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Stochastic Economic Lot Scheduling Problems (ELSPs) involve settings where several items
need to be produced in a common facility with limited capacity, under significant

uncertainty regarding demands, unit production times, setup times, or combinations thereof.
We consider systems where some products are made-to-stock while another product line is
made-to-order. We present a rich and effective class of strategies for which a variety of cost
and performance measures can be evaluated and optimized efficiently by analytical methods.
These include inventory level and waiting-time distributions, as well as average setup,
holding, and backlogging costs. We also characterize how strategy choices are affected by the
system parameters. The availability of efficient analytical evaluation and optimization
methods permits us to address the impact of product line diversification or standardization on
the performance of the manufacturing system, in particular the logistical implications of
adding low-volume specialized models to a given make-to-stock product line.
(Performance/Productivity Manufacturing; Queues; Priorities; Inventory/Production; Multi-Item)

1. Introduction and Summary
Stochastic Economic Lot Scheduling Problems (ELSPs)
involve settings where N items need to be produced in
a common facility with limited capacity, under signif-
icant uncertainty regarding demands, or unit produc-
tion and setup times. Examples include a focused
factory or work center of limited capacity that is
dedicated to a group of items.

Stimulated by the current Just-in-Time and Quick
Response movements, managers increasingly advo-
cate Make-to-Order (MTO) systems supported by zero
or small inventories, agile enough to guarantee short
response times. To enhance Quick Response, buyers of
custom products are increasingly encouraged to order
significantly in advance of their actual needs. Various
information sharing procedures within companies
and between companies in a supply chain, e.g., via
Electronic Data Interchange or private satellite com-
munication systems, provide mechanisms to convey
orders rapidly, which results in additional advanced

warning. In parallel, the trend toward increased prod-
uct variety generates the necessity to produce certain
items to customer specifications, i.e., to order. Thus
MTO is now often an option or a necessity for certain
items. In the presence of the (MTO) option, consider-
able confusion prevails about how to exercise it. As
stated in Perkins (1994):

The gospel of Just-in-Time says stock nothing. The standard
textbook approach says stock everything, particularly the
items for which demand is most unpredictable. And flexible
manufacturing equipment salesfolk say stop obsessing about
stock, just buy fancier machines for your company.

Make-to-Stock (MTS) systems have traditionally
been viewed as entirely distinct and incompatible
with the MTO philosophy. However, some have come
to realize that a system with a diverse product line and
customer base can only be, or alternatively, is best
served with an appropriate combination of these two
extreme philosophies.

In this paper, we present for hybrid systems a
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complete spectrum of options on how to prioritize the
MTO item vis-à-vis the production of the MTS items.
Next, we show how for each of these options, a variety
of performance measures can be evaluated and opti-
mized efficiently by analytical methods (e.g., inven-
tory and waiting time distributions, and average
setup, holding, and backlogging costs). Third, we
show how various performance measures become
stochastically larger or smaller as one moves along the
spectrum of priority options. Fourth, we derive stabil-
ity conditions and expressions for the effective utili-
zation rate under a variety of the above options.
Finally, we report on an extensive numerical study
conducted to investigate some of the main choices
presented in this paper. In particular, we have gauged
which of the priority options is to be preferred, and
under what circumstances. The numerical study also
addresses the impact of product-line diversification or
standardization on the performance of the manufac-
turing system, in particular the logistical implications
of adding low-volume specialized models to a given
product line. These include the allocation mechanism
of the production capacity among MTO and MTS
items and the degree to which additional MTO items
result in increased inventory requirements for the
MTS items.

In this paper we consider a single MTO item. (See
Federgruen and Katalan 1995a for extensions to set-
tings where several distinct MTO items need to be
distinguished.) The MTO item is not primarily distin-
guished by the fact that it is supported by no or just a
small inventory, but rather by the type of priority it is
given in the overall production strategy. As men-
tioned, often the item cannot be stocked since it must
be made to customer specifications. We thus, hence-
forth, refer to this item as the B-item, and to all others
as the A-items. A production/inventory strategy for a
hybrid system consists of two components: (i) an
appropriate interruption discipline determining when
to switch from the A-items to the B-item; (ii) a produc-
tion strategy that determines which and how much of
the A-items to produce in the absence of interruptions
for the B-item. If the B-item is purely MTO, the facility
continues producing the B-item until all its demand is

satisfied. More generally, production continues until a
given (small) inventory is built up.

Several interruption disciplines (i) may be consid-
ered: Under preemptive priority rules, the facility
switches to the B-class as soon as an order for a B-item
arises, but under nonpreemptive priority rules only at
an arbitrary production completion epoch of an A-
item, or only at some or all completion epochs at
which the production strategy in (ii) calls for a switch-
over between distinct A-items.

As far as the production strategy is concerned, to
design overall strategies that are analytically tractable,
we consider the class of base-stock policies with a
general periodic sequence. Under such a policy we
continue production of a given item until a specific
target inventory level is reached; the different items
are produced in a fixed periodic sequence that repeats
itself after every M (�N, say) items. For a given
periodic sequence, the analytical method of Feder-
gruen and Katalan (1994) enables the efficient deter-
mination of optimal base-stock levels and the evalua-
tion of all relevant performance measures. For systems
with up to 50 items (say), this can be done in just a few
seconds on a PC. Many other classes of strategies have
been proposed for MTS ELSPs, but none are analyti-
cally tractable for more than a handful of items in the
presence of setup times and uncertainties. See Feder-
gruen and Katalan (1996) for a more detailed discus-
sion of the merits of base-stock policies and a review
of other classes of policies for MTS systems; see
Federgruen and Katalan (1995b) for efficient proce-
dures to search for optimal production schedules.

One of the first models for combined MTS and MTO
systems is due to Williams (1984). (See Williams for a
review of earlier discussions.) Williams assumes that
the MTS items are produced in batches of fixed (but
item-dependent) size, requests for which are triggered
by (r, Q)-rules. (An (r, Q)-rule triggers a replenish-
ment batch of size Q whenever the item’s inventory
position drops to a level r.) Orders for the B-items are
of random size, and arrive with geometric interarrival
times. A dynamic priority rule assigns priority be-
tween B- and A-batches (see e.g., Kleinrock 1975).
Priority is given to the order or batch with the largest
weighted waiting time, where the weight for the
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B-items is larger than that applied to all A-items.
Among all A-items, as among all B-items, priority is
determined on a FIFO basis. Williams approximates
the resulting system as one with two classes, both with
Poisson arrivals. Approximations for the items’ lead-
time demand distributions and hence optimal reorder
levels for given batch sizes Q are obtained from the
first (couple of) moments of the waiting times in this
queueing system. The end result is an approximate
expression for the expected system wide cost as a
complex nonlinear function of the batch sizes Q and
priority weight u, which is therefore hard to optimize.
A similar model for single- and multi-item MTS sys-
tems only has been proposed by Karmarkar (1987) and
Zipkin (1986), respectively.

The discussion about combined MTS and MTO
systems, dormant in the ten years following Williams’
paper, was recently revived by Carr et al. (1993) and
Sox et al. (1997). To allow for an exact and tractable
analysis, the former authors specialized the Williams’
model to one without setup times and setup costs,
batches of size one, identical holding and backlogging
rates per item, a single production time distribution
shared by all A-items, and absolute priority of the
B-items over the A-items. To further simplify the
analysis, priority is assumed to be preemptive. Under
these restrictions, the arrivals of orders to the produc-
tion facility are indeed generated by a Poisson process,
provided the demand processes are themselves inde-
pendent and Poisson. Sox et al. (1997) consider the
same specialized case of the Williams model (in fact,
assuming that a single exponential production time
distribution is shared by all items), except that nonpre-
emptive absolute priority is given to the B-items over
the A-items. Most recently, Nguyen (1995, 1998) de-
veloped heavy traffic limit approximations for various
performance measures in hybrid MTO/MTS systems,
governed by base-stock policies.

We refer to Federgruen and Katalan (1996) for a
review of the literature on pure MTS systems. More
recent papers include those by Tayur (1994), which
develops analytically exact formulas for the optimal
base-stock levels in cyclical base-stock policies, and by
Anupindi and Tayur (1998), which proposes a simu-
lation-based method for a variant of cyclical base-

stock policies. The few papers within this literature
dealing with fully dynamic strategies implicitly en-
compass hybrid combinations of MTS/MTO strate-
gies. One such example for settings without setup
times or costs has been given by Wein (1992).
Markowitz et al. (1995) develop heuristics, based on
two types of heavy traffic analysis, for systems with
setup costs or times.

The remainder of the paper is organized as follows:
In §2, we introduce the model and the required
notation. In §3, we discuss efficient evaluation meth-
ods for the general class of production strategies,
described above. In §4, we establish stochastic rank-
ings for several performance measures under various
choices for component (i). Section 5 discusses stability
conditions for the various priority rules under com-
ponent (i). Section 6 reports on a numerical study in
which the performance of various strategy choices is
assessed.

2. The General Model
The production system deals with N distinct items,
demands for which are independent and Poisson,
with � i the demand rate of item i (i � 1, . . . , N). Item
1 is the B-item. Let � � ¥ i�1

N � i denote the total
demand rate in the system. The results in this paper
are easily extended to compound Poisson demand
processes. The N items are produced in a common
facility that can produce only one unit of one of the
items at a time. Production times for individual units
are assumed to be independent; those of item i are
identically distributed with cdf S i�, mean s i � � and
kth moment s i

(k) (k � 2) (i � 1, . . . , N). A possibly
random setup time with cdf R i�, first moment r i � �,
and kth moment r i

(k) (k � 2) is incurred whenever the
facility starts producing item i after being idle or after
producing some other item. Consecutive setup times
are independent. The utilization rate for item i is � i

� � is i; that of the system equals � � ¥ i�1
N � i. We

assume the system is stable, i.e., � � 1. Unfilled
demand is backlogged. Three types of costs are in-
curred. Let

h i( x) � the inventory carrying cost for item i per
unit of time at which x units of item i are carried in
stock (i � 1, . . . , N),
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p i( x) � the inventory backlogging cost for item i
per unit of time at which x units of item i are
backlogged (i � 1, . . . , N), and

K i � the setup cost incurred per setup of item i (i
� 1, . . . , N).

The functions h i� and p i� are convex and nonde-
creasing. Often, one prefers to control stockouts via
service-level constraints rather than explicit backlog-
ging costs, e.g., lower bounds on the items’ fill rate.
This variant of the basic model calls for a minor
adjustment; see §3. We wish to minimize the long run
average of total costs.

For any pair of random variables X, Y let X � Y
denote the independent sum of X and Y. We write X
� Y if the two random variables are identical in
distribution. Also, for any nonnegative random vari-
able X with cdf H� let H̃� denote the Laplace
Stieltjes Transform (LST), H̃ (k)� its kth derivative, k
� 1 and H e� the cdf of its forward recurrence time,
i.e.,

H e�x� � �
0

x

�1 � H�y��dy/EX, x � 0.

For any item-dependent parameter � i, let �( A) �
¥ i�A � i.

3. Combined Production Strategies
for A- and B-items

Even in the absence of B-items, an optimal production
strategy for the A-items (component (ii)) cannot be
identified in any reasonable amount of time except for
the smallest systems (e.g. with two items) where, in
principle, the problem can be solved as a semi-Markov
decision problem. Most importantly, the structure of
an optimal strategy is highly complex even for special
cases of our model, see, e.g., Ha (1992) and Hofri and
Ross (1987), precluding its implementation. Instead,
we restrict ourselves to the class of base-stock policies
which switch between the A-items according to a
general periodic sequence. A base stock policy for the
A-items is described by:

(a) a vector of base-stock levels b � (b 2, . . . , b N);
and

(b) a table T � {T( j); j � 1, . . . , M} of length M

� N � 1, the number of A-items; T( j) denotes one of
the items in A � {2, . . . , N } and T( j) 	 T( j

 1)(modulo M) for all j � 1, . . . , M.
To describe the policy, assume first that no demands
for the B-item arise. At time 0, the facility starts to
produce the first item T(1) listed in table T and
continues its production until its inventory level is
increased to a base-stock level b T (1)

. The facility then
switches to the second item in the table, T(2), after a
setup time R T (2)

. This protocol continues until the Mth
production run for item T(M). Thereafter the facility
returns to the beginning of the table, producing its first
item T(1) (after a setup time R T (1)

,) and continuing the
above protocol. In particular in the presence of setup
costs, it may be beneficial to insert idle times between
some of the production runs in T. To simplify the
exposition we ignore these idle times at first. In
Federgruen and Katalan (1995a) we show how idle
times can easily be incorporated.

For a given table T, it is possible to determine an
optimal corresponding vector of base-stock levels b,
and to evaluate the long-run average costs, via a very
efficient solution method described in Federgruen and
Katalan (1994). This method starts with the determi-
nation of the steady-state shortfall distributions
{L 1, . . . , L N} of the N items, where the shortfall,
defined as the difference between the base-stock and
the actual inventory level, is independent of the
former. Once these shortfall distributions are com-
puted, the problem of determining optimal base-stock
levels and of evaluating associated cost measures
decomposes into N separate newsboy problems, i.e., N
separate minimizations of a convex single-variable
function. In the important special case where the
holding and backlogging cost functions h i� and p i�
are linear, solution of each newsboy problem reduces
to that of determining a given fractile of a shortfall
distribution.

The method to compute the shortfall distribution
uses the fact that each of the shortfalls L i (i � 1, . . . ,
N) can be decomposed as the convolution of L�i, the
queue size in a dedicated M/G/1 system, and an
independent component L �i, i.e., L i � L�i � L �i. The
distribution of L�i can be computed exactly, see e.g.,
Tijms (1986). The method to compute the distribution
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of L �i is exact as well except for approximating the
so-called intervisit times by numerically convenient
phase type distributions, fitting any desired number of
moments. The intervisit time I j for the jth entry in the
table denotes the interval of time between the start of
the corresponding production run and the termination
of the preceding production run for the same item
T( j), j � 1, . . . , M. The moments of these intervisit
times are themselves computed, within any required
relative precision � 
 0, via the recursive descendant
set method of Konheim et al. (1994). To compute the
first m (say) moments of the intervisit times via this
method, it suffices to know the first m moments of the
production and setup-time distributions. (In practice,
it suffices to match two or three moments.) The
worst-case complexity of our method for determining
optimal base-stock levels and assessing associated cost
measures is O(max{Nk* 2, M 2 log� �}) where k* de-
notes the largest shortfall level that needs to be eval-
uated when solving the above newsboy problems. The
complete method requires only a few seconds on a PC
and is remarkably accurate as verified in an extensive
numerical study. See Appendix 1 in Federgruen and
Katalan (1995a) for a more detailed summary of this
procedure. Finally, the above method can be applied
to any given table T or any menu of such tables. See
Federgruen and Katalan (1995b) for a systematic op-
timization over all possible tables T.

This base-stock policy needs to be complemented
with an interruption discipline (component (i)) to allow
for quick response production of the B-item. In its
purest form, no inventory is kept for the B-item. More
generally we may maintain a small base-stock level b 1.
Several interruption disciplines may be envisioned. A
first important distinction is how production of the
A-items is interrupted:

(I) Absolute Priority rules: Absolute priority is
given to orders for B-units: either (PS), preemptive-
resume, immediately when the order is placed, or (NP),
nonpreemptive, as soon as the unit currently being
produced is completed. Under (PS) we assume that no
work is lost due to preemptions. See §10 in Feder-
gruen and Katalan (1995a) for a treatment of varia-
tions where some or all of the work on a unit in
process is lost.

(II) Postponable Priority rules: Here, production of
B-units is inserted into the production schedule of the
A-items, but only when the facility would otherwise
switch between A-items. We refer to these as (PP)-
rules.

Absolute priority rules provide quicker response to
the B-item than postponable priority rules but appear
attractive only when the desired service level pro-
vided to the B-item or the backlogging cost associated
with this item is significantly larger than those of the
A-items or when the time and cost required to setup
for an A-item after having worked on the B-item is
negligible or relatively small. To simplify the exposi-
tion, we assume that the same characteristic (PS, NP,
PP) applies to all A-items; extensions to mixed settings
are straightforward.

Assuming that B-units are given absolute priority, it
is clearly advantageous to preempt the setup for an
A-item as soon as an order for a B-unit arrives. As
with the production times, we assume that no work is
lost due to preemption of setups. For alternative
assumptions, see §10 in Federgruen and Katalan
(1995a).

Under a postponable rule, the B-item is inserted once
or multiple times as an entry into the T-table, giving
rise to a new extended T-table for which an associated
optimal base-stock policy can be determined via the
general method described above. We now show that
under absolute priority rules, performance of the A-
and B-items can be ascertained respectively from (i)
that of an equivalent system without the B-item, but
with modified setup and production time distribu-
tions; and (ii) a simple “M/G/1 system with vaca-
tions,” see, e.g., Doshi (1990).

We may consider certain dynamic adjustments to
the above class of policies, e.g. where an item is
skipped when it is its turn to be produced but its
inventory is still at its base-stock level. This adjust-
ment would apply to any of the A-items under abso-
lute priority rules and to all items, (the B-item includ-
ed), under postponable rules. Günalay and Gupta
(1997) provide two numerical methods to accommo-
date this dynamic adjustment. Their first method is an
adaptation of the above-mentioned descendent set
method by Konheim et al. (1994). Unfortunately, it

FEDERGRUEN AND KATALAN
Adding a Make-to-Order Item to a Make-to-Stock Production System

984 Management Science/Vol. 45, No. 7, July 1999



applies only to systems with two items. The second
method, based on Discrete Fourier Transforms, ap-
plies to an arbitrary number of items but it is compu-
tationally intractable except when the number of items
is small and � � 0.5. Also, the event under which an
item can be skipped, when following the table T,
because its inventory has not dropped from its base-
stock level, is rare under reasonably large utilization
rates and/or cycle times. This implies that the perfor-
mance measures obtained without the dynamic ad-
justment may be used as a good approximation.

Absolute Priority Rules
For i � 2, . . . , N, let R̂ i denote the total amount of
time between the beginning of a setup for item i and its
completion, and Ŝ i the total time between the begin-
ning of the production of a unit of item i and its
conclusion, including possible interruptions to pro-
duce the B-item. Note that as far as the A-items are
concerned, the system is equivalent to one without
B-units, and {R̂ i, Ŝ i; i � 2, . . . , N } as the setup times
and unit production times. Recall that the evaluation
and optimization method described above requires
knowledge of a given number of moments of all setup
and production time distributions. Highly accurate
approximations can be obtained on the basis of the
first two or three moments only. We now derive the
marginal distributions {R̂ i, Ŝ i; i � 2, . . . , N }. We first
introduce some notation. Let

B � the length of a busy period for the B-item

in a dedicated system for this item, (1)

i.e., a dedicated M/G/1 system with exceptional first
service, which has arrival rate �1, regular service time
distribution S 1�, and first service time distribution R 1

� S 1. The moments of B are obtained from the
well-known identity relating its LST B̃� to S̃ 1� and
R̃ 1� (cf., e.g., Wolff 1989):

B̃�s� � R̃1�s � �1�1 � B̃0�s���B̃0�s�

with B̃0�s� � S̃1�s � �1�1 � B̃0�s���. (2)

Closed form expressions for the first three moments
are given in Appendix 2 of Federgruen and Katalan
(1995a). Below, {B 1, B 2, . . . } refers to a sequence of

i.i.d. random variables, distributed like B. Also, for
any interval of time U, let

N�U� � the number of B-units demanded during U

or an interval of time distributed as U. (3)

Clearly,

R̂i � Ri � �
l�1

N�Ri�

Bl. (4)

To obtain a qualitative understanding of the impact
B-units have on the “extended” setup times for the
A-items, consider the case where R 1 � 0. Proposition
1 in Federgruen and Katalan (1995a) shows that

Var�R̂i� � ��1ris 1
�2� � Var�Ri��1 � �1��/�1 � �1�

3,

so that the squared coefficient of variation

CV2�R̂i� � CV2�Ri� �
�1

1 � �1

s1�1 � CV2�S1��

ri
.

The second term in this expression thus denotes the
increase in the squared coefficient of variation due to
interruption for B-units. In other words, setup times
always become more variable due to interruptions for
the MTO items. The increase grows to infinity with �1,
the fraction of the capacity required to produce MTO
items, and when production times of the B-units are
relatively large or variable compared to the mean
interrupted setup time. Interestingly, the increase in
variability is particularly large when mean setup times
without interruptions by B-orders are small, i.e.,
CV2(R̂ i) 3 � as r i 2 0. This arises because under
interruptions for the B-item, the extended setup times
are considerably larger than in the event that no
demand for the B-item arises during the initial setup
time. These observations indicate that providing ab-
solute priority to a large fraction of the orders can
result in significant increases of the shortfall distribu-
tions for the A-items, or the inventories required to
support given service levels beyond what can be
expected from the mere increase in their expected cycle
times {C 2, . . . , C N}, i.e., the time between consecutive
production runs for a given item.

The modified production time distributions in the
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equivalent system depend on which of the character-
istics (PS) or (NP) prevails.

�PS�: Ŝi � Si � �
l�1

N�Si�

�Bl � R̂i,l�

where R̂i,1, R̂i,2, · · · are i.i.d. as R̂i, �5�

�NP�: Ŝi � Si � �
l�1

N�Si�

Bl � � R̂i if N�Si� 	 0,
0 otherwise. (6)

The shortfall distributions of the A-items and asso-
ciated base-stock levels can be computed by applying
the general method described above to the equivalent
system with its modified setup and production time
distributions, cf., (4)–(6). As far as item 1 is concerned,
its cost under a given (e.g., zero) base-stock level is
again obtained from the item’s steady-state shortfall
distribution L 1. We write L 1(PS), L 1(NP), and L 1(PP) to
distinguish between the shortfall distribution under
preemptive priority (PS), nonpreemptive priority
(NP), and postponable priority (PP), respectively. Sim-
ilarly, we write W 1(PS), W 1(NP), and W 1(PP) for the
steady-state waiting time for a B-order under the three
types of priority rules.

Under preemptive priority, i.e., (PS), the shortfall L 1

is distributed as L�1, the steady-state queue size in the
dedicated M/G/1 system with exceptional first ser-
vice time. Under the two alternative types of priority,
L 1 is the queue size in this M/G/1 system, inter-
rupted by “generalized vacations.” The system is “on
vacation” whenever the facility is producing or setting
up for A-items. Note that a vacation starts as soon as
item 1’s shortfall is reduced to zero. Under (NP)
priority, it terminates upon the first demand for a
B-unit, if the facility is setting up at that time and at
the first subsequent production completion epoch,
otherwise. Under (PP) priority, the vacation termi-
nates as soon as the facility switches back from pro-
ducing an A-item to that of the B-item. In both cases,
the vacation structure satisfies assumptions (1)–(6) in
Fuhrmann and Cooper (1985). By their decomposition
result, we have that L 1(NP) and L 1(PP) may be written
as a convolution of L�1 and an independent component
L �1(NP) and L �1(PP), respectively. Similarly, W 1(NP)
and W 1(PP) may be written as a convolution of W�1,

the steady-state waiting time in the dedicated M/G/1
system without interruptions, and an independent
component W �1(NP) and W �1(PP), respectively. While
L �1(NP) and W �1(NP) can be characterized as simple
mixtures of elementary random variables, such a
characterization is more complex in the case of L �1(PP)
and W �1(PP). See the discussion in the introductory
part of this section, and, for more details, see Feder-
gruen and Katalan (1994). We thus obtain:

Theorem 1.
(a) (i) L 1(PS) � L�1;
(ii) L 1(NP) � L�1 � L �1(NP) where L �1(NP) is a

mixture of {N(S 2
e), N(S 3

e), . . . , N(S N
e ), 0} with mixing

probabilities � 2/(1 � � 1), � 3/(1 � � 1), . . . , � N/(1
� � 1), (1 � �)/(1 � � 1);

(iii) L 1(PP) can be decomposed as the convolution of L�1
and an independent nonnegative random variable L �1(PP),
i.e., L 1(PP) � L�1 � L �1(PP).

(b) (i) W 1(PS) � W�1;
(ii) W 1(NP) � W�1 � W �1(NP) where W �1(NP) is a

mixture of {S 2
e, S 3

e, . . . , S N
e , Z} with Z an exponentially

distributed random variable with mean � 1
�1, and mixing

probabilities � 2/(1 � � 1), � 3/(1 � � 1), . . . , � N/(1
� � 1), (1 � �)/(1 � � 1);

(iii) W 1(PP) can be decomposed as the convolution of
W�1 and an independent nonnegative random variable
W �1(PP), i.e., W 1(PP) � W�1 � W �1(PP).

Proof. Except for the characteristics above of
L �1(NP) and W �1(NP), the theorem follows from Fuhr-
mann and Cooper (1985) and the discussion above.
We now verify the characterization of L �1(NP), the
proof of that W �1(NP) being analogous.

It follows from Fuhrmann and Cooper (1985) that
L�1(NP) is the queue size at an arbitrary tagged epoch
during one of the vacations. Let Ei denote the event that
the tagged epoch falls within a production period for
item i, i � 2, . . . , N. Recall that under Ei and by the
definition of rule (NP), the queue is empty at the onset of
the unit production period in which the tagged epoch
falls and the steady-state distribution of the age of this
unit production time is distributed as Si

e, see, e.g., Wolff
(1988). It follows that �L �1�NP�|Ei� �

d N�S i
e�. Also, we

have (L �1|the tagged epoch occurs when the system
is setting up) � 0, and the probabilities of the
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conditioning events {E i: i � 2, . . . , N } satisfy Pr[E i]
� Pr[system is producing item i|system is not
producing item 1] � Pr[system is producing item
i]/Pr[system is not producing item 1] � � i/(1
� � 1). �

4. Comparison Between Alternative
Priority Rules

In this section we compare the performance of the A-
and B-items under absolute and postponable priority
rules. Theorem 2 below compares the shortfall and
order delay distributions for the B-item assuming for
simplicity’s sake that this item is purely MTO, i.e., no
inventory is kept for it.

Theorem 2.
(a) L 1(PS) 
 st L 1(NP) 
 st L 1(PP),
(b) W 1(PS) 
 st W 1(NP) 
 st W 1(PP).

Proof. (a) The first inequality is immediate from
Theorem 1, part (a). L �1(PP) represents the shortfall for
item 1 at an arbitrary tagged epoch during an in-
tervisit time for this item. As in the proof of Theorem
1, let E i denote the event that this tagged epoch falls
within a production run of type i, i � 2, . . . , N and let
E 0 denote the complementary event. As shown in the
proof of Theorem 1, Pr[E i] � � i/(1 � � 1) for i
� 2, . . . , N and Pr[E 0] � (1 � �)/(1 � � 1). Note that
(L �1(PP)|E 0) � 0 a.s. For any i � 2, . . . , N
(L �1(PP)|E i) is almost surely larger than the number
of units of item 1 demanded during the elapsed part of
the unit production time in process at the tagged
epoch, which is distributed as S i

e, cf. Wolff (1988).
Thus, (L �1(PP)|E i) � st N(S i

e) � (L �1(NP)|E i); see the
proof of Theorem 1. Hence L �1(PP) � st L �1(NP), since
the mixing probabilities are equal under both rules,
and L 1(PP) � L�1 � L �1(PP) � st L�1 � L �1(NP)
� L 1(NP).

(b) It follows from Fuhrmann and Cooper (1985)
(see also Federgruen and Katalan (1994, pp. 362–363))
that W �1(PP) and W �1(NP) are distributed as the age of
the intervisit time in process at an arbitrary tagged
epoch during an intervisit time. The remainder of the
proof is analogous to that of part (a). �

We conclude that the rules (PS), (NP), and (PP)
generate progressively larger shortfalls and order de-

lays for the B-item. Moreover, these can be character-
ized as a common basic shortfall or order delay,
experienced in a system fully dedicated to these items,
plus a progressively larger component that thus can
be viewed as the penalty paid for the restricted
priority attributed to the B-item. For example, Theo-
rem 1 shows that the increase in the mean shortfall
under nonpreemptive absolute priority (NP) is given by

�
i�2

N
� i

�1 � �1�

�1s i
�2�

2si
�

� 1
2s 1

�2�

2�1 � �1�
�
i�2

N
� is i

�2�

�1s 1
�2� . (7)

The first factor to the right of (7) represents, under the
preemptive rule (PS), the expected number of B-units
waiting to be processed, i.e., the expected queue size
in the uninterrupted M/G/1 system. The second
factor is a dimensionless index; e.g. when (the second
moments of) all unit production times are identical,
the index equals the ratio of the aggregate demand
rate of the A-items and that of the B-item. Thus a
relatively high price is paid in terms of the cost
incurred for the B-item when switching from preemp-
tive to nonpreemptive priority, in particular when
demand for the B-item is relatively small.

One would expect that the progressively larger
shortfalls and order delays for the B-item under the
above sequence of priority rules is compensated by
progressively shorter intervisit and cycle times expe-
rienced by the A-items. Proposition 1 below estab-
lishes this stochastic ranking of the absolute priority
rules for cyclical base-stock production strategies. For
all i � 2, . . . , N, let I i(PS) and I i(NP) denote the
intervisit time of item i when applying the PS- and
NP-rule, respectively. Similarly, for all i � 2, . . . , N,
let C i(PS) and C i(NP) denote the cycle time when
applying the PS- and NP-rule, respectively.

Proposition 1. For all i � 2, . . . , N, I i(PS) � st

I i(NP); C i(PS) � st C i(NP).

Proof. Without loss of generality let i* � 2. Alt-
man et al. (1992, Prop. 4.3) show for cyclical polling
systems that if one of the service time distributions is
replaced by a stochastically larger one, all intervisit
and cycle times of all items are stochastically increased
as well. It thus suffices to verify that the extended
production times are appropriately stochastically
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ranked. The result is immediate since ¥ l�1
N�Si� R̂ i,l

� 1{N(S i) 
 0}R̂ i a.s. �

Remark. Let I i(PP) and C i(PP) denote the intervisit
time and cycle time for item i under the postponable
priority rule in which item 1 is inserted after every one
of the entries of the cyclical table for the A-items. One
may surmise that the range of stochastic comparisons
could be extended to:

Ii�PS� � st Ii�NP� � st Ii�PP� and

Ci�PS� � st Ci�NP� � st Ci�PP�

for all i � 2, . . . , N.

This, however, fails to be true. For example, under a
sufficiently low demand rate for item 1, the PP-rule
may insert more setup times for this item in any given
cycle than the absolute priority rules. (Recall, the
PP-rule prescribes a setup for item 1 after the comple-
tion of each production run for any of the A-items
regardless of whether the inventory of the B-item is at
its base-stock level or not.) It remains an open question
whether the stochastic ordering applies to PP, the
dynamic adjustment of PP, under which a setup of the
B-item is skipped if its prevailing inventory level is
still at its base-stock level. Switching from the nonpre-
emptive absolute priority rule (NP) to the PP-rule
(stochastically) decreases the intervisit and cycle times
of the first cycle but it remains an open question
whether the same ranking carries over to the equilib-
rium distributions.

5. Stability Conditions
The choices for component (i), in particular (PS), (NP),
and (PP) have implications for the stability of the
system. As mentioned in §2, the inequality � � ¥ i�1

N � i

� 1 is clearly a necessary condition for stability. Under
alternative (PP), it is sufficient as well, see Takagi
(1986, 1990). On the other hand, under absolute prior-
ity rules, the system may be unstable even if � � 1 and
even if B-items can be inserted without setup times. In
fact the stability condition in this case is given by

�
i�A

� iEŜi � 1, (8)

with Ŝ i, the extended unit production time, specified
as in (5) and (6).

The proof of Proposition 1 shows that for all i � A
Ŝ i(PS) � st Ŝ i(NP) and in particular E(Ŝ i(PS))
� E(Ŝ i(NP)). Thus, stability may in particular be
jeopardized when adopting preemptive priority rules
for all items. In this case the stability condition (8) can
be stated as follows:

Proposition 2. Under (PS) the system is stable if and
only if

�
i�2

N

� i�1 � �1r1��1 � �1ri�/�1 � �1� � 1

or equivalently,

� � 1 � �
i�2

N

� i��1ri � �1r1�1 � �1ri��. (9)

Proof. It suffices to verify that (9) is equivalent to
(8). To find an expression for EŜ i, note first that E(B)
� (r 1 
 s 1)/(1 � � 1), the well known formula for the
expected busy period in an M/G/1 system with
exceptional first service time; see also (2). It then
follows from (4) that

E�R̂i� � ri � �1riE�B� � ri�1 � �1r1�/�1 � �1�,

and hence from (5)

E�Ŝi� � si � �1si��r1 � s1� � ri�1 � �1r1��/�1 � �1�.

(10)

Substituting (10) into (8), we obtain Equation (9). �

The second term to the right of Equation (9) repre-
sents the fraction of the capacity which is wasted due
to setups associated with interruptions of the produc-
tion of A-units:

wasted capacity �
def �

i�2

N

� i��1ri � �1r1�1 � �1ri��.

The wasted capacity is particularly large when the
demand rate for the B-item (�1) is large, independent
of the amount of work associated with the production
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of these B-units, i.e., independent of S 1. The wasted
capacity does increase proportionally with the mean
production times of the A-items and their demand
rates. The stability condition (9) implies for given load
factors � 2, . . . , � N, that the maximum (sales) volume
assignable to the MTO item is distinctly smaller under
absolute priority rules (PS) as compared to postpon-
able ones (PP). Such limitations cannot be observed in
models without setup times, in which it is sometimes
optimal to assign close to 100% of the load to the
B-items, see Carr et al. (1993).

Also, the utilization rate under preemptive inter-
ruptions for the B-item equals

�
i�2

N

� i�1 � �1r1��1 � �1ri�/�1 � �1�,

see above. Giving preemptive priority to the B-item
always increases the mean cycle times experienced by
the A-items, since in the modified system

EĈ � �
j�1

M

E�R̂T�j���� 1 � �
i�2

N

�� iEŜi��
� �1 � �1�

�1� �
j�1

M

rT�j���� 1 � �1 � �1�
�1 �

i�2

N

� i�
� �

j�1

M

rT�j�/�1 � �� � EC

where the inequality follows from EŜ i � s i(1 
 � iEB)
� s i/(1 � � 1) by Proposition 3 (Federgruen and
Katalan 1995a, Appendix 2).

6. Numerical Study
We have conducted a numerical study to investigate
some of the main choices presented in this paper. In
particular, we have gauged whether absolute priority
rules are to be preferred over postponable ones, and if
so under what circumstances and via what specific
absolute or postponable priority scheme. We also
apply our methods to characterize the logistical impli-
cations of adding a low volume specialized B-item to
a given product line. These implications include the

allocation mechanism of the production capacity
among MTO and MTS items and the increase in
inventory needs for the basic A-items.

To evaluate the relative performance of various
absolute and postponable priority rules, we focus on
settings where a class of B-units and its service with
absolute priority rules is most likely to be effective,
i.e., where the B-items have zero setup times (r 1 � 0)
and all items have zero setup costs. We show that even
in this extreme case, postponable priority rules often
dominate absolute priority rules. When r 1 
 0, it can
be expected that postponable rules start to dominate
for even lower setup times for the A-items, or for an
even lower demand volume or penalty cost rate for
the B-item, etc. Similarly, one can expect that the
optimal frequency of inserting the B-item within the
table T, (among all considered postponable rules),
decreases as the value of r 1 increases. These monoto-
nicities are based on the fact that the incremental
wasted capacity under absolute priority rules beyond
that incurred under the postponable rules, increases as
item B’s setup time r 1 increases. See also the discus-
sion in §5.

We start by investigating a class of 675 problem
instances, all with 16 A-items, where the demand
volume of the A-class as a percentage of the overall
demand varies between 70% to 90%. This type of
breakdown of the product line is consistent with
classical A/B/C classifications. A power-of-two num-
ber of A-items is chosen to easily investigate the
impact of doubling the frequency of service to the
B-item via (PP) rules.

Assume, without loss of generality, that the A-items
are ordered in increasing order of their demand val-
ues. Consistent with empirically observed Pareto-
curves, we have constructed these to be of exponential
shape for the A-class, i.e., � i�1/� i � q for some
constant q � 1, for all i � 3, . . . , 17 A-items. All items
have the same unit production time (exponential with
mean 1), and holding and penalty cost rates (h i � h
� 1 and p i � p for all i � 1, . . . , 17). We assume
however that the B-item cannot be stocked. All A-
items have identical exponential setup time distribu-
tions. In particular, ri �

def r for all i � 2, . . . , 17.
(Recall that the B-item has zero setup time.) The 675
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problem instances are obtained by combining (i) 5
possible choices of � � ¥ i�1

17 � i, i.e., � � 0.6, 0.7, 0.85,
0.9, 0.95, (ii) 3 possible values for the shape parameter
q of the Pareto-curve, i.e., q � 0.9, 0.95, 0.99, (iii) 3
possible values for �( A)/� � �( A)/¥ i�1

17 � i � 0.7,
0.8 and 0.9, (iv) 3 possible values for r � 0.1, 1, 2.5,
and (v) 5 different values for the ratio p/( p 
 h)
� 0.25, 0.5, 0.9, 0.95, 0.99. All demand rates are
fully specified by the triple (�, �( A), q).

We assume that the A-items are governed by a
cyclical base-stock policy, i.e., T � {2, . . . , 17}. For all
675 problem instances, we have evaluated both the
preemptive and nonpreemptive priority rules (PS) and
(NP) for all 16 A-items as well as 5 distinct postpon-
able rules (PP-2 i, i � 0, . . . , 4), i.e., where the B-class
is inserted into the table T 2 i times after every 2 4�i

A-items. Both the restriction to cyclical policies for the
A-items and the restriction to the five possibilities
(PP-2 i) are made for the sake of brevity only. As
before, we refer the reader to Federgruen and Katalan
(1995b) for a systematic discussion of search methods
for an optimal (extended) table, T.

The “stability problem” discussed in §5 arises quite
frequently, even though zero setup times are assumed
for the B-item. Recall that the wasted capacity measure
in (9) is minimized when r 1 � 0. As can be expected
from the wasted capacity term in (9), the stability
problem arises in particular for instances with a high
utilization rate � and large setup times. Even when the
system continues to be stable under absolute priority
rules, we have found that these are often dominated in
terms of overall cost performance by one of the five
postponable rules, and as demonstrated below, per-
formance differences can be highly significant. Which
of the seven considered priority rules dominates, and
to what extent, depends on the specific parameters;
absolute priority rules tend to dominate when setup
times are low, the demand rate for the B-class is small,
and a high service level ( p/( p 
 h)) is required. Even
when an absolute priority rule is used, it may be of
significant advantage to support the B-item with its
own base-stock in settings, different from the above
scenarios, where the B-item can be stocked. This
applies in particular when a high service level needs to
be guaranteed, and when the demand rate for the

B-item is not too small. More subtle changes in the
relative ranking of the priority rules can be expected
under non-identical parameters and distributions. We
conclude that a systematic optimization is required for
the different choices for each of the strategy compo-
nents rather than a categorical, a priori restriction to
one of them.

We illustrate the above with the help of a few
graphs for a few specific problem instances from the

Figure 1 MTO—MTS: Priority Rules
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Figure 2 MTO—Shortfall cdf
MTS—MTO: Base Stock Level—A Class
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Figure 3 The Impact of an Additional B-Item
Marginal Break-Even Price for an Additional B-Item
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above class of 675 in which the mean unit production
time for the B-item as well as its p- and h-values are
increased by a factor of ten and its demand rate
decreased by the same factor, leaving the utilization
rate unaltered. This modification was made to create
instances in which all of the considered priority rules
are feasible, i.e., result in stable systems; see our
discussion above. The selected problem instances all
have q � 0.95, p/( p 
 h) � 0.95 and �( A)/� � 0.75.
The basic instance considered has r � 1 and � � 0.95.
(This setup time value can in many settings be viewed
as moderate since it equals the mean time required to
produce a single unit.)

Figure 1 compares the performance of the seven
priority rules, ranked in decreasing order of priority
provided to the B-class, for the basic instance and two
others in which the mean setup times are changed
from 1 to 0.1 and 2.5, the three values considered in
the full set of 675 instances. (Even a mean setup time
of 2.5 is moderate since the average production run of
the A-items in this instance takes approximately 35
time units under any of the postponable rules.) In
addition to the total cost, we depict its three principal
components, the cost for the B-items, the holding cost
for the A-items and their backlogging costs. We as-
sume that the B-item is truly MTO, i.e., no inventory
can be maintained for this item. We observe that for
the basic instance, (PP-16) is optimal, significantly
improving upon, e.g., either one of the two extremes
(PS) or (PP-1).

When the mean setup time is reduced to 0.1, pre-
emptive priority (PS) becomes optimal; when it is
increased to 2.5, (PP-16) continues to be optimal. In
this case, (PP-16) is five times more efficient than the
absolute priority rule (PS), while it continues to be
twice as efficient as the other extreme (PP-1).

Figure 2 displays, for the basic instance, the cdfs of
L 1, the aggregate shortfall distribution of the B-items,
under the seven rules; these exhibit the stochastic
rankings stated in Theorem 2. The bottom part of this
figure exhibits the optimal total base-stocks under the
seven rules; these represent a decreasing curve, con-
sistent with the stochastically decreasing cycle times,
proved in Proposition 1, for the absolute priority rules.

Figure 3 addresses the strategic question mentioned

above. We modify the basic instance, in which �( A) is
fixed at �( A) � 0.6 and � is progressively increased
from � � 0.6 to � � 0.95 by adding a low-volume
specialized B-item to the basic product line. The upper
part of the figure exhibits for the absolute priority rule
(PS) and the postponable rule (PP-16), how the total
expected costs as well as the cost for the A-items and
the B-item separately, depend on the amount of addi-
tional business of B-units. The absolute (postponable)
priority rule dominates for relatively low (high) utili-
zation rate �, i.e., � � 0.9 (� � 0.9). While the cost
increases for the B-item remain moderate, those in-
curred for the A-items and hence for the total system
costs, become severe when � increases beyond 85%,
say.

These cost curves allow us to calculate a marginal
break-even price at each of the considered additional
utilization rates by computing the total cost differen-
tials associated with increments of � by 5 percentage
points at a time. The marginal break-even prices are
displayed at the bottom part of Figure 3 and can be
used as input to sales negotiations. Note that the
marginal break-even price is roughly 100 times larger
at � � 0.9 than at � � 0.6, indicating how much caution
is to be exercised when accepting additional special-
ized business at a high utilization rate, and how
misleading standard cost accounting methods can be.
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