
TWO-ECHELON DISTRIBUTION SYSTEMS WITH VEHICLE 
ROUTING COSTS AND CENTRAL INVENTORIES 

S. ANILY 
Tel-A viv University, Ramat-A viv, Israel 

A. FEDERGRUEN 
Columbia University, New York, New York 

(Received December 1990; revisions received December 1991, January 1992; accepted February 1992) 

We consider distribution systems with a single depot and many retailers each of which faces external demands for a 
single item that occurs at a specific deterministic demand rate. All stock enters the systems through the depot where it 
can be stored and then picked up and distributed to the retailers by a fleet of vehicles, combining deliveries into efficient 
routes. We extend earlier methods for obtaining low complexity lower bounds and heuristics for systems without central 
stock. We show under mild probabilistic assumptions that the generated solutions and bounds come asymptotically 
within a few percentage points of optimality (within the considered class of strategies). A numerical study exhibits the 
performance of these heuristics and bounds for problems of moderate size. 

W e consider distribution systems with a single 
Al [depot and many retailers with external 
demands for a single item that occur at a specific 
constant (but retailer-dependent) deterministic rate. 
The depot places orders with an outside supplier. 
Goods are distributed from the depot to the retailers 
by a fleet of identical vehicles, combining deliveries 
into efficient routes. 

In an earlier paper, Anily and Federgruen (1990a) 
analyze a model where the depot serves as a mere 
coordinator of the replenishment process or alterna- 
tively as a transshipment point in which no inventory 
can be kept. In such systems, one has to determine 
replenishment policies for all retailers, as well as 
matching efficient routing patterns. In this paper, we 
extend the analysis to the case where central invento- 
ries may be kept in the warehouse. As a consequence, 
the above problems are compounded by that of deter- 
mining a replenishment strategy for the warehouse, 
optimally coordinated with that of each retailer and 
synchronized with the transportation schedules. 

We assume that at each outlet, customer demands 
occur at a constant, deterministic but outlet specific 
rate. These demanid rates are assumed to be rational, 
so that after appropriate scaling they are even integers. 
An outlet may thus be viewed as the aggregate of an 
integer number of demand points, each of which faces 
a demand rate of two. Inventory carrying costs are 

incurred at a constant rate per unit of time, and per 
unit stored. (This rate is identical for all retailers, but 
is different at the warehouse.) The transportation costs 
include a fixed (leasing or renting) cost per route 
driven by one of the vehicles and variable costs pro- 
portional to the total (Euclidean) distance on all routes 
(but no unloading costs). As in most standard inven- 
tory models we assume that the cost of an order from 
the outside supplier is fixed-plus-linear. 

The objective is to minimize the system-wide long- 
run inventory, transportation and order costs. We 
refer the reader to Anily (1987), and Anily and 
Federgruen (1 990a, b) for a review of the literature on 
the vehicle routing problem (VRP) and models that 
integrate inventory allocation and vehicle routing 
problems in one-warehouse, multiretailer systems. 
More recent work includes Dror and Ball (1987), 
Chien, Balakrishnan and Wong (1989), and Gallego 
and Simchi-Levi (1990). 

The classical single-warehouse multiretailer model 
assumes that each retailer is served on an individual 
basis, rather than deliveries being combined into 
efficient vehicle routes. Even with individual and un- 
coordinated deliveries, the structure of optimal poli- 
cies can be very complex (Roundy 1985) making them 
unattractive even if their computation were tractable. 
The combinatorial nature of the routing costs com- 
pounds this complexity. We thus restrict ourselves, as 
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in Anily and Federgruen (1 990a), to the class of 
replenishment strategies 4) with the following proper- 
ties. A replenishment strategy specifies a collection of 
regions (subsets of outlets) covering all outlets: If an 
outlet belongs to several regions a specific fraction of 
its sales/operations is assigned to each of these regions. 
Each time one of the outlets in a given region receives 
a delivery, this delivery is made by a vehicle who visits 
(in an efficient sequence or route) all outlets in the 
region and none outside the region. We use the terms 
regions and routes interchangeably. 

Note that a large amount of flexibility is preserved 
within the class 1 by allowing retailers to be assigned 
to several regions, i.e., by allowing regions to overlap. 
On the other hand, under a strategy in 4), all regions 
are controlled independently of each other. Thus, if 
an outlet belongs to two regions, it is treated as two 
separate suboutlets each responsible for a specific frac- 
tion of the sales; it is therefore possible that a delivery 
is made to one suboutlet at an epoch at which the 
other suboutlet continues to have stock. However, our 
proposed heuristics generate regions in which only a 
few retailers are split among different (usually two) 
routes. See Dror and Trudeau (1990) for related work 
on split delivery routing. 

Also, note that under strategies in 4), outlets assigned 
to different regions are never served in a common 
route even though in an optimal strategy any given 
outlet may be served in varying rather than constant 
combinations of other outlets. This is illustrated by 
the example in Hall (1991). For further discussion 
regarding the merits of our restriction approach and a 
review of other joint replenishment problems for 
which a similar restriction has been employed, see 
Anily and Federgruen (1991 c). 

In Section 1 we present some notation and pre- 
liminaries. In Section 2 we develop lower bounds for 
uncapacitated systems, where only a bound on the 
sales volume per region prevails, as well as capacitated 
systems. In capacitated systems, we allow for addi- 
tional upper bounds on the frequency with which the 
routes may be driven, possibly in combination with 
capacity bounds for the vehicles and/or bounds on 
the sales volumes per region. See Anily and 
Federgruen (1990a) for a discussion of these three 
types of regional constraints. In Section 3, we develop 
heuristic solution methods as well as upper bounds 
for the minimum cost and discuss their asymptotic 
complexity, optimality and accuracy gaps, respec- 
tively. Section 4 complements these with a numerical 
study conducted to gauge the performance of the 
heuristics and bounds for problems of moderate size. 
Section 5 summarizes our conclusions. 

We show that the lower and upper bounds on the 
minimum, long-run average system-wide costs 
(among all strategies in )) as well as a heuristic solu- 
tion may be computed in O(N log N) time only, with 
N the total number of demand points. Moreover, 
considering a general stochastic sequence of locations 
with the system's demand points located in the first N 
points of this sequence, we show that the lower and 
upper bounds come, almost surely, within 6% (and 
for uncapacitated systems within 2%) of each other 
for sufficiently large N. In addition, we briefly explain 
how our results can be extended to cases where back- 
logging is allowed if all retailers face identical demand 
rates. The same restriction is necessary in systems 
without central stock (Anily and Federgruen 1 990a). 

These results are all the more remarkable because 
the performance of Roundy's heuristics for the clas- 
sical one-warehouse, multiretailer models with indi- 
vidual, uncoordinated deliveries, and hence, separable 
delivery costs, may deteriorate significantly when 
adapted to incorporate restrictions on delivery sizes; 
moreover, no (simple) modification of these heuristics 
with comparable worst-case performance seems to 
exist. The discrepancy between the positive results in 
our capacitated models and the apparent lack thereof 
in capacitated versions of the classical model is due to 
the restriction to the class 1 and different assumptions 
regarding the structutre of the delivery costs. 

1. NOTATION AND PRELIMINARIES 

We use the same notation and assumptions as in Anily 
and Federgruen (1 990a). Here we confine ourselves to 
the additionally required notation. Let: 

ho = the inventory holding cost per unit of time, per 
unit stored at the warehouse; 

Ko = the fixed cost per order placed by the 
warehouse; 

h = h+ - ho denotes the echelon holding cost rate. 

We assume that h > 0. Since the holding cost rate 
usually increases with the (cumulative) value added, 
this assumption is almost always satisfied. Also let, 

6, = TSP(X?) = the length of an optimal traveling 
salesman tour through X, and the depot. 

The problem of finding an optimal strategy in 4), 
with minimum cost V*(X) can be stated as a special 
case of the general problem of partitioning the set X 
of demand points into L regions with capacities 

M,{ and a cost U(x) assigned to each 
partition X. 
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Problem P 

MinU(x): x ={XI,..., XL} andm= I XI M, 

I= 1, ...,LI. 

(The numbers Mb depend on vehicle capacity, 
regional sales volume and frequency constraints. See 
Anily and Federgruen 1990a.) 

It is easy to see that P is NP-complete even in the 
simplest case where all cost components, except for 
the routing cost, are zero as the problem is then 
reduced to the well known vehicle routing problem. 
Even the latter cannot be solved to optimality for all 
but the smallest size problems. 

Instead we concentrate on heuristic solution 
methods. For a given heuristic H, applied to the set 
X, let V"(X) denote the cost of the generated solution 
and define the relative error e(X) = (VH(X) - 

V*(X))/V*(X). If X(A,) denotes the first N points of a 
randomly generated sequence {x,, x2, . . .}, we call H 
asymptotically e-optimal if limA-, e`(X(A)) < E, 
almost surely. 

An important step in the design and evaluation of 
our heuristics is the derivation of a lower bound. The 
latter is obtained by replacing the cost function U(x) 
by a lower bound cost structure such that the resulting 
partitioning problem is easy to solve. We refer the 
reader to Section 1 in Anily and Federgruen (1990a) 
for the definitions of consecutive and monotone par- 
titions and extremal partitioning problems. If a parti- 
tioning problem is extremal, an optimal partition is 
obtained by an exceedingly simple, linear time pro- 
cedure (the Extremal Partitioning Algorithm in Anily 
and Federgruen 1991a). 

For a given partition Xi,. . . , XL} of X, the remain- 
ing problem reduces to identifying an optimal inven- 
tory replenishment strategy in a classical one- 
warehouse L-retailer system in which each set X, plays 
the role of a single "super retailer," with demand rate 
21XIX and a fixed procurement cost given by c + 
TSP(X?) (I= 1, ..., L). No method is known for 
computing an optimal strategy, even in the unca- 
pacitated version of this problem, but Roundy has 
shown that for the latter a close-to-optimal simple 
strategy may be found of the following power-of-two 
structure: the warehouse (region 1) replenishes its 
inventory every To (T,) time units when its inventory 
reaches zero (I = 1, . . ., L); also, (To, T,, . . ., T,) are 
power-of-two multiples of a base planning period TB. 

A power-of-two policy exists whose cost comes within 
6% or 2% of the optimum cost depending upon 
whether the base planning period is fixed or variable, 
respectively. 

2. LOWER BOUNDS 

In this section, we derive lower bounds for uncapaci- 
tated and capacitated models. In uncapacitated 
models, we assume that only upper bounds on the 
regions' sales volumes are imposed, i.e., no frequency 
constraints apply (b =f* = oo), whereas in capacitated 
models frequency constraints may be imposed as well. 
For the sake of notational convenience we assume 
that the sales volume bound is identical for all regions 
which implies a uniform upper bound (say M**) on 
the number of demand points included in a region. 
(Extension to uncapacitated systems with nonidentical 
bounds is straightforward, given the general treatment 
in Anily and Federgruen (1990b, 1991a); for capaci- 
tated models, the upper bounds may be general power- 
of-two integers.) 

In capacitated systems and under policies that 
employ constant replenishment intervals, the fre- 
quency and capacity constraints translate into upper 
and/or lower bounds for these intervals T,; / = 
1, ..., LI of the following form: X, u T lIXI, 
A, > 0, v/ < oo, / = 1, ..., L; vl represents half the 
capacity of the vehicle assigned to route / and X ', the 
maximum frequency with which this route may be 
driven. (For the sake of notational convenience we 
only consider cases where X, = X and vl = v, I = 1, .... 
L; our results may, however, be extended to cases 
where all X, (v,) are powers of two times some base 
value.) In uncapacitated models, X = 0 and v = oo so 
that v/X = oo. We also need the following parameter 
restrictions: 

i. v/X is either integer or +oo; 
ii. if MV** < v/X < oo, v/X is a power-of-two times 

M**; 
iii. the maximum number of demand points 

that can be assigned to a single region is 
decf 

M* = min{M**, v/X} < oo. 

In view of ii, we always have that v/M* = oo or v/M* 
is a power-of-two multiple of X. 

In view of iii we assume in all our models that 
M, < oo for I = 1, . . ., L, i.e., the upper bounds on 
the number of demand points per region are all finite. 

For a given partition x = {X,, . . ., XL} of X not 
sales regions and a given power-of-two policy T = 

(To, T,, . . ., TL) we denote the corresponding average 
cost by 

CX(T) = Ko/To + EDTO(T,, 0,, m,). 
/=I 

Here DTO(T,, 0,, m,) represents the average cost per 
unit time of replenishing the /th sales region, which 
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depends on To, T,, m, = IX,I and 0, = TSP(X?) (I = 1, 
L); DTO includes the transportation costs which 

are incurred for X, as well as the carrying costs for the 
inventories at the region's demand points and the part 
of the warehouse inventory which is destined to be 
shipped to X,. According to Roundy 

DTO( T,, 6,, mi) 

= (6, + c)/T, + m,(hT, + homax(TO, T,)). (1) 

Lemma 1 states that infi CQ( T): To > 0 and X < T, < 

v/IX,I, I = 1, . . ., L} provides a lower bound for the 
minimum long-run average costs over all feasible 
policies that employ the regions in x. For uncapaci- 
tated systems, this lower bound follows directly from 
Roundy. 

To prove Lemma 1 for capacitated systems we need 
the following definitions. Let 

(6, m) = ((6 + c)/(mr(h' + ho)))'/2; 
(2) 

T(6, m) = ((6 + c)/(mh'))'/2 

be the order intervals obtained by the EOQ formula 
with a fixed cost of 0 + c, a demand rate of two, and 
holding cost rates of m(h' + ho) and mh', respectively. 
For any given partition x and for any T > 0 we 
partition the index set {1, . .., LI into the following 
seven sets (some of which may be empty). 

G(T) = I11 I L, T , v/m, and X < } 
E(T) = 1 L, X < T < u/m, and 

, < T T/I 
S(T) = 1, X < X< T and , S v/m,} 
I(T) = {/1 /L, T< X and T sA} 
I^,( T) = I II sI L ,rl< A < T} 
I?(T) = III1 l L, T u v/m, and u/m, < Tj; 

I4(T) = I/11 l L, T > v/m, and u/m, < TX,. 

Observe that the sets G(T), E(T) and S(T) consist 
of the regions I for which neither the capacity nor 
the frequency constraints are binding; i.e., for the 
value of T, which minimizes DT we have T, > (=, <) T 
for I E G( T) (E( T), S( T)). Here I(T) and I(T) (13(T) 
and I4(T)) consist of those routes for which the fre- 
quency (capacity) constraints are binding: 

X = T, > (<)T for / E Ij(T)(I(T)), 

v/m, = T, > (<)T for / E I3(T)(I4(T)). 

Note that if X = 0 (v = co), then I,(T) = Ij(T) = 0 
(I?,(T) = I4(T) = 0) for all T. A vector T is said to 
preserve the order of T* if the sets I TO, T1, . . .., TL, X, 
V/M*} and ITo* ..., T*, X, V/M*} are ranked in 
the same way. 

Lemma 1. For any given partition x = X,..., XL} 
of X, U(x) - infICl(T): T> 0 and X S T, S u/IX,I, 
I = 1, . . . L I is a lower bound for the minimum long- 
run average costs over allfeasible policies that employ 
the regions in x. 

Proof. The long-run average cost associated with the 
partition x and any order-preserving vector T may be 
written in the form 

Cx(T) = KITo + HTo + X (K,/T, + HIT,), 
/aE(TO) 

where 

K(To) = Ko + K, (Kl =01+ c, I= I, ... ., L), 
/Ez-E(TO) 

H(To) = m(h' + ho) + m,ho 
/EE( To) lES( TO)uI2( TO)UI4( To) 

Jmi(h' + ho) 1 E G(To) U I(To) U I3(To) 

mih' 1 e S(To) U IJ(TO) U h( TA) 

Let 

M (To) = 2(K(T 

Ml( To) = 

{ 2(K,H,(To))0 5, 1 E G(To) U S(To) 

K,/X + H,(To)X, 1 E I(To) U I(To) 
K,lX,ll/v + H,(To)v/IXj,I 1 E I(To) U I4(TO). 

Similarly to Lemma 1 in Anily and Federgruen 
(1991 b) we get Jbr the vector T* achieving the mini- 
mum in the definition of U(x): 

a. U(x) = M( TO*) + 1/aE(TT) M,(TO*) 

b. To* = >/K(To*)/H(Tof); T, = IK,/H,(T~o) 

1 E G(To) U S(To*). 

The remainder of the proof is based on a modification 
of the proof of Theorem 1 in Roundy as presented in 
Anily and Federgruen (1991b). 

We now describe how U(x) may be evaluated. For 
any partition x = IX,, ..., XL} of X and To > 0 we 
define 

L 

UTO(X) = KO/ TO + yYSTO(l, mi), (3) 
l=l 

where fT(0, m) = infA<T,L/I ,l,DT ( T,, 6, im). 

Note that U(x) = inf,OUTO(x). The infimum to the 
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right of (3) is easy to evaluate. If To < X then, 

f46' rn) 

[m(6 + c)/v + v(h' + ho) if U/m < T 

= 2[(6 + c)m(h' + ho)]'/2 if X ' T' < U/m 

L (6 + c)/X + m(h' + ho) if ' < X. (4) 

If X < To S v/m then, 

fTO(6, m)= 

m(6 + c)/v + v(h' + ho) if To Uv/m < T' (5a) 

2[(6 + c)m(h' + ho)]'12 if To < T' < v/m (5b) 

(6 + c)/To + m(h' + ho)to if T' < To < T (5c) 

2[(O + c)mh']' 2 + mhoTo if X < T < To (5d) 

(6 + c)/A + mh'X + mhoTo if r < X < To, (5e) 

and if (X <) v/m < To then, 

fTO(O' m) 

F m((+c)/v+h'v+rmhoTo if U/M<T 

= 2[(6 + c)mh'] 1'2 + mhoTo ifX A T S v/rm (6) 

L (6+c)/X+rmh'X+rmhoTo ifT <X. 

(Note that the function DTO is convex in T,; its uncon- 
strained minimum is thus obtained at TI if To < T/, at 
To if T/ To < T/, and at T/ otherwise. Equations 4- 
6 represent the minimum of DTO under the restrictions 
X < T, < U/m,.) We conclude from Lemma 1, (2) and 
(3) that 

V(X) = inf{ Ko/To + minL Eji0(06, in1): 

X = XI, * ,XL } 

partitions X and mr, M*1} (7) 

is a lower bound for V*(X). It follows that for any 
T( > 0, the minimization problem within the curled 
brackets in (7) reduces to the problem of partitioning 
the set X into L routes with minimal total cost, where 
the cost of a route with length 0 and m < M* demand 
points is given by f7, (0r m). This class of routing 
problems with general route cost function has been 
addressed in Anily and Federgruen (1 990b) and in the 
remainder we draw on the results of this paper. Since 
6/ represents the length of an optimal traveling sales- 
man tour, (7) is still too complex to be evaluated. We 
therefore replace V(X) by a further lower bound. For 

any T > 0, consider the partitioning problem 

PET: VT(X) = Ko/T + min {f fJ(- E ri, mi): 

x = {Xl, .., XL} partitions X anc m, l AI, 

and let V'(X) = infT_i'(X). Clearly V*(X) < V(X) < 

_['(X) (see also, Anily and Federgruen 1990b). 
Note that the partitioning problem PT depends on 

the parameter T > 0. Thus, even if PT falls in the 
small class of polynomially solvable partitioning prob- 
lems, the optimal partition may be expected to vary 
with T, so that V(X) as the finite minimum of convex 
functions may fail to be convex and the minimization 
over T required to evaluate V'(X) can be expected to 
be cumbersome. The next theorem shows, fortunately, 
that PBt is extremal so a unique, easy to compute 
partition x exists which optimizes PT for all T > 0. 

Theorem 1. Fix T > 0. 

a. ThefiinctionfAG, m) is concave in both arguments 
separately. 

b M) ~~~~~~~deft b- The function h=(6, m) - 11(0/m, m) has antitone 
differ-ences, i.e., hdO2, m) - hT(,, m) is non- 
incr-easing in m jbr all 62 > 0,. 

c. Pr is extremal for all T; the same partition x* 
optimiiizes P7 fior all T > 0. 

Proof. See the Appendix. 

As mentioned in Section 1, the partition x* which 
optimizes P7 for all T > 0 is easy to construct by the 
EPA algorithm in Anily and Federgruen (199 la). 

Let N= k-lM* + K2 with 0 < k, < M*. The partition 
generated by EPA for L unrestricted is the partition 

= }}x,..., XJ2J, fXk+?, , 

XI; 2+11 1 . I I } 1 }9}X;%-. 1 /+ j I \ XN} } 

where L = rN/M*l. In case an additional constraint 
on the number of sales regions is imposed (i.e., L = L 
with L a given parameter), the EPA generates the 
consecutive partition in which all groups, except pos- 
sibly one, are either singletons or filled to capacity. 
The singletons consist of the lowest indexed elements 
in X; for details see Anily and Federgruen (199 la). 
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It follows from Theorem 1 that 

V'(X) = inf V7l(X) 
T 

=inf{KO/T + fT(2 E rilix, i"i)} 

and in view of the shape of the function fT(., .): 

VT2r(X) = KO/TO + a[(To) + 31(T0) + YI(To)Tol 

with ae,( To), O3I( To) and ay( To) piecewise constant func- 
tions for all I = 1, , L. It is easy to verify that each 
of the functions 

[al(To)/To + l1(To) + yl(To)To] (I= 1, ..., L) 

is convex and continuously differentiable in To except 
possibly for capacitated systems at To = X, TO = U/M* 
and if k2 > 0, then also for To = v/k,, so that Vk (X) 
is strictly convex and continuously differentiable in 
To everywhere, except possibly for the points X, V/M* 
and v/k2. 

Thus, _V'(X) = infT0>o VTO(X) is achieved at the 
unique point T* where either dVTO(X)/dT0 = 0 (i.e., 
To* = [a(T*)/1y(TO*)] 1/' or To E {X, v/A,f**, v/k, I 
in capacitated systems. Also VAX) is of the form 
a(T)/T + ,3(T) + -y(T) T, where a(T), O3(T) and -y(T) 
are piecewise constant functions changing values only 
when T crosses one of at most 2N + 3 values in 

= 1, . .., L} 

U ITp: = 1, ,L} U 
X, /1M*, u/k2}, 

where T~' and T1 are defined as in (2) replacing 06 by 
2 ,, rI/X* I and m, by IX 1. These observations 
suggest a simple O(N log N) algorithm for the min- 
imization of j'?(X) (see Appendix A in Roundy). 
Queyranne (1987) proposes an alternative linear time 
procedure which uses a linear time median finding 
procedure. 

Remark 1. As in Anily and Federgruen (1990a, b), 
one may consider the alternative lower bound V2(X), 
where V2(X) = inf, '2 (X), and 

V' 2 (X) 

= K,/T + min{L1=1 f,(2 maxj,rj, ml): 

x = XI, .., XI, partitions X 

and m1, < MV*}}. 

Clearly, be*(X) tro (X) bn V(X) V'((X), i.e., V(X) 
is a better lower bound than VI(X). Evaluation of 

V2(X) is, however, significantly more complex than 
that of V'(X) because the corresponding partitioning 
problem PT may fail to be extremal (see Anily, 
pp. 135-137). 

3. UPPER BOUNDS AND FEASIBLE SOLUTIONS 

The partition x* associated with the lower bound 
['(X) represents regions in which the points have 

similar radial distances to the depot but may otherwise 
be far apart. In this section, we describe the construc- 
tion of a heuristic partition XH and associated inven- 
tory strategy which is asymptotically e - optimal for 
e = 0.06 under general conditions regarding the 
stochastic model used to generate {x, x2, ...}. For 
uncapacitated systems we also describe a variant 
which is asymptotically e - optimal for e = 0.02. The 
corresponding cost values of the heuristics represent 
upper bound for V*(X) which are asymptotically 
e - accurate for the same values of e. 

Let XI"') = fxi E X: X* assigns xi to a set of cardi- 
nality m}, m = 1, .. ., M* denote the set of demand 
points which are assigned to a region with m points 
(in total). 

Recall the unique representation of N = k2 + k,M* 
(O - k, < M*). Thus, for L unrestricted, at most two 
of the sets XI"') are nonempty (m = k2 if k? $ 0 and 
m = M*). If L is restricted there may be up to three 
nonempty sets. Anily and Federgruen (1 990b) propose 
a general partitioning scheme (the so-called Modified 
Circular Regional Partitioning (MCRP) procedure) 
which is applicable to routing problems with general 
route cost functions. This procedure operates on each 
set XI . (m = 1, . . ., AIf) separately and clusters the 
points in X( ..) into regions of cardinality m each. 

Note from the above characterization of the parti- 
tion x* optimizing P' that only the points of X(I"*) 
need to be partitioned into regions because at most 
one of the sets XI"') with 1 < m < Af* may be 
nonempty, and this set consists of exactly m points 
which necessarily need to be assigned to the same 
region. 

The MCRP generates a collection of regions x" = 

X", . . ., Xl'}. Given this set of regions, and as 
described in Section 1, the system reduces to a one- 
warehouse multiretailer system, with each region act- 
ing as a (super) retailer. An optimal power-of-two 
policy for this system is easy to determine following 
the procedure in Roundy with appropriate modifica- 
tions in capacitated systems. The first step in deter- 
mining such a power-of-two policy is the 
determination of a vector T" that achieves 
V(X) = min70Co,,XT). This can be done with the 
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same O(L log L) or O(L) procedure required to 
compute the lower bound V'(X) = minT,OCX*(T) (see 
Section 2). 

Next the following rounding procedure is employed 
to round T" to a feasible power-of-two policy T" with 
respect to the base planning period TB = X. (If X = 0, 
choose TB = v/M*.) In the uncapacitated case 
where X = 0 and v = oo, TB may be chosen arbitrar- 
ily. Let G = G(T"), E = E(T"), S = S(T"), I,. = 

I,(T")(r = 1, .. ., 4). (For the sake of simplicity, we 
assume from hereon that L is unrestricted, so that all 
regions, except possibly X,', contain M* points.) 

Rounding Procedure (RP) 

STEP 0. Determine the (unique) integer k such that 
T'(rTB[2k-I, 2,). If To c TB2Ak-/, To' = TB2k-1; 
otherwise To/: = Tr2 . 

STEP 1. For E I, U I,, TP': = T,': = A. For / e 
I3 U 14, TI': = T/' = v/IXII. For / e E, Tr: =To. 

STEP 2. For all / E G U S determine the (unique) 
integer k such that Tr//To' E [2A, 2A). If 72"/TU < 

2Ak-I-1, T1': = To/2k-l; otherwise T,': = To02 k. 

STEP 3. If IX,I < MV* and T,' > v/lIX,, then 
TVk: = max{2 A: 2ATB , v/IXI,I. 

(Step 3 is required because v/lX, I is not necessarily a 
power-of-two times X.) Let V(X) = Ck,/(T'"). 

Lemma 2 
a. The rouinding proceduire generates a power-o/ 

two vector T" = (To T", . 7. , 7). AMoreover, the 
vector (To, T', .7 . , T',) is order-preserving with 
respect to (To', T', ... T''). 

b. V(X)/V(X) - 1.061 + M*/MNVU7M* + 1 + 
7r/2]. Moreover, if N is a mulltiple of M* or v = oo, 
V(X)/V(X) < 1.06 1. 

Proof. a. We write T instead of T" and X, insead of 
X,'; T is clearly a power-of-two policy since m, = A,* 
for I > 1. It is easy to verify that (To, T,, . . ., TL ) 
preserves the order of ( To, T2H, ..., Tcf) and that T is 
feasible by comparing T, with To, X and v/M* for I E 

G\{j1, IE E\{j1, I ES\l IIand le I,.(r= 1,. ..,4), 
respectively. 

b. Let q, = T/ T,' for I $ 1. Clearly, 
ES ql -< X%2 for I$ 1. If 1 E I, U I,, q, = 1. If 

1 E I3 U I4, then T, is first set in Step 1 and reset in 
Step 3; note that in this case '/2T7' < T, TI'. If 1 e 
G u S and 71' is rounded down in Step 2, Step 3 is 
not executed and 0 '.5 ' 7 T, < 7T. Finally, if ! e 
G U S and TV is rounded up in Step 2, 

V27T'' , T, Sv2iT7'. We conclude that in all cases, 
'/2 S q, < . These inequalities and 

.5 qo < x2 imply that with K1 = TSP(XA) + 
c (l= I,. ..L), 

DTO( T,, TSP(X? ), I X, I) 

= KIT, + mthT, + mnhomax(To, T) 

S maxclK,/r + m,h'r + mnhomax(To, r): 

1/27" 1, I<r <, 12T7''},I 

S 2K,/TV + mn1h' ' 71 + m,nhomax( V-2To', V2iTI') 

S 2[K,/T7' + mn,h' Tj+ m,nhomax(To', T{'T)] 

= 2f1H(TSP(X?), I XI I). 

It follows from Theorem 3 in Haimovich and Rinnooy 
Kan (1985) that 

K, =TSP(X?) + c < 2rA,[ X IX + 1 + wr/2] + c 

7 [S' M* + 1 +7r/2](2rj, I + c) 

N/7 VM-+1 I+7r/2]K/, I=1 ... L. 

It thus follows from (1) and m, S m, (I = 1, . L) 
that 

D-O( T,, TSP(X?), I XI) 

S 2[1IUM'* + 1 + 7r/2]mint4-H(TSP(X?), IX,I)l 

2 
?1 -[1 FM* + 1 + 7r/2] I f r(TSP(X?), IX,I) L TOH 

2M* 
N [kM + 1 + w/2]Cf'(T") 

In view of part a, we have by the proof of 
Lemma 1, with M, M, (1 E) and the index defined 
for the partition x" and To" that 

V(X)/ V(X) = CO(T)IC,4T") 

S D-O(TF, TSP(X'V'), XI j)/CC(`T") 

+ [M+ E/v:ut I II M] 

2 - [V7,UM* + I + 7r/2] N 

+ max(1/2( + 0. ~ x<v) 

2M* 
- N [N/rVMW* + 1 + 7w/2] + 1.061, 
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where 

= + q) 

+ MaleG IM' I + \+ D/I1UI2UI3UI4MI ul2 (q, 

(See also Appendix A.1 in Anily.) Finally, if lX,i = 

M* or v = co, T is order-preserving (including T,) and 
the simpler bound arises. 

Remark 2. If TSP(X?) = min,<,/,TSP(X?), as is usu- 
ally the case, the bound in part b of Lemma 2 may be 
simplified. 

We now characterize the worst-case optimality gap 
of our proposed heuristic. 

Theorem 2 

a. V 1(X) < V*(X) < VI(X). 
b. Consider an infinite stochastic sequlence of demand 

points Ix, x,, .. with i.i.d. radial distances dis- 
tributed as the boulnded random variable r sutch 
that 

E? min f10(2r, m)1 > 0 for To > 0. 
L = I. .l J* 

Then, 

lim V(X(A')) = 1.061 a.s. 
A -- V'(X(A,)) 

Proof. In view of Lemma 2b, it suffices to show that 
lim,IIp+0 V(X(A'))/V'(X(A')) = 1. As above, let T* denote 
the unique value of To with V'(X)= O(X) 
inf,O70j(X). Let 

V(X) = Ko/To + E f7o(TSP(X'), I X'" I). 

It thus suffices to show that 

lim V(X(A')/VE'(X(A')) = 1 a.s. 

Consider now the Euclidean vehicle routing problem 
in which the cost of a route of (Euclidean) length 0, 
going through m points and the depot is given 
by f4(0, m) > f740(0, m) with 0 - 0 twice the average 
radial distance of the m points on the route. 

Clearly, 

V(X) V(X) 

= inf C xw(T) 

= inf [Ko/To + EXfTO(TSP(X?`), 14X11 ) 

? inf Ko/To + EfTO(2 E ril X1,,XI ) 

? inf [KO(X)1 = V (X). 
T 0>0 

The theorem now follows from Theorem 2 in Anily 
and Federgruen (1 990b) because f7-0 is concave in its 
first argument; see Theorem la. 

Remark 3. For uncapacitated systems, it is possible 
to guarantee that the heuristic comes asymptotically 
within 2% of optimality by optimizing over the base 
planning period T7. This optimization can be per- 
formed in O(N) time (see Roundy). In uncapacitated 
models with frequency constraints (in addition to sales 
volume constraints) v = oo and X = (J>)-' > 0. In this 
case, RP generates a complete order-preserving policy 
and V(X)/V(X) < 1.061 (see Lemma 2, part b). For 
capacitated models without frequency constraints (X 
= 0, v = b/2 < oo), the rounding procedure results in 
a power-of-two policy which is order-preserving (with 
respect to T") with the possible exception of T7, the 
replenishment interval of the first sales region. As 
demonstrated in Lemma 2, and in spite of this com- 
plication, the generated solution comes asymptotically 
within 6% of the true minimum cost and so do the 
computed lower and upper bounds. 

An interesting situation arises in capacitated models 
with frequency constraints but wvithout sales volume 
bounds. In this case, X = 1/Jf, v = b/2, M** = oo, and 
M* = bf*/2. Thus, X = v/M* so that the feasible 
intervals for the regions' replenishment intervals 
reduce to the single value 1/f* = b/(2M*) (with the 
possible exception of the first region). In this case, 
2 ... , LI C I(T) U I2(T) U I3(T) U I4(T). It follows 

from the proof of Lemma 2 that the generated solution 
(bounds) are asymptotically fully optimal (accurate)! 

The entire procedure required to obtain the lower 
bound, upper bound and heuristic solution is thus of 
complexity O(N log N) and can be summarized as 
follows. 
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Combined Routing and Replenishment Strategies 
Algorithm for One Warehouse Multiretailer 
Systems With Central Inventories (CRRSA*) 

STEP 1. Use the EPA algorithm to determine the 
partition x*. Compute the lower bound V(X) by the 
procedure in Section 2. 

STEP 2. Apply MCRP; let x" be the resulting 
collection of sales regions. Find the vector T" achiev- 
ing min1>oCi"( T) via the procedure in Section 2. 

STEP 3. Use the rounding procedure to round T" 
to a power-of-two vector T". 

Remark 4. The uncapacitated model may be 
extended to systems with a backlogging option, at a 
cost of h- per unit and per unit of time, if all retailers 
face identical demand rates, i.e., each retailer is a 
single demand point. 

Consider a fixed collection of sales regions x = 

IXI . . ., XL}. Mitchell (1987) has demonstrated that 
the class of power-of-two inventory policies needs to 
be enlarged to the so-called "near-integer ratio poli- 
cies" if we wish to get close to optimality. In a near- 
integer ratio policy, only the warehouse's inventory 
is necessarily replenished at constant intervals (of 
length To). 

Mitchell has shown that the cost of any near-integer 
ratio policy may be expressed as a function of ( To, T, 

. T,.) only (with T, now interpreted as the average 
replenishment interval) and that the cost expression is 
identical to that obtained in the model without back- 
logging, provided the holding cost rates are appropri- 
ately transformed: let a = h-/(h- + h). Replace ho by 
aho and h by aa'h, where a' = h-/(h- + h + ho). 

In view of the above observations, it is easy to verify 
that the analysis of the uncapacitated backlogging 
model proceeds along the lines of the uncapacitated 
model without backlogging. In particular CRRSA* 
may be applied to generate bounds and a heuristic 
solution, merely replacing h' and ho by the above 
stated expressions. In addition, all optimality and 
accuracy results continue to hold. 

4. A NUMERICAL STUDY 

In this section, we summarize a numerical study con- 
ducted to assess the performance of CRRSA* and 
associated bounds for problems of moderate size. For 
the complete report see Anily and Federgruen (1 990c). 
The study thus serves to complement the asymptotic 
optimality and accuracy results derived in Sections 

2-3. We have analyzed both capacitated and uncapa- 
citated models, all without frequency constraints but 
with sales volume upper bounds. We have also 
assumed that each retailer consists of a single demand 
point. 

In all uncapacitated models we assume that the base 
planning period is fixed and equal to b/NlP*. The 
purpose of our study is to assess the computational 
requirements of the CRRSA* algorithm as well as the 
optimality gap of the generated solutions and to com- 
pare the performance of CRRSA* to that used in 
Anily and Federgruen (1990a) for systems without 
central inventories. The ratios of the computed upper 
and lower bound (UB/LB) serve as upper bounds for 
the optimality gaps. 

We conclude that our procedures have modest com- 
putational requirements which grow roughly linearly 
with the number of locations. For example, for a 
problem with 1,000 demand points in which no route 
visits more than four distinct points, the entire solu- 
tion procedure (i.e., computation of the lower bound, 
upper bound, routes and inventory strategies) requires 
no more than about 0.7 CPU seconds when encoded 
in FORTRAN (Tops 20-Version 2) and run on an 
Amdahl 1 70V8 computer. 

The generated solutions come within a relatively 
small percentage of a lower bound for the minimal 
system-wide costs (within the class db), even for prob- 
lems of moderate size. The observed (bounds for the) 
optimality gaps are almost always smaller than those 
computed for the corresponding systems without cen- 
tral inventories, even though the theoretical asymp- 
totic bounds are worse. For example, for problems 
with N = 100 and A'I* = 4, the average optimality gap 
is 9.5% in our systems versus 18.8% for systems 
without central inventories. For problems with 500 
demand points and AM* = 4 the average optimality 
gaps are 6.3% and 7.3%, respectively; and for prob- 
lems with N = 1,000 and Ml* = 7, the gaps are 6.7% 
and 10.3% only. (Only for problems with 1,000 
demand points and a maximum of 4 points per route, 
is the average optimality gap of 6.7% somewhat larger 
than the corresponding average of 5.3% in systems 
without central inventories.) The optimality gaps are 
only slightly larger than the asymptotic worst-case gap 
of 6.1 % which also applies to all values of N in systems 
with separable replenishment costs (see Roundy). 

Table I summarizes the performance of CRRSA* 
in all 136 problems. The retailers' locations are always 
randomly generated in a square of 200 x 200 with the 
depot placed in its center. The traveling salesman 
tours are obtained by complete enumeration. This 
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Table I 
Summary Results 

No. of UB/LB CPU Time f 
N M" Problems Au a (A) (Seconds) 

100 4 40 1.095/0.056 0.230 0.014 
500 4 40 1.063/0.030 0.402 0.011 
500 7 6 1.122/0.056 14.502 0.064 

1,000 4 40 1.055/0.035 0.650 0.024 
1,000 7 6 1.067/0.021 28.708 0.040 

"The average value within category. 
The standard deviation of values within category. 

step in the CRRSA* algorithm accounts for most of 
the CPU time as may be inferred by comparing the 
average CPU time between problem categories with 
an identical number of retailers (N) but different 
values for M*: Increasing M* from 4 to 7 leads to an 
increase in the average CPU time by a factor of 40 
(approximately). Note from the description of the 
algorithm that the required number of elementary 
operations and evaluations of the function fTr(, -) 

depends largely on N and M*. For values of M* > 7 
(say) one should determine the optimal traveling sales- 
man tours by a more sophisticated exact method. 
Alternatively, a heuristic TSP method with bounded 
worst-case performance may be employed (e.g., 
Christofides 1976), maintaining all the (asymptotic) 
accuracy and optimality results. 

The ratios UB/LB and the CPU times are predict- 
able as a function of N and M* only. Moreover, the 
ratios UB/LB are quite low even for small problems 
with only 100 demand points; they decrease with N 
and increase with M*, which is consistent with the 
analyses in Anily and Federgruen (1 990b) and 
Lemma 5, exhibiting the error gaps as a function of 
the number of sales regions L = [N/M*]. Note, in 
addition, that the lower bound approximation for the 
length of a traveling salesman tour by two times the 
average value of the radial distances becomes increas- 
ingly less accurate as the number of demand points 
per region increases. 

The models are evaluated with N = 100, N = 500 
and N = 1,000 points and M* = 4 or M* = 7. Only 
for settings where M* = 7 have we omitted the runs 
for N = 100 because the generated solution would 
consist of only 15 = ([100/71) sales regions. (The 
MCRP scheme creates 11 sectors; 10 consist of exactly 
M* = 7 points.) The models are systematically eval- 
uated for several different values of all cost parameters. 
We also investigate the impact of progressively more 
severe vehicle capacity constraints. In Anily and 
Federgruen (1990c) we list for each of the scenarios 

the same performance measures as those reported in 
Anily and Federgruen (1990a). 

5. CONCLUSIONS 

We have shown how cost effective system-wide replen- 
ishment strategies can be computed for one- 
warehouse, multiretailer systems in which goods are 
distributed from the warehouse to the retailers by a 
fleet of vehicles, combining deliveries into efficient 
routes. 

These strategies are chosen in a class 1, as defined 
in the Introduction. We have shown that the gap 
between the cost of the proposed strategy and a lower 
bound for the minimum cost (among all strategies in 
4?) is bounded by 6% for sufficiently large numbers of 
retailers, and this gap is small even for problems with 
a moderate number of retailers or outlets. Computa- 
tion of the complete replenishment strategy (routes 
and inventory strategies), as well as the lower bound 
cost approximation, requires no more than O(N log 
N) time. 

The restriction to the class 4? is clearly associated 
with some loss of optimality, the exact magnitude of 
which is as yet unknown. On the other hand, as 
explained in Anily and Federgruen (1 990a), the 
restriction is often imposed by the sales/distribution 
system itself. In many systems the sales and delivery 
functions are integrated: A salesperson is assigned to 
a given region and each salesperson is required to visit 
the outlets in his/her region periodically in a given 
route, determining replenishment quantities (in the 
form of definite sales or unbinding consignments) 
and delivering them as well. (See the Introduction 
for additional discussion on the relative merits of 
class 1.) 

APPENDIX 

Proof of Theorems 1 

a. We first show that OfT-/a0(afT/am) exists and is 
continuous in 0 (m). Since &2fT/002(2_f_/0m2) exists 
and is nonpositive almost everywhere, we conclude 
that Ofr/O0(0f7'/Om) is nonincreasing in 0(m), i.e., fT is 
concave in 0 and m. To verify existence and continuity 
in 0(m) of afT/a0(ofli/m) we distinguish between the 
following three cases: T < X < v/m; X < T S 0/m, and 
X S v/m < T. In each of these cases, it suffices to 
establish that Of+T/a0 = -fT/a0 and adfT/am = 

a7-f/Tm at the points (Q0, mi) for which 00 + c is a 
breakpoint offr. 
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b. Here again, we distinguish between the following 
three cases: If T < X then, 

h1o, m) 

(0 + mc)/(mX) + m(h' + ho)X 
| if + mc < X2in2(h' + ho) 
2[(Q + mc)(h' + ho)]1/2 

if Vlm-I(h, + ho) S ( + mc < v2(h' + ho) 
(0 + mc)/v + (h' + ho) 

2if V2(h' + ho) < 0 + mc. 

If X < T v/im: 

hA,(O, m) 

((-) + mc)/(inX) + mh'X + mhoT 
if 0 + mc < m2h'X2 

2[(Q + mnc)h']1/2 + mhoT 
if m2h' X2 < 0 + mc < T2m2h' 

(0 + mc)/(mT) + m(h' + ho)T 
if T2m2h' h 0 + mc < T2m2(h' + ho) 

2[(0 + mc)(h' + ho)]1/2 
if T2M2 (h' + ho) < 0 + mc < v2(h' + ho) 

(e + mc)/v + v(h' + ho) 
if v2(h' + ho) <0 + mc, 

and if T ? v/m: 

h AE), m) 

(0D + mc)/mX + mh'X + mhOT, 
if 0 + mc < m2h'X2 

2[(0 + mc)h']92 + mhoT, 
if 

m2h'X2 
< ( + mc S v2h' 

(0 + mc)/v + h'v + mhOT, 
if v2h' < 0) + mc. 

Since &fr/&0 exists everywhere for the three cases 
(see the proofs of part a) it follows from the chain rule 
that dh7/-/O exists everywhere as well, moreover, 
A/T/ca3 is continuous in m. Since a2hT/am30 exists 
and is nonpositive almost everywhere, it follows that 
ah7/yla is nonincreasing in m; hence hT has antitone 
differences. 

To establish the continuity of ahTa/9 with respect 
to m, it suffices to verify that lim7i,,0OhrT/O(O) = 

lim,,,T,,,,/ahTO for all points (0", in'0) for which 0" + 
rn0c is a breakpoint of hT. This is done by computing 
ahy/lO for hT as defined above and verifying that at 
each breakpoint of?00 + rnoc, the left limit value equals 
the right limit value. 

c. This part follows immediately from parts a and b, 
fr nondecreasing in 0 for all T > 0, and Theorem 5 in 
Anily and Federgruen (1 99 Ia). 
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