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This paper presents an allocation model for a perishable product, distributed from a regional center to a given set of
locations with random demands. We consider the combined problem of allocating the available inventory at the center
while deciding how these deliveries should be performed. Two types of delivery patterns are analyzed; the first pattern
assumes that all demand points receive individual deliveries; the second pattern subsumes the frequently occurring case
in which deliveries are combined in multistop routes traveled by a fleet of vehicles. Computational experience is reported.

In a distribution system for a perishable product,
the supply to various locations in a particular

geographic or administrative region is often coordi-
nated by a regional center. Among the difficult oper-
ational issues such a center must resolve are the prob-
lems of allocating the available inventory at the center
among the delivery points, each experiencing random
demands, while deciding how these deliveries should
be performed.

Although they are often treated as such, these prob-
lems are not independent. Existing allocation models
concentrate on shortage and outdating costs, without
explicitly accounting for the costs of transportation.
We consider two types of delivery patterns: the first
pattern assumes that all demand points receive indi-
vidual deliveries, and that delivery costs are linear; the
second pattern subsumes the frequently occurring case
in which deliveries are combined in multistop routes
traveled by a fleet of vehicles. Here the transportation
costs alone lead to a complex combinatorial optimi-
zation problem, the vehicle routing problem (VRP).
Separate treatments of allocation and distribution can
result in poor performance of the system as a whole:
"optimizing" the allocations can force the use of awk-
ward, costly delivery patterns and even increase the
number of vehicles required. On the other hand, an
"optimal" delivery pattern may lead to unacceptable
shortages and/or waste.

This paper attempts to integrate the inventory allo-
cation and the transportation planning problems in a
single model. We present an efficient algorithm for
each of the two delivery patterns. The first case leads
to a relatively simple convex inventory allocation
problem (referred to below as problem IA). For the
second pattern, the integrated approach uses a similar
procedure repeatedly as a subroutine within a routing
algorithm. We compare the performance of this inte-
grated procedure with the "separate" approach that
solves an inventory allocation problem to minimize
shortage and outdating costs only; the resulting allo-
cations are used as (deterministic) delivery require-
ments within a standard code for the VRP.

We use the term perishable to refer to a product
that has a fixed lifetime during which it can be used
and after which it must be discarded. Common ex-
amples of perishable products are human blood, food
and medical drugs.

The operating cost of the system consists of three
components: (a) shortage costs paid for units that are
demanded but unavailable in a particular location; (b)
out-of-date costs paid for every unit that reaches the
maximum age in inventory v^dthout being used, and
which therefore must be discarded; (c) transportation
costs associated with the deliveries. (The measurement
of the shortage and outdate costs is discussed in Nah-
mias 1982; see also the Appendix.)

Subject classification: 347 allocation and distribution, 362 allocation of perishable items under stochastic demand, 837 combined inventory allocation
and vehicle routing models.
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For the sake of precision, we now describe the
scenario in somewhat greater detail: the center ac-
quires or produces periodically a fresh quantity of the
perishable product; the time interval between two
consecutive production points is constant and defines
one period; the lifetime of the product is a constant
(integer) M periods; at the beginning of each period
the starting inventory in each location is known to the
center, and this information is used to determine the
deliveries (and, for the second pattern, the vehicle
routes) for that period. After the deliveries are made,
the demands occur, and out-of-date and shortage costs
are incurred at each location, proportional to the end-
of-period inventory levels.

Ours is thus a one-period model in the spirit of
Prastacos (1978) as discussed later. (This approach has
been shown to work very well for certain special cases;
see Prastacos 1981). Under this scenario, only units
of age M - 1 at the beginning of the period may
become outdated by the end of the period if they
remain unused. Hence, it suffices to distinguish two
age classes, the "old" units of age M — 1 and all other
"fresh" units of age 0,..., M — 2.

We remark that a variety of overall distribution
policies are seen in practice; our model accommodates
at least the following:

1. A rotation policy that removes all "still usable"
product from the individual locations' inventories at
the end of every period and returns it to the center for
redistribution, together with the fresh quantity. In this
case, starting inventories at the delivery points are
always zero;

2. A retention policy that maintains product re-
ceived by each location at that location until it is used
or outdated;

3. A combination of (1) and (2).
Previous allocation models for perishable goods in-

clude those studied by Prastacos (1978) and Yen
(1975). Prastacos (1978) treats the first pattern of
deliveries under the additional assumption of identical
per-unit costs for all locations. His results have been
the basis of the blood distribution system imple-
mented in Long Island, cf, Brodheim and Prastacos
(1979) (see Section 1 for further details). Gregor, For-
thofer and Kopadia (1982) develop a simulation
model for the Gulf Coast Regional Blood Center in
Houston, Texas, analyzing different inventory alloca-
tion and routing policies. Similar studies are reported
in Graf, Katz and Morse (1972) and Yahnke et al.
(1972). Yen examines a decentralized inventory sys-
tem for perishables in which each location follows a
critical number (order-up-to) policy. He derives struc-
tural results for the ordering and issuing policies of

the center. (For a complete review of perishable inven-
tory models, see Nahmias.)

This paper permits the p>er-unit costs to differ
among locations and also examines the allocation
problem in combination with the distribution/routing
problem. For the first pattern (Section 1) that makes
deliveries on an individual basis, we present a rela-
tively simple solution procedure (Section 2). This
method draws upon earlier results for simpler alloca-
tion problems, requiring no distinction between age
classes, as described by Luss and Gupta (1975), Zipkin
(1980) and Federgruen and Zipkin (1983).

For the second pattern (Section 3) that serves loca-
tions in multistop routes, we describe computational
approaches for the combined inventory allocation and
vehicle routing problem. These methods generalize
those of Federgruen and Zipkin (1984) by allowing
for an explicit distinction between age classes. They
can be viewed as modifications of efficient techniques
for the classical VRP with deterministic, predeter-
mined delivery sizes. (For reviews of the VRP litera-
ture refer to Christofides 1976, Fisher and Jaikumar
1978, 1981, and Golden, Magnanti and Nguyen 1977.
An application of vehicle scheduling to the distribu-
tion of blood is described by Or 1976, assuming fixed
delivery sizes.)

These algorithms repeatedly require the solution of
an inventory allocation problem, each time with only
minor changes in the data. This allocation problem is
closely related to the one presented in Section 1 for
the first pattern. We thus emphasize efficient proce-
dures to recover optimality from one problem instance
to the next.

Section 4 presents numerical tests of one of the
algorithms described in Section 3. The results show,
as in Federgruen and Zipkin (1984), that the compli-
cating factors of random demands and inventory al-
locations require a rather modest amount of extra
computation, even with the additional complication
of multiple age classes.

An Appendix describes an alternative cost structure
that may be more realistic in some applications.

1. The Allocation Problem for Systems with
Individual Deliveries

Let y = 1 1 , . . . , «1 represent the set of delivery points
in the region. F,( ) denotes the cumulative distribu-
tion function of one-period demand in location / for
/ = 1 , . . . ,« , and is assumed continuous and strictly
increasing. Each location / has a per-unit shortage cost
hj, a per-unit outdate cost ht, and a per-unit trans-
portation cost 7, from the center. Let A and B repre-
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sent the amounts of fresh and old product available
at the center, A/ and B, the starting inventories at
location /, and T, = ^, + 5, for / = 1, . . . , n. The
center faces the following allocation problem: deter-
mine fresh and old shipments u, and w, (/ = 1 , . . . , n)
in order to:

(IA) minimize

subject to

PiiVi +

, = B,

u^O,

0.

(1)

(2)

(3)

The Pi{ •), r,( •) and their derivatives are given by

A(z) = f //r(̂  - r, - z) JF,(f) + 7,z (4)

+ w, -

= /!r[F,(r, + z) - 1] + 7/,

w,).

(5)

(6)

/ E F , (7)

where, i f / ( ) is a real valued function, then /)/(•)
indicates its first derivative, DY{ •) its second deriva-
tive, and I>y( ) and D~f{-) its right-hand and left-
hand derivatives respectively.

The term /7,(i;, + w,) in (1) represents expected
shortage and transportation costs and the term r,(w,)
the expected out-of-date costs. Note from (6) and (7)
that Pi{ •) and r,( •) for /' £ Y are strictly convex and
C . Constraint (3) is stated as an equality rather than
an inequality since all of the old units must be distrib-
uted to demand locations to enable their consumption
before out-dating.

For the special case in which all cost parameters are
independent of the location, i.e..

7/ = 7 ; (8)

and every location receives a positive allocation of old
units, Prastacos (1978) describes a simple two-stage
procedure to solve (IA): (a) first allocate old units so
as to equalize the probability that a unit outdates
among the locations; and (b) allocate the fresh stock
so as to equalize the probability of a stockout at any
location. The optimal allocation is independent of the
unit costs h*, h~ and 7 and minimizes both the
expected shortage and out-of-date costs in the next
period, not just the sum of the two. (The transporta-
tion costs reduce to a constant in this case, independ-
ent of the allocation.)

Unfortunately, this procedure may not solve (IA)
and the properties may not hold when costs are
location-dependent or when some locations have ad-
equate initial inventories of old units. The next section
presents a solution procedure for the general model
(IA).

2. Solution of the Allocation Problem with
General Costs

Our proposed procedure uses a Lagrangean dualiza-
tion approach. The Lagrangean relaxations are shown
to reduce to single-resource allocation problems for
which special efficient methods have been developed.
The efficiency of the procedure is based on quick
updates of the optimal solution of the relaxed problem
as the Lagrangean multiplier is varied.

Outline of the Algorithm

Let z, = Vi + Wi for i G Y represent the total amount
allocated to location /. Rewriting (IA) in terms of the
variables z,, we obtain:

n

(IA') f* = minimize ^ [Pii^i) + fii^d] (9)

n

subject to X Zi ^{A + B) (10)

iwi = B (11)
1-1

Zi^Wi^O, ieY. (12)

(10) replaces the sum of (2) and (3). The inequalities
z, > Wi in (12) guarantee u, = z, - w, > 0 for / G Y.
Hence (IA') and (IA) are equivalent.

To solve (IA') we dualize (11), i.e., we define

L(X) = minimizes ^ [Pi(.Zi) + /"/(w,)]

+ X 1, w, - \B,
1=1

subject to (10), (12)k (13)

Note that the objective function (9) is convex, and
(10)-(12) describe a convex polyhedral set. Hence
there is no duality gap, i.e..

f* = max,L(X). (14)

(See Theorem 5.4 in Shapiro 1979). Finally, L(X) is a
concave function. (See Theorem 5.1 in Shapiro.)
Therefore, given an efficient procedure to evaluate
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L(-), we can solve (14) via standard unconstrained
maximization techniques.

Computational efficiency is further enhanced by an
efficient search procedure for (14), including a method
to recover the optimal solution of (13) when changing
the value of X to a neighboring one. (Details are
specified in an earlier version of this paper, which is
available from the authors.)

Evaluation of L(X)

Project problem (13) onto the variables z, for / = 1,
. . . , « , by defining:

z,>0. (15)

The minimization problem in (13) is thus equivalent
in an obvious sense to the foUovsdng problem:

L(X) = minimize

subject to + B

Zi 3= 0, / e Y.

(16a)

(16b)

(16c)

Problem (16) is a single-resource allocation problem
for which special, efficient methods have been devel-
oped by Luss and Gupta, Zipkin, and Federgruen and
Zipkin (1983), among others. While the implicit def-
inition in (15) requires some careful attention, the
difficulties can be handled (as shown in an earlier
version of this paper, available from the authors). For
example, these algorithms require the quantities
Dq^{0) and (Dq^)~\ii), which can be shown to be
equal to

X, 0),

- X), (Z)A)-'(M)1.

Also, a variety of observations can be exploited to
facilitate resolution of (16), following a change in X.

Furthermore, the function L(X) can be shown to be
C , and

DUX) = S w*(X) - B,
ieY

where w*(X) is the optimal value of w in (13); thus,
the search for the optimal X in (14) is fairly simple.

3. A Combined Routing and Inventory Allocation
Problem

In this section we consider the case in which deliveries
are combined in routes with multiple stops. The prob-
lem as a whole can be formulated as a complex.

nonlinear, mixed-integer program. Rather than pre-
sent the full model (which is closely analogous to that
given in Federgruen and Zipkin 1984), we outline
only the fundamental ideas needed to understand the
computational approach.

Define

K = number of vehicles
bic = capacity of vehicle k, k = \, ..., K.

Let k = 0 denote a dummy route including the
locations receiving no shipments at all, with bo = 0.
Among the major decisions required is the assignment
of locations to routes. This decision can be represented
by the assignment variables ytk for i E. Y and ^ = 0,
..., K, where

={;_ 11, if delivery point / is assigned to route k
10, otherwise.

These must satisfy Xlt=o 7/* = 1 for / G Y. Let y denote
all the variables yik.

The key to the computational approach is the fol-
lowing observation: suppose y is fixed. The remainder
of the problem is to determine the sequence of deliv-
eries within each route and to allocate the fresh and
old product among the locations. These two decisions,
sequencing and allocation, are entirely separate. That
is, once the assignment is fixed, allocations do not
affect travel costs, and the delivery sequence does not
affect shortage and outdating costs.

The problem of determining the best allocation,
given y, can be expressed as an optimization model
as follows: the assignment y determines a partition
{Yk'.k = 0, ..., K] oi the set of locations Y, where
Y, = 1/ G Y:yik = 11. (Thus, n for A: = 1, . . . , / : is
the subset of locations served by vehicle k, and Yo
consists of locations not visited.) The problem is then

(lAB) f* = minimize + ri(w,)\

subject to A+ B

lwi = B

k = 0,....

>o. y.

(17)

(18)

(19)

(20)

(21)

(This allocation subproblem is described further in
our subsequent discussion.)

Precisely the same kind of separation occurs in the
work of Federgruen and Zipkin (1984), who consider
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only one age class, and use the separation as the basis
of their computational methods. When y is fixed, the
allocation problem yields a model similar to (IAB),

involving the subsets Yk, but simpler in other respects.
We focus on the simplest methods described in

Federgruen and Zipkin (1984), which are based on
interchange heuristics, a class of algorithms for the
deterministic VRP. (This includes the methods of
Russell 1977, Christofides and Eilon 1969, Wren and
Holliday 1972 and Cassidy and Bennett 1972, and
Lin and Kemighan 1973. We remark that another
approach described in Federgruen and Zipkin 1984,
based on generalized Benders' decomposition (Geof-
frion 1972), can also be adapted to the current prob-
lem.) The overall logic of these methods for the VRP
is as follows: start with a given solution, that is, an
assignment y and the delivery sequence for each route.
Evaluate the cost effects of many small changes in this
solution. Perform the best such change. Continue
evaluating and then performing small changes until
no further improvement is possible.

The adaptation in Federgruen and Zipkin (1984)
follows the same logic. The algorithm evaluates
changes in y and the delivery sequences; for each y
considered, the cost of the optimal allocation is com-
puted or estimated. Some potential changes may affect
only the sequencing, not y; such changes do not affect
allocation costs, and thus can be evaluated as in
deterministic models. When a potential change in-
cludes a change in y, however, it is necessary to
evaluate the resulting change in shortage and outdat-
ing costs, either exactly or approximately, in addition
to the effects on travel costs.

Also, when a change in y is actually performed, the
new total shortage and outdating costs must be re-
corded, to set the stage for evaluation of subsequent
changes. All such additional cost effects can be calcu-
lated by recovering (or approximating) the solution to
the single-age-class analogue of (IAB), following
changes in the subsets Yk. Computational methods for
that allocation subproblem are thus embedded as sub-
routines within the VRP algorithm.

It is clear from this discussion that exactly the same
approach can be applied to our current problem. The
only difference is that the more complex subproblem
(IAB) replaces the corresponding single-age-class
model.

Details concerning the mechanics of interchange
heuristics in general and a code implementing one
such algorithm are given in Federgruen and Zipkin
(1984). The code used for our numerical experiments
(Section 4) follows the same structure.

We now outline an algorithm to solve (IAB) exactly

and a quicker heuristic technique that works well
empirically. The exact method is used in the code
only for the initial and final values ofy. The heuristic
is used when changes are actually performed in inter-
mediate iterations. (This replacement of the exact
method with the heuristic reduced computation times
considerably with only slight degradation of perform-
ance.) To evaluate potential switches, a simple, closed-
form approximation of the change in cost was used
(analogous to the formula for AIA in Federgruen and
Zipkin 1984).

Exact Solution of (IAB)

Note that (IAB) is just (IA) with additional generalized-
upper-bound constraints (20). As in Section 1, the
approach is based on solving the Lagrangean dual
with respect to (19). Evaluation of the dual again uses
methods for simpler allocation problems.

Define

L(X) = minimize

subject to (18), (20) and z, > 0, / e Y, (22)

where functions q'^(-) are defined by (15). As is the
case of (13), L ( ) is a concave function, and

= maxxL(X). (23)

To evaluate L(X), we project problem (22) onto new
variables Z* = E/ert z,. That is, for each k= I,..., K
define

= minimize

subject to

z, > 0, (24)

(22) is equivalent in an obvious sense to the following
problem:

minimize

subject to A + B

k= (25)

Federgruen and Zipkin (1983) describe an efficient
method to solve problems of form (25) with cost
functions defined implicitly by subproblems of form
(24). This procedure can be adapted easily to handle
functions q% •) defined as in (15); we omit the details.
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Heuristic Solution Method for (IAB)

This method follows a simple two-phase procedure,
similar to the one suggested by Prastacos (1978) for
(IA) described in Section 1:

Phase I. Solve

(IAB 1) minimize 2J '"/(^Z)

subject to = O,...,K

X w, = B; w, ^ 0 , / e Y.

Let w denote the optimal solution of (IAB 1).

Phase II. Set

T; = Ti + Wi = Ai +

and solve

(IAB 2) minimize J]
I

subject toY,

Y,

k = 0, ..., K

A.

where p,'( ) is defmed as in (4), replacing T, by T!,
i G Y. Let V denote the optimal solution of (IAB 2).

The vectors w and z = v + w constitute a feasible
solution for (IAB). Both (IAB 1) and (IAB 2) have the
same form as (22) and can thus be solved by the
method described above for the latter problem.

4. Computational Results

We begin with a brief summary of our experience in
solving numerous instances of problems IA and IAB
exactly using the algorithms described above. We
solved problems with n = 50 and n = 75. (These were
subproblems within larger routing/allocation models:
the following discussion gives more details about the
problems.) For n = 50, all instances of (IA) were solved
within 0.7 seconds and (IAB) within 1.0 second. For
n = 75, all instances of (IA) were solved within 0.9
seconds and (IAB) within 1.7 seconds. (Our computer
times refer to virtual CPU seconds on an IBM 4341.)

We now turn to the combined vehicle-routing-
inventory-allocation problem described in Section 3.
As in Federgruen and Zipkin (1984), we experimented
with problems adapted from deterministic VRPs

(problems 8 and 9 in Chapter 9 of Eilon, Watson-
Gandy and Christofides 1971), having n = 50 and «
= 75. The starting inventories 4̂, and fi, for / G y were
generated independently from a uniform distribution
on the interval [0, 10]. The demand distributions were
all normals, with coefficients of variation equal to one;
the means were chosen to make the problems roughly
similar to their original deterministic counterparts.
The costs hf and /zrwere set equal for all values of /,
and the capacities bk equal for all values of k (to h*,
hr and b respectively). The parameters K, If, h~, A
and B were varied to yield a variety of problems.

As a base of comparison, we also tried an algorithm
that, while still quite sophisticated, treats the alloca-
tion and routing decisions separately in traditional
fashion. Problem IA is solved, and the optimal z, are
used as (deterministic) delivery requirements within a
standard code for the VRP. For the latter step we used
the heuristic algorithm of Gillett and Miller (1974).
(When some z, = 0, location / is not included in the
VRP; in effect it is assigned to the dummy vehicle
k = 0). We shall refer to this strategy as the separate
approach, as distinguished from the combined ap-
proach developed in this paper. Table I compares the
performance of the two approaches. For each problem
instance (described by the parameters in the first six
columns) the table shows the cost of the solution,
broken down into inventory (expected shortage and
outdating) costs and variable travel costs. The code
used for the separate approach determines the mini-
mal number of vehicles required to make all deliveries,
so only that value of K appears in the table. Two
values of K were tried using the combined approach
for each setting of the other parameters.

The combined approach produces a total variable
cost that is only slightly less than that of the separate
approach. It is clear, however, that this reflects the
particular choice of parameter scales, with inventory-
related costs dominating travel costs. The key obser-
vation from the table is that travel costs are substan-
tially less using the combined approach, with a very
minor reduction in inventory performance. Further-
more, in the 75-location problems the combined ap-
proach can achieve these results with one fewer vehicle
(9 versus 10)!

The table also shows what happens when fewer
vehicles are used (which in the separate approach is
simply infeasible). Whether or not the corresponding
increases in variable costs are tolerable depends, of
course, on the specifics of the problem setting (blood
versus milk, urban versus rural versus international,
etc.).

In our implementations, the combined approach
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TABLE I

Computational Results

n

50

50

75

75

b

225

225

200

200

Parameters

A

500

750

900

1350

B

500

250

900

450

1.0
2.5
2.5
5.0

1.0
2.5
2.5
5.0

1.0
2.5
2.5
5.0

1.0
2.5
2.5
5.0

h-

5
5
10
20

5
5
10
20

5
5
10
20

5
5
10
20

K

5
5
5
5

5
5
5
5

10
10
10
10

10
10
10
10

Separate Approach

Costs

Inven-
tory

1238
1753
2648
5296

1139
1507
2401
4803

1901
2783
4096
8192

1719
2330
3642
7284

Travel

516
516
516
516

516
516
516
516

835
835
835
835

835
826
835
835

Total

1754
2269
3164
5812

1655
2023
2917
5319

2736
3618
4931
9027

2554
3156
4477
8119

CPU
time

5.8
5.9
5.8
5.9

5.9
5.9
5.9
6.0

6.6
6.6
6.6
6.7

6.6
6.3
6.6
6.6

K

5
5
5
5

5
5
5
5

9
9
9
9

9
9
9
9

Costs

Inven-
tory

1245
1760
2661
5307

1146
1513
2415
4815

1928
2811
4112
8216

1746
2351
3658
7307

Travel

473
473
473
482

473
473
473
482

764
764
787
804

764
765
787
804

Combined Approach

Total

1718
2233
3135
5789

1620
1989
2888
5296

2692
3575
4900
9020

2510
3116
4446
8111

CPU
time

6.4
6.9
7.1
8.2

6.6
7.0
7.2
8.1

10.2
13.2
18.4
13.0

11.5
18.9
20.0
14.5

K

4
4
4
4

4
4
4
4

8
8
8
8

8
8
8
8

Inven-
tory

1415
1931
2971
5927

1315
1688
2724
5434

2269
3157
4700
9389

2085
2697
4246
8480

Costs

Travel

429
429
458
468

429
430
458
468

666
666
739
766

666
666
739
766

Total

1843
2360
3429
6395

1744
2117
3182
5902

2935
3822
5440
10154

2751
3363
4985
9245

CPU
time

7.5
7.4
4.5
5.6

7.2
9.2
4.5
5.3

13.3
14.4
21.3
14.6

14.5
15.4
22.7
15.6

requires about 75% more computer time than the
separate approach. We expect the combined approach
to remain feasible for many applications.

Appendix: An Alternative Specification of the
Shortage Costs

For products like blood, shortages are resolved by
emergency deliveries, the costs of which tend to be
independent of the size of the delivery. In such cases,
the shortage cost function is more appropriately rep-
resented by

Pi(Zi) = Fi(\ — Fi(Ti + z,)), / = 1 , . . . , n, (A6)

where £, represents the fixed cost associated with an
emergency delivery to location /. Assuming the de-
mands all have unimodal densities, let w, =^^^ mode
of the demand density in location /, and /i, =^^'
foU dFi{u). (A6) is (strictly) convex only for values
of z, for which

Ti -I- z, ̂  m,, /'= 1 , . . . ,« .

We propose, therefore, to append the lower bounds

Z, s [w, — TiY, i = 1, . . . «,

to (IA) and (IAB); by a suitable translation of the
z-variables, this approach results in problems of the
same form as (IA) and (IAB).

In most practical cases, the imposition of these
bounds can be justified: when m, = 0 (as for Weibull

distributions with shape parameter < 1, in particular
for exponential distributions), (A6) is strictly convex
for all z, 3= 0 for / = 1 , . . . , « . Even when w, > 0,
many standard distributions have m, ^ /i,, e.g., the
gammas and the normals. In many applications, there-
fore, there is little lost by requiring (as the lower
bounds do) that each inventory after replenishment
be at least as large as w,.
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