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Recent papers have developed analytical models to explain and quantify the benefits of delayed differentiation and quick response programs.
These models assume that while demands in each period are random, they are independent across time and their distribution is perfectly
known, i.e., sales forecasts do not need to be updated as time progresses. In this paper, we characterize these benefits in more general
settings, where parameters of the demand distributions fail to be known with accuracy or where consecutive demands are correlated. Here
it is necessary to revise estimates of the parameters of the demand distributions on the basis of observed demand data. We analyze these
systems in a Bayesian framework, assuming that our initial information about the parameters of the demand distributions is characterized
via prior distributions. We also characterize the structure of close-to-optimal ordering rules in these systems, for a variety of types of order

cost functions.

1. INTRODUCTION AND SUMMARY

Delayed product differentiation and quick response rank
among the most beneficial strategic mechanisms to man-
age the risks associated with product variety and uncertain
sales.

The product portfolio offered by a company often con-
sists of families of closely related products, which differ
from each other in terms of a limited number of differ-
entiating features only. Consider for example the apparel
industry. A given design or style is usually offered in many
distinct sizes and colors. Grocery and dry food products
typically are sold in several package sizes, with a prolif-
eration of differentiating features, e.g., different fragrances
added to detergents. Automobile manufacturers offer a vir-
tually endless variety of model configurations within a
few basic product lines, while a given computer or printer
model is distributed with a variety of accessories (e.g.,
power supply modules, key pads, or manuals written in
different, languages). Delayed differentiation, or postpone-
ment, strategies attempt to reduce the risks associated with
this product variety by exploiting the commonality between
items and by designing the production and distribution pro-
cesses to delay the point of differentiation. In the same vein,
coordinating several geographically dispersed sales outlets
via a regional distribution center delays the point of differ-
entiation to the final points of sale.

In particular, under delayed product differentiation strate-
gies one finds that the production and distribution process
consists of several stages, each with a significant lead time.

The quick response concept consists of introducing sys-
tematic reductions in the average value and variability of
these lead times. Such reductions can be achieved by setup
time reductions, the adoption of faster and more reliable
production technology, electronic submission of purchase
orders, and contractual agreements with suppliers, stipulat-
ing quick and reliable delivery times, to mention but a few
possibilities.

Many companies have already reported major success
stories that are attributed to the above pair of strate-
gies: delayed differentiation and quick response. Examples
include Benetton (see Signorelli and Heskett 1989), Sport
Obermeyer (see Fisher et al. 1994a, b), Hewlett Packard
(see Lee et al. 1993 and Lee and Billington 1994), Compaq
(see New York Times 1997), Sun MicroSystems (see Mrena
1997), and Toyota (see Federgruen 1993). As an exam-
ple of delayed geographic differentiation, General Motors
recently announced the opening of regional distribution
centers for its Cadillac product line, coordinating the previ-
ously independent replenishment processes of its GM deal-
ers (see Wall Street Journal 1996).

The concept of delayed product differentiation was first
introduced in the marketing literature by Alderson (1950).
Several more recent papers have developed analytical mod-
els to explain and quantify the operational benefits of
delayed differentiation; see Eppen and Schrage (1981),
Federgruen and Zipkin (1984a, b, c), Jackson (1988),
Schwarz (1989), Federgruen (1993), Lee (1993, 1996), and
Garg and Tang (1997). These models, in the general tra-
dition of inventory theory, assume that while demands in
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each period are random, they are independent across time
and their distribution is perfectly known, i.e., sales forecasts
do not need to be updated as time progresses. Under this
assumption, the benefits of delayed differentiation, in terms
of inventory related performance measures, are restricted to
two factors:

(1) Statistical economies of scale. Assume that T denotes
the total production or replenishment lead time. Product
differentiation occurs after a first stage of L < 7 periods,
which terminates with a common intermediate product. The
delayed differentiation permits one to specify only aggre-
gate orders at the beginning of the replenishment process
and to commit resources to individual products only at the
end of the first stage of L periods. It also allows one to
observe the inventory status of the products at the end of the
first stage and thus to make better informed allocations to
the individual products. Eppen and Schrage (1981) coined
the phrase “statistical economies of scale” for this effect.
Others refer to it as risk pooling. Federgruen and Zipkin
(1984a) and Garg and Tang (1997) consider a generaliza-
tion with two (or more) points of differentiation, where a
common product is differentiated into several families, and
each family is differentiated into a set of end items. Statis-
tical economies of scale continue to describe the benefits
of extending the first (second) manufacturing stage, at the
expense of the second (third) stage.

(ii) Risk pooling via a common buffer. To the extent
inventories of the common intermediate product are
stocked, these may serve as a common buffer from which
all products can draw relatively quickly in case of need.
The common buffer further reduces the magnitude of
system-wide safety stocks to guarantee given service levels.

The key assumption of perfectly known demand distri-
butions is in general rather restrictive, with few exceptions,
such as staple goods, facing mature markets. Many prod-
ucts face a short life-cycle or are subject to dynamic and
competitive market forces. Thus, even the most basic char-
acteristics of the demand distributions (e.g., their means)
might not be known with sufficient accuracy. However,
estimates can be significantly improved on the basis of
observed sales data. The fashion and high-technology
industries represent extreme examples of this phenomenon.
Fisher and Raman (1996) document dramatic improvement
in forecast accuracy, which can be achieved after observ-
ing only 20% of initial sales in a sales season for fashion
items. Delayed differentiation allows one to use observed
sales data during the first common phase (of L periods),
not merely to get updated information about the products’
inventory status (see (i) above) but also to exploit a third
factor:

(iii) The learning effect. The generation of significantly
more accurate forecasts of future demand distributions,
further improving allocation to the individual products
at the completion of the first phase. The learning effect
arises even in settings where the demand distributions are
known with accuracy but consecutive demands are corre-
lated. Here, too, observed sales data during the first com-
mon phase can be exploited to revise forecasts for future
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demands affecting the allocations to individual products.
Clearly, both types of learning effects often prevail simul-
taneously and their benefits compound on each other.

This paper characterizes the benefits of delayed differ-
entiation in the presence of all three of the above factors.
In particular, we assume that estimates of the parameters
of the demand distributions are revised on the basis of
observed sales data in a Bayesian framework. We show
that the learning effect always results in increased benefits
of delayed differentiation as well as lead time reductions
through quick response programs, and that the incremental
benefits can be very significant indeed. Our analysis contin-
ues to focus on benefits in terms of inventory related per-
formance measures. Design for delayed differentiation and
quick response have additional benefits and costs, which
can be analyzed separately; see Lee (1996) and Lee and
Tang (1997). Along with our characterization of the bene-
fits of delayed differentiation, we develop close-to-optimal
and easy-to-implement strategies to manage multi-item sys-
tems of this type.

The need to address settings in which some degree
of uncertainty exists regarding the demand distributions
was already recognized by the founding fathers of inven-
tory theory. Dvoretsky et al. (1952) introduced a single
item periodic review model where the distributions of the
demand variables are of a known functional form but have
one or more unknown parameters. The model assumes a
prior distribution for these parameters, which in a Bayesian
framework is updated as time progresses and demand real-
izations are observed. For the case of independent and iden-
tically distributed demands and a cost structure consisting
of linear holding, backlogging, and ordering costs, Scarf
(1959, 1960), Karlin (1960), and Iglehart (1964) showed
that an adaptive order-up-to policy is optimal where the
order-up-to level depends on the past history through a
sufficient statistic S. These authors all consider a specific
distributional form—in particular, exponential and range
families. Azoury (1985) extended this result to a larger
class of distributions and provided characterizations for
the optimal adaptive order-up-to levels. Azoury and Miller
(1984) show that major errors in the optimal ordering lev-
els and expected costs can arise when uncertainty about the
parameters is ignored, i.e., when the uncertain parameters
are replaced by a single point estimate; see Azoury (1985)
for additional references on this single-item model.

The case where demand distributions are unknown and a
Bayesian approach is taken represents one setting in which
consecutive demands are correlated. Intertemporal correla-
tion can, however, arise even when the joint distribution
of demands is perfectly known, e.g., when demands follow
an autoregressive time-series model, a common assump-
tion in many statistical forecasting systems (e.g., expo-
nential smoothing, Box-Jenkins processes). For a variety
of such single-item autoregressive models, and continu-
ing to assume that ordering and inventory costs are lin-
ear, Veinott (1965), Johnson and Thompson (1975), Sobel
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(1988), Miller (1986), and Lovejoy (1990) obtain the opti-
mality of adaptive order-up-to policies.

Erkip et al. (1990) and Giillii (1997) revisit the two-stage
production model of Eppen and Schrage (1981), assum-
ing respectively that demands follow a specific first-order
autoregressive time-series model or the more general fore-
cast evolution model of Heath and Jackson (1994), which
allows for demands to be correlated over time and across
items. As in Eppen and Schrage (1981), an up-front restric-
tion is made to a policy that increases the aggregate inven-
tory position to a constant, nonadaptive, base-stock level
and allocates incoming batches of the intermediate product
myopically. The authors show how the correlation pattern
impacts the effective standard deviation of the surrogate
lead-time demand.

Fisher and Raman (1996) develop a rwo-stage model
to represent two replenishment opportunities to cover the
demand for a sales season of fashion items (in particu-
lar, skiwear): one before the start of the season and one
after observing several weeks of sales. Demands in the
two stages of the season are assumed to be correlated and
follow a known joint distribution. Thus, demand observed
during the first stage may be used to revise the demand
distribution pertaining to the second stage, and hence the
second replenishment orders. The model assumes multiple
items with an upper and lower bound on the second stage
purchase quantity, aggregated over all items. We refer to
Fisher and Raman (1996) for a review of a handful of other
similar models with two replenishment opportunities. Iyer
and Bergen (1997) characterize the benefits of revising the
demand distributions in a single-item, single-period model.
As in our paper, it is assumed that the demand distribution
is normal with an unknown mean, but with a given prior
distribution.

In §2, we specify the basic model and its notation.
Section 3 addresses the problem of allocating an incoming
order of the intermediate product among the finished items
and develops closed-form approximations for the optimal
values of these allocation problems. Of interest by them-
selves, these approximations are needed to reduce the exact
but intractable dynamic programming model to one that is
two-dimensional and interpretable as a Bayesian version of
a single-stage, single-item inventory model. The reduction
is achieved in §4. It is well known that the performance
of this type of single item inventory systems is determined
by the characteristics of its lead-time demand. Section 5
studies these characteristics and its impact on the benefits
of delayed differentiation as a function of all of the model
parameters. In §6, we characterize the structure of an opti-
mal ordering policy in the approximate model, for various
types of order cost functions. Finally, in §7, we discuss
extensions of the basic model in which the demand pro-
cesses are correlated across the different items or where
the period-by-period deviations from the mean demands are
correlated across time.

2. MODEL AND NOTATION

Consider a company offering a product line of J final
products with exogenous, random demands. Inventories are
reviewed and decisions are taken periodically. The J items
are produced in two stages. First, a common intermediate
product is manufactured; this stage requires a lead time
of L periods. In the second stage of / periods, the com-
mon intermediate product is differentiated into the finished
goods.

In our basic model, we assume that no inventory is
carried of the intermediate product, i.e., as soon as an
order of the intermediate product is completed, it is allo-
cated to the finished goods, and the second manufacturing
stage commences. This assumption reflects many produc-
tion processes; sometimes, it is physically impossible or
highly expensive to store the intermediate product (perhaps
because it is highly perishable or dangerous, as in smelting
processes). In other settings, intermediate inventories are
avoided, as a company policy, to reduce the lead time and
minimize material handling costs. If, as mentioned in the
introduction, our model is applied to two-stage distribution
processes with a distribution center feeding several retail
outlets, the assumption of no central stocks is often referred
to as a cross docking policy, implemented by Wal-Mart and
many other retail chains (see, e.g., Stalk et al. 1992). This
assumption allows us to focus on two of the three bene-
fits of delayed product differentiation, namely the statistical
economies of scale and the learning effect.

The planning horizon consists of N(< o) periods. Let
d;, be the demand for item j in period n (j=1,...,J;n=
I,...,N). For all j=1,...,J, we assume that the djn
variables are normally distributed with mean wu; (j =
1,...,J) and standard deviation o (Gj=1,...,J), for
all n=1,...,N; i.e., the distributions are identical across
time. However, contrary to standard inventory models, we
assume that while the parameters {o;:j=1,...,J} are
known, the means {,L,Lj :j=1,...,J} are not. It is thus
useful to write

dj,,=Mj+€j,,, n=1,2,..., and j=1,...,J, (1)
where the €,,-variables have a known normal distribution.
Instead, our initial uncertainty about the mean demand pu;
is characterized by a prior distribution, itself assumed to be
normal, with mean u,; and standard deviation o,; = no;
forsome n >0 (j=1,...,J).

The additive demand model (1) applies to settings in
which the average demand volume per period is unknown
before the start of the sales season, but the variability of
the period-by-period deviations from the mean is accurately
predictable. This situation arises, for example, when a com-
pany sells its goods via two channels, both drawing from
the same central inventory. The first channel may consist
of export contracts or wholesale sales to department stores
or other major retail organizations whose overall purchase
volumes may not be known with certainty before the start
of the season, but whose demands are predictably or evenly



spread during the course of the season. The second chan-
nel may consist of an established network of retail out-
lets facing a mature consumer market, but with significant
sales deviations from period to period because of weather
conditions, promotional activities, the randomness of shop-
ping patterns, etc. Iyer and Bergen (1997) describe how
Model (1) is used as the basis of a forecasting system by
quick response apparel distributors. Inputs by a team of
buyers are aggregated into a prior distribution for the mean
of any new item. The standard deviation of weakly sales, on
the other hand, is adequately inferred from point-of-sales
data of past seasons for similar garments and designs.

In other common settings, it is more reasonable to
assume that the coefficients of variation of the demand vari-
ables {d,,} are known rather than their standard deviations
per se. In §7.3, we outline a model based on this alternative
assumption.

The assumed distributional form gives rise to a so-called
conjugate pair. Posterior distributions for the demands in
any given period, conditioned upon observed demands, are
again normal; see Theorem 1 as well as DeGroot (1970),
for example. The assumption that the standard deviations
{0y,} and {0} are proportional is equivalent to the assump-
tion that the unconditional standard deviation of sales is
proportional to the conditional standard deviation of sales,
when conditioned upon the value of the means {u;}. This
assumption appears appropriate in most settings. Note that
the above specifications allow for arbitrary and nonidentical
coefficients of variation of both the unconditional and con-
ditional demand distributions.

We initially assume that the demand processes for the dif-
ferent items are independent of each other, and that for any
Jj=1,...,J, the conditional distributions {(d;,|u;): n =
1,..., N} are independent as well. Note that while the con-
ditional distributions (d;,|u;) are independent across time,
the unconditional distributions are not. To the contrary,
observation of the realized demands d,,(j = 1,...,J)
in period n permits us to revise our forecasts for all
future periods, i.e., to revise the conditional distributions
{d;,;: ' > n}. In other words, uncertainty about some of the
parameters in the distributions generates correlation across
time. In §7, we discuss extensions of the basic model in
which even the conditional distributions (d;,|u;) are cor-
related across time or across items.

The sequence of events is as follows. At the beginning
of each period, one decides on the magnitude of a new pro-
duction order, if any. Any order of the intermediate prod-
uct that has just been completed (i.e., that was ordered L
periods ago) is allocated to the final products. Thereafter,
demands of the final products are observed and end-of-the-
period inventories assessed.

Unfilled demand for each one of the items is backlogged.
Linear costs are incurred for each item, both for holding
inventory and for its backorders. Each time a production
order is initiated, an ordering cost is assessed. We consider
a variety of structures for the ordering cost functions; these
can represent, for example, economies of scale resulting
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from fixed costs. Finally, we assume that the second stage
differentiation costs are proportional with the specific pro-
duction quantities per item. More specifically, we introduce
the following notation.

Let

x;, = the inventory position of product j at the beginning
of period n, before this period’s allocation, i.e., the
inventory on hand — backlogs + common product
units being transformed into product j.

y, = the size of a new production order for the interme-
diate product, initiated at the beginning of period n,
if any.

z;, = the allocation to item j in period n.
I,.,=(dy,....d;,....d, ,....d;,_ ) the history of
observed demand realizations at the beginning of
period n.

We assume that the vector (x,, ..., x,,) of initial inven-
tory positions for the J items is exogenously given, as are
any intermediate product orders that are to be completed
at the beginning of periods 1, ..., L. (To enable the avail-
ability of finished goods stocks in the first several periods,
orders for the common intermediate product must be initi-
ated from period 1 — (L +1) on, i.e., (L +[) periods prior
to the start of the planning horizon. We denote these orders
bY Yi_(z+1> Ya—(r41)> - -- » Yo and assume they are exoge-
nously given.) The following parameters describe the cost
structure.

h;, = the holding cost per unit of item j carried at the end
of period n (j=1,...,J;n=1,...,N).

pj, = the cost for each unit of item j that is backlogged
at the end of period n (j=1,...,J;n=1,...,N).

To avoid pathological cases, we assume h, p;, > 0 for
all j and n.

¢;, = the second-stage manufacturing cost per unit of
item j, where production is initiated in period n
(j=1,...,J;n=1,...,N).
v, (y) = cost to place an order of size y in period n. (This
function can be nonlinear; e.g., it might contain a
fixed cost component.)

Also, let N(u, o) denote the normal distribution, with
mean w and standard deviation o.

Our objective is to minimize the expected discounted
(or undiscounted) cost over the planning horizon with
0 < a < 1, the one-period discount factor. As in standard
inventory models, we assign to period n, for each item
j=1,...,J, the expected inventory holding and backlog-
ging costs [ periods later. More specifically, the expected
holding and backolgging costs for item j, assigned to
period n, are given by

n+l +
hj,n+lE |:xjn + Zjn — Z djl}
i=n

n+l

+
+pj,n+lE|:Z dji - xjn _Zjn] ’ (2)

i=n
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with the convention that 4, = p;, =0 for n > N. Note
that the holding and backlogging costs incurred in the first /
periods are independent of any of our decisions; thus, as
in standard inventory models with lead-times, we exclude
these cost terms from consideration. Theorem 1(c) shows
that the distribution of the lead time demand Y"/*' d; ji» con-
ditional upon all observed demand data, remains normal,
with an easily computable mean u and standard devia-
tion o. The expression in Equation (2) can be written as
H(xj, + 2|1 pits Pjpirs W 0) (see, e.g., Federgruen and
Zipkin 1984b, p. 100), where

=p-(L—y)+(p+h)

[omn(52) o)

®(-) = the cumulative distribution function of the standard
normal distribution;

H(y|h; p; p: o)

and

¢(-) = the probability density function of the standard
normal distribution.

In the appendix we derive various properties of the H
function, which will be used in the remainder.

The analysis below uses the following characterization
of conditional future demand distributions, given a series
of observed demand data.

THEOREM 1. Fix j =1,
demand observations (

’llzl: d;;. Then:

,J. Assume a sequence of n

sd, ... dy,) with mean d

(a) The posterior distribution of the mean demand p; is

(b) The posterior demand distribution is N(uj,.
J0@2+ap).
(c) Forall t >0,

nt+1+1
S= Z dji|djl, werdy

i=n+t+1

~ N+ Dy U+ DX + 1+ D).

ProOF. The proof is a special case of the proof of
Theorem 5.

REMARK 1 REMARK.. For notational convenience, we set
d j0 =0 and we extend the definition of u} and o7} to
include the case n = 0.

3. AN ALLOCATION PROBLEM

In this section, we consider the myopic allocation prob-
lem, i.e., the problem of allocating an incoming order of

the intermediate product to minimize expected costs in the
very first period in which the allocation has an impact; i.e.,
| periods later. While of interest by itself, the allocation
problem plays a crucial role in the analysis of the entire
N-period dynamic optimization problem; see §4. That, in
period n, can be formulated as

J n+l +
(Pn): minZ{CjnZ +h/ n+1E([ jn+Zjn_Zdjii| |Inl)
j=1 i=n

. nTu )e

s.t sznzynfL’ (4)

j=1
zjn>0, j=1,....J. (5)

n+l
+pj,n+lE<|:Zdjt

Invoking Theorem 1, the objective in Equation (3) may be
written as

J
mlnz [cjnzjn + H(xjn + Zjnlhj, n+l; pj, n+l;
j=1

I+ Dm0 U+ D207 + U+ Do),

and is separable and convex in the z-variables; see
Theorem A part (d) in the appendix. As a consequence,
several highly efficient solution methods for (P,) prevail.
An optimal integer solution can be found by the greedy
procedure allocating each of the y,_; units sequentially to
whichever item benefits most from this units’s allocation;
see Gross (1956) and Fox (1966). See Zipkin (1980) for
an efficient method to compute the continuous optimum
of (P,).

As shown in Zipkin (1982), it is even possible to obtain a
closed-form approximate expression for the solution value
of (P,). If all cost parameters are identical across items
(e, ¢;, = ¢, hj, = h;p;, =p, for all j=1,...,J),
the following closed-form lower bound approximation is
obtained by relaxing the nonnegativity constraints (5):
€ Yn-r + R (X, + Y, |1,1), where

Rn(Xn +yn—L|In—l) :H<Xn+yn—L|hn+/;pn+l;

and X, = ij,zlxjn. If the cost parameters are item-
dependent, Equation (7) continues to be usable as an
extremely accurate approximation, provided c,, h,,;, and
D,y are specified as appropriate weighted averages of the
parameters {c;,}, {%,,,,}, and {p; ,,}; see Zipkin (1982)



for details. Observe that

J I [ nd. 0’2.+M 02
* jn0, 0j
DM =2 [—27 57—

j=1

j=1 noy;+ 0;

= i [_”77207_,«” +'U’0j:|

= nn?+1

_ ’”725;1 +Z] l‘l’Oj

9 8
prcR (8)
where D, =Y, d,,. Also,
2 2
. 90, Ui
L= = -a-. 9
O'Jn \/na'gj/a'jz‘Fl \/Vlnz‘l‘l g; ( )

Substituting Equations (8) and (9) in (7), we obtain

Rn(Xn +yn7L|In71) =H (Xn +yn7L|hn+l; anrl;

(n— 1)7125;171 +Zj /*LOj:|.

(H_l)[ (n—1)mn>+1

(I+1)n?

oDl +(l+1)-<§0j)). (10)

I/?\n depends on the history of observed demand values
only via the single sufficient statistic D, ,, i.e., the mean
of its aggregate demand, and on the vectors of a priori
means {u;:j=1,...,J} and standard deviations {c; : j =
,J} only via their aggregates (3_; uo;) and (3_; 7).
(We henceforth write 1/3\,,(-|5n,1) instead of I/Q\n(-|1n,|).)

4. THE DYNAMIC PROGRAM

An exact dynamic program has an overwhelmingly large
state space because the state of the system at the begin-
ning of period n involves (i) the vector of inventory posi-
tions x = (xy,,, Xp,» - - - » X,,), (i1) all outstanding orders for
the intermediate product y =(y,_;,...,¥,_,), and (iii) the
complete history of observed demands I,_,. The state space
is thus of dimension (Jrn+ L) and is growing as time pro-
gresses. Fortunately, Theorem 1 shows that all demand dis-
tributions and cost measures pertaining to period n and to
later periods depend on the observed history of demand
values [, _, only through the vector of historically observed
averages d = {d, Lyl d;;j=1,...,J} as suf-

Jon=1 """ p— 1
ficient statistics. Thus, for any n > 1, let

V,(x;y; d) = minimum expected total cost charged to
periods n,n+1,..., N when at the begin-
ning of period n, item j’s inventory posi-
tion equals x,, its average observed demand

M_l(] =1,...,J), and where y denotes
the vector of outstanding orders for the
common product.

jn?
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The V,-functions satisfy the following dynamic program-
ming recursion:

V,(x:y: d)

- mln {’Yn(yn) + Z C]anVl

Jj=1

+ZH(X +Zjn hj n+1> P, ntls (l+1)lu’/ n—1>

JU+D202 1+ 1)0?)
+aEy;, Vi (x+z—d; 33

[(n = Dd+dl/m)ly, > 0: 2 st (4), (5)}, (1)

where Vy,, =0,d =(d,,, ...
Y= Ouerts oo s Yuets Yu)-

A few observations are in order when N = oo, i.e., when
the planning horizon is infinite. Clearly, when a =1, the
total expected cost measure is no longer relevant; neither
is the long-run average cost criterion because in the long
run the exact values of the unknown means {u;} become
perfectly known, as is immediate from the Law of Large
Numbers, under the long-run average cost criterion, the
model thus reduces to the model in Federgruen and Zipkin
(1984a, c). When a < 1, for any n > 1 the V,-function is
best computed as V, = limy_ ., V, 5, with N an arbitrary
finite horizon of length >n. The fact that {V, 7}%_,.,
verges to the infinite horizon value-function follows from
Bertsekas and Shreve (1978, proposition 9.17).

While the state space of Equation (11) is of dimension
(2J+ L), as opposed to (nJ + L) in the original formula-
tion, the recursions in (11) are still entirely intractable. We
thus replace the exact model by an approximate one relax-
ing in (11) the constraints z;, > 0, a technique success-
fully employed in Eppen and Schrage (1981). Federgruen
and Zipkin (1984a, b, c), and Aviv and Federgruen (2001).
Extensive numerical studies in Federgruen and Zipkin
(1984a, c) and Aviv and Federgruen (2001) have demon-
strated that the approximation resulting from the relaxation
step is very accurate (i.e., the accuracy gap is on the order
of a few percentage points only), as long as the coeffi-
cients of variation of the one-period demands are not too
large (e.g., if they are less than one). The approximation
is all the more accurate when replenishment orders arrive
and are allocated frequently, enabling the prevention of
major imbalances between the items’ inventories. The same
approximation is used “implicitly” in many other multiech-
elon models (e.g., Eppen and Schrage 1981, Jonsson and
Silver 1987a, b, Jackson 1988, Schwarz 1989, Erkip et al.
1990, Giillii 1997, and Garg and Tang 1997), where it is
referred to as the “allocation assumption,” i.e., the assump-
tion that in each allocation round the inventory position of
each item can be elevated to the same, common fractile of
its lead time demand distribution.

’ djn)’ 1= (Zln’ e Zjn) and
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The approximate model represents a lower bound in the
important special case where all variable cost parameters
are identical across items, i.e., for all n=1,2,... s Cjp =
Cyshj,=h,and p;, =p, forall j=1,...,J. Most impor-
tantly, the state space of the approximate dynamic program
is two-dimensional only and as we see in §6, has optimal
strategies of simple structure. With this relaxation, one eas-
ily verifies (see e.g., §4 in Federgruen and Zipkin 1984a)
that

(a) the value-functions V, depend on the vector of initial
inventory positions x only via their aggregate sum X,,, and

(b) in each period n it is optimal to select the vector z as
an optimal solution of the myopic allocation problem (P,),
without the Non-negativity Constraints (5).

As shown in the previous section, the values of the
relaxed myopic allocation problems can be obtained in
closed form via the function R,(-|D,_,). (Recall that this
function is exact when the variable cost parameters are
identical across items, and it is to be used as a close approx-
imation with ¢,, h,,, and p, , appropriate weighted aver-
ages of the corresponding item-dependent parameters. See
Federgruen and Zipkin 1984a, ¢ and Zipkin 1982.) The one-
step expected cost function in the approximate dynamic
program thus depends on the history of observed demands
only via the single statistic D, ,. The aggregate inventory
position at the beginning of period (n+ 1) is given by
X, +y,.. —D,, where D, = ij.:l d;,, and it follows from
Theorem 1 that the conditional distribution of (D, |I,_,) is

b}

_N (n—1)n’D,_, +Z;:1 Moj
(n—1n*+1

1’2
7.
\/(n—1>n2+1+

More specifically, (D,|l,_,) once again depends on I,_,
only via D, ,.Finally, D, =[(n—1)D,_,+D,]/n. We con-
clude that the state of the approximate dynamic program is
given by (X,;y; D, ,) and its value-functions satisfy the

recursion

Z;;(Xn’y;ﬁnfl)

=m;r3{vn<yn)+R,,<xn+ynL|5n.>+aE(Dn|5,,,)

5 . (n=1)D,_,+D,
Kn+l<)(n_'_yn—L_Dn;y;71 . (12)

The dynamic programming recursion may be interpreted
as that describing a single item inventory model, with an
order lead time of L periods, full backlogging, and one-
period demands {D,}, which are normally distributed with

mean ) ;u; and standard deviation \/ 2 0]-2. However,

contrary to the standard single-item inventory model, the
mean } ;p; is not known and itself a random variable
whose a priori distribution is normal with mean }; u,; and

standard deviation 1,/3; sz. Also, the conditional distri-

butions {(Dn| dikM)sn > 1} are independent. Finally, the
one-step expected cost in period n (exclusive of ordering
costs) as a function of the inventory level after receipt
of incoming orders, is given by Equation (10). Note that
the function depends on the history of observed demands
D,,D,,...,D, , only via its average D, ,, and so do the
future demand distributions {D;; i > n}.

We conclude that the dynamic program recursion in
Equation (12) may be interpreted as that pertaining to a
Bayesian single-item inventory model, as in Scarf (1959,
1960), Karlin (1960), and Azoury (1985). A further major
simplification can be achieved by assigning to period n
the expected value of the one-step expected costs (exclu-
sive of ordering costs) L periods later. The shift permits
us to collapse all inventory-related state variables into a
single aggregate variable, the system-wide inventory posi-
tion, defined as follows:

n—1»

X5 = the aggregate sum of all units in stock as final
products, as well as those undergoing the first-
or second-stage manufacturing process minus all
backlogs:

XSZXn+yn—L+“'+yn—l‘ (13)

This result is established by the following lemma, which is
proved in the appendix:

Let Rn(er-’_ynunfl)

= E{Rn+L(Xn+L +yn|5n+L71)|X;f +yn’ Infl }
LEMMA 1. Fixn=1,2,...,
R, (X3 +v,I1,1)

(n=1)0’D,_ + Yo,
(n=1)m*+1

:H<Xf+yn‘hn+L+1;pu+L+1; (L+1+1)

(I+1)27n2 J 2 L{(n+1+L)n?+1]2 J 2
\/I:(n—]+L)n2+l +(l+l)]'(z.f:1¢f> +[(/1—l)n2+l][(n—l+L)n2+l]'(Zleaf) .

In particular, R, (X} +y,|I,_,) is a function of (X} +y,)
and D,_, only!

In view of Lemma 1, we write R, (-|D,_,), instead of
Rn('“n—l)'

The transformation of variables (13) thus gives rise to a
dynamic program with a two-dimensional state space and
the following recursion (with XS = X5 and D =D, _,):

V (X%, D)

—n

- il(}[ytz(yn)+Cn+Lyn+Rn(XS+yn|5)+

YnZ

aEI:Zn+1 (Xs+yn_Dn’

5]}. (14)

In §6 we show that the approximate dynamic program (14)
allows for optimal policies of a simple structure, depending
on the specific shape of the ordering cost functions vy, (-).

(n—1)D4+D,
)



5. THE SURROGATE LEAD TIME DEMAND AND
ITS EFFECTIVE STANDARD DEVIATION

The approximate model, described by the dynamic pro-
gram (14), may be viewed as a Bayesian version of a
single-stage, single-item inventory model with one-step
expected costs R,(-| D, ,) (exclusive of ordering costs),
given by the expected (linear) holding and backlogging
costs after a surrogate lead time demand that is normally
distributed, after n periods of demand observations, with

n’D, + 3 ko,

mean = (L+[+1) pcp

)

and

ESD’? = (standard deviation)®

:<M+(,+1)>.<iaj)2

(n+ Dy +1 p

(I+Dn ?
+|:(n+L)n2+1 +1:|

EEE)

or alternatively,

ESD? = (M +(l+ 1)) : <i aj>2

(n+L)n*+1 =

Li(n+L+1+D)n’+17 <ZJ: 2)' (16)

[+ - [+ Dy +1] \ &7

j=1

Note that the distribution of this lead time demand is dif-
ferent from the aggregate demand in the original system
over the complete manufacturing and review lead time of
(L+141) periods. As in the model with perfect knowledge
of all demand distributions (see Eppen and Schrage 1981
and Federgruen and Zipkin 1984a), the surrogate lead time
demand has the same mean but a significantly larger stan-
dard deviation. Following the terminology of Erkip et al.
(1990), we refer to this standard deviation (in Equations
(15) and (16)) of the surrogate lead time demand as the
effective standard deviation (ESD).

It is well known that the effective standard deviation is
the prime determinant of the cost performance of single-
item stochastic inventory models. For example, under per-
fect knowledge regarding the demand distributions, the
minimum achievable long-run average cost is directly pro-
portional with this effective standard deviation, when the
ordering cost function y(-) is linear and the demand dis-
tributions normal; see Scarf (1958) and Gallego and Moon
(1993). Similarly, when the ordering cost functions contain
fixed components and (s, S)-type policies are optimal, it is
known from Ehrhardt (1979) that the optimal safety stock
is roughly proportional to ESD!7%,

In this section, we investigate how the effective standard
deviation depends on (i) the relative lead times / and L—in
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particular, how it changes when the point of differentiation
is postponed; (ii) the initial degree of uncertainty regarding
the mean demands, which is characterized by m; (iii) n, the
number of periods in which demands have been observed;
(iv) the degree of demand dispersion over a variety of fin-
ished items, characterized by J; and (v) the standard devia-
tions of the one-period demands, as characterized by {o;}.
We first verify the following monotonicity properties.

COROLLARY 1. ESD is increasing in I, m and in each of the
standard deviations o, (j =1,...,J). ESD is decreasing
in n.

PROOF. Monotonicity in / and in each of the o, (j =
1,...,J) is immediate. To verify monotonicity in 7, note
first that the second term in Equation (15) is increasing
in 1 because both [(n+ L+ 11+ 1)n*+1]/[nn*+1] and
[(n+L+1+1)n*+1]/[(n+ L)n*+ 1] are increasing in
n, as (n+L+1+1) > (n+ L) > n. Monotonicity of the
first term in Equation (15) follows by simple calculus.
The fact that ESD is decreasing in n follows immediately
from (15). O

Perhaps surprisingly, ESD may fail to increase when L,
the lead time of the first manufacturing stage increases.
Note that the first term in Equation (15) (or (16)) is decreas-
ing in L, and this term may dominate, in particular when
(32, 0;)* is much larger than (3; 07). (For example, when
all o, =0, (X;0;)* =J(X;07) so that the first term may
dominate the second term in (15) and (16) by an arbitrarily
large factor as J — o0.) Intuitively, this phenomenon may
arise because an extension of L, the first manufacturing
stage of the common product, permits one to observe addi-
tional demand values prior to making detailed allocations
to the individual final products. The potential for this phe-
nomenon decreases as time progresses and clearly increases
with 7, the degree of uncertainty surrounding the mean
demand values, vanishing in the traditional model where
n=0.

Observe also that the asymptotic growth rate of ESD
is linear in / and L. This phenomenon is in sharp con-
trast to standard models where ESD grows as the square
root of the lead time when, as in our case, the period-by-
period deviations from the means are independent of each
other. This implies that in the absence of perfect knowl-
edge about the demand distributions, the impact of quick
response programs, reducing manufacturing lead times, can
be far greater than what is suggested by standard inventory
models. Moreover, given Corollary 1 and our discussion
about the impact of changes in the first stage manufactur-
ing lead time L, we conclude that quick response programs
are best geared toward reductions of /, the lead time of the
second stage.

Note that the mean of the effective lead time demand
in the approximate model depends only on the total manu-
facturing lead time 7 = L 41, i.e., it is independent of the
point of differentiation. The square of the effective standard
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deviation, as a function of 7 and L, equals

Esp? — L F T+ DT 1P [(XJ:UJ-)Z— (ioﬁ)]

Pl(n+L)n*+1] [\/5 =1
(m+7+D)n*+1
-

i YT+ 41 (L,
(57) (B o

Note that, given a fixed value of 7, the second term in
Equation (17) is independent of L.

COROLLARY 2. Assume that T = L+ 1 is fixed. ESD is
monotonically decreasing with L. The magnitude of this
decrease is by itself a decreasing function of the number of
periods of observed demands, n, and an increasing function

of .
Proor. Observe that

ESD(L+ 1) —ESD(L)
“lnt7+ D’ +1]°
[(n+L+Dm> +1][(n+L)n* +1]

[e) ()0 "

Note that both [(n+ 7+ 1)n*+1]/[(n+ L+ 1)n> +1]
and [(n+ 7+ 1)n*+1]/[(n+ L)n*+ 1] are decreasing in
n because (1+ 1) +1> (L+1Dn*+1> Ly*+1, and
increasing in 1) because (n+7+1) > (n+L+1) > (n+L).
The same monotonicities therefore apply to [ESD(L+1) —
ESD(L)|. O

In other words, Corollary 2 shows that delayed differen-
tiation always reduces ESD and that the magnitude of the
reduction is especially large at the beginning of the plan-
ning horizon, and monotonically increasing with the degree
of uncertainty in our a priori knowledge regarding the mean
demand values. Thus, the more differentiation is postponed,
the more we can benefit from statistical economies of scale
as well as the pooling benefits associated with the learning
effect; moreover, the magnitude of this benefit of postponed
differentiation is all the larger as we face increased uncer-
tainty about the mean demand values {u;}, either because
of limited historical data (n) or because of large initial
uncertainty in our a priori assessments of these means (7).
Indeed, when  — 0 or n — oo, the benefit associated with
the learning effect disappears and the benefit of a post-
ponement of the point of differentiation by a single period
is given by (3°;0,)* — (X;07) > 0, as in the model with
perfect knowledge, see Federgruen and Zipkin (1984a).

Corollary 2 may also be used to compare the perfor-
mance of a two-stage manufacturing system with delayed
product differentiation, with one with immediate product
differentiation, in which all end items are produced sepa-
rately in a single manufacturing stage. Corollary 2 shows
that if the single lead time 7 of the system with immediate

differentiation is equal to or larger than 7, product differ-
entiation is always cost-effective, where the magnitude of
the benefits depends on the system parameters as described
above. On the other hand, if 7 < 7, Equation (17) may
be used to calculate a break-even lead time 7 = 7° under
which the benefits of the reduced lead time in the single-
stage system exactly offset the risk-pooling and the learning
effect benefits in the system with delayed differentiation.
The break-even value can be computed by calculating the
positive root T° of the quadratic equation in the auxiliary
variable T = (n+7+1)n* +1,

(X Uj)z T2 _ (Xa))
n*(nn*+1) 7

Thus, 7 =1"2%(T°—1)—(n+1). Asn— o0 or n — 0, 7°
converges to the break-even value [+ L(X07)/(X ;)%
which varies between [+ L/J and [+ L = 7, depending
on how close the variance ratio (3 07)/(X 0;)* is to its
minimum value 1/J or its maximum value 1. (Note that
the convex objective > a'j2 is minimized, subject to g; =S,
if all o; = S/J, and that it is maximized if one of the o
equals S and the others equal zero.) For finite n and 7, the
break-even value 7° is closer to [ in view of the increased
benefits of delayed differentiation under the learning effect;
see Corollary 1.

We demonstrate the dependence of ESD on its determin-
ing factors, via a series of figures. All consider instances
with o, =0 forall j=1,...,J.

Figure 1 shows how ESD decreases as time progresses
and more and more demand realization are observed; five
curves are displayed for different values of 7, i.e., rep-
resenting different degrees of uncertainty about the mean
demands. Observe that the magnitude of the reduction of
ESD greatly varies with n: when o, = o, i.e., when the
degree of uncertainty surrounding the mean demands is

2
T = ESD?.

Figure 1.  Effective Standard Deviation (ESD) as a
function of the number periods of observed
demands n. (J =2 identical items, L =1=2

and o; = 10.).

Effective Standard Deviation

No. of observations (n)



Figure 2.

ESD, as a percentage of base case (L =1 =
2), as a function of the first phase lead time
L.(n=2,7=1 and ;= 10.).
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First Phase Leadtime (L)

identical to that of the period-by-period deviations from
the mean, ESD decreases by 30.6% after 10 observations,
compared to its values after the first period.

Figures 2 and 3 exhibit the dependence of ESD on the
two lead times, L and /; each figure consists of four curves,
for different values of J(J =2, 5, 10, and 100). We express
ESD as a percentage of its value in the (base) case where
=L =2. As Corollary 1 indicates and Figure 2 confirms,
ESD is always increasing in / and the rate of increase
is increasing in the number of final products J. Figure 3
shows, as discussed above, that the dependency on L is
more complex. For J =2 items, in this example, an increase
in the first manufacturing lead time consistently results in
an increase of ESD. On the other hand, with J = 100 final
items, ESD consistently decreases with L over the range
L=0,1,...,6, where for the two intermediate cases, with

Figure 3.

ESD, as a percentage of base case (L =1 =
2), as a function of the second phase lead
time /. (n=2,mn=1and o; = 10.).
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Figure 4. Reduction in ESD as a function of the point
of differentiation L. (J = 2 identical items,

n=2,7=L+Il=4and g;=10.).
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Point of differentiation (L)

J =5 and J = 10 items, ESD first decreases and then
increases.

Figure 4 illustrates Corollary 2. For a fixed value of
T =4, we display the reduction in the ESD value when
postponing the point of differentiation from L =0 to 4.
Once again, we display five curves for five values of 1
Postponement is always beneficial (see Corollary 2), but
the benefit of a 50% postponement (L =/=2) is 2.7 times
larger when 17 =1 as when n =0 (i.e., when the mean
demands are perfectly known) and the benefit of maximal
postponement (L =4) is 1.9 times as large, comparing the
same pair of n-values.

Finally, recall that our model assumes that the ini-
tial orders for the common product in the (L +1) peri-
ods, as well as allocation decisions in the / periods prior
to the beginning of the planning horizon (i.e., y; (14>
Yocpins -+ Yo and {z;,;n=1-1,...,0, j=1,...,J}),
are predetermined. Alternatively, these may be endoge-
nously determined within the model by extending the plan-
ning horizon with periods 1 —(L+1), 2—(L+1),...,0,
all with zero demands. One easily verifies that the effec-
tive lead time demand (in the approximate model) for each
of these periods is again normal with an easily computable
mean and standard deviation.

6. STRUCTURAL PROPERTIES

In this section, we characterize the structure of an optimal
ordering policy (for the common intermediate product) in
the approximate model, described by the recursion (14). As
in standard inventory models, the structure depends heavily
on the form of the order cost functions vy,(-). We focus on
the two most important types of order cost functions where
they are linear and fixed-plus-linear, respectively. We also
show that the results obtained for linear order costs carry
over to general convex order cost functions.

Under linear order costs, we show that a base-stock pol-
icy is optimal in every period, where the base-stock level



588 / Aviv AND FEDERGRUEN

depends on the period index as well as the prevailing suffi-
cient statistic D, , for the mean of aggregate demands. We
also show that the optimal base-stock level is increasing in
this sufficient statistic. Under fixed-plus-linear order costs,
we show that the order policy is of an (s, S)-type, where
both parameters s and S depend on the period index and
the prevailing value of the estimator of the mean aggregate
demand.

6.1. Linear Order Costs
Assume that 7y, (-) is linear for all n =1, ..., N. Let

U,(y|X:D)=7v,(y)+ ¢, .y +R,(X+y|D)

—~1)D+D\ |-~
+aED|:Kn+1<X+y—D;u>ID:|
n

denote the minimand of the recursion (14).

THEOREM 2. Assume all v,(-)-functions are linear and
N < oo.

(a) There exist base-stock levels B,(D,_,) such that
in period n, it is optimal (in the approximate model)
to increase the aggregate inventory position to 3,(D) if
D, , =D and X5 < B,(D), and not to order if X3 > B,,(D).

(b) The functions U,(y|X; D) are convex in y and O(y+
|X|+|D|), foralln=1,...,N.

(¢) The functions V,(X;D) are convex in X and
O(|X|+|D|), foralln=1,...,N.

ProoOF. First note that R, (:|D) is of the form H(-|h, p,
W, o), for appropriate choices of h,p,u and o. By
Theorem A, part (d), this function is convex and has a finite
minimizer.

We prove the theorem by induction. For n = N,

V., =0 is convex and so is Uy(-|X5; Dy_,), by the con-

Y N+1
Vexfty of Ry(:|Dy_,) and the linearity of y,(-). Also, a
base-stock policy is optimal, where the base-stock level
depends on Dy_,. It follows that V, (-|Dy_;) is convex
as well. Finally, Uy (y|Xy; Dy_,) is O(y+|Xy|+|Dy_1]),
and V., (Xy|Dy_) = O(IX3| + |Dy_)-

Now assume the theorem holds for some n < N. To
show that the theorem holds for n— 1, note that E[V, (X5 +
y—D,;(n—1)D,_,/n+D,/n) | D,_,] is convex in y
by the induction assumption. Moreover, because V, (X5 +
v = D,i(n— 1D, /n+ D,/n) = O(XS| +y + D, |+
|(n—1)D,_,/n+ D,/n|), and since E[|D,|] < oo, we have
that E[V, (X3 +y—D,: (n—1)D,_,/n+D,/n) | D, ,] is
finite and O(|X3|+y + |D,_,|). Because R, (X5, +
y|D,_,) is convex as well, and lim, ., R, (w|D, ,) =
oo, it follows that U, ,(y|X5_,; D,_,) is convex and has a
finite minimizer. The remainder of the proof is identical to
that given for the case n =N. O

We now show that in each period the optimal base-stock
level is increasing in the prevailing estimator of the mean
aggregate demand.

THEOREM 3. Assume that all vy, (-)-functions are linear. In
each period n, the optimal base-stock level B,(D,_,) is
increasing in D,_,.

PrOOF. The proof is based on results from lattice program-
ming, see Topkis (1978). To apply the results there, it is
useful to treat W, = X5 +,, the aggregate inventory posi-
tion after ordering as the action variable (instead of y,, the
order size). Because W, is real-valued, let S = R denote
its domain. Similarly, let T = M2 denote the domain of the
state spaces {(X5,D, )}(n=1,...,N) of the approxi-
mate model. Clearly, S is a lattice (because if y,, y, € S,
so is min(y,,y,) and max(y;,y,)) and T is a partially
ordered set under the normal component-wise ordering.
For any state t = (X5,D,_,) € T define the set of fea-
sible orders S, = {W : W > X5} C §. Note that the set
S, is ascending in ¢ because for any t' = (X, D)
> =(X®,D®) and W' € S,;, W? € S: min(W', W?) €
S, and max(W', W?) € S,.. (To verify the latter, W' > X
and W2 > X@ > XO; hence, X < min(W', W?) € S,
and X® < W < max(W', W?) € S,..)

In view of Topkis (1978, Theorem 6.1), it thus suffices
to verify that

U,(W,, X}, D,_))
=U,(W,—X;|X}:D, ) =v,(W,— X})
+Coyr- (W, - Xf) + Rn(Wn|5n—l)
+aE[V,,,(W,=D,; (n=1)D,_,/n+D,/n)|D,_]

has antitone differences in all three of its arguments. We
verify this by induction. For n = N, Uy, is the sum of three
terms, each of which is of the form ¢(x — ay) with ¢(-) a
convex function, a >0 and {x, y} C {W,, X3, D, ,}; hence,
all three terms have antitone differences in (W,, X5, D, _,).
(To verify that the third term, R, (W, |D,_,), is of this form,
invoke Lemma 1, the definition of the H-function and
Theorem A part (a).)

Now assume U, has antitone diiferences for some n < N.
To verify the same property for U,_,, note first that

V., (X5, D,_,) has antitone differences, (19)

by Topkis (1978, Theorem 4.3). It suffices to show that
E[V,(W,—D,; (n—1)D,_,/n+D,/n)|D,_,] has antitone
differences in (W,, D, ,), because the remainder of the
proof is identical to that of the case n = N. Because
E[V, (W, —D,: (n—1)D,_,/n+D,/n)|D, 1= [V, (W,—
u; (n—1u/n+ D,/n)dF(u|D, ), with F(u|D, ,) the
conditional cdf of D, given D, ,, it suffices to show that
V,(W,—u; (n—1)u/n+ D,/n) has antitone differences
in (W,,D,_,) for all —co < W, < co. The latter follows
from (19). If ¢ : M2 — R : (x,y) — ¢(x,y) has antitone
differences, then so does ¢¥(x, y) = ¢(ax+ B, yy+6) for
any quadruple of constants «, 3, y, 6 with a,y >0. O

REMARK 2. Both Theorems 2 and 3 can be extended to
the case where the order cost functions v,(-) are con-
vex but polynomially or exponentially bounded, i.e., for
al n=1,2,...v,(y) = 0(e*),y — oo for some « > 0.
Both theorems continue to hold with immediate extensions
of their proofs, provided the asymptotic order results in
parts (b) and (c) of Theorem 2 are appropriately modified.



6.2. Fixed-Plus-Linear Order Costs

In this subsection, we assume that the order cost functions
v, (+) consist of a fixed and a linear component, i.e.,

K,+c,y, ify>0,

20
0, if y=0. (20)

Y, (¥) =

As in the treatment of the standard inventory model, with
perfect knowledge of all demand distributions, we assume
(see, e.g., Scarf 1959, and Denardo 1982)

K,>aK,,, foralln=1,...,N. (21)
THEOREM 4. Assume all order cost functions are of the
form (20), where the fixed cost components satisfy
Equation (21). Let N < oo. For each n =1,2,..., the
optimal order policy in the approximate model is an
(s, S)-policy where both s and S depend on D, ,, the
prevailing value of the estimator of the mean aggregate
demand and the period index. In other words, there exist
functions s,(D,_,) and S,(D,_,) such that

*

Sn(Bn—l) _Xf’ if er < sn(Bn—l)’
Y =

0, otherwise.

PrOOF. The approximate model may be viewed as a
Markov-modulated, single-item, periodic review inventory
model where the one-step expected costs and demand dis-
tributions depend on an underlying environmental state,
which evolves according to a given Markov chain. (Note
that the process {i,} = {(n,D, ;)} is Markov.) In the
approximate model, the modulating environmental state is
given by the pair (n,D, ;). The theorem now follows
from a straightforward extension of Sethi and Cheng (1997,
Theorem 4.1), itself an adaptation of Song and Zipkin
(1993). Sethi and Cheng (1997) assume that the state space
of the environmental state is finite, while in our case the
second component has the real line as its domain, thus
requiring a simple extension of the proof of Sethi and
Cheng (1997, Theorem 4.1). O

7. MORE GENERAL AND ALTERNATIVE
DEMAND PROCESSES

Our basic model assumes that the demand processes for the
different items are independent of each other and that the
conditional distributions (d;,|u;) are independent across
time as well. In this section, we extend our results to set-
tings in which the demand processes are correlated across
the different items or the period-by-period deviations from
the mean demands are correlated across time. We also
develop an alternative to Model (1) in which the coef-
ficients of variation of the demand variables {d,,} are
assumed to be known, as opposed to their standard devi-
ations. This alternative assumption suits many common
settings.
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7.1. Correlation Across Items

To allow for arbitrary correlation between the demands for
the different items pertaining to the same period, assume

that in each period n =1,..., N, the vector of demands
(dy,,.. 4,) has a multivariate normal distribution with p =
(ty5 ..., my) as the vector of means and 2, as the variance-

covariance matrix. As before, we assume that X is known
but that the vector u is not. As before, our initial uncer-
tainty about the mean demands u is characterized by a
prior distribution, itself assumed to be multivariate normal
with vector of means w, = (Ug;, ..., Moy) and variance-
covariance matrix 3, = 1°S. We continue to assume that
the conditional distributions {(d;,|u;) :n=1,...,N} are
independent (across time). Note that this demand process
model contains the basic model as a special case where the
matrix 3, is diagonal.

We first need the following generalization of Theorem 1:
Let N (u, T) denote a k-variate normal distribution with
u as the vector of means and 7 as the (k x k) variance-
covariance matrix. Also, let 1, =(1,...,1)"T € R* and 0,=
0,...,0)7 e mE,

THEOREM 5. Assume a sequence of n demand observa-
tions (dj,...,d;,) with mean Jjn =i30.d; for all
j=1,...,J. Then:

(a) The posterior distribution of the vector of mean
demands . is multivariate normal:

l"LTn d_ln Mo1
/"LllnNNJ(/J’:: s = LN BN B B R

M, dg, Moy

(b) Forall j=1,...,J,

n+t+1+1
( Z dji|1n>

i=n+t+1

N+ D U+ D)+ (U D).

— * 712 — "72
where 0; = \/ 2 and 07, = \/ e X = \/ 1 9

Proor. (a) Notice first that because 3 and 3, are positive
definite matrices, they have inverses. DeGroot (1970, §9.9,
Theorem 1) shows that the posterior distribution of w|I, is
multivariate normal, with

M1y

m,=1
M,

d_ln

= (3 +nE )7 35 o +n3!

d

n
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as the vector of means, and ¥* = (¥;'+nX ') 'as the
variance-covariance matrix. Substituting 3, = 7*3, we
obtain

d_ln
sy =2 402 ) PS03
d_ln
1 d_ln
= (=3 [t
n+m =
d]n
dy,
_ 1 2 .l +
a1 n E Mo 1>
Jn
and 3} = MZZHE.
(b) Forall j=1,...,J and t=0,1,...:
n+t+1+1 n+r+l+1
( Z dji|1n) = (l+1)(Mj|In)+ Z €ji> (22)
i=n+t+1 i=n+t+1

in view of the independence of the e-variables with respect
to the observed demand realizations. The second term in
Equation (22) is N(0, v/ +10;), while the first term is
N((/+ Du3,, (I+1)07},) by part (a). Part (b) follows from
the independence of the two terms in (22). O

Repeating the analysis in §§3 and 4, observe first that
for all n=1,2,..., the allocation problem (P,) depends
only on the marginal distributions of the random vari-
ables (S/%d |1, ;) for all j=1,...,J. Thus R,(X5+
Vu_rll,—1), the lower bound closed-form approximation for
the value of (P,) (excluding c¢,y,_,) continues to be given
by Equation (7) and hence by (10). We conclude that,
as in the basic model, I?,, depends on the entire history
of observed demand values only via the single sufficient
statistic D,_,, enabling us to write R,(-|D,_,) instead of
i?\n(~|7,,,1). Next, following the proof of Lemma 1, one
observes that for all n=1,...,N the function R,(X5 +
y,|I,_) continues to depend on (X5+y,) and D,_, only
and continues to be given by its expression in Lemma 1,
merely replacing (Z;zl Uf) by Var(ZjJ.:1 €;,) =1731,, the
variance of the deviations of the aggregate one-period
demand from its mean:

Rn (er—i_yn“n—l)
=H (X;f FYul M 148 Prs s

(n—1)n’D,_, +2 Mo
(n—1)m>+1 ’

2
(l+1)2 2 J
<[(n—1+L>ZZ+1 ”l“)] | (ZU>

(L+1+1)

. L[(n+1+L)p2+1]’
[((n=D+1][(n—14+L)n*+1]

172
(17 21])> ) (23)

We conclude that the approximate model (14) continues to
apply with the R,-functions specified as in Equation (23).
In particular, the state space of the approximate model con-
tinues to be two-dimensional, and this model satisfies all
of the structural properties identified in §6.

The expression for ESD?, after n periods of demand
observations, is now given by

ESD? = (standard deviation)?
(l+1)2772 ) ( J 2
—(—L1 4 a+1)- (X
((n+L)n2+l i’

L{(n+L+14+1)n*+1]?
[nn?+1]-[(n+ L)n* +1]

(17=1)) (24)

(again merely replacing (Z,J':1 o7) by 1731, in
Equation (16)). An important special case arises when all
o,=0and 3, = po? for all j # j, i.e., all pairs of items
have identical correlation:

B 02[(n+L+Z+1)n2+1]. )
ESD = ( r DT [1 (I+1)

) 1/2
L LU =Dp+J1[(nt+ L1+ 1)n “]]) - (29)
nn*+1

For this special case, and a given choice for J, n, [ and
L, Figure 5 exhibits the dependency of ESD on 7, the
degree of uncertainty surrounding the means of single-
period demands, for five distinct correlation values p. The
graphs confirm that ESD is increasing in p and, more
importantly, that the benefit of a reduction in 7 (perhaps
because of better forecasting, or pre-season test marketing)

Figure 5.

ESD, as a function of the degree of uncer-
tainty m, for various values of p. (J =2
items,n=2,L=[=2and 0; = 10.).
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Figure 6. Reduction in ESD as a function of the point
of differentiation L. (J = 2 identical items,
n=2,n=1,7r=L+1=4 and (fj=10.).
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Tep=i |
. —— =051 .

= p=0
== p=05

Reduction in ESD

[} 1 2 3 4
Point of Differentiation (L)

is increasing in p as well. Figure 6 exhibits the reduction in
ESD as a function of L, the point of differentiation, again
in five separate graphs, for the same five values of p. Note
that the benefits of postponement decrease with p, and even
more strikingly, the magnitude of the incremental benefit
resulting from an extension of the point of differentiation
by one period, is itself decreasing in p. The first property
is immediate from Equation (25) and the second follows
from (18), replacing Jo> =3, 07 by Jo?> +J(J — 1)pa?.

7.2. Correlation Across Time

The basic model assumes that in the general demand pro-
cess (1), the variables {e;,};, are independent, for all j =
1,...,J. We now extend our results to settings where the
e-variables are correlated across time, in particular where
they are generated by an autoregressive time series model.
Autoregressive time series models underlie many standard
demand forecasting systems, including the general class of
Box-Jenkins methods. To facilitate the exposition, we con-
fine ourselves to the simplest such model in which the time
dependency is autoregressive of the first order, i.e.,
@) €jo ™ N(O, O-j)7

(ii) €;,=0€¢; ,_+0;,,n=1,2,...,
and independent of € 05 0 <1, and

(iii) 8; , ~ N(0,v1—6%0)).

As with the basic model, we assume that the € vari-
ables are independent across items and that their distri-
butions have known parameters o;(j = 1,...,J) and 6.
Assuming perfect knowledge regarding the demand distri-
butions, Erkip et al. (1990) address our multi-item model
with aggregate demands following a (slight variant) of this
first-order autoregressive pattern and demands for the indi-
vidual items a fixed deterministic percentage of the aggre-
gate. The authors restrict themselves up front to base-stock
policies, combined with myopic allocations, and a fixed
base-stock level. Our analysis shows that under linear or
convex order costs, the order policies should be selected

with {8,,)22, i.i.d.
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from the class of base-stock policies, with base-stock lev-
els dependent on the last observed demand. In our setting,
with unknown mean demands, the base-stock levels should
be dependent on this as well as a second sufficient statistic
of the observed history of demands.

It is easily shown (see, e.g., in Hamilton 1994, §3.4) that
forall j=1,...,Jandn=1,2,...: (i) €;, ~ N(0, 0;), and
(ii) cov(€;,, €; ,x) =007,k >0. Forany j=1,...,J, let
eV = (e, €;,)"; its variance-covariance thus equals

s
070, where
1 0 02 o1
0 1 6 - 62
_| 6 0 | e .
A L |
and
1 —0 0 0 0
-6 146> -0 0 0
. 1 0 -0 1+6* -0 0
0, =70 © -0 146 0
0 0 0 -6 1

See Hamilton (1994, §3.9).
We start with an extension of Theorem 1.

THEOREM 6. Fix j=1,...,J. Assume a sequence of n
demand observations (d sdps .. ) with mean d;, =
L3 d;y. Then, o
(a) the posterior distribution of the mean demand ;
is normal with mean W, and standard deviation o7, =

w(n)o;, where
=60 6 4 +nd_jn)+ 0 4 _,’_P-o,

b} jn

]+0 -6 0 J1 1+9 jn
* = s (26)
n 1-6
! H—_ﬂ + 1+_9(n -2)+ F
and
p(n) E\/ 7 (27)
m 150 1+0 -2) +
(b) Let S; (1) = Zfﬁfﬂ @, ,d;, for some vector of

coefficients a = (a, ...

(Sj,n—l(l)ldjl’ ey /,,)

t t
NN(M:nZa,-u—ef)w(Zaﬁ")’
i=1

,&,). Then, for all t > 1:

i=1

\/ [ Saa- w)TW(n) e, a)q-),

i=1

where

t t t t
Z Z a‘paqmpiqI - Z Z apaqu+q

\ p=1g=1 p=1g=1

€(t,a)=

t t
= Z Z afpaq(ah’*‘f‘ — gra),
\ p=1g=1
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PROOF. (a) Letd{) =(d;,, ...
tation of Model (1) is

,d;,)". The vector represen-

d(J) =W, 1, _|_€(/) (28)

where the unconditional distribution of u;1, is N, (¢;1,,
o, 1,17), and €’ ~N,(0,, 070,). Because ©," is positive

definite, there exists a matrix L such that LYL = ®~'. Pre-
multiply (28) with L to obtain for d/ = Ld\) and €, = Le\/:

The components of €, are i.i.d. and normal with mean
0 and standard deviation o;. (By the general formula
for linear transformations of multivariate normals, the
variance-covariance matrix of €, is Lo;(L"L)™'L" =

a;LL'(L")'L" = 071, where I is the n-dimensional
1dent1ty matrix.) Thus, (29) may be viewed as an ordinary
simple regression equation with d, as the vector of depen-
dent variables, (L1,) as the vector of values of the inde-
pendent explanatory variable and u; as the regression coef-
ficient. We thus invoke Hamilton (1994, proposition 12.2)
to obtain the posterior distribution of (u,|d;;,...,d;,): it
is normal with

o} Mo O
mean = |:—]2+(L1,1)T(Lln)i| [ i +(L1,) d/i|
o, o?

oj oj
Moj j

+ 1TLTLd/}
n?

~ 4170, [ 2
~[n o) M|
n?

and variance = o7 /[~ +170,'1,]. Part (a) now follows
by simple algebra noting that 170;'1, equals the sum of
all entries of @,

(b) Let S;,.(t|d;,...,d;,) denote the value of
S; wt1(t), conditional on the sequence of demand obser-
vations (d;;,...,d;,). Note the the set of variables
{), (& 0515+ 5 € 0p0)» (djy5 ... 5 d},)} has a multivari-
ate normal distribution. It follows that the partial set
of variables {u;, (€ ,1,...,€; )}, given a value of
{(d;;,....d;,)}, continues to have a multivariate normal
distribution (see, e.g., Tong 1990, Theorem 3.3.4) and
hence that S, ,.,(t|d;,...,d;,) has a normal distribu-
tion. By the same argument, the conditional distribution of
(€ ni1s -+ » € ni,|€;,) is multivariate normal.

We now show how to calculate the vector of means
and the variance-covariance matrix of the conditional dis-
tribution of (€; ;1 --- »€; ,4,|€;,). First, observe that the
joint unconditional distribution of (€;,, €, 1s ... € ,4,)"
is N, (m, A =070,,,), where we partition the vector m
and the matrix A as follows:

m] All A12>
m = and A= ,

(m2> <A21 Ay
with m; =0, m, =0, A, =0 A, =Aj =
07(0,0%...,0") and Ay, = 070,. It now follows from

Tong (1990, Theorems 3.3.15 and 3.3.19) that

=m, +A21Af11(€jn —m,;)
=, (0.6%....0)7, (30)

|
E[Ej,n-H’ R Ej,n+t|€jn]

and

> ej,n+t}6jn)

= Azz - AZIA;IIA12

Var(€; 11, -

02 03 .. 0t+1
03 04 . 0t+2

= 0.]2@[ - 0-/'2 : : : : (31)
Ot.-i—l Ht.+2 9.21

To calculate the mean and standard deviation of
Sj,,,ﬂ(t!djl,..., d;,), observe that

E[Sj.n+l (tidjl ey djn)]

n+t n+t
- E {Ee/ n+l1s /vn+1|:<’UJJV Z ai*"+ Z ainej")’

i=n+1 i=n+1
M dys .. ,djn:| djis ... ,djn}
t
= EM,{/"LjZai—‘rEfj,an»--’f/.nw
i=1
n+t
[ > Qi€ Ejn:djn_l*"j:l dj, ... ’djn}
i=n+1

n+t
{p,jZa +(dj,—wp) Y o ,07"d;,....d, }
i=n+1

t t
= [Zai(l —9’)} B mild, o dj - dy, Y gl
i=1

i=1

t t
= %Zai(l - 91‘) +djn Zaiai’

i=1 i=1

where the third equality follows from Equation (30).
Similarly,

Var[sj, n+l1 (t|dj1, ey djn)]

n+t n+t
:Var#/'{Eéj,nﬂ’“"éj,nﬂ |:MJ Z ai*”—i_ Z ai*’lejl- I'LJ"
i=n+1 i=n+1
djy, ... ,dj”] dji, ... ,djn}

n—+t
+El‘Lj{Varej,n+l»"'vej,n+l (/"Lj Z iy

i=n+1

,u,j,djl,... ,djn)

n+t

+ Z &€

i=n+1

ds ... ,dj,,}




t 2
_ [Zai(l - az)] Var, (u)ldy. ... . d,,)

i=1

n+t
{Var< Z &y ]l /nzdjn_/‘l’j>
i=n+1
l/.Lj,djl,... ,djn}
t ) 2
~[Za-] v
i=1

t t
EM‘,_ {0'].2 >N apaqﬁl”""

p=1¢=1

t t
Y a0

p=1g=1

_ [gai(l - 0f>]2w2(n)<f?

Ky djis - ’d.fn}

+ [iia,,aqowl Y Yaa ew}

p=1g=1 p=1g=1

The second equality is justified by the fact that the expected
value, inside the curled brackets in the first term to its
left, equals w;Y";_; a;(1 —6'), plus additional terms that
are constant (in p;). The third equality follows from
Equation (31). Also, note that the (p, ¢) entry of O, (i.e.,
[©,],.,) equals 67~ [0

REMARK 3. We thus conclude that for any j=1,...,J,
after observing demands over n periods, the posterior dis-
tribution of the mean w; as well as any functional of future
demands, depend on rwo sufficient statistics: (i) an adjusted
average of observed demands where a higher weight is
attributed to the first demand observation, and (ii) the
last observed demand. As mentioned above, only the sec-
ond statistic is needed when the mean is perfectly known
(n=0), and only the first statistic when 6 =0, i.e., in the
absence of intertemporal correlation. Note that if 6§ = 0,
the first statistic reduces to the simple sample mean, as in
the basic model.

We now show how to extend the results of §§3 and 4 to
fit to this model. Note first that the expected holding and
backlogging costs for item j, assigned to period n, are now
given by

I+1 4 e
H<. Pty P Wy 2 (1 =0 +d; - (ZO’),
i=1

i=1

i=1

1+1
J[Z(l—ﬂ)] P2(n—1)+[e(l+1, 1,+1)] )
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Therefore, similar to our basic model, one easily verifies
that the expression for R, needs to be adjusted to

Rn(Xn +yn—L|In—1)

:H<Xn+ynL|hn+l;pn+1;

1+1 ) 1+1 )
u:,zu—e’)wn_l-(ze'),
i=1

i=1

I+1 J

2
MZU—O)] =1+ [e(+1,1,)] Zaj),
i=1 j=1
where w; is given by Equation (26), merely by replacing
dj, d; s and d;, by D,, D, and D,, respectively. More-
over, R,,(X;f + ¥,_rll,_1), as well as the distribution of
D depend on I,_, only via the two sufﬁcient statistics

Qn l_mD +D,_, and Qn . =D, _;; hence, we can
write R, (-|0"" Q,Sj,) instead of R, (-|,_,). The sufficient

n—1°
statistics evolve as simple linear functions of D,: Q\V =

oM .
("I)Q+“+D” and Q@ = D,. Therefore, the approximate

dynamic program in Equation (12) is now given by

’K\n(Xn’ ynfL’ et ’yn—l; Qf,ljl’ Q(Z) )

. = 1 2
= 132% {Yiz(yn) +Rn(Xn +yn—L | QE:—)I’ Ql(‘l—)l)

+C¥E( )zn+1<Xn +yn—L_Dn;

p,10",.02,

(n—1)0\". +D,
yn—L+l""’yn—l’yn;—aDn .

As in §4, we further simplify the (approximate) dynamic
program by collapsing all inventory-related state variables
into the single, aggregate variable, X5. The expected value
R(X3+y,|I,_,) is now given by

R (XS+yiz|In—1)

—E[ n+L( n+L+yn|Q1(11ﬁzL71’ fﬂL 1)}Xs+yn, n— 1}

n+L—1

= E{ﬁnJrL(Xs—'—yn -

(n 1)Q“> +2?;:*'D,-
n+L—1 ’Dn+L1 |I

i=n

n+L—1
= E{H<Xf +Y.— Y Dilbyip s Puiriss

[%(1—05)]-1[/2(n+L—1)

s=1

[ O -0+ by
1+0 ] l n

0 2 o) &
g Dasir T |+ Dy 0
1+9 " n " s=1
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1+1
J [2(1 — %) ] A+ L-1)+[e(l+1,1,,)]

: (i"j)) 'Qil-)u 0%, }
j=1

where the last equality follows from the fact that the
(joint) distribution of (D,,...,D,,;_|I,_;) depends on
I, , solely via the two sufficient statistics (Q(l) Q(z)

n n—1° Xn—1

thus, we can write Rn(-lQ(l) (2) ;) instead of R, (-|I,_,).

n—1>
One can easily verify that the approximate dynamic
program (14) can now be written as follows:

v, (x50 o)
— . R XS 1 (2)
Iyni% Yn(yn)+cn+Lyn+ n( n+yn|Qn71’anl)
+aE|:Zn+l<X5+yn_Dn;

-1 +D,
(n )Q 2 )'Qil)l, (2):|}.

Invoking Theorem A, part (a), it can be easily shown that

1 2
(Xs+yn|QE, )1’ i)l)

n+L—1
= E{H<X;f+yn|hn+L+l;pn+L+l; > -1y D;

i=n

[5(1 ) |wer-n

[—( -0’ +

ZjMOj
140 7’

J [liu —6°) } A+ L—1)+[e(l+1,1,)]

! 1 2
( ))‘QL)I’ ()}’
j=1

where

L+ (n+ L= D)5 5 (1-69),

i=1,...,L—1
;=
l+l//2(n+L—l)1+0 l+1(1 05)+Zl+l 05
i=L.

Now note that by applying Theorem 6, part (b), to the
aggregate demand process, we have

R M o
( > o, yDi10, . 0 )

i=n

L L
- N(M;_l Sa,(1-6)+D, - (Za_yes),
s=1 s=1

J [iasu —es)TWn— D+ [e(L, )

s=1

(32)

We conclude that the approximate dynamic program
reduces to one with a three-dimensional state space, i.e., its
state is given by

(1) the aggregate system w1de inventory position X?3;

(2) the sufficient statistic Qn ;> a weighted average of
the observed aggregate demands; and

(3) the sufficient statistic Qflzjl =D

aggregate demand.
Moreover, as in the basic model, this dynamic program can
be viewed as a Markov modulated single-item inventory
system in which the environmental state is now given by
the triple (n, Q,Sljl, ,(12)1) Structural results similar to those
in §6 can thus be obtained, depending on the type of order
cost functions 7y, (-).

The above approach can be further extended to more
sophisticated autoregressive time series patterns, except that
as the order of the autoregressive time series pattern is
increased by one, another state variable is needed in the
resulting approximate dynamic program.

To calculate the effective standard deviation (ESD), after
n periods of demands are observed, we invoke Theorem A,
part (c) with 8 =1 and

the last observed

n—1»

L 2
" [Zas(l—e‘y)] Y2 () +[e(L.a)]*-

ESD2=<|:§(1 :| Y (n+L)+[e (l+1,1,+1)]2)

2 ; 2
( O'j) +<|:Zas(1—05):| ¢2(n)+[e(L,a)]2>
<ia']2> (33)

As in the case of correlation across items, we conclude
with two figures. Figure 7 displays the dependency of ESD
on 7, the degree of uncertainty surrounding the means of
single period demands, for three different correlation val-
ues 0(6 = 0,0.25, and 0.5). Observe that ESD increases

M-



Figure 7.

ESD, as a function of the degree of uncer-
tainty 7, for various values of 6. (J =2 items,
n=3,L=1=2 and 0'j=]0.).

20 e e

Effective Standard Deviation

0 e

with 1 and with 6. However, the increase in ESD result-
ing from increased intertemporal correlation (6) diminishes
as the degree of uncertainty about the mean demands (7)
increases. Indeed, with perfectly known mean demands,
ESD increases by no less than 36% when consecutive
demands have a 0.5 correlation as compared with when
they are independent! This exemplifies the severity of the
intertemporal independence assumption made in most exist-
ing inventory models. Figure 8 exhibits the reduction of
ESD as a function of L, the point of differentiation, again
given in three graphs, for the same three values of 6. Note
that the benefits of postponement increase with 6.

Figure 8. Reduction in ESD as a function of the point
of differentiation L. (J = 2 identical items,

n=3,n=1,7=L+Il=4and o;,=10.).

Reduction in ESD

0 1 2 3 4

Point of Differentiation (L)
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7.3. A Demand Model With Known Coefficients
of Variation

In this subsection, we outline a demand model in which
the coefficients of variation of the demand variables {d,,}
are assumed to be known as opposed to their standard
deviations. Assume, therefore, that for all n =1,2,...,
the demand variable d;, has a Gamma(k;, A;) distribution,
where A; is unknown with a prior distribution which is
Gamma(K], v;). (Recall that a Gamma(k, @) distribution
has pdf f(x) = e *a*x*'/I'(k), x > 0, with mean k/«a,
variance k/a?, and coefficient of variation 1/+/k, indepen-
dent of «.) As in the basic additive model (1), we assume
that the conditional distributions (d;,|A;) are independent
across items and time. Extensions to allow for correlation
across items or time are similar to those discussed in §§7.1
and 7.2.

Note first that the posterior distribution of (A;|d;, ...,

d;,) is again Gamma-distributed. More specifically, it is
Gamma(nkj—i-kj, v;+ > I, d;;)-distributed. Unfortunately,
this does not imply that the conditional distribution of
future demands is of a simple form. However, it is possible
to obtain closed-form expressions for the conditional mean
and standard deviations of future lead time demands:

n+t+1+1
E[ Y dyldy,...,

i=n+i+1

djn}=¢j(n,z+1)(vj+§njdﬁ>

i=1

n+t+1+1
Std[ S dildg,..

i=n+t+1

, jn} 6,(n, l+1)<v +Zdﬂ> (34)

i=1

where ;(n, [+1) = (I + 1)k;/(nk; +K; — 1), and

(1+1)242

g e

0,(n,1+1) =
il 141) ¢(nkj+xj—1)(nkj+xj—z)

are known coefficients that are independent of the demand
observations. (The above expressions are easily verified by
first conditioning on A; and integrating out over the above
conditional distribution of (A;|d;;,...,d;,).) To obtain a
closed-form expression for the allocation problem (P,),
we replace the conditional future lead time demand dis-
tributions by normal distributions with mean and standard
deviations given by Equation (34). We first consider the
following important special case.

All kj =k and K; =K, j=1,...,J. This condition is
equivalent to assuming that the coefficients of variation
of the individual distributions (d;,[A;) as well as those
of the prior distributions of A; are identical across all
items, an important special case that applies to many prod-
uct families; see, e.g., the discussion in Federgruen and
Zipkin (1984c). Note that under this condition, ;(n, [+
1) = ¢(n,l+1) and 0,(n,l+1) = 0(n,l+ 1) for all
j=1,...,J. We thus obtain a closed-form lower bound
approximation for the cost value of the allocation problem
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(P,), which is analogous to Equation (7):
Rn (Xn + yn—L |]n—l)

= H<Xn +yn—L|hn+l; pVH—/; ll’(n_ 1’ l+ 1)

,[Z,,j+§1)i}0(n—1,1+1)[2vj+§D,.D.

Once again, I?n(~|1n,1) depends on the history of observed
demand observations via the single sufficient statistic D, |
only. The relaxation technique of §4 once again results in a
lower bound approximate dynamic program with the same
two state variables as in the basic model, i.e., X S and D,, 15
the aggregate system-wide inventory position and the aver-
age observed aggregate single-period demand. The one-step
expected cost function in this dynamic program is again

Rn(Xf+ylz|In—l)
= E{Rn+L(Xn+L +yn|5n—l)|er+yn’ In—l}7

which is again convex in (X5 +y,). On the other hand,
R, (X3 +y,|I,_,) cannot be obtained in closed form and in
particular cannot be expressed in terms of the H-function,
even if the conditional distributions of future lead time
demands are approximated by normal distributions. This
implies, in particular, that the one-step expected cost func-
tion can no longer be interpreted as that of a single item
with a specific “effective” lead time demand distribution.
(On the other hand, an accurate closed-form approximation
for R, (X3 +y,|I,_,) can be obtained; we omit the details.)

The general case of nonidentical k;- and k;-param-
eters. We now turn to the general case in which the coeffi-
cients of variation of the conditional distributions (d,|A;),
and those of A; themselves are item-dependent. For this
general case, we introduce a restriction to the prior dis-
tributions of the A;-parameters. Similar to the restriction
0y = na'j,j =1,...,J, made in the basic model, let, for
some constant 1 > 0,

Kj=l+7]kj, j=1,...,J.

Under this restriction, we have

I+Dk;,  1+1
¢j(”’l+1)=( )]=
(n+mk; n+n

=g(n,1+1), j=1,...,J,

while the coefficients 6;(n, [+ 1) are very closely approx-
imated (from below) by the coefficients

. \/(l+1)+(ln++l) 1
.(n,l+1)=>+—— """ .
o ) =

We now have

ﬁn (Xn +yn—L|]n—l)

= H<Xn + Vool Mits Py Y(n—1,1+1)

SRR IVIESIESTn
Iyw+5p [V
[; ! 2 ] n—1+n

[27+5))

where A, = Z/ | j,/\/k Thus, R LCIL,_)) now depends
on the hlstory of demand observat1ons via two sufficient
statistics, D, , and A, | = — Ly A,. As a consequence,
the approx1mate dynamic program s1m11ar to that in §7.2,
now has three state variables: X3, and A,

nl’

APPENDIX

In this appendix, we derive a number of properties of
the H functions, which we use throughout the paper. We
also provide the proof of Lemma 1. To shorten the nota-
tion, we write without possible confusion H(y|u, o) for
H(y|h; p; p; o).
THEOREM A (PROPERTIES OF THE FuncTioN H). The
function H satisfies the following properties:

(a) Hy—alp, o) =H(ylp+a, o).
Consider the function H(-|A, o) where o is a constant but
A is a normally distributed random variable, with A ~
N(i, 0). Then,

(b) E=[H(|A, 0)]|=H(li, voi+d?)

(c) For any given constants a and B:

E[H(yla+BA, o) = H(yla+ Bit, v o2 + (B5)?).

(d) H(y|p, o) is strictly convex in y, and its minimum
is obtained at the value y* = u+ o ®! p+h)

(e) H(y|w, o) = O(|lyl): ie., there exist constants
Ky, Ky = 0 such that H(y|w, o) < k;+ K, |y

PrOOF. (a) This part is immediate because H(y|u, o) can
be written as a function of y — .

(b) Let € denote a random variable, independent of A,
which is normally distributed with mean 0 and standard
deviation o. E,H(y|h, p, A, 0) =E,E{h[y— A —€]" +
PIA+e—y["[A} = E\ {hly —(A+ o))" + p[(A+
€)—yl"} = HQlh, p, i, V62 +0?%), because A+ € ~
N(i, 02+ 0?).

(¢c) Let A’ =a+ BA ~ N(a+ Ba,B6) and apply
part (b).

(d) First observe that

J y— M
SH(ylp. o) = —p+(p+Wd(=L),
y g

2

and ‘9—H( I, o) = —(p+h)¢(u) - 0.
o o

Strict convexity follows from the positivity of the second

derivative, and therefore the (unique and global) minimum

is obtained at the point y* in which the first derivative is

zero (ie., y*=pu+od! —50)-



(e) Let u~ N(u, o). H(ylp, o) = E{h[y -
YT < (h+p)E(lyl+[ul} = O(yD). O

ProoF oF LEMMA 1. By Equation (11) and the definition
of D, ;_,, we have

ul* + plu—

Rn(er—i_ynlIn—l)
= E{ﬁn—}—L(Xn—O—L +yn|5n+L—l)|Xr§ +yn’ In—l}

. n+L—1
ZE{Rn+L<X;f+yn_ Z Di
D= DY,
n+L—1 el

i=n

n+L—1
= E{H(er + Y, Z Dty 4t5 Pusrsss

P lDi+(n_])5n1)+Zj/"L0j:|,
(n+L—1)n*+1 ,

I+ D7
\/(n+L—1)n2+1+(l+1) (;"))lD }
where the last equality follows from Equation (10) and the
fact that (Z"“ 'D;), as well as D, ,, both depend on
I, , only via D, |; see Theorem 1, part (c), applied to
the sequence {D,}> ,, which as demonstrated above sat-
isfies all the required properties similar to the sequences
{d;,};2,(j=1,...,J). In particular,

n+L—1 . n—
S DD, , ~ N(L(

i=n

-+

I)En—lnz + Zj Mo
(n—1Dn*+1 ’

L2
\/(n—l)n D \/ZU) (35)

Invoking Theorem A, part (a), we obtain:

Rn(X +yn| n— I)

= E{H<X§ + Yl P r415 Pusrsis

1 2
14— U+Dn
(n+L-1)n*+1
n+L—1 (n—1)57|+24,“~0'
D,+(I+1 ‘ L.
X DT Gt LD+l

i=n

oy (x))P-)
———+(I+1 o; ‘D
\/(n+L—1)n2+1 U+ ]Z:
We now invoke Theorem A, part (c), with A ~ (X/57" D,|

nfl)'

712(” - l)ﬁnfl + Zj Mo

o= )= Tt
. (I+Dn?
and 8= |:1+mi|,
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using Equation (35). The lemma now follows by simple
algebra. O
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