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 We analyze a planning model for a firm or public organization that needs to cover uncertain demand for a given item by
 procuring supplies from multiple sources. The necessity to employ multiple suppliers arises from the fact that when an order
 is placed with any of the suppliers, only a random fraction of the order size is usable. The model considers a single demand
 season with a given demand distribution, where all supplies need to be ordered simultaneously before the start of the season.
 The suppliers differ from one another in terms of their yield distributions, their procurement costs, and capacity levels.

 The planning model determines which of the potential suppliers are to be retained and what size order is to be placed
 with each. We consider two versions of the planning model: in the first, the service constraint model (SCM), the orders
 must be such that the available supply of usable units covers the random demand during the season with (at least) a given
 probability. In the second version of the model, the total cost model (TCM), the orders are determined so as to minimize
 the aggregate of procurement costs and end-of-the-season inventory and shortage costs. In the classical inventory model
 with a single, fully reliable supplier, these two models are known to be equivalent, but the equivalency breaks down under
 multiple suppliers with unreliable yields.

 For both the service constraint and total cost models, we develop a highly efficient procedure that generates the optimal
 set of suppliers as well as the optimal orders to be assigned to each. Most importantly, these procedures generate a variety
 of important qualitative insights, for example, regarding which sets of suppliers allow for a feasible solution, both when
 they have ample supply and when they are capacitated, and how various model parameters influence the selected set of
 suppliers, the aggregate order size, and the optimal cost values.

 Subject classifications: inventory/production: approximations/heuristics; operating characteristics; reliability: failure
 models.

 Area of review: Manufacturing, Service, and Supply Chain Operations.
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 1. Introduction and Summary
 We analyze a planning model for a firm or public organiza
 tion that needs to cover uncertain demand for a given item
 by procuring supplies from multiple sources. The neces
 sity or desirability of employing multiple suppliers arises
 from the fact that when an order is placed with any of the
 suppliers, only a random fraction of the order size is use
 able or materializes. This random fraction is referred to as

 the yield factor and it follows a general (supplier-specific)
 probability distribution. An important special case arises
 when the yield distribution has a positive mass at zero, rep
 resenting the possibility of a complete breakdown due to
 natural or man-made disruptions or the firm's bankruptcy.
 The model considers a single demand season with a given
 demand distribution, where all supplies need to be ordered
 simultaneously before the start of the season. The suppliers
 differ from each other in terms of their yield distributions as
 well as their per-unit procurement costs. The yield factors
 at different suppliers are independent of each other as well

 as the season's demand. (See, however, ?7 for a treatment
 of correlated yield and demand distributions.)

 The planning model determines which of the potential
 suppliers are to be retained and what size order is to be
 placed with each. We consider two versions of the plan
 ning model: In the first, orders are to be chosen to minimize

 procurement costs, while ensuring that the available supply
 of useable units covers the random demand during the sea
 son with (at least) a given probability. In the second version
 of the model, the orders are determined so as to minimize
 the aggregate of procurement costs and end-of-the season
 inventory and shortage costs. We refer to these two ver
 sions as the service constraint model (SCM) and the total
 cost model (TCM), respectively. In classical inventory the
 ory with fully reliable suppliers, assigning a direct stockout
 penalty for each unsatisfied unit of demand and employ
 ing a constraint on the probability of a stockout represent
 the two common approaches to control the stockout phe
 nomenon. Much has been written about the relative merits
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 of both modeling approaches, see, e.g., Zipkin (2000). Both
 approaches continue to be pursued in parallel, even though
 in classical inventory models, the two approaches are known
 to be equivalent: an instance of (TCM) with a given back
 logging rate induces the same optimal inventory strategy
 as an instance of (SCM) with a corresponding permitted
 shortfall probability, and vice versa. See Boyaci and Gallego
 (2001) for a recent discussion of this equivalency in classical
 inventory models. The equivalency breaks down under mul
 tiple suppliers with unreliable yields, adding to the need to
 pursue both planning approaches in parallel. First, whereas a
 feasible solution always exists in the (TCM), in the (SCM),
 feasibility requires a minimum number of sufficiently reli
 able suppliers, as specified below. A key concept in both
 models is the so-called expected effective supply, i.e., the
 expected total number of usable units obtained from the var
 ious suppliers. We show that, for a given expected effective
 supply level, the optimal set of suppliers and the orders can
 be obtained in closed form, after determining the root of
 a single-variable function. Also, the total cost is a strictly
 convex function of the expected effective supply with a
 unique minimum. In the (SCM), a larger expected effec
 tive supply is optimally assigned to the same number, or
 fewer, suppliers, i.e., if one is willing to place a larger aggre
 gate order, there is less need to diversify among suppliers;
 in the (TCM), this monotonicity property may fail to hold.
 In the (SCM), the safety stock (= expected inventory after
 ordering ? expected demand) is always larger than in the
 classical model without supply risks. Once again, this is not
 always the case in the (TCM).

 Recently, much attention has been given to the need to
 diversify the supplier pool, so as to provide adequate pro
 tection against the possibility of uncertain yields or com
 plete disruptions due to natural causes, such as fires or
 hurricanes, man-made breakdowns (e.g., sabotage or ter
 rorist attacks), as well as bankruptcy. Most recently, the
 nation has focused on this challenge after hurricane Katrina
 demolished almost 10% of the U.S. refinery capacity, driv
 ing the price of gasoline and other refined oil products
 through the roof. The need to "plan for disaster" and to
 adequately diversify the pool of supply options has been
 recognized as one of the premier challenges in supply chain
 management in the twenty-first century. See, for example,
 Longitudes (2004), the proceedings of a conference bring
 ing together government, business, and academic leaders, in
 which this theme was highlighted with a case study of the
 cellular phone industry. This study contrasted the supply
 strategies of Ericsson and Nokia. Both used a Philips chip
 supplier in New Mexico as the primary source for one of
 the key electronic chips. However, whereas Ericsson relied
 entirely on this supplier, Nokia had put in place a variety
 of alternative supply options. When the Philips plant had to
 be shut down for an extended period of time due to a major
 fire, Ericsson suffered major losses in its sales volumes and

 profits, as well as a large reduction of its market share, for
 years to come.

 The failure to satisfy quality standards or regulations rep
 resents another potential source for major disruptions in the
 supply process. In the fall of 2004, the United States saw
 half of its flu vaccine supply disappear when one of its two
 suppliers had to bow out after the Food and Drug Admin
 istration and its British counterpart closed the Chiron plant
 in Britain. Similar supply shortages have occurred repeat
 edly with this and other vaccines. Finally, it is generally
 recognized that future terrorist attacks are likely to target
 the supply process of vital commodities or food products.

 We refer to Federgruen and Yang (2008) for a more exten
 sive discussion of these supply disruptions and their impact
 on the economy and general welfare.

 Even companies that were able to develop tight partner
 ships with their suppliers have come to realize that sin
 gle sourcing is far too risky. A prime example is Toyota,
 whose assembly plants were forced to shut down in 1997
 after a fire at Aisin. (Prior to 1997, Aisin provided 90%
 of all brake components and practically all brake valves
 for Toyota; see Nishiguchi and Beaudet 1998.) There
 after, Toyota sought multiple parallel suppliers for each
 part; see Treece (1997). Hewlett-Packard's Procurement
 Risk Management group launched, in 2000, a multisourcing
 strategy for its components, the ultimate profit contribution
 of which is estimated to amount to $1 billion; see Nagali
 et al. (2008, p. 51).1

 Two recent developments have acted as additional
 catalysts for the multisourcing movement. First, electronic
 commerce provides a platform with far lower overheads for
 becoming a supplier or for splitting orders. As Ketchpel and
 Garcia-Molina (1998, p. 603) write: "Customers can have
 many suppliers offer bids for a contract, or split a 'bundled'
 order across multiple suppliers more easily." Second,
 modern management information systems allow companies
 to track the performance of many suppliers along multiple
 dimensions, including costs and yield distributions. To this
 end, many firms maintain scorecards for their suppliers,
 who are graded for each of a list of criteria. Based on a
 relative weighting of the criteria, an overall score for each
 supplier is derived. These aggregate scores are used to select
 the supplier set and to determine their shares in the procure

 ment orders. Developing scorecard systems has become one
 of the consulting world's premier supply chain services;
 see, e.g., Oracle's Peoplesoft Manufacturing Scorecard at
 http://www.oracle.com/media/peoplesoft/en/pdf/datasheets/
 e_epm_ds_manufacture_42005.pdf. Several cases have
 been written on the use of scorecard systems at specific
 firms, e.g., Holloway et al. (1996) regarding Sun Microsys
 tems, and Kulp and Naravanan (2002) regarding Metal
 Craft, a $13 billion supplier of automotive parts. (See also
 Pyke and Johnson 2003 for a discussion of their use at Air
 Products.)

 Hitherto, the scoring methods for the individual criteria,
 as well as the aggregate scheme that generates the sup
 plier's overall score, fail to be based on specific planning
 models. The results in this paper provide insights for the
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 design of scorecard-based supplier selection and allocation
 systems. For both the (SCM) and (TCM), we develop a
 highly efficient procedure that generates the optimal set of
 suppliers as well as the optimal order for each. We also
 derive the following important qualitative insights: first,
 when ranking the suppliers in ascending order of their
 effective cost rates, the optimal set is, in both the (SCM)
 and (TCM), consecutive, i.e., it consists of the first k sup
 pliers for some k = 1,..., N. This result generalizes that
 of Anupindi and Akella (1993), obtained for the case of
 N = 2 and a general continuous-demand distribution. (For
 the same special case with N = 2 suppliers, Swaminathan
 and Shanthikumar 1999 showed that the optimal set of
 suppliers may fail to be consecutive, i.e., only the most
 expensive supplier is used for certain discrete-demand dis
 tributions.) In both the (SCM) and (TCM), each selected
 supplier is assigned an overall score, given by the product
 of a reliability and a cost score: The former is the mean
 to-variance ratio of the supplier's yield distribution, and
 the latter is given by the amount by which the supplier's
 effective cost rate falls below a specific threshold value.
 The market share of each selected supplier is given by his
 overall score relative to the sum of the suppliers' scores.2
 We systematically characterize the ramifications for

 (i) the supplier base, (ii) the expected effective supply (and
 hence the safety stock), and (iii) the optimal cost value
 resulting from changes in the supply risks, the demand mag
 nitude and risks, and the amount of initial inventory one pos
 sesses. For example, we analyze what impact an increase in
 either the mean or the standard deviation on any of the yield
 distributions has on any of the above-mentioned character
 istics of the solution. We do the same with respect to the

 mean and standard deviation of the demand distribution. We

 also show in the (SCM) that whether a supplier achieves a
 positive market share or not depends only on his own effec
 tive cost rate and those of his less expensive competitors,
 along with the coefficients of variation of their yield distri
 butions, as the sole characteristic of these distributions. The

 supplier's own yield distribution is immaterial to ensuring
 membership of the patronized supplier base. Alternatively,
 if it is optimal for the buyer to patronize the k* cheapest
 suppliers, the only way for any of the other suppliers to
 become part of the supplier base is to reduce their effective
 cost rate to a given maximum value.
 When the suppliers charge identical effective cost rates,

 the optimal expected effective supply depends on the sup
 pliers' yield distributions via a single aggregate measure.
 More specifically, the optimal supply quantity decreases
 convexly with this aggregate reliability measure. Thus, the
 cost reduction a new supplier realizes by joining a given
 industry of suppliers is larger than if he joins an indus
 try with additional suppliers. However, surprisingly, when
 the suppliers' effective cost rates are different, any given
 supplier's market share as well as the marginal benefit he
 provides to the buyer may be larger when competing with
 additional suppliers.

 Our base model assumes that the procurement costs asso
 ciated with any supplier are proportional with his order size,
 that all suppliers have ample capacity, that the initial inven
 tory is perfectly known, and that the supply risks of different

 suppliers are independent of each other and of the demand
 risk. In ?6, we extend each of these restrictions. In partic
 ular, we show that capacity limits, fixed costs, uncertainty
 surrounding the initial inventory, and correlated yield and
 demand distributions can be incorporated into the model.
 We refer to Yano and Lee (1995) and Grosfeld-Nir and

 Gerchak (2004) for surveys of a large literature on inven
 tory systems with random yields. Almost all studies assume
 a single supplier. Gerchak and Parlar (1990), Yano (1991),
 and Parlar and Wang (1993) were among the first to demon
 strate the benefits of dual sourcing in the presence of sup
 ply uncertainty. As mentioned, Anupindi and Akella (1993)
 and Swaminathan and Shanthikumar (1999) considered the
 (TCM) with N = 2 suppliers. These authors also general
 ize some of their results to allow for multiple periods. Ilan
 and Yadin (1985) appear to have been the first to address
 a model with an arbitrary set of potential suppliers. Yano
 and Lee (1995, p. 329) explained, in their survey paper, that
 the complexity of dealing with a general set of suppliers is
 extreme and "hence it is difficult to obtain structural results."

 Agrawal and Nahmias (1997) address the (TCM) with
 an arbitrary number of suppliers and the special case of
 constant demand, Normal yield distributions, and zero start
 ing inventory. (As mentioned and discussed throughout our
 paper, many of the structural properties of the optimal solu
 tion depend on the value of the starting inventory.) For
 a given set of suppliers, the paper shows that the opti
 mal order sizes satisfy a set of nonlinear equations, with
 out providing a method to solve them. When N = 2, the
 authors prove that this system of equations has a unique
 solution. As for identifying the optimal supplier base, they
 suggest enumerating all possible sets. After completing our
 paper, we became aware of Dada et al. (2007), who, for the
 (TCM) with zero starting inventory, established the above
 consecutiveness property of the optimal supplier base. This
 paper derives the consecutiveness property, along with a
 few other structural properties, without developing a solu
 tion method. (The authors study a yield model, more gen
 eral than the multiplicative structure we consider.) Burke
 et al. (2007) consider the special case of the (TCM) in
 which all suppliers have fully predictable yields. The chal
 lenge to optimally diversify among unreliable suppliers is
 discussed in Chapter 9 of Van Mieghem's (2007) textbook
 on operations strategy.

 Our work is also related to the literature on multidimen

 sional newsvendor models; see Harrison and Van Mieghem
 (1999), Van Mieghem (1998), Rudi and Zheng (1997),
 and Van Mieghem and Rudi (2002). In the latter, multiple
 suppliers provide complementary products for the deliv
 ery of one or more final consumer goods with uncertain
 demand, whereas in this paper, the suppliers provide substi
 tutes. We refer to Federgruen and Yang (2007) for a more
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 detailed literature review. As mentioned, that paper confines

 itself to the special case of the (SCM) where all suppliers
 have identical variable procurement cost rates, but allows
 for general demand distributions. The authors develop and
 characterize the properties of the CLT-based approximation
 along with those of an alternative approximation based on
 a large deviation technique.

 The remainder of this paper is organized as follows. The
 (SCM) and (TCM) models are specified in ?2 and analyzed
 in ??3 and 4, respectively. Section 5 discusses the impact
 of reliability improvement, additional suppliers, the initial
 stock, and the magnitude of the demand and supply risks
 on the optimal supplier base and effective supply. Section 6
 addresses the capacitated version of the models and dis
 cusses how fixed costs, uncertainty surrounding the initial
 inventory, and correlated yield and demand distributions
 can be incorporated into the analysis. Section 7 contains
 concluding remarks. An electronic companion to this paper
 is available as part of the online version that can be found
 at http://or.journal.informs.org/. The electronic companion
 consists of three parts: part A contains all proofs; part B
 shows the lack of monotonicity of the number of suppliers
 with respect to the expected effective supply in the (TCM)
 model with an example, and part C studies two special
 cases of capacitated suppliers.

 2. The Service Constraint Model and
 the Total Cost Model

 In this section, we formulate the (SCM) and (TCM) and
 develop some preliminary results that are common to both
 models. We first need the following notation for the prim
 itives of the models:

 ci = procurement cost, paid for every unit ordered from
 supplier /, i = 1,..., TV;

 1? = initial inventory, before ordering;
 Xl: = random yield factor of supplier /, with c.d.f. G,-(-)?

 mean Pi, variance s2 > 0, and coefficient of variation
 7i = ^i/Pn i = l,...,#;

 D = uncertain demand during the season, assumed to be
 Normal with mean /x, standard deviation or, and coef
 ficient of variation yD = a/pi;

 = a standard Normal randorn variable with c.d.f. <?( )
 and complementary c.d.f. <!>( ).

 Without loss of generality, we rank the set of suppliers
 S = {I, ...,N} in ascending order of their effective cost
 rate, i.e., the expected cost value of an effectively produced
 unit, q/Pi, i.e., cjpx ^ c2/p2 ^ ^ cN/pN. Although we
 initially assume that the firm pays for every unit ordered,
 irrespective of whether it is delivered as a usable unit or not,
 we discuss alternative scenarios below. Let S? = {i: c,//?, =
 Ci/Pi) denote the set of the cheapest suppliers.
 When the planning model is driven by a service con

 straint, we have:

 a = maximum permitted probability of a shortfall
 ? 0.5) and za = <*>_1 (1 - a) ^ 0.

 Alternatively, in the (TCM), we have the following pair
 of cost parameters:
 h = cost of carrying an unsold unit at the end of the season;
 b = cost associated with any unit of unsatisfied demand.
 We need the following additional notation:
 yz = order placed with supplier i, i = 1,..., TV;
 Y = Ejli yi = aggregate order;
 Wi ? y-JY ? fraction of the total order assigned to sup

 plier i, i = l,..., iV;
 YE = J2f=i Piyi ? expected effective supply, i.e., the

 expected amount of usable supply resulting from the vari
 ous orders;

 VS(YE)[VT(YE)] = minimum cost value in the (SCM)
 [(TCM)] when selecting an expected effective sup
 ply YE; and

 I = 1? + Ylf=i y^i ? D = end-of-the season inventory
 level.
 (If / < 0, ?/ represents the end-of-the season shortfall.)

 The CLT-based approximation replaces / by a Normally
 distributed random variable

 I = I0 + YE-(^^fyf + Dj, (1)
 with the same mean and standard deviation as /, .i.e.,

 M/^=?('-r-g-'w'H (2>
 The following substantiation of the CLT-based approxima
 tion has been proven in Federgruen and Yang (2008); see

 Corollary 6.2 there.

 Lemma 1. Assuming all orders are placed with suppliers
 \,...,n, consider an arbitrary allocation scheme {win}
 such that

 max1<Kn wt n -?-? ^ A for some constant A, (3)
 mmKKn Wi,n

 i.e., the ratio of the largest and the smallest order size
 remains bounded, as n-^ oo. For any rj > 0, there exists a
 constant such that for all x,

 |Pr[/^]-Pr[/0]|^C^
 In particular, lim,,^ | Pr[7 ^ x] ? Pr[/ ^ x] \ ? 0.

 Thus, approximating the distribution of I by that of /,
 (SCM) can be formulated as

 (SCM) min Vs(YE)

 s.t. YE > p -1? + zacr, where (4)

 ^(y?)d^fmin (5)
 /=i

 s-t. J^PJi = YE, (6)
 1 = 1
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 (y?-M + /0)2-4(E?,2y,2)
 -zW^O, (7)

 y,20, i=l,...,N. (8)

 To explain (7) and the lower bound for YE in (4), note that
 the service constraint

 a^Pr[Ho] = J-^l0~YE )

 -(/'+'?-* )
 Ye + I?-il ^

 ^ {(7),y?^/x-/? + zttcr}.

 (To verify the last equivalence, the => part is immedi
 ate by squaring both sides of the inequality YE +1? ? fi ^
 ^vV + ?f=1y^2 and from A2 + EL)fc? ^ To
 verify the 4= part, (7) =>{yg + /?-/i> z^cr2 + ?f=1 >fa?
 or F? + 7? - /a < ?za\/cr2 + XI/Li J2^2}- However, because
 a ^ 0.5, i.e., za ^ 0, the second inequality can be ignored, in
 view of the constraint YE ^ p ? 7? + za(r.) Again, because
 za ^ 0, when 7? ^ /i + zao% the service constraint is met with

 out any procurement whatsoever, and y* = 0 is optimal. We
 therefore confine ourselves to the case 7? < fi + za(T.

 (1) shows that the end-of-the season inventory level 7
 has the same distribution as that in an ordinary inven
 tory system that starts the season with an inventory of
 (YE + 7?) units and faces a demand distribution D' = 7) +
 ^v^C/Ii yfs?- Using a standard derivation in inventory the
 ory (see, e.g., Zipkin 2000, ?6.2), we obtain the following
 formulation for (TCM):

 (TCM) min VT(YE)
 s.t. YE^0, where (9)

 VT{YE) S min ? qj/ + /z(F? + 70- M)

 +(b+h)[?? ?( l
 N

 s.t. 2>,y, = r?, (10)

 y^0, f=l.A^. (11)

 The objective functions (5) and (10) for the (SCM)
 and (TCM), respectively, are based on the assumption that

 the firm pays for all ordered units, regardless of whether or
 not it is delivered as a useable unit. The alternative case,

 where it only pays for effectively delivered units, can be
 accommodated merely by replacing the coefficients {cJ
 in (5) and (10) by {p/cf}. Most generally, the risk is shared
 between the suppliers and the purchasing firm, i.e., a frac
 tion fi of the per-unit cost ct applies to every ordered unit
 and the remaining fraction (1 ? f) only to those that are
 effectively produced. In this case, the coefficients c{ in (5)
 and (10) are to be replaced by {[f + (1 ? /))a]c;}
 The key to solving both the (SCM) and (TCM) is the

 determination of the optimal level of the expected effec
 tive supply. We will show that for any given choice of YE,
 the corresponding set of suppliers and their market shares
 are easily obtained. This permits one to project the deci
 sion variables in the full-optimization models onto the sin
 gle aggregate supply measure YE. Both the (SCM) and
 (TCM) are then solved by showing that the functions ^5(-)
 and ^T(-) are strictly convex and differentiable?with a
 unique optimal effective supply level, YE?and that these
 functions and their derivatives are easily evaluated.

 3. The Service Constraint Model
 Federgruen and Yang (2008, Theorem 6.3) derives the nec
 essary and sufficient condition for the existence of a feasi

 ble solution in the (SCM).

 Lemma 2. (a) A feasible solution exists if and only if it
 exists under the allocation scheme w*, with

 KLi=\Pi/Si)

 (b) A feasible solution exists if and only if condition (F)
 is satisfied:

 (F) (i) ifl?<?, X>f2>z*;
 i=\

 (ii) if 1? > /x, ? y~2 >z2a- (1? - Uif/a2. 1=1

 Thus, a set of suppliers is feasible if and only if it con
 tains a sufficiently large number of sufficiently reliable sup
 pliers. More specifically, defining a (hypothetical) supplier
 with a yield distribution c.v. value of one as a "Base Sup
 plier," a supplier with c.v. = y represents y~2 Base Supplier
 Equivalents (BSE). In the absence of capacity constraints,
 if the initial inventory is lower than the mean demand, a
 set of suppliers is feasible if and only if its total num
 ber of BSEs is in excess of a critical number, given by a
 simple function of the permitted shortfall probability only.
 In particular, feasibility of a set of suppliers depends on the
 characteristics of the yield distribution via a single mea
 sure only, i.e., the number of BSEs the set provides. The
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 same observations apply when the initial inventory exceeds
 the mean demand by, say, s standard deviations of demand,
 except that the minimum threshold for the number of BSEs
 is reduced by s2.
 When all suppliers are equally expensive, i.e., the ex

 pected cost of an effective unit is identical across all
 suppliers (cx/px = c2/p2 = = cN/pN\ Ei=i Wi =
 (ci/PiXEjli/Wi) = (cx/Px)YE, i.e., it is optimal to
 choose F?, the smallest feasible value of YE, where YE =

 H{r% r* = Y,Lyr\ and

 H(r)

 if r^z2a,

 [z>2-(/?-/,)2]/[2(/?-M)] if r = z2a and 7?>^;
 (12)

 see Federgruen and Yang (2008, Theorem 6.3). Note that YE
 depends on the suppliers' characteristics only via a single
 measure, i.e., the number of BSEs the set of the suppliers
 represents.

 When the effective cost rates {cf-//?,-} fail to be identical,
 it is not necessarily optimal to choose the smallest possible
 value of YE: As we will show, this smallest feasible value
 requires the participation of all N suppliers, and a cheaper
 solution may be obtained by enlarging the effective supply
 YE while allocating the aggregate order only to some of the
 less expensive suppliers. As mentioned in ?2, we first show
 how, for any given value of F?, the corresponding optimal
 set of suppliers and their orders can be evaluated effec
 tively. Next, we prove that the function ^5(-) is strictly
 convex and differentiable with a unique minimum.

 Because the mathematical program (5)-(8) is a convex
 program, the following Karush-Kuhn-Tucker (KKT) con
 ditions are both necessary and sufficient for an optimal
 solution y*(YE), for any fixed value of YE > 0:

 c. _ XxPi + 2X2z2a^yi >0, i=h...,N, (13)
 y/[q-AlA+2A2z2a92yJ = 0, i=l,..., AT, (14)

 T,Plyi = YE, (15)
 /=i

 (YE-n +10)2 - z2a (? ^ - z2ao-2 2 0, (16)

 A2 [OW +10)2 - z2a (fj s2y?) - z>2 ] =0, (17)
 y^0, -oo<A1<+oo, A2^0. (18)
 We call a solution {y, YE} undominated if it is feasible

 and satisfies the service constraint as an equality. Note that
 any optimal solution {y*, YE) of (SCM) is undominated:

 If it satisfies the service constraint as a strict inequality,
 it follows from the continuity of the function to the left
 of (16) that any solution y' = j3y*, Y'E = j37* for 0 < )8 < 1,
 with j3 sufficiently large, is feasible; clearly, the solution
 {y\ Y'E] is cheaper than {y*, YE), contradicting the optimal
 ity of the latter. Let (c//?)(2) = minfq//?,: cilpi > cx/px}
 denote the second-lowest effective cost rate, which is well
 defined, because the effective cost rates fail to be identical,

 i.e., 5? = {/: cijpi = cx/px} C {1,..., TV}. We will show that
 in an optimal undominated solution, AX(YE) and X2(YE) are
 uniquely determined. \X(YE) may then be interpreted as the
 marginal cost saving that can be obtained if a marginal unit
 of expected effective supply could be procured risk and cost
 free, i.e., without placing orders to any of the (unreliable)
 suppliers.3 We refer to it as the benchmark cost rate. We will
 show that in an optimal undominated solution, this bench
 mark cost rate is at least as large as (c//?)(2), and that the
 optimal supplier base consists of the suppliers whose effec
 tive cost rate is strictly below the benchmark cost rate. (If YE
 is part of an undominated solution, its reduction by one unit
 requires the retention of a supplier whose effective cost rate
 is larger than the cheapest cost rate; hence Xx ^ (c//?)(2).)
 For A > (c/pY2\ define k*(X) as the number of sup
 pliers whose effective cost rate falls below A: ?*(A) =
 max{/:: cjpk < A}.

 As mentioned in ?2, Theorem 1 below shows that for
 any value of the expected effective supply YE, which is part
 of an undominated solution, the associated optimal set of
 orders y and the benchmark cost rate Xx can be determined
 in closed form, after computing the root of an increasing
 single variable function. In particular, \X(YE) is the unique
 root on [(c/pY2\ oo) of the equation

 2 y2

 ^>=(W+V)^- whe (19)
 E::l,A,,(A1-q/p,)irri] p

 We first need the following lemma, which shows that r()
 increases from the number of BSEs represented by the cheap
 est suppliers to the number of BSEs represented by all.
 In view of this property, r{Kx) may be interpreted as the mod
 ified number of BSEs, given the benchmark cost rate Xx.

 Lemma 3. On its domain [(c/pY2\ oo), r(-) is continu
 ously strictly increasing from Ylies0 %~2 to E/=i %~2

 Theorem 1. Let YE be part of an undominated solution.
 (a) The mathematical program (5)-(8) has a unique

 optimal solution, given by

 (ApM-hr2 / = !.ik-CA,),
 0, i=**(A,) + l,...,tf,

 (21)

 where \x is the unique root of Equation (19) on [(c//?)(2),oo).
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 (b) The set of retained suppliers in the optimal solution
 is consecutive and

 c(2)
 /or ^ - . (22) P

 Thus, the optimal supplier base is always consecutive,
 and consists of all suppliers whose effective cost rate
 is below the above-defined benchmark cost rate, XX(YE).
 Also, as mentioned in the introduction, each supplier in the
 selected supplier base is assigned an overall score, given by
 the product of two factors: The first factor is the mean-to
 variance ratio of the supplier's yield distribution; the second
 factor is the net cost saving, relative to the benchmark cost
 rate. A supplier's market share is given by his overall score
 relative to the sum of the selected suppliers' scores.
 The next lemma shows that the search for an optimal value

 YE can be restricted to an interval (YE, YE], with YE ^ oo,
 such that every YE e (YE, YE) is part of an undominated
 solution, and kx (YE) is a decreasing function on this interval.

 def
 Lemma 4. Assume that (F) holds, (a) Let Xx ? min{Xl ^
 (c//>)<2>: r(A.) > z\ - [(/? - fi)+]2/o*} < ~. For A, >
 Ap let ^(Aj) denote the smallest root of the quadratic
 Equation (19) (in YE) which satisfies (4), i.e., YE(XX) =
 H(r(Xx)), with H() defined by (12). ^(A^ is contin
 uous and strictly decreasing on (Ap00)- For \x > \x, if
 YE = YE(XX), the mathmatical program (5)-(8) has an
 optimal solution with \x as the Lagrangean multiplier of
 constraint (7).

 (b)F? = limMAi ff(r(A,)). where

 lim #(r(A,))

 oo if r = z2a and 1? ^p,,

 [z2^2_(/0_M)2]/[2(/0_M)] if r = z2a andI0>fli

 ifr^zl,
 (23)

 and

 The range ofYE(-): (\x, oo) ?> 1R is given by Y = (YE, YE).
 An optimal solution for the (SCM) exists for some YE e
 (YE, YE], and every value in this interval is part of an
 undominated solution.

 The next theorem shows that the unique value \x asso
 ciated with any YE e Y U {YE}, and hence VS(YE) =

 E/Ii ciy*> can> in fact> be obtained in closed form. This
 closed-form expression is obtained by showing that Y can
 be partitioned into at most N consecutive intervals, such
 that the same value k (and hence the same set of) suppliers
 is optimal for all YE in the same interval. Finally, the the
 orem shows that the function H?S(YE) is differentiable and
 strictly convex.

 Theorem 2. (a) Letk = k*{\y), = YE, YE = YE, and
 fork = k, ...,N-l: YE ? YE(ck+l/pk+l). Letk(YE) denote
 the optimal number of suppliers to be used for a given
 expected effective supply YE:

 \k ifYkE^YE<YkE-\ k = k,...,N,
 HYE) = _ (25)

 U ifYE = YE.
 If YE = YE, A, (YE) = A? and for YE Y,

 Al" (11,1/7?) + W'V ^
 (Et1(c/M)Vy2)(Et1i/y2)-(El,(gM)/y2)2

 \ [(i-E-M+/?)2-4^2](Et1i/y2)-4i'l
 (26)

 (b) The function Vs (YE) is strictly convex and differen
 tiable on Y U {YE}, with

 . \iYE-^+i^-zi^](j:^yziYEJj,,\
 (27)

 Vs'(YE) = \1(YE)-2(YE-n + I?)\2(YE). (28)
 (\2(YE) is defined by (43); if YE = YE, VS'(YE) denotes
 the left-hand derivative.)

 (c) IfYE<Y*<YE, then Y* =

 (Efl.i/y,2)^-/0) zKzUcJpd/yf)
 (Ef:,i/y2-4) (Ef:,i/y2-z2)

 / ^2(Ef:ii/y,2-zD+^-/?)2
 V (E?:i(ciM)/y,2)2-(E|:,(ci/pi)2/y2)(E*:ii/y,2-4)

 '/?i/y,2^2,

 /[2(I?-n)] ifyZ\/y* = zlandI0>?. ^ I i=l

 (29)
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 Algorithm 1 (Algorithm SCM).
 Step 0. (Calculation of k, the minimum number of

 required suppliers and YE, the maximum expected effective
 supply.)

 (see (24)),

 oo if r = z2a and 7? < p.,

 [z2a(r2-(I0-n)2]/[2(I?-p)]

 F?:= if r = z2a and 7? > /a,

 (see (23)),

 Step 1. FOR k := N - 1 DOWNTO & DO
 BEGIN

 YE = YE(cM/Pk+,)

 V r(cMlpM)) L ^ aV(ct+1/ft+1)

 \ r(ck+l/pk+l)J) J

 \7>*+i /

 [zX-(/?-M)2]/[2(/?-M)]

 if rf^-W and 7?>/t

 (see (12)),

 A = ck+l/PM, a2 = Ell(A^yf')7r2 (43)),
 ?s'(rE) = Af-2(rE-M + /0)A^ (see (28)).

 IF ^5'(^i) > 0 THEN GO TO Step 3
 END

 Step 2. k:=k-l; IF Vs'(YE) > 0 THEN GO TO
 Step 3; y; := F?; :=?; GO TO Step 4.

 Step 3. k(y*):=k+\;

 (Xt,i/r,2)(^-/?) , 4(Eti(c,-M)/y2)
 (El,i/y2-4) (El,i/y2-z2)

 _^2(Et,i/y,2-zD+(M-/0)2_
 i (EL1(c,/pf)/y,2)2-(i:l1(c,/A)2/y?)(EL1 i/r2-4)

 if EVy,2^2, y* =

 L" V (EUqMVy2)2 /
 .(/?-M)2J/[2(/?-/,)]

 if El/7,2 = *2 and/?>M
 1=1

 (see (29)).
 Ste/? 4. FOR := 1 TO k DO y* =

 Wi -^MW^EUA, -ct./A.)rr2]^ where

 f C (2)
 - ift(y?*) = |s?|,

 A, = . (EL 1/7?) V? /
 (Eti(^M)Vy?)(Etii/y?)-(Eti(^/A)/yf2)2

 otherwise.

 FOR k:=kj-l TO N DO y* = 0, see (21).
 Algorithm SCM is a succinct description of a highly

 efficient optimization algorithm for (SCM). Even when
 N = 20 and the optimal number of suppliers k* ^ 15, a
 typical problem instance of (SCM) can be solved by our
 algorithm in a few milliseconds when implemented on a
 Dell Optiplex GX620 computer with Pentium D CPU of
 3.00 GHz and 3.5 GB of RAM. It is easily verified that the
 complexity of the (SCM) Algorithm depends on and is
 only quadratic in the latter.

 4. The Total Cost Model
 As in the (SCM), we design an efficient solution method
 for the (TCM) as follows: We first prove that the function
 ^r(-) is strictly convex and differentiable with a unique
 minimum YE. We next show that for any given expected
 effective supply level YE, the optimal cost value <&T(YE)
 as well as the associated set of suppliers and their orders
 can be evaluated efficiently. Note first that the nonlinear  def
 part of the objective function (10) is given by G(YE,y) =

 fyE+Io^((u - li)/J<r2 + T,Liyfs})du9 a jointly strictly
 convex function, as shown by the following lemma.'
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 Lemma 5. G(YE,y) is strictly convex.

 The lemma implies that the (TCM)'s objective function,
 when written as a function of the order vector y alone,
 is jointly strictly convex as well. Agrawal and Nahmias
 (1997) proved this property for the case N = 2 and conjec
 tured it for general values of N.
 As with its counterpart [(5)-(8)], the mathematical

 program (10)?(11), which defines WT(YE), is a convex pro
 gram because G(YE,y) is jointly convex in y. The KKT
 conditions are therefore, again, both necessary and sufficient
 for an optimal solution y*(YE), for any fixed value YE > 0:

 c, - AA. + (b + h)J /? + /?~ ==)
 2

 y'g|" ->n i = l,...,N, (30)

 yL - kPi + (b + h)<f>( +

 -=====1=0, i=l,...,N, (31)
 N

 Y,Piyi = YE> y^O, -oo<A<+oo. (32)
 /=1

 (To verify that the left-hand side of (30) represents the
 derivative of the Lagrangean with respect to yt is analo
 gous to the derivation of dH/dX in the proof of Lemma 5.)
 A(y?) may, again, be interpreted as the marginal cost saving
 that can be obtained if the F^th unit of expected effective
 supply could be procured risk and cost free, i.e., without
 placing orders with any of the (unreliable) suppliers.

 Theorem 3. Fix YE > 0 and let y* be an optimal solution
 to (10)-(11).
 (a) \>cl/pl and

 (A-c,.M)y-2 /=1,...,r(A),
 o, i=r(A)+i,...,w,

 (33)
 where A is the unique root of the equation L(X\YE) =0,
 and the function

 L(A | YE)

 .. r r**(A) -]2 rr(A) -m

 = hp[ E (A - cilPi)yT2\ + n[ ? (A - c;M)2y;-2JJ

 + ln(^-21n^
 | (^+/0-M)2E?I(1A)(A-c;/Pf)yr2]2

 ^E^'CA-c/p^r^p+ylE^^A-qM)^,-2]
 (34)

 is strictly increasing in A.
 (b) There exists an optimal solution in which the set of

 contributing suppliers is consecutive and

 y* ?-i? = w*(A), where

 Thus, as in the (SCM), the optimal supplier base is con
 secutive, a property first demonstrated for the (TCM) by

 Dada et al. (2007). More specifically, Theorem 3 reveals
 that A may again be interpreted as a benchmark cost rate,
 and the optimal supplier base consists of all suppliers
 whose effective cost rate is below the benchmark value. The

 market share of each supplier in the selected base is again
 given by the product of the same reliability and cost scores
 as in the (SCM): the first factor is the mean-to-variance
 ratio of the supplier's yield distribution; the second factor
 is the net cost saving, relative to the benchmark cost rate.

 The next theorem identifies a simple upper bound for YE:

 y;<yE^^\h(i?-?) + (b+h)r<b('^)du . c\ L Ji? \ a )
 (35)

 Note that the function k*(A) is discontinuous in any of
 the critical cost rates {c,//?;}. As a consequence, y*(YE)
 and A(7?) fail to be differentiable in values of YE, for
 which A(y?) equals one of these critical cost rates. The
 next theorem shows, nevertheless, that the function tyT{YE)
 is strictly convex and differentiable and that its derivative
 is easily computed. Because, as we will show, tyTl(YE) > 0
 for some YE, it follows from the strict convexity of tyT that

 the optimal expected effective supply YE, along with the
 corresponding optimal vector of orders y*, can be found
 simply by determining, via bisection, YE = min{0 < YE ^
 YE:VT'(YE)>0}.
 Theorem 4. (a) 0 ^ Y* < YE.

 (b) tyT(-) is strictly convex.
 (c) VT(YE) is differentiable with VT'{YE) = \(YE) + h

 (b + A)*((y? + 7? - ILVjot + jf ^), or

 ^T\YE) = \(YE) + h-(b^h)^(YE + I?-p)

 {(^+^2[E\A(y,)-cIvAo2yr2
 /r**(a) "|2\ l/2\ ?K

 /[E(A(yE)-cf/A)yr2J j J J- (36)
 (d) // (7? - p)/a 3* cD-1 ((b - cxlpx)j(b + h)\ YI = 0.

 If(I?-p)/cr < <S>-\{b-cx/px)/{b + h)\ Y* is the unique
 rootofVT'(YE)=0.
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 Based on the above theorem, Algorithm TCM below
 determines YE as the unique root of the function tyT'. The
 algorithm has considerable similarity to its counterpart for
 the (SCM), with only the following two exceptions: (i) the
 benchmark cost rate A(F?) for any given value of YE can
 not be obtained in closed form, but must be computed as
 the unique root of a nonlinear increasing function. (Recall,
 in the (SCM), that (26) provides a closed-form expression
 for XX(YE))\ (ii) the optimal number of suppliers k*(YE)
 must be recalculated for every trial value of YE, rather than
 being given directly by the position of YE vis-a-vis a set of
 up to N - 1 breakpoints {y*}. Recall that in the (SCM),
 the optimal number of suppliers k* is nonincreasing in YE,
 i.e., when considering a larger expected effective supply,
 the corresponding order is optimally allocated to the same
 or a smaller number of suppliers. It is this monotonicity
 property that allows for the determination of critical values

 {Y*} such that k*(YE) = k if and only if YkE ^ YE < YE~l
 (k = 1,..., N); as examples in Online Appendix B exhibit,
 it fails, in general, to hold in the (TCM) because A(F?),
 the benchmark cost rate, may fail to be monotone. How
 ever, when 1? ^ /jl and fi > a, and if one restricts one
 self to values of YE ^ /jl ? 1? + cr (corresponding with an
 expected safety stock of at least one standard deviation
 of the demand distribution), the following patterns can be
 proven:

 (i) When 1? = 0 or is sufficiently small, X(YE) is
 decreasing.

 (ii) For all 1? ^ /x, X(YE) is either monotonically
 decreasing, or it first increases until reaching a maximum
 and is monotonically decreasing thereafter.

 To verify these observations, recall from Theorem 3(a)
 that X(YE) is the unique root of the equation L(A | YE) = 0
 so that by the implicit function theorem, A'(YE) has the
 opposite sign as

 ?9L(A | YE)/dYE

 = (*[ ? (A - Ci/Pi)yr2\ {<t2[(Ye +1? - ri)YE - a2]

 + [?yf*f\[(ye + /? - - /?) - cr2] j)
 / f r**(A) i2

 (^j^2[E(A-QM)7r2
 rk*(\) ~|]2\-1

 + ^[E(A-c/M)V2J) j
 Observations (i) and (ii) follow readily. Thus, when 1? ^ /x,
 it pays to calculate the (at most 2N) break points {YE}
 such that k* remains constant in-between consecutive break

 points.
 We have conducted a numerical study to investigate

 whether the (TCM) Algorithm, which is based on the CLT
 approximation for the end-of-the period inventory-level dis
 tribution, finds a solution that is close to the exact optimum.

 The study employs 80 instances, all with N = 4 poten
 tial suppliers. For TV = 4, it is still possible to find the
 exact optimal solution with a general purpose algorithm,
 for example, one based on sequential quadratic program
 ming, where the cost associated with any given vector
 of orders is determined via a Monte Carlo simulation.

 With N = 4, the "exact" simulation-based optimization
 algorithm takes approximately 10 CPU minutes per instance
 when implemented on a Dell Optiplex GX620 computer
 with Pentium D CPU of 3.00 GHz and 3.5 GB of RAM.

 (In contrast, Algorithm TCM takes less than 2 CPU seconds,
 when run on the same platform.) At the same time, deter
 mining the exact optimal solution becomes prohibitively
 expensive when the number of suppliers is TV ^ 20, say.
 However, if Algorithm TCM generates very close to opti
 mal solutions, when TV = 4, it is at least as accurate when
 the number of suppliers is larger. It is easily verified that
 the complexity of the Algorithm TCM depends on the
 actual number of suppliers used, and is only quadratic in the
 latter. (Most instances with N = 20 suppliers can be solved
 in less than 2 CPU seconds, as in the case where TV = 4.)

 Algorithm 2 (Algorithm TCM).
 Step 0. IF (7? - p)/cr > ((* - cx/px)/(b + h))

 THEN BEGIN_y* = Y*=0; EXIT END
 Yx := 0; Y2 := YE := (Px/cx)[h(I? -p) + {b + h)

 f $>((u-p)/cr) du]
 Step 1. WHILE ((y2 - Yx) > DO

 BEGIN
 Y:=(Yl + Y2)/2'9 k:=2; k*:=l
 WHILE (L(ck/pk | Y) < 0 and k ^ N) DO

 BEGIN k:=k+U k*:=k* + U END
 kx\=ck_x/pk_x\
 IF k < N THEN A2 := ck/pk ELSE A2 := A;

 WHILE ((A2 -Ax) > e2) DO
 BEGIN

 A:=(A1+A2)/2;
 IF (L(A | Y) < 0) THEN \x := A ELSE

 A2:=A
 END

 A:=(A1+A2)/2;
 FOR i = 1 TO k* DO

 y! = Y{[(\-ci/pi)]pi/s}}/
 {Hkil\[(^-ci/Pi)]yr2}

 IF (^r/(F) = \ + h ? (b + h)<t>((Y + I? - p)/

 y^+S^)<o)
 THEN Yx := Y
 ELSE Y2 := Y

 END
 Ye = Y

 The 80 instances evaluated in the study all have N = 4,
 p = 20, h = 1, and uniform yield distributions on inter
 vals [Pi,Pi\. Here, pt and pt are uniformly generated
 from the intervals [0.6, 0.85] and [0.9, 0.99], respectively.
 Finally, the effective cost rates [cjpi) are uniformly
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 Table 1. Comparison of Algorithm TCM and an "exact" simulation-based algorithm.

 Mean(T) Max(T) Mean(T) Max(T) Mean Max Mean Max Mean Max
 Group 7? a b (TCM) (TCM) sim sim AC (%) AC (%) AYE (%) &YE (%) Ay* (%) Ay* (%)
 1 0 5 6 1.86 1.92 591.06 609.57 0.38 0.76 0.58 2.46 0.75 4.31
 2 0 5 10 1.95 2.00 522.66 631.72 0.50 0.81 0.47 1.58 0.66 3.31
 3 0 10 6 1.90 1.99 535.82 623.21 0.27 0.42 0.74 2.15 0.80 2.39
 4 0 10 10 1.89 1.95 471.46 627.67 0.30 0.43 0.35 1.69 0.37 1.69
 5 10 5 6 1.94 1.99 589.09 623.43 0.28 0.59 0.23 0.90 0.27 0.90
 6 10 5 10 1.92 2.00 524.63 652.08 0.23 0.62 0.21 0.82 0.19 0.63
 7 10 10 6 1.90 1.95 589.02 623.86 0.25 0.36 0.18 1.06 0.23 0.86

 8 10 10 10 1.89 1.96 552.79 622.99 0.23 0.46 0.67 1.84 0.67 1.76
 Overall 1.91 2.00 547.07 652.08 0.31 0.81 0.43 2.46 0.49 4.31

 generated from the interval [1,4]. The 80 instances are par
 titioned into 8 groups of 10, each with a different com
 bination of values for the three remaining parameters, 7?,
 a, and b. (For each of these, two distinct values are
 considered.) Let (y*, Y*) and (y, YE) denote the solution
 generated by Algorithm TCM and the simulation-based
 "exact" search method, respectively. Table 1 exhibits, for
 each of the eight groups of instances, the mean and max
 imum of the CPU times (in seconds) for Algorithm TCM
 (Mean(T), (TCM) and Max(T), (TCM)); the mean and max
 imum of the CPU time of the "exact" simulation-based
 search method (Mean(T), Sim and Max(T), Sim); the mean
 and maximum of the relative difference in the expected
 costs of the two solutions (Mean AC and Max AC); the
 mean and maximum of \Y* ? YE\/YE (Mean AYE and
 Max AF?); as well as the mean and maximum of the follow
 ing relative distance measure between the order vectors y*
 and y*: VEjLiW " A)7 ?f=i % (The latter pair of mea
 sures is referred to as Mean Ay* and Max Ay*.) We con
 clude that Algorithm TCM generates solutions that are very
 close to optimal, not just in terms of the cost value and the
 expected effective supply, but also in terms of the individual
 order sizes.

 5. The Impact of Initial Inventory,
 Demand and Supply Risks, and
 the Benefit of Additional Suppliers

 In this section, we discuss how the optimal cost value,
 the (effective) order size, and supplier base vary with the
 supply risks, the demand magnitude and risks, and the ini
 tial inventory. We also show that although in general the
 marginal benefit of an additional supplier decreases when
 the supplier is added to a larger potential base, this property
 may fail to hold in some extreme cases.

 Supply Risks
 The following proposition shows, both for the (SCM) and
 (TCM), that if a supplier is insufficiently competitive, i.e.,
 does not share in the buyer's orders, it cannot join the sup
 plier base merely by improving its own supply risk, i.e., the
 standard deviation of its yield distribution.4 In both mod
 els, the optimal expected costs increase with any of the

 yield distributions' standard deviations. Also, for the (SCM)
 and 1? ^ /x, if an increase in the standard deviation of any of
 the suppliers' yield distributions has an impact on the sup
 plier base, it is to include additional suppliers. (Our numeri
 cal studies indicate that the same result applies to the (SCM)
 with 1? > /x, as well as the (TCM).)

 Proposition 1 (Impact of Supply Risks), (a) In both the
 (SCM) and (TCM), if a supplier j fails to be competitive, i.e.,
 y* = 0, this supplier cannot become part of the supplier base
 by improving the reliability of his yield distribution, alone.
 (b) In the (SCM), the optimal cost value increases with

 any of the parameters In the (TCM), the same applies
 as long as Y* +1? ^ p.
 (c) Consider the (SCM) with 1? ^ pi. k* is an increas

 ing step function of any of the yield distribution standard

 deviations {s^}.

 To provide better insight into the invariability result in
 part (a), we now derive, for the (SCM), the necessary and
 sufficient conditions for a given supplier j to be part of the
 supplier base.

 Theorem 2(a) and (12) give rise to a closed-form formula
 for Yf\ the maximum expected effective supply under
 which supplier j is patronized, i.e., for YE ^ YJE~X only less
 expensive suppliers in {1,..., j ? 1} are used:

 _^(Cj/P-cjpdy-1?_
 [ZClicj/Pj-cJpdy^r-zl&llicj/Pj-cJpyy-2]
 \ ((v-mztlicj/Pj-cJpd'y-2] \ p ? I + za\-r-i-?
 \ a\ [rrMcj/Pj-cjpdyf2]2
 | or'flEfl (cj/pJ-cl/pi)yrI?-?[L?l (cj/pJ-cl/pl)*yr1]) \ ^ j

 [Zizlicj/Pj-Cj/pdyr2]2 2
 1 [Yi:l(cJ/pj-ci/plyyr2]*Z'"

 [z2y-(io-p)2]/[2(i?-p)]
 .AEiZlicj/Pj-Ct/p^yf2]2 if ?;-:?-?-? = z? and /" > p.

 1 [T.1iZ\(cj/pj-ci/PiyyT2]
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 Proposition 2 (Competitiveness Conditions). Consider
 the (SCM).

 (a) Supplier j achieves a positive market share if and
 only if

 2?^(K-^V)- *>
 Thus, whether supplier j achieves a positive market share
 depends only on the following characteristics of the suppli

 ers: (a) the effective prices [cx/px,cj_l/pj_l] and the
 yield distribution coefficients of variation {yx,..., of
 all suppliers that are cheaper than supplier j\ (b) the effec

 tive price Cj/pj of supplier j, but not his own reliability jj.
 (b) There exists a maximum price ck*+x/pk*+x >

 (c/pY ^ ck*/pk* such that any of the currently unutilized
 suppliers k* + 1,..., N receives a positive market share if
 and only if his effective cost rate is below (c/p)*. In par
 ticular, (c/pY is independent of the yield distributions of
 suppliers k* + 1,..., N.

 Although the number of suppliers increases when any of
 the yield distributions becomes more volatile, and although
 for constant input parameters, at least in the (SCM), addi
 tional suppliers allow for a reduction in the expected effec
 tive supply YE (see Theorem 2(a)), YE fails, in general, to
 decrease with any of the standard deviations {$ }. This is
 illustrated by the following example:

 Example 1. Let N = 3, p= 100, 7? = 0, a = 20; cx = 1,
 c2 = 2, c3 = 7; px = p2 = 0.65, p3 = 0.75, and <;x = s2 =
 93 = 0.1. Consider first the (SCM) with a = 0.001. When
 the standard deviations of the yield distributions are
 increased by a common factor C, YE generally increases,
 but it decreases from y* = 250.0143 to Y* = 243.6793
 and from Y* = 384.6374 to Y* = 374.8912 when C is
 increased from C=1.15 to C = 1.28. Similarly, in the
 (TCM) with h = 1 and b = 1,000, YE generally increases,
 but it decreases from Y* = 195.2574 to Y* = 193.4458 and
 from 7* = 300.3960 to Y* = 297.6089 when C is increased
 from C= 1.00 to C= 1.12.

 Example 1 shows that both the expected safety stock and
 the total order may fail to increase when all of the stan
 dard deviations of the yield distributions are increased, in
 parallel, by the same percentage. This counterexample also
 implies that, in both the (SCM) and (TCM), the expected
 safety stock, as well as the total order, may fail to be mono
 tone in any individual supplier's yield standard deviation.

 Proposition 1 shows that if a supplier improves the vol
 atility of his yield distribution, this can only result in a con
 traction of the supplier base. Does the same monotonicity
 pattern apply when any of the suppliers improves his aver
 age yield? Example 2 disproves this conjecture:

 Example 2. Assume that the buyer has access to TV = 2
 potential suppliers with Normal yield distribution. Let
 7? = 0, p = 48, a = 3; cx = 1.2, c2 = 1.8; px = 0.6,
 p2 = 0.7; <?2 = 0.01, and <;\ = 0.02. In the (SCM) with
 a = 0.15, orders are split between both suppliers (k* = 2).

 Supplier 2 is more expensive than supplier 1. In the (SCM),
 as p2 is varied on the interval [0.5,0.9], leaving all other
 parameters at their base value, supplier 2 continues to be
 more expensive than supplier 1. He is patronized (k* = 2)
 if and only if p2 ^ 0.76, so that the number of suppliers
 increases with this type of improvement of the yield distri
 bution. (Proposition 2 shows that if supplier 2 fails to be
 competitive, he cannot become part of the supplier base by
 improving the coefficient of variation of his yield distribu
 tion alone; note that an increase of p2 has the additional
 effect of reducing his effective cost rate, which does enter
 into the acceptance condition (37).)5 At the same time, if px
 is varied from its base value, it is optimal to use both sup
 pliers as long as p{ ^ 0.56, but to give supplier 1 exclusivity
 thereafter. In other words, k* may fail to be monotonically
 increasing or monotonically decreasing. We have observed
 the same phenomenon in the (TCM). Similarly, as with the
 dependence of the expected effective supply YE with respect

 to any of the yield standard deviations {s,}, YE fails, in
 general, to be monotone in any of the average yields {/?; },
 both in the (SCM) and (TCM). (In the (SCM) and (TCM)
 of Example 1, YE first goes down and then goes up, as p2
 is varied on the interval [0.51, 1).) Only the optimal cost
 value is monotonically decreasing in any of the {pj}-values,
 a result paralleling Proposition 1(b). (In the (SCM), the
 result is, again, an immediate consequence of the feasible

 region expanding with any of the {pj}-values.)6

 Demand Magnitude and Risks
 In the classical (SCM) and (TCM), it is well known that
 the order-up-to level increases when demands have a larger

 mean and become more variable. (Indeed, it is pi + za(T or
 p + <?>~l((b ? cx/px)/(b + h))(j, simple linear functions of
 both pu and a.) The following proposition shows that in the
 (SCM), when 7? ^ pi, the expected order-up-to level, and
 hence the expected safety stock, continue to be increasing
 in p and a, albeit that the dependence is no longer linear;
 extensive numerical studies show that the same monotonic

 ity results apply in the (SCM) when 7? > /x as well as
 in the (TCM). Similarly, the optimal number of suppliers
 increases with /x. Perhaps more strikingly, the Proposition
 also shows that, in the (SCM), when 7? ^ /x, an increase in
 the demand variability can only result in the elimination of
 suppliers from the supplier base. In contrast, when 7? ^ xx,
 increased demand variability can only result in an expan
 sion of the supplier base. The same monotonicity patterns
 apply to the (TCM).

 Proposition 3 (Impact of Demand Magnitude and
 Risk). Consider the (SCM) :

 (a) The optimal cost value increases with pi and a.1
 (b) Both k* and YE increase with pi.
 (c) k*y the optimal number of suppliers (i) decreases

 with a, when 7? < /x; (ii) is independent of a when 7? = /x;
 and (iii) increases with a> when 7? > p.

 (d) If 7? ^ /x, YE increases with a.
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 Figure 1. The optimal number of suppliers k* as a
 function of a in the (SCM).

 ill life; ^Jlfc

 ^^^^^^^^^^^^ j
 The dependence of the supplier base on the demand vari

 ability is illustrated in Figure 1, which displays the optimal
 number of suppliers k* as a function of a for five different
 values of the starting inventory 7?. (The figure refers to an
 instance with N = 20 suppliers, each with a two-point yield

 distribution, with probabilities pt = Pr[Z, = 1] drawn uni
 formly from the interval [0.6,0.9] and effective cost rates
 cjpi drawn uniformly from the interval [2, 3]. Also, p = 20
 and a = 0.01.) As shown in Proposition 3, the curves are
 decreasing step functions when 7? < p and increasing when
 7? > p\ the curve is flat when 7? = p.

 The intuition behind the monotonicity results of k* with
 respect to a is as follows: (25) shows that it is optimal
 to use the cheapest k suppliers if and only if targeting an
 expected supply level YE ^ YE < YE~\ k = k,..., N, i.e.,
 the larger an expected supply level is sought, the fewer sup

 pliers one should use so as to control the cost. An increase
 in the demand volatility a has two opposite effects: first,
 as in the classical model, more safety stock is needed to
 cover the demand, hence a larger value of YE is required.
 (This is indeed proven in part (d) for 7? ^ p\ our numerical
 study shows that the result holds throughout.) If the criti
 cal effective supply values [YE] were invariant with respect
 to cr, this would imply that k* decreases with cr. However,
 the formula for YE in Step 1 of Algorithm SCM shows that
 these critical values are increasing in tr, so that for a given
 value of YE, the same or a larger number of suppliers is
 to be used. When 1? < p (7? > p) and the gap between
 the initial inventory and the inventory after ordering is rel
 atively large (small), the first (second) effect dominates.

 Initial Inventory

 Note that in both the (SCM) and (TCM), the optimal order
 quantities depend on p and 7? only via (p ? 7?). As a con
 sequence, all monotonicity properties identified in Propo

 sition 3 with respect to jx imply the reverse monotonicity
 pattern with respect to 7?:

 Proposition 4 (Impact of the Initial Inventory in the
 (SCM)). Consider the (SCM).

 (a) The optimal number of suppliers k* decreases with 7?.
 (b) YE decreases with 7?.
 (c) the optimal cost value decreases with 7?.8

 It appears intuitive that the safety stock requirement, in
 our setting with combined demand and supply risks, should
 be larger than the optimal safety stock in a setting where
 only demand risks prevail and all suppliers are completely
 reliable. Indeed, in the (SCM) we showed that 7? + YE9
 the expected inventory after ordering, satisfies (4), i.e., it is
 larger than or equal to the optimal inventory level when the
 suppliers are fully reliable. In contrast, the optimal safety
 stock in the (TCM) may be smaller than its optimal level

 when the suppliers are fully reliable: To allow for a mean
 ingful comparison between the models with and without
 supply risks, assume that in the latter, the suppliers are
 completely reliable (pt = 1) and have the same effective
 cost rate c, = c-JPi = cf//?,-. In the classical model, it is
 optimal to place a single order with a supplier /* for which

 c*/p* = vnmjcj/pj. Whether the expected inventory after
 ordering is smaller or larger than the level in the classical

 model depends on which of the supply and demand risks
 dominates. This is exhibited by Figure 2, which considers
 four instances, again with N = 20 suppliers and the same
 yield distributions as the distributions in Figure l.9

 Figures 2(a)-2(d) display the expected inventory after
 ordering as a function of the initial inventory.10 As one

 moves from instance (a) to (c), the consequence of a short
 age is increasingly expensive. Moving from instance (c) to
 instance (d), demand is increasingly variable. In Figure 2(a),
 the curve is entirely below the classical order-up-to level. In
 Figure 2(b), the curve crosses this level twice, and in Fig
 ures 2(c) and 2(d), the curve is entirely above the classical
 order-up-to level.

 One might also conjecture that the expected inventory
 after ordering be nonincreasing in the inventory level before
 ordering. After all, with one unit fewer in stock (before
 ordering), it appears desirable to increase the order sizes
 so as to target the same (effective) inventory after order
 ing with a high probability; given the supply risks, this
 is likely to result in an increase of the expected effective
 supply by more than one unit and hence in an increase in
 the expected inventory after ordering. Indeed, in all of our
 numerical experiments with (SCM) instances, the expected
 inventory after ordering decreases as a function of the ini
 tial stock until it hits the classical level. However, in the
 (TCM), the above consideration may be counterbalanced

 when, in the presence of relatively low stockout cost rates,
 the supply risks justify an expected inventory level after
 ordering below the classical level. Here, additional units of
 initial stock allow one to target a higher expected inven
 tory level after ordering, closer to the optimal level in
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 Figure 2. (TCM): Expected inventory after ordering vs. initial inventory.

 the classical model. Indeed, this situation arises in Fig
 ure 2(a), where the expected inventory-after-ordering curve
 is increasing throughout. In Figure 2(b), with an increased
 stockout cost rate, the expected inventory-after-ordering
 curve is first decreasing and then increasing, whereas the
 curve is decreasing in Figures 2(c) and 2(d), where the
 stockout cost rate is very high. Note that the increasing
 parts of the curves only arise when the curve is below
 the classical level, a situation never encountered in the
 (SCM); see (4). Note that in Figure 2(d), the deviation of
 the expected inventory-after-ordering curve from the opti
 mal level in the classical newsvendor model can be as high
 as 16.25%. In general, large deviations of the expected
 inventory-after-ordering curve from the optimal level in the
 classical model can be expected when the suppliers' effec
 tive cost rates {cy//?, } fail to be identical, the number of
 suppliers is relatively small, or b is relatively large. The
 percentage deviation also increases when supply risks mea
 sured by {%} are large relative to the demand risk, charac
 terized by a.

 Benefits of Additional Suppliers

 When all suppliers are equally expensive, YE depends on
 the suppliers' yield distributions via a single measure, i.e.,

 the total number of BSEs, Y^Li 7i~2- More specifically, the
 optimal expected effective supply decreases convexly with

 this measure. Thus, the cost reduction a new supplier real
 izes by joining a given industry of suppliers is larger than
 if he joins an industry with additional suppliers. When the
 suppliers have different effective cost rates, the following
 example shows that this result may fail to apply; indeed, a
 given supplier may enjoy a larger market share when being
 part of a larger set of potential suppliers.

 Example 3. Let N = 4\ cx ? 1, c2 = 1.1, c3 = 1.2,
 c4 = 2.65; px = 0.6, p2 = 0.61, p3 = 0.62, p4 = 0.99, so that
 cx/px = 1.6667, c2/p2 = 1.8033, c3/p3 = 1.9355, c4/p4 =
 2.6768. Finally, let <?2 = Pi{\-pt)/2, p, = 48,7? = 0, a = 3,
 and a = 0.15. Let Z(5) denote the optimal cost value if the
 buyer has access to the set of suppliers S c {1,..., 4} and
 w*(S) the market share of supplier i e S. For S = {2,4},
 Z(S) = 138.9568 and w*(S) = 17.22%, w*4(S) = 82.78%;
 for S = {1,2,4}, Z(S) = 134.6284 with w*(S) = 23.17%,
 w*(S) = 20.74%, w;(S) = 56.09%. Thus, if supplier 1 joins
 the potential supplier base {2,4}, this results in a cost reduc
 tion by 4.3284 units. At the same time, for S = {2, 3,4},
 Z(S) = 136.4341 and w*(S) = 18.41%, w*(S) = 16.30%,
 w*4(S) = 65.29%; whereas for S = {1,2,3,4}, Z(5) =
 130.7067 and w*(S) = 31.08%, w*(S) = 27.62%, w*(S) =
 24.13%, wl(S) = 17.18%. We conclude that if supplier 1
 joins the larger supplier base {2,3,4}, his joinder results
 in a larger cost saving. Note that supplier 1 's market share
 is 31.08% when retained in conjunction with {2,3,4} and
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 only 23.17% when retained in conjunction with {2,4}. This
 is explained by the fact that supplier 4 is much more reliable
 (as well as much more expensive) than the others. When
 supplier 4 is combined with only two of the others, feasi
 bility considerations dictate that he be given the lion's share
 of the orders; when supplier 4 is combined with all three of
 the others, his share can be reduced drastically, allowing for
 a higher market share for supplier 1.

 6. Extensions

 Capacity Limits
 The (SCM) and (TCM) assume that each supplier is capa
 ble of accepting orders of any desired magnitude. However,
 in many applications, the supply of any given provider is
 bound by a capacity limit. (Recall, for example, the oil
 refinery industry discussed in the introduction, which has
 been operating at close to 100% capacity.) Thus, let

 JJ. = capacity limit for orders placed with supplier
 i, / = 1,...,

 ut = PiUf = effective capacity limit of supplier /, i.e., the
 expected number of effective units, which can
 be procured from this supplier, / = 1,..., N.

 To adapt the formulations of the (SCM) and (TCM), only
 the constraints yt < L7-, i = 1,..., N need to be added.
 When discussing how the results for the (SCM) and

 (TCM) need to be modified to address the capacity limits,
 we confine ourselves to the most fundamental question, i.e.,
 whether a given set of suppliers permits a feasible solution
 and, if so, what the range of feasible effective supply val
 ues is. (We thus omit a detailed derivation of the required
 adaptations of Algorithms SCM and TCM.)

 Although feasibility is always guaranteed in the (TCM),
 we first describe how the necessary and sufficient feasibility
 condition (F) in the (SCM) is to be generalized. As shown
 in ?3, in the uncapacitated model, a feasible solution exists
 if and only if an effective supply value YE exists, which
 under a proper allocation of the aggregate order satisfies
 (4) and the service constraint (7). With

 xt = = expected effective order received
 from supplier i, i = 1,..., N,

 the service constraint (7) can be written as

 (YE - n +I0)2 - z2a (jt y2x2) -z2a*2> 0. (38)
 It follows from a simple sample path argument that if a

 set of orders y is feasible, feasibility is maintained when
 placing full-capacity orders, i.e., under y = U ^ y. (Clearly,
 if y satisfies (4), so does U ^ y. On every sample path, the
 effective supply under the larger orders is at least as large
 as that resulting from the orders y; this implies that the

 measure of the set of sample paths for which the service
 constraint is satisfied under y = U is at least as large as the

 measure under y, and hence at least equal to 1 ? a.) By
 the same argument, if full-capacity orders do not result in
 a feasible solution, no set of orders does. We conclude:

 Theorem 5. A feasible solution exists in the capacitated
 (SCM) if and only if the following condition holds:

 (FC) (F) holds, and

 -z2acr2>0, (39)
 N

 2>,^-/? + z0<r. (40)
 1=1

 Actually, (39) implies (F), and therefore (39) and (40)
 represent the necessary and sufficient feasibility condi
 tion, all by themselves. We nevertheless state (F) as a
 separate condition because it manifests that, irrespective of
 the capacity limits, feasibility requires the number of BSEs
 represented by the set of suppliers to be in excess of a
 given threshold, as discussed in ?3.

 We refer to Online Appendix B for a discussion of two
 important special cases, i.e., the case where all suppliers
 have an identical effective capacity (u{ = u) and that where
 the effective capacities are proportional to the suppliers'
 BSEs (wf = uyr2).

 Fixed Costs
 Thus far, we have ignored any fixed costs associated with
 each individual order to a supplier. As explained, retaining
 a smaller set of suppliers, when feasible, has the advan
 tage of reducing the average procurement cost per unit
 (even though it may come at the expense of requiring a
 larger aggregate order to hedge against the increased supply
 risks). The presence of fixed costs provides an additional
 incentive to pursue solutions with a smaller set of suppliers.
 If the same fixed cost K is incurred for every retained sup
 plier, it is quite easy to incorporate the fixed costs into the
 analysis. In the (SCM), for example, let YE denote the opti
 mal effective supply and k the number of associated sup
 pliers, in the absence of fixed costs. Because by the above
 monotonicity property, k*(YE) ^ ?*(F|) for all YE < y*, YE
 continues to be preferred over all lower values of YE in
 the presence of fixed costs. Because WS(YE) is increasing
 for YE > y*, it follows that only one of the (N-k + l)
 values in {YE, YE+l,..., YE} may arise as total opti
 mal supply level Y*(K) and Y*(K) = argmin{^5(y|) +
 kK, ^5(y|+1) + (k+ \)K,..., Vs (Yg) + NK}. This char
 acterization also implies:

 Corollary 1. In the (SCM), the optimal effective sup
 ply YE(K) is increasing in K. In particular, YE(K) ^
 y^(0) = YE, the optimal level in the case without fixed costs.

 In the (TCM), even though k*(YE) may fail to be mono
 tone, as explained above, it is still easy to identify all break
 point values such that the number of suppliers k* remains
 constant between consecutive breakpoints. (The breakpoint
 values can be found by solving (34) for A e [c,/^-: / =
 \S?\ + 1,..., TV}. As demonstrated in ?4, when 1? is suf

 ficiently small, this results in at most TV breakpoints, and
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 at most 2N as long as 7? ^ ji.) In view of the convexity
 of ^r(-), it again suffices to evaluate only these break
 points along with YE.

 When the fixed costs are supplier dependent, Federgruen
 and Yang (2008) already showed that the problem is NP
 complete even in the special case where the suppliers have
 identical variable procurement cost rates {c,//?,}, in which
 case the optimal set of orders for any given selection of
 suppliers can be determined in closed form. Nevertheless,
 that paper showed that a simple greedy-type supplier selec
 tion procedure comes very close to being optimal, both
 empirically and in terms of a worst-case optimality gap.
 These results follow from the fact that the marginal benefit
 associated with a new supplier is smaller when the sup
 plier is added to a larger list of potential suppliers. (This
 property implies that the optimal cost value, viewed as a
 function of the set of potential suppliers, is submodular.)

 We continue to advocate the use of the greedy procedure in
 our general setting with nonidentical cost rates {cjpi} as
 the same submodularity property continues to apply, except
 in certain extreme cases; see Example 3. Evaluating any
 candidate set of suppliers can, of course, be done with the
 (SCM) and (TCM) algorithms.

 Uncertain Initial Inventory

 We have assumed that the initial inventory 7? is known pre
 cisely. Often, this is not the case. Raman and DeHoratius'
 (2004) field studies reveal, for example, that in the retail
 industry, 65% or more of the items have inaccurate inven
 tory records. Another common problem is the inability to
 find items that the company's computer system claims are
 in inventory. See also Longitudes (2007), in which this chal
 lenge is featured prominently. Finally, inventories may be
 subject to theft or sabotage. In all of the above settings, it

 may therefore be appropriate to treat 7? as a random variable
 itself. This generalization is easily accomplished, by assum
 ing that the net demand, D ? 7?, is normally distributed,
 in which case all of our results can easily be extended.

 Although in our base model, many of the quantitative and
 qualitative results depend on whether 7? ^ fi or 7? ^ fi, in
 the generalized model, it is important to distinguish between
 the cases where E(D - 7?) < 0 and E(D - 7?) ^ 0.

 Dependent Supply and Demand Risks
 The analysis in this paper has assumed that the yield fac
 tors of the suppliers are independent. In some settings,
 supply risks may be correlated, for example, when natu
 ral disasters (storms, floods) or sabotage by terrorists is
 likely to hit multiple facilities in a given geographic region.
 (Recall the oil refineries example in ?1.) To address these
 interdependencies, assume that the vector of yield factors
 {X{: i = 1,..., N} has a general joint distribution, with cor
 relation factors = corr(X/, Xj): l^ij^j^N. The CLT
 approximation for the end-of-the-period inventory level is

 easily adapted to account for any interdependence of the
 yield factors

 where the TV x TV variance-covariance matrix V has vu = <sj
 and vij = pijg^j for i^j.

 In ?7 of Federgruen and Yang (2008), we have shown
 that the CLT-based approximation continues to be substan
 tiated by asymptotic accuracy results, as in Lemma 1, pro
 vided the dependence of the yield factors is sufficiently
 "weak," a concept defined precisely there, along with a
 discussion of easily verified sufficient conditions. This, in
 turn, permits simple modifications of the model formula
 tions of (SCM) and (TCM). For example, the latter can be
 formulated as

 *r(K?) ^ min I ? ciVi + h(YE + I?- ix) y I/=i

 + (b + h)f?? ?( l -\du:

 Following the proof of Lemma 5, one verifies that
 tyT(YE) continues to be a strictly convex function, so that
 its optimum value is determined as the unique effective sup
 ply YE for which ^T\YE) = 0. (In the proof of Lemma 5,
 only part (iii) requires a (minor) modification. To show
 that 2 = y/y'Vy is a convex function of y, note that V,
 as a symmetric positive definite matrix, can be factorized
 as V = LLT. Thus, with x(y) = Lry, S(y) = ,/x(y)'x(y)
 is a convex function of y, as the composition of a convex
 and a linear function.) Only the evaluation of the function
 ^r(F?) for a given value of YE is now more involved than
 in the case of independent yield factors. (The (SCM) can
 be generalized in similar ways.)

 Finally, if the demand variable D is correlated with
 (some of) the yield factors, let pDi = corr(D, Xf). The CLT
 based approximation can again be extended along the above
 lines, now resulting in the following formulation of (TCM):

 VT(YE) ? mini ? Ciy, + h(YE +1? - n) + (b + h) y I 1=1

 N J
 Y,Piyi = YE>y,>o\> i=\ 1

 where the (TV + 1) x (TV 4- 1) symmetric positive defi
 nite matrix V is defined by = vi} for 1 ^ /, yTV,
 %+1,/V+l =0"2> and %N+\ = Vfl,/ = VSiPDi- The ab0Ve
 argument establishes that the function ^T(YE) continues to
 be strictly convex.
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 7. Conclusions
 We have proposed and analyzed two planning models for
 settings where uncertain demand for a given item is to be
 covered by procuring supplies from one or more suppliers.
 The suppliers face supply risks, in that only a random frac
 tion of orders placed with them results in usable units. The
 service constraint model minimizes total procurement costs
 subject to a service constraint that ensures that demand is
 covered with a given minimum probability 1 ? a. In the total
 cost model, end-of-the-season inventory and backlogging
 costs are assumed and the aggregate of their expectation and
 the total procurement costs is minimized.

 In both models, the analysis is anchored on a character
 ization of the functions Vs(YE) and tyT(YE), denoting the
 optimal cost value for a given effective supply YE in the
 (SCM) and (TCM), respectively. We have shown that both
 functions ^5(-) and "vFr( ) are strictly convex and differen
 tiable and that they have a unique minimum. This charac
 terization permits us to obtain the optimal effective supply
 (and associated selection of suppliers and their respective
 orders) by finding the unique root of the derivative func
 tions ^5/(.) and ^r/(*)> respectively. We have also shown
 that both the function and its derivative can be evaluated

 very efficiently, either in closed form ((SCM)) or after com
 puting the unique root of a nonlinear equation ((TCM)).

 Much of our paper is devoted to characterizing the rami
 fications for (i) the supplier base, (ii) the expected effective
 supply (and hence the safety stock), and (iii) the optimal
 cost value resulting from changes in the supply risks the
 demand magnitude and risks, as well as the amount of ini
 tial inventory one possesses. We also show, in the (SCM),
 that whether a supplier achieves a positive market share or
 not depends only on his own effective cost rate and those of
 his less expensive competitors, along with the coefficients
 of variation of their yield distributions, as the sole character
 istic of these distributions. The supplier's own yield distri
 bution is immaterial to ensure membership of the patronized
 supplier base. Alternatively, if it is optimal for the buyer to
 patronize the k* cheapest suppliers, the only way for any
 of the other suppliers to become part of the supplier base
 is to reduce their effective cost rate to a given maximum
 value. Finally, in both the (SCM) and (TCM), the optimal
 supplier base consists of the k* cheapest suppliers for some
 k* = 1,..., N. Each selected supplier is assigned an overall
 score, given by the product of a reliability and a cost score:
 The former is the mean-to-variance ratio of the supplier's
 yield distribution, and the latter is given by the amount by
 which the supplier's effective cost rate falls below a spe
 cific threshold value. The market share of each selected sup
 plier is given by his overall score relative to the sum of the
 suppliers' scores.

 Total cost and service constraint-based models repre
 sent the two fundamental approaches in inventory theory to
 ensure that appropriate safety stocks are selected. In classi
 cal inventory models with a single, fully reliable supplier,
 the two approaches are known to be equivalent; see the dis
 cussion in ?1. In the presence of supply risks compounding

 on demand uncertainty, we have shown that this equivalency
 breaks down in several ways.

 First, the very existence of a feasible solution in the
 (SCM) is of fundamental importance, whereas it is triv
 ially satisfied in the (TCM) as well as in classical service
 constraint-based inventory models. We have obtained a very
 simple characterization of the necessary and sufficient con
 dition for the existence of a feasible solution, both in the case

 where all suppliers have ample supply and where their sup
 ply is capacitated. In the uncapacitated case, the necessary
 and sufficient condition for the feasibility reduces to a com
 parison of a single measure characterizing how many sup
 pliers are available and how reliable they are, with either z2a,
 if the initial inventory is below the mean demand, and z2a ?
 s2, if it is s standard deviations above the mean demand.
 The single measure characterizing the suppliers' pool is the
 number of BSEs they represent. In the capacitated case, this
 condition needs to be complemented with a quadratic and a
 linear inequality in the vector of effective capacities.
 A second qualitative difference between the (SCM) and

 (TCM) is that in the former, if a larger effective supply
 is targeted, this larger order can be optimally assigned to
 a subset of the least expensive suppliers within the ini
 tial group. This monotonicity implies that a set of critical
 effective supply values {YE: k = k,..., N} exist such that
 the k least expensive suppliers are used if YE ^ YE < YE~\
 k = k,...,N. Beyond this qualitative result, the identifica
 tion of these breakpoint values can speed up the search for
 the optimal value YE, and is therefore part of our proposed
 solution method (SCM). At the same time, the above mono
 tonic relationship between the number of suppliers and the
 targeted effective supply may fail to hold in the (TCM).

 Third, one would expect that when supply risks com
 pound on the demand risk, a larger safety stock is required.
 We have shown that in the (SCM) this always holds,
 whereas in the (TCM) it may, for some inventory levels, be
 optimal to order up to a lower level than that in the classical
 model with a single reliable supplier. We refer the reader
 to ??1 and 5 for a summary of other qualitative differences
 in the optimal solutions of the (SCM) and (TCM).

 Future work should extend our results to settings with
 multiple replenishment opportunities.

 8. Electronic Companion
 An electronic companion to this paper is available as part
 of the online version that can be found at http://or.journal.
 informs.org/.

 Endnotes
 1. Among the factors driving the need for supplier
 diversification, the authors mention: "Coupled with this
 price volatility, there is significant uncertainty about the
 availability of hi-tech components including memory chips
 and other semiconductor products. In periods of high
 demand, hi-tech suppliers place original equipment man
 ufacturers (OEMs) such as HP under allocation whereby
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 they supply only a fraction of the OEM's total demand.
 Availability uncertainty can also result from supply and
 delivery disruptions, such as the earthquake in Taiwan in
 late 1999, or supplier quality issues."
 2. Commercially available supplier scorecard systems tend
 to determine aggregate scores as the sum or weighted
 average scores of individual criteria, apparently with
 out any theoretical justification; see, e.g., http://www.
 theperformancescore.com/index.asp?pgid=21 and http://
 www. commercezone. co. za/C WS_CommerceZone/default.
 aspx?i_CategoryID=68.
 3. Similarly, ^(Xe) mav he interpreted as the additional
 cost incurred when the square of the safety stock in the
 classical model increases by one unit.
 4. Dada et al. (2007) show this for the case of N = 2 sup
 pliers. They conclude from this and the fact that the optimal
 set of suppliers is consecutive in the effective cost rates, that
 cost rate advantages act as "order qualifiers" whereas relia
 bility advantages serve as "order winners," i.e., to improve
 a supplier's market share, once qualified.
 5. Paying only for the good ones, k* decreases with pr
 6. In the special case where all suppliers face two-point
 yield distributions, this result, combined with Proposi
 tion 1(b), implies that the optimal cost value decreases when
 any of the suppliers improves p, the likelihood of a success
 fully delivered order. (In this case, s( = vV/O ? Pf)> which
 decreases with pt for p{ ^ 0.5.)
 7. In the (TCM), the optimal cost value can also be proven
 to increase with p, as well as with a (the latter under the
 very mild restriction, YE > p ? 7?); see the appendix for a
 proof of this endnote.
 8. In the (TCM), the optimal cost value decreases with 7?
 as well. This follows from Endnote 8, and the fact that the

 optimal cost value depends on p and 7?, only via (p ? 7?).
 9. All four instances have the same collection of two-point
 yield distributions, with Pr|X = l]=pi and Pr[X, = 0] =
 I ? pt. The pi values are generated independently from a
 uniform distribution on [0.6, 0.9].
 10. We restrict ourselves to values of 7? ^ p + crO-1 ((b ?
 c\/P\)/(b + h)) because Theorem 4(d) shows that for a
 larger value of 7?, Y* = 0, i.e., 7? + Y* follows the 45?-line.
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