relaxed) allocation Problem (3); in
particular, Rk�,∗k = ∑J

j=1G
k
j �s

∗k
j  = min�

∑J
j=1G

k
j �yj !∑

yj = ,∗k�. We now specify

WD =min
{
bk�

J∑
j=1
�s∗kj −xj�+

}
� (9)

Clearly, WD ≥ WA since ,∗k − X = ∑J
j=1�s

∗k
j − xj ≤∑J

j=1�s
∗k
j −xj�+ ≥ 0.

As far as Step 2 is concerned, we disaggregate the
total production quantity W , via “myopic allocation,”
so as to minimize the total expected costs over all J
items at the end of the very first period in which they
become available. For periods of type k �k= 1� � � � �K
this disaggregation procedure reduces to solving the
allocation problem

�Pk ! min
{ J∑
j=1
Gkj �yj

∣∣∣∣ J∑
j=1
�yj−xj=W"

yj ≥ xj �j = 1� � � � � J 
}
� (10)
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Myopic allocations are in fact optimal in the lower
bound model (Aviv and Federgruen 1999) and exhibit
excellent performance in uncapacitated multi-item sys-
tems (see Federgruen and Zipkin 1984a, 1984c).
See Aviv (1998) for an improved allocation mecha-
nism, called “cycle allocations,” which improves on
“myopic allocations,” but in a minor to moderate way
only.
Let HA �HD denote the heuristic that selects the

aggregate production quantity W =WA�WD and dis-
aggregates by determining a solution to the allocation
problems �Pk ! k = 1� � � � �K�. When these problems
have multiple optimal solutions, we specify that
under both heuristics the lexicographically smallest
solution is selected. We now show that when the sys-
tem is stationary, i.e., when K = 1, HA and HD are
in fact equivalent in the strong sense that the pro-
cesses �xAn � and �x

D
n � of inventory positions generated

by these heuristics coincide after finitely many periods.
This implies in particular that the steady-state distri-
bution of inventory positions and the long-run aver-
age cost values are identical under both heuristics. On
the other hand, our numerical studies demonstrate
well that in nonstationary settings, i.e., when K ≥ 2,
the performance of the two heuristics may differ in
significant ways.

Proposition 1. Assume K = 1. The processes �xAn � and
�xDn � coincide after finitely many periods. In particular, the
steady-state distribution of inventory positions x and the
long-run average cost value are identical under both heuris-
tics HA and HD.

Proof. Because K = 1, we drop the superscript k.
We show that both heuristics HA and HD choose a
vector y∗ of inventory positions (after ordering) that
satisfies the inequalities

xj ≤ y∗j ≤max�s∗j � xj�� j = 1� � � � � J � (11)

This implies that under HA �HD, after finitely many
periods nA �nD, x ≤ s∗ in every subsequent period.
Moreover, for x ≤ s∗, WA = WD = min�b�, − X�,
i.e., HA and HD prescribe the same aggregate order
sizes in every state x ≤ s∗. Let YAn and YDn denote
the aggregate inventory positions after ordering in
period n, under heuristics HA and HD, respectively.
Let n̄=max�nA�nD. Thus, for all n≥ n̄, both the �Y An �

and �Y Dn � processes follow the well-known Lindley
equations: Y ·

n+1 = min�,�Y ·
n −Dn + b� for all n ≥ n̄.

Note also that, since WD ≥WA in every period,

,≥ YDn+1 ≥ YAn � for all n≥ n̄� (12)

Since .< b, a period n∗ ≥ n̄ exists, with probability 1,
such that YAn∗ = ,, and hence, by (12), YDn∗ = YAn∗ = ,,
while xAn∗ ≤ s∗ and xDn∗ ≤ s∗. However, that implies that
yAn∗ = yDn∗ = s∗, so that for all n ≥ n∗, the �xAn � and �xDn �
processes coincide.
To prove (11), assume it does not apply to HA, i.e.,

for some item j1, y∗j1 >max�s
∗
j1
�xj1�. Also,∑

j �=j1
y∗j +max�s∗j1�xj1� <

∑
j

y∗j

=min��,−X�+� b�+X ≤ �,−X�++X
=max�,�X�≤∑

j

max�s∗j � xj�

= ∑
j �=j1
max�s∗j � xj�+max�s∗j1�xj1�� (13)

Thus, for some j2 �= j1! xj2 ≤ y∗j2 < s∗j2 . Since the func-
tions Gj are convex, we have �Gj1�y

∗
j1
 − Gj1�y∗j1 −

1�+ �Gj2�y∗j2−Gj2�y∗j2 + 1� ≥ �Gj1�s∗j1 + 1−Gj1�s∗j1�+
�Gj2�s

∗
j2
− 1 − Gj2�s

∗
j2
� ≥ 0, because s∗ achieves

min�
∑
j Gj�yj !

∑
j yj = ,�. But then, by shifting one

unit from y∗j1 to y
∗
j2, a lexicographically smaller, feasi-

ble solution to �Pk can be obtained, which is at least
as good as y∗, contradicting its definition. (The per-
turbation is feasible since y∗j1 > xj1 .)
Similarly, (11) applies to HD as well, merely replac-

ing (13) by
∑
j �=j1 y

∗
j + max�s∗j1�xj1� <

∑
j y

∗
j =

min�
∑
j �s

∗
j − xj�+� b� +

∑
j xj ≤

∑
j �s

∗
j − xj�+ + ∑

j xj =∑
jmax�s∗j � xj�. �

3. Two-Stage Production Processes
We now describe how the lower bound and heuris-
tics should be adapted when L > 0, i.e., when pro-
duction occurs in two phases. It can be verified
(see Aviv and Federgruen 1999) that the single-item,
single-stage lower-bound model described by (2) con-
tinues to apply, merely replacing Rk�· by R̃k�Y  �=
E�Rk�Y − �Dk+1+Dk+1+ · · · +Dk+L��; Y now denotes
the systemwide echelon inventory position of blanks,
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i.e., all blanks being manufactured, transformed into
final products, or as part of final products’ invento-
ries. R̃k�· satisfies Assumptions 1 and 2, since the
functions Rk�· do (see Aviv and Federgruen 1999,
§2.1). With this modification of the Rk�· functions,
Theorem 1 thus continues to apply.
As to the required modifications of the proposed

heuristics, we confine ourselves again to the long-run
average-cost criterion. When L= 0, it is useful to view
the choice of the production quantities as occurring in
two steps (aggregate production quantity and disag-
gregation). When L> 0, the two steps occur L periods
apart and are intrinsically separate.
As to Step 1, we again propose setting the order

size W in each period as W =WA or W =WD, except
that in (9) (the expression forWD), the vectors �s∗k� are
now determined to achieve the minima in the prob-
lems min�

∑J
j=1G

k+L
j �yj !

∑
j yj = ,∗k�, for k= 1� � � � �K.

It thus suffices to replace Gkj �· by Gk+Lj �·, allocat-
ing the base-stock levels ,∗k once again with the goal
of minimizing total expected inventory holding and
backlogging costs a complete production lead time
later. See the discussion following (10) for a more
detailed rationale.
Whenever a batch of blanks is completed, it is allo-

cated among the final products. This is Step 2 (dis-
aggregation), and we continue to propose the myopic
allocations heuristic.

4. Numerical Studies
This section is devoted to a numerical study of a syn-
thetic set of problem instances, conducted to gauge
the quality of the lower-bound approximation and
proposed heuristics and the associated computational
effort, as well as to provide insights into the strategic
questions listed in the introduction. We study a total
of 123 instances, split into four sets. The first three
sets represent single-stage processes, i.e., immediate
product differentiation �L= 0. All instances have lin-
ear holding and backlogging costs and a uniform rate
per unit (per period) of h = 0�05 and p = 1. Also, we
fix .̄ = 1

KJ

∑
j� k .

k
j , the average of the mean demands,

across all items and period types, at .̄ = 40. All one-
period demands are normally distributed.

For each instance, we solve the lower-bound model
via the value-iteration method (5) and evaluate the
heuristics via simulation over an interval of 450 cycles
of K periods each, ignoring the initial 50 cycles. Sev-
eral hundreds of replicas of these simulations are
conducted to obtain sufficiently narrow confidence
intervals. Our sets of instances are as follows:
(i) Forty-eight instances with stationary �K = 1 and

independent demands (across items). These instances
are grouped into 12 sets of four instances each. All
instances within a group share the same number of
items (J ) and the same coefficient of variation (c.v.) for
the one-period demand distributions. In each group
of instances, four values are chosen for the capacity
per item, i.e., b/J = 45�50�60, and 80, hence with uti-
lization rates of 88.89%, 80%, 66.67%, and 50%. Table 1
reports several performance measures. (Recall that for
stationary instances, the two heuristics coincide.)
(ii) Thirty instances with nonstationary and inde-

pendent demands. These are grouped into five sets of
six instances each, all with K = 4, J = 2, and a utiliza-
tion rate of 80%. Each group shares the same demand
pattern; i.e., array �.kj ! j = 1� � � � � J ; k = 1� � � � �K� of
mean demands. We consider five patterns, see Table 2.
Within a group we vary c.v. from 0 to 0.5 in incre-
ments of 0.1. Patterns A, B, D, and E describe identi-
cal items: Pattern A is our benchmark stationary case,
while B, D, and E exhibit increasingly severe fluc-
tuations over the course of the cycle. In Pattern C,
each of the items experiences significant seasonality,
but the patterns dovetail each other perfectly, i.e., the
aggregate mean demand per period is stationary. Our
results are reported in Table 3.
(iii) Fifteen instances with correlated (stationary

and nonstationary) demands, partitioned into three
groups of five, all with J = 2 items, (maximum) peri-
odicity K = 4, capacity b = 100, l = 2, and constant
c�v� = 0�5. All instances within a group share the
same pair of normal, marginal demand distributions
that, given a fixed value for c.v., are characterized
by the array �.kj ! j = 1� � � � � J " k = 1� � � � �K� of mean
demands. In each period, the same correlation coeffi-
cient � applies for all pairs of items. The three groups
correspond with demand patterns A, B, and C. Within
each group we systematically vary � from −1 to +1
in increments of 0.5.
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Table 1 Numerical Results: Stationary Models with Independent Demands (K = 1, L= 0, h = 0�05, p = 1)

J = 2 J = 5

Lower-Bound Model Heuristic (Simulation) Lower-Bound Model Heuristic (Simulation)Capacity
per item Average Cost Optim. Average Cost Optim.

c�v � B/J �∗ LB ZH Gap (%) �∗ LB ZH Gap (%)

0�125 45 97 1�055 1�061± 0�000 0�57 242 2�603 2�617± 0�000 0�54
50 97 1�041 1�047± 0�000 0�58 242 2�602 2�616± 0�000 0�54
60 97 1�041 1�047± 0�000 0�58 242 2�602 2�616± 0�000 0�54
80 97 1�041 1�047+ 0�000 0�58 242 2�602 2�616+ 0�000 0�54

0�25 45 121 2�377 2�384± 0�007 0�29 286 5�263 5�274± 0�001 0�21
50 114 2�110 2�113± 0�001 0�14 283 5�203 5�216± 0�000 0�25

l = 0
60 113 2�081 2�086+ 0�000 0�24 283 5�201 5�214+ 0�000 0�25
80 113 2�081 2�086± 0�000 0�24 283 5�201 5�214± 0�000 0�25

0�5 45 204 6�896 7�001+ 0�127 1�52 397 11�380 11�427+ 0�039 0�41
50 161 4�753 4�777± 0�015 0�50 372 10�521 10�565± 0�003 0�42
60 149 4�219 4�246± 0�002 0�64 367 10�399 10�448± 0�000 0�47
80 147 4�162 4�191± 0�001 0�70 367 10�396 10�444± 0�000 0�46

0�125 45 269 1�810 1�814± 0�000 0�22 672 4�507 4�518± 0�000 0�24
50 269 1�803 1�807± 0�000 0�22 672 4�507 4�518± 0�000 0�24
60 269 1�802 1�807+ 0�000 0�28 672 4�507 4�518+ 0�000 0�24
80 269 1�802 1�807± 0�000 0�28 672 4�507 4�518± 0�000 0�24

0�25 45 304 3�752 3�759+ 0�004 0�19 747 9�039 9�055± 0�001 0�18
50 299 3�618 3�624± 0�000 0�17 744 9�009 9�023± 0�000 0�16

l = 2
60 298 3�604 3�608± 0�000 0�11 744 9�007 9�022± 0�000 0�17
80 298 3�604 3�608+ 0�000 0�11 744 9�007 9�022+ 0�000 0�17

0�5 45 399 8�833 8�920± 0�102 0�98 912 18�505 18�559± 0�022 0�29
50 367 7�504 7�524± 0�008 0�27 893 18�070 18�120± 0�001 0�28
60 357 7�235 7�257± 0�001 0�30 889 18�008 18�060± 0�000 0�29
80 356 7�208 7�229± 0�000 0�29 888 18�006 18�058± 0�000 0�29

± represents 95% confidence interval.

(iv) Thirty instances with L > 0, grouped into six
groups of five instances. For the sake of brevity, we
consider only instances in which all demands are

Table 2 Patterns of Mean Demands

Period type

Pattern k = 1 k = 2 k = 3 k = K = 4

A (�k
j = �k for all j) 40 40 40 40

B (�k
j = �k for all j) 25 25 25 25

C j = 1�5 25 35 45 55
j = 3 40 40 40 40
j = 2�4 55 45 35 25

D (�k
j = �k for all j) 15 15 25 105

E (�k
j = �k for all j) 0 0 20 140

independent and normally distributed with c�v�= 0�5.
Throughout, we specify the capacity so that the uti-
lization rate is 80%. In each instance, the items share
a common second-phase lead time, i.e., lj = l for all j.
Within a group, all instances share the same number
of items �J = 2�5 and the same demand pattern (A, C,
and E; see Table 2). All thirty instances have a total
lead-time L+ l = 4. Within each group, we systemati-
cally consider the five possible decompositions of the
total lead time of four periods among L and l.

4.1. Quality of Lower Bound and Heuristics
We begin with the first three sets of instances with
L= 0. The average gap between the lower bound and
the best of the proposed heuristics is 0.4%, indicat-
ing that the former is very accurate and the latter
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Table 3 Numerical Results: Models with Periodically Varying Parameters and Independent Demands (J = 2, L= 0, l = 2, h= 0�05, p= 1, bk = 100)

Heuristic (Simulation)

Lower-Bound Model HA HD

Average Cost Optim. Average Cost Optim.
Pattern c�v � �∗ LB ZH Gap (%) ZH Gap (%)

0 240 0�000 0�000± 0�000 0�00 0�000± 0�000 0�00
0�1 263 1�442 1�447± 0�000 0�35 1�447± 0�000 0�35

A 0�2 286 2�888 2�891+ 0�000 0�10 2�891+ 0�000 0�10
0�3 311 4�361 4�366± 0�001 0�11 4�366± 0�001 0�11
0�4 338 5�889 5�899± 0�003 0�17 5�899± 0�003 0�17
0�5 367 7�504 7�524± 0�008 0�27 7�524± 0�008 0�27

0 220�270�250�230 0�125 0�125± 0�000 0�00 0�125± 0�000 0�00
0�1 242�296�275�257 1�637 1�641± 0�000 0�24 1�641± 0�000 0�24

B 0�2 265�323�300�285 3�186 3�190+ 0�001 0�13 3�190+ 0�001 0�13
0�3 289�349�328�314 4�759 4�767± 0�002 0�17 4�767± 0�002 0�17
0�4 314�376�357�344 6�378 6�394+ 0�004 0�25 6�392+ 0�004 0�22
0�5 341�402�390�377 8�073 8�108± 0�010 0�43 8�101± 0�010 0�35

0 240�240�240�240 0�000 0�000± 0�000 0�00 0�000± 0�000 0�00
0�1 264�264�264�264 1�492 1�496+ 0�000 0�27 1�496+ 0�000 0�27

C 0�2 288�288�289�289 2�988 2�994± 0�000 0�20 2�992± 0�000 0�13
0�3 313�313�314�315 4�515 4�545± 0�001 0�66 4�530± 0�001 0�33
0�4 341�341�342�343 6�109 6�183+ 0�004 1�21 6�143+ 0�003 0�56
0�5 372�371�373�374 7�799 7�935+ 0�009 1�74 7�866+ 0�008 0�86

0 220�290�290�330 2�125 2�125± 0�000 0�00 2�125± 0�000 0�00
0�1 249�326�326�363 4�166 4�178+ 0�001 0�29 4�178+ 0�001 0�29

D 0�2 277�363�363�396 6�225 6�238± 0�003 0�21 6�238± 0�003 0�21
0�3 306�399�399�435 8�336 8�366± 0�005 0�36 8�352± 0�005 0�19
0�4 334�435�438�478 10�559 10�622+ 0�010 0�60 10�590+ 0�010 0�29
0�5 363�471�482�527 12�949 13�069+ 0�026 0�93 13�038+ 0�026 0�69

0 220�320�340�400 4�000 4�000+ 0�000 0�00 4�000+ 0�000 0�00
0�1 257�367�377�443 6�456 6�478+ 0�002 0�34 6�478+ 0�002 0�34

E 0�2 294�414�422�486 9�093 9�120± 0�004 0�30 9�114± 0�004 0�23
0�3 331�461�471�534 11�849 11�918+ 0�009 0�58 11�888+ 0�009 0�33
0�4 368�508�526�592 14�844 15�005± 0�025 1�08 14�962± 0�025 0�79
0�5 405�554�591�661 18�199 18�527± 0�071 1�80 18�507± 0�068 1�69

is close-to-optimal. Only when J = 2 can the opti-
mal strategy be computed in reasonable time, and the
exact accuracy and optimality gap assessed. (A single
instance requires about four hours of CPU time on a
Pentium 266 MHz PC.) In a sample of six two-item
instances, the average accuracy gap is 0.03% and the
optimality gap is 0.25%.
Each of the two proposed heuristics, as well as

the lower bound, require a one-time computation
of the optimal base-stock levels �,∗1� � � � �,∗K� in the
lower-bound model, via (5). The effort to evaluate
one of the functions V̂n�·� · is roughly proportional

with K, and roughly quadratic in the number of
distinct inventory levels X considered. To achieve
high precision, we have considered 700 inventory
levels in the (truncated) state space. (See Aviv and
Federgruen 1997a on how the cost values of inven-
tory levels outside the truncated state space are
extrapolated.) For K = 1 and 700 inventory levels, an
iteration takes on average 4 seconds on a Pentium
266 MHz PC. The number of iterations required to
achieve convergence of the base-stock levels depends
on the system’s utilization rate and the variability of
the demands, ranging from a handful of iterations
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when the c.v. is less than 0.15, to 15–25 under high
utilization rates and c.v.s less than 0.25, and to about
100 under high utilization rates and a c.v. equal to
0.5. Once the optimal base-stock levels �,∗1� � � � �,∗K�
have been computed, a single instance of problem
�Pk requires less than 0.01 seconds.
For the first set of instances, we found that the

upper bound for the optimality gap �ZH −LB/LB is
always less than 1.52% and less than 0.70% when
the utilization rate is 80% or below. Its average value
across all 48 instances equals 0.37% (see Table 1).
The optimality gap tends to further decrease as either
the utilization rate or the value of c.v. decreases or
J increases. The monotonicity may be explained by
the fact that as J increases the coefficient of varia-
tion of aggregate demands decreases (by a factor of

√
J

since demands are independent across items). Thus,
the lower bound and heuristic can be comfortably
used as close-to-optimal when J ≤ 5, and a fortiori for
larger numbers of items.
For the nonstationary instances of our second set of

instances, the two proposed heuristics (HA and HD)
are, in general, distinct. The bounds for the optimal-
ity gaps �ZH −LB/LB are equally low as for the sta-
tionary instances, with an average of 0.51% for HA

and 0.37% for HD over all instances with c�v� > 0. The
bounds for the optimality gaps tend to increase with
the c.v. value and among those in excess of 0.35%, we
observe an increase as we move toward pattern E,
with large “seasonal” fluctuations. The optimality gap
we observed is even lower when J increases. HD con-
sistently outperforms HA, in particular under patterns
C–E, where large imbalances between the individual
items are more likely to occur, see §2.
For our third set of instances with correlated

demands, the bound for the gap �ZH − LB/LB con-
tinues to be equally small under correlated demands.
It never exceeds those arising under independent
demands by more than 0.93%, and its average value
is 0.86% for HA and 0.52% for HD. The lower bound,
the heuristic’s average cost, and the base-stock levels
all increase with �, and hence the variance of aggre-
gate demands is increased.
Finally, we found that when L > 0, the optimality

gaps are, if anything, even smaller than in the case
L = 0. For example, for the instances with J = 2, the

Figure 1 Long-Run Average Cost (Per Item) as a Function of the
Capacity (Per Item), �K = 1� L= 0� l = 2� h = 0�05� p = 1�

average upper bound for the optimality gap is 0.84%,
and it is never larger than 2.14% (under HA).

4.2. Managerial Insights
In this section we present several managerial insights
we have obtained from our study.

4.2.1. Stationary Models with Independent
Demands. Figure 1 exhibits, for the six groups of
instances with l = 2, the average cost per item under
the heuristic strategy as a function of the capacity
per item. Figure 2 displays the same relationship for

Figure 2 Long-Run Average Cost (Per Item) as a Function of the
Capacity (Per Item) for J = 1�2, and 5 Items �K = 1� L= 0�
l = 2� c�v �= 0�5� h = 0�05� p = 1�
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instances with c�v� = 0�5 and J = 1, J = 2, and J = 5
identical items.
We first note that the costs grow rapidly as the uti-

lization rate or the c�v� value grows. For example,
under high utilization and J = 2, the cost triples as the
c�v� varies from 0.25 to 0.5. An increased utilization
rate is of particular impact when c�v� is large or when
the items are nonidentical.
Figure 2 quantifies the value of flexible production

systems. Clearly, as more and more items are assigned
to the same facility and its capacity increased in pro-
portion (i.e., the average capacity per item is kept
constant), the average cost per item decreases. This
is again explained by the c�v� of aggregate demands
decreasing by a factor

√
J , as J increases. In addition,

the marginal benefit decreases as J increases. Also,
the benefits of flexible capacity are particularly large
when the utilization rate is high and almost insignif-
icant when it is less than (say) 80%. A similar trio
of curves is obtained for systems with heterogeneous
items. When the c�v� value is increased, the three
curves maintain the same shape and relative posi-
tion to each other, however, with significantly larger
gaps between them, in particular under high utiliza-
tion rates. In other words, the benefit of flexibility
increases with the variability of demands.

4.2.2. Models with Periodically Varying Param-
eters and Independent Demands. As before, average
costs increase rapidly with the c�v� value (see Table 3).
Patterns A and C have almost identical costs; this is
explained by the fact that aggregate demands have
identical means under both patterns, but those under
C have somewhat larger variances. Average costs
increase rapidly as seasonal fluctuations increase; see
Patterns D and E. As in the stationary case, the aver-
age cost per item decreases with J . We note again the
same benefits of flexibility as in Figure 2. These are
particularly large under dovetailing patterns as in C.

4.2.3. Models with Correlated Demands. Figure 3
displays the average cost per item as a function of the
correlation between the products’ demands for Pat-
terns A, B, and C. The costs grow faster with � under
Pattern B, in which the mean aggregate demand varies
considerably over the course of the cycle.

Figure 3 Long-Run Average Cost (Per Item) as a Function of the Cor-
relation Between the Demands for Different Products �J = 2�
L= 0� l = 2� bk = 100� c�v �= 0�5� h = 0�05� p = 1�

Our models can be used to gauge the value of
flexible production systems. To this end, we compare
the cost values with those of systems with dedicated
(item-specific) production equipment. Let ZD denote
the cost of an optimally designed dedicated system and
LB�� the lower bound for the flexible system as a
function of �. ZD is independent of �, and since ZD is
the cost of a feasible strategy for the flexible system,
ZD ≥ LB�� for all �≤ 1, i.e.,

ZD ≥ LB �= max
−1≤�≤+1

LB��� (14)

This inequality and the accuracy of the lower bound
LB imply that the benefits of a flexible system can
be conservatively estimated by �LB − LB��. (As
explained in Aviv and Federgruen 1997a, exact com-
putation of ZD may be tedious. It involves solving a
convex program with a nonseparable objective in J ·K
variables.) With identical items, as in patterns A and
B, we have in fact that (14) holds as an equality; i.e.,

ZD = LB�1= LB� (15)

If �= 1, all items experience identical demands in all
periods, so that it is optimal to have identical pro-
duction quantities for all items in every period. This
production rule is implementable in a dedicated sys-
tem with, for each item, capacity bk/J in periods of
type k. This explains the first equality in (15) and,
hence by (14), the second equality as well. We thus
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Figure 4 Long-Run Average Cost (Per Item) as a Function of the Point
of Differentiation �L� for Various Demand Patterns �L+ l = 4�
bk/J = 50� c�v �= 0�5� h = 0�05� p = 1�

observe from Figure 3 that the benefits of a flexible
system decrease with �.

4.2.4. Two-Stage Production Processes. Figure 4
exhibits the benefits of delayed differentiation. Costs
decrease significantly within each set of instances as
we move from immediate to maximally postponed
differentiation. The average decrease is 17.7% for two-
item and 31.6% for five-item systems. The large cost
savings for five-item systems follow from the benefits
of dealing with a single common intermediate prod-
uct increasing with J . We conclude that postponed
product differentiation is particularly beneficial if one
wishes to maintain a large degree of product variety.
Finally, to investigate the impact of �, the degree

of correlation between the items’ demands, we have,
for the instances with J = 2 and Pattern A, var-
ied � between −1 and +1 in increments of 0.5;
see Figure 5. Benefits from postponed differentiation
decrease with �, with zero benefits in the limiting
case � = 1. As shown in §3, the cost value in this
limiting case equals that arising in a dedicated sys-
tem (since the items are identical). We thus conclude
from the graphs in Figure 5 that for a given value of
c�v�, the benefits of moving from dedicated facilities
to a flexible factory often begin to be realized only
when this move is accompanied by a redesign of the
production process to allow for postponed product
differentiation.

Figure 5 Long-Run Average Cost (Per Item) as a Function of the Cor-
relation Between the Demands for Different Products �K = 1�
J = 2� L+ l = 4� bk = 100� c�v �= 0�5� h = 0�05� p = 1�

5. The Hewlett-Packard Case
We now revisit the HP case, investigating how the
postponement benefits vary as the four factors (i)–(iv)
listed in the introduction are incorporated into the
analysis.
The traditional analysis of the HP case (see e.g., the

teaching note by Flaherty et al. 1996) is based on sam-
ple sales data for six DeskJet printers over 12 con-
secutive months. Under assumptions (i)–(iv) listed in
the introduction, the system with factory localization
behaves like six distinct stationary and uncapacitated
single-item models, while it behaves like a single such
model facing aggregate demands in the case of DC
localization. Solving these models on the basis of the
case-specified desired fill rate of 98%, one concludes
that safety stocks reduce from 4 weeks to 2.5 weeks
when postponing differentiation (similar to the actual
reduction from 5.2 weeks to 3.5 weeks achieved by
the company; see Lee and Billington 1995). Likewise,
supply-chain inventory holding costs decrease by
16%. (Since under assumptions (i)–(iv), the analysis
involves single-item models only, these performance
measures are exact.) We now revisit the analysis,
taking into account that the localization process in
the DC requires approximately 1 week. We there-
fore model the system as a two-stage process whose
total lead time of 5 weeks is partitioned as L = 4
and l = 1. In addition, we incorporate the impact of
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capacity limitations, seasonality patterns, and corre-
lated demand processes.
Recall that in the stationary single-item models, the

fill-rate constraint is equivalent to minimizing aver-
age holding and backlogging costs with a specific
corresponding p/h ratio. In our case, the 98% fill
rate corresponds with p/�p+h= 0�95, approximately.
Maintaining this ratio in the analysis below, we focus
on Items AB, AQ, and AU, whose sales volume rep-
resents 97% of the total European line. We first com-
pute for each of the 12 months, for the aggregate sales,
the ratio of the sales in that month over the monthly
average. If all of the monthly variations are due to
seasonal fluctuations, these ratios ��k ! k = 1� � � � �12�
represent the seasonality factors. More realistically,
only part of the monthly variation is attributable to
seasonalities. The data in the HP case are limited to
a single year and thus are insufficient to arrive at a
proper statistical separation between seasonal fluctu-
ations and intrinsic uncertainties around predictable
seasonal means. We therefore consider several sea-
sonality patterns, parameterized by 0 ≤ � ≤ 1, with
�k��= 1+���k−1, k = 1� � � � �12; see Figure 6. (The
extreme case �= 1 has �k��=�k, while �= 0 assumes
a lack of seasonalities.) Assuming that the c�v. value
of monthly demands is constant over time, we esti-
mate this value for each of the 3 items from the 12
ratios of the actual sales over their seasonally adjusted
means. The sample size adjusted standard deviation
of these 12 ratios represents an unbiased estimator
of the c�v. value. Finally, we represent each month

Figure 6 Seasonality Patterns for DeskJet Printers Demand in Europe
(Based on November 1989 through October 1990 Sales Data)

Table 4 Values of Coefficient of Variation for Various �-Values—The
HP Case

Product/Location

� AB AQ AU

0 0�355 0�508 0�524
0.5 0�259 0�434 0�525
1 0�195 0�451 0�601

as 4 weeks and assume intertemporal independence
between weeks. Table 4 reports the c�v. values for the
three values of �. (The c�v. for weekly demands is
thus twice that of monthly demands.)
Figure 7 depicts average systemwide costs as a

function of the capacity-utilization rate, both under
factory and DC localization (FL and DCL, respec-
tively) and for three possible seasonality patterns,
with �= 0�0�5, and 1. (These cost measures are based
on the analytical lower-bound model, the accuracy of
which was demonstrated in §4.) We note that the costs
increase significantly as the utilization rate increases
and that the costs (and safety stocks) can be signif-
icantly reduced if a larger part of the monthly fluc-
tuations can be attributed to seasonal variations, and
hence anticipated by adopting a period-dependent
modified base-stock policy. In addition, the two dot-
ted line curves depict, for the seasonality patterns
with �= 0�5 and �= 1, the cost incurred if, as in the
teaching note, seasonalities are ignored and an opti-
mal corresponding stationary policy is implemented.

Figure 7 Long-Run Average Cost as a Function of Capacity Utilization
(Hewlett Packard Deskjet Printer Supply Chain Case)
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The upper (lower) dotted curve should be compared
with the (� = 1, FL) ((� = 0, DCL)) curves. Note that
the cost increase due to the failure to recognize sea-
sonalities and the adoption of a stationary policy can
be as large as 45%! Observe, in addition, that the ben-
efits of postponement decrease as the utilization rate
increases. For example, in Figure 7, when � = 0�5,
the costs may be reduced by 18%, 17%, 16%, and
10% when switching from factory- to DC-localization,
and when the capacity utilization equals to 60%, 70%,
80%, and 90%, respectively. As mentioned, less can
be saved when capacity is limited because the factory
has fewer options and must produce nearly at capac-
ity most of the time, regardless of the demand stream.
Note next that the top three curves in Figure 7 all

relate to systems with factory localization (FL), gov-
erned by the stationary replenishment and allocation
policy, which is optimal (in the lower-bound model)
in the absence of any seasonality pattern. It is notewor-
thy that the system performs better under this policy
when the demand processes exhibit a seasonal pat-
tern, i.e., when �= 0�5 or �= 1. Perhaps surprisingly,
system performance does not necessarily improve as
� increases from 0 to 1. This may be explained by the
fact that, for some items, the coefficient of variation
of monthly demands does not monotonically decrease
as � is varied between 0 and 1. Finally, note that the
curve corresponding to the case of DC localization
and no seasonality (� = 0, DCL) crosses the dotted
curves at large capacity-utilization rates. As explained
above, the benefits of postponement decrease sig-
nificantly as capacity utilization becomes large. For
large utilization rates, the benefits may in fact be out-
weighed by the cost advantages associated with more
predictable seasonality patterns.
Figure 8 shows the decrease in systemwide inven-

tories due to postponed differentiation, again as a
function of the utilization rate, for � = 0�0�5, and 1.
Observe that the relative benefits can be significantly
larger under larger seasonal fluctuations. On the other
hand, the inventory ratio may fail to be monotone in
�, even though both the numerator and denominator
are. While the absolute savings increase, the relative
benefits decrease significantly as the utilization rate
increases for reasons explained above. Also, under
more significant seasonal fluctuations, the magnitude

Figure 8 Inventory Savings as a Result of Postponement (Hewlett
Packard DeskJet Printer Supply Chain Case)

of the benefits is considerably less sensitive to fluctu-
ations of the utilization rate, e.g., as one experiences
different phases of the business cycle.
Figure 9 has three graphs showing how the sav-

ings due to postponement, measured as a percentage
of the base case with immediate differentiation (L= 0),
vary with the point of differentiation. The three
graphs correspond with the three seasonality pat-
terns (� = 0�0�5, and 1). All instances have inde-
pendent demands and a utilization rate of 80%. The
savings under seasonality are significantly larger than
achieved in the absence of seasonality (�= 0), and the

Figure 9 Savings as a Result of Delayed Product Differentiation—The
Impact of Seasonality (Hewlett Packard DeskJet Printer Sup-
ply Chain Case)
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Figure 10 Long-Run Average Cost as a Function of Demand Correla-
tion (Hewlett Packard DeskJet Printer Supply Chain Case)

incremental savings increase as the point of differen-
tiation is postponed. Observe, however, that the sav-
ings under �= 1 are insignificantly larger than those
under �= 0�5.
Finally, Figure 10 shows how the costs vary with

the demand processes’ correlation pattern. To enable
a simple parametric representation, we consider
instances in which the correlation coefficients of the
demands of all pairs of items are identical. All
instances have a utilization rate 0.8 and assume
a modest seasonality pattern (� = 0�5). The upper
(lower) graph in Figure 10 corresponds to the case
of factory (DC) localization (L = 1 and L = 4, respec-
tively). Observe that the costs under DC localization
are always lower than those achieved under factory
localization. The benefits of DC localization increase
dramatically, as � decreases from 1; they are small
under high pairwise correlations (vanishing in the
limiting case of �= 1) since the variance of aggregate
demand is close to the sum of the variances of the
demands for the individual items.

6. Extensions
In this section we discuss two important extensions
to our basic model.

6.1. Intermediate Inventories
In this section, we give a brief outline of how our
results can be extended to allow for intermediate

inventories. An exact representation of the prob-
lem requires a dynamic program with a (L+ J + 1)-
dimensional state space. In addition to the vector x
of the final items’ inventory positions and the period
type k, the state description includes

vd = the echelon inventory of blanks before arrival
of an order = inventory of blanks +X�

as well as the vector of outstanding orders for blanks
�w1� � � � �wL−1, where wr represents the size of the
batch of blanks ordered r periods before the begin-
ning of the current period (note that wL is already
taken into account in vd).
For the sake of brevity, we confine ourselves to the

finished goods’ holding and backlogging cost struc-
ture used in (1). Let h0 denote the cost of carrying a
blank unit in inventory in a given period, and rein-
terpret hj as the incremental cost of holding a unit of
item j in inventory during a given period (beyond h0).
Without loss of generality, hj ≥ 0 for all j = 1� � � � � J .
We account for all expected inventory-carrying costs,
by charging the basic rate h0 for each unit in the
echelon inventory and for all j = 1� � � � � J , �lhj , the
incremental holding cost for every expected unit of
inventory of finished good j, l periods later. The
actions at the start of every period consist of (i) w =
the number of new blanks to be ordered, (ii) z = the
amount to be withdrawn from the inventory of blanks
to start the second manufacturing stage, and (iii) the
vector �z1� � � � � zJ  with zj the part of z allocated to
final item j.
This intractable dynamic program can again be

approximated, this time by a pair of interdependent
dynamic programs for single-item inventory systems.
The approximation starts, again, with a relaxation
of the nonnegativity constraints zj ≥ 0. Under this
relaxation, the current choice of �z1� � � � � zJ  in no
way affects the future achievable values of the items’
inventory positions or their distributions. We may
thus choose the vector �z1� � � � � zJ  to minimize imme-
diate costs only, i.e., to solve Problem (3) in periods
of type k.
We refer to the pair of single-dimensional dynamic

programs as the “finished goods model” and the
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“blanks model.” The former is defined by the follow-
ing recursion, resembling (2),

Vn�X�k = min
z≥0

{
Rk�X+z

+�E
[
Vn−1

(
X+z−

J∑
j=1
dkj � k

+
)]}

� (16)

Since Rk�· is convex and orders in this model are
unbounded, Zipkin (1989) shows that a periodic base-
stock policy solves the problem and that Vn�·� k is
convex with a finite minimizer X∗

n�k, for all n and k.
The optimal base-stock policy in (16) fails, by itself,
to be an optimal allocation policy, simply because its
recommended withdrawal quantity may be infeasible
given a limited inventory of blanks. However, simi-
lar to the Clark and Scarf (1960) model, the functions
Vn�·� k are used to obtain at an optimal strategy for
the lower-bound model.
It is shown (Aviv and Federgruen 1999) that if

the available echelon inventory Y , at the beginning
of period n, is in excess of X∗

n�k, the optimal with-
drawal quantity z∗ in (16) is in fact feasible (and opti-
mal). If Y < X∗

n�k, the withdrawal quantity is limited
to �Y −Xn�k and the expected finished-goods–related
costs are correspondingly higher. We thus define for
all n and k, the induced penalty functions Pn�Y �k by

Pn�Y �k

=




0 if Y ≥ X∗
n�k

Rk�Y −Rk�X∗
n�k

+�E[Vn−1(Y −∑J
j=1 d

k
j � k

+)]
−�E[Vn−1(X∗

n�k−
∑J
j=1 d

k
j � k

+)] if Y < X∗
n�k�

which are convex and nonnegative. These functions
are used to specify the second dynamic problem, i.e.,
the “blanks model,” which is defined by the recursion

Wn

(
w1� � � � �wL"vd� k

)
= min
0≤w≤bk

{
�kw+hk0�vd+wL+Pn�vd+wL�k

+�E
[
Wn−1

(
w�w1� � � � �wL−1"vd

+wL−∑
j

dkj � k
+
)]}

� (17)

The following can be proven by induction; see Aviv
and Federgruen (1999):
(a) Except for certain constant terms, and given

the above cost-accounting schemes, the expected total
cost with n periods to go, and given that the cur-
rent period is of type k, is represented by Vn�X�k+
Wn�w

1� � � � �wL"vd� k.
(b) By Aviv and Federgruen (1997a) and the con-

vexity of the Pn�·� k functions, a modified base-
stock policy with period-dependent base-stock levels
optimizes (17) and can be found by the simple value-
iteration method described there. This policy is an
optimal order policy for the lower-bound model. For
this lower-bound model, it is further optimal to set the
withdrawal quantity as close as feasible to �X∗

n�k� and
to allocate it so as to solve the optimization problem
in (3).
The lower-bound model thus provides an easily

computable cost estimate. The policy optimizing the
model can be transformed into an effective heuris-
tic strategy for the original system; e.g., leave the
order and withdrawal policy unaltered and deter-
mine allocations via the allocation problems �Pk.
Enhancements similar to those suggested in §2.1 can
be developed.

6.2. Models with Parameter Learning
Our basic model assumes that all demand distri-
butions are perfectly known from the outset. This
assumption is often restrictive: Many products have
a short life cycle or are subject to dynamic and com-
petitive market forces. Thus, even the most basic
characteristics of the demand distributions (e.g., their
means) may fail to be known and parameter esti-
mates can be significantly improved on the basis of
observed sales data. Fisher and Raman (1996) show,
for certain fashion items, that the accuracy of forecasts
can be improved dramatically after observing the first
fifth of the sales season. Delayed product differenti-
ation allows one to use observed sales data during
the first stage, not just to get updated information
about the products’ inventory status at the comple-
tion of the first stage, but also to base allocations to
the individual products on more accurate forecasts of
future demand distributions. The same applies when
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demands are correlated over time, even in the absence
of parameter uncertainty.
See Aviv and Federgruen (1997b) for models with

parameter learning and intertemporal correlation,
analyzed in a Bayesian manner. The approximat-
ing analytical models are more complex (resulting
in two- or three-dimensional dynamic programs) but
remain tractable, in particular since the optimal strate-
gies in these models continue to be of fairly sim-
ple structure. One general conclusion in these models
is that the benefits of postponement increase under
parameter learning beyond those in settings where
the parameters (e.g., the mean demands) are known
in advance. In fact, the larger the degree of initial
uncertainty regarding the demand distribution or the
larger the degree of intertemporal correlation, the
larger the benefits of postponement are. See Aviv and
Federgruen (1997b) for a detailed development.
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