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We consider a distribution system consisting of a single warehouse and many geographically dispersed retailers. Each retailer faces
demands for a single item which arise at a deterministic, retailer specific rate. The retailers’ stock is replenished by a fleet of vehicles
of limited capacity, departing and returning to the warehouse and combining deliveries into efficient routes. The cost of any given
route consists of a fixed component and a component which is proportional with the total distance driven. Inventory costs are
proportional with the stock levels. The objective is to identify a combined inventory policy and a routing strategy minimizing
system-wide infinite horizon costs. We characterize the asymptotic effectiveness of the class of so-called Fixed Partition policies and
those employing Zero Inventory Ordering. We provide worst case as well as probabilistic bounds under a variety of probabilistic
assumptions. This insight is used to construct a very effective algorithm resulting in a Fixed Partition policy which is asymptotically
optimal within its class. Computational results show that the algorithm is very effective on a set of randomly generated problems.

In many distribution systems, important cost savings can
be achieved by integrating inventory control and routing

decisions, i.e., by determining simultaneously the timing
and sizes of the retailer deliveries as well as efficient vehi-
cle schedules so as to minimize total transportation and
inventory carrying costs. In this type of systems the “ware-
house” and the “retailers” may represent (part of) consec-
utive layers in the distribution network of a single
company; alternatively, customers may be external, as in
the increasingly popular “vendor managed” or “direct re-
plenishment” arrangements in which vendors assume the
responsibility of maintaining their customers’ inventories
instead of responding to customer generated orders.

The impact of integrated inventory and routing strate-
gies was recently emphasized by Stalk et al. (1992) who
review the evolution of the discount retailing industry.
They observe Wal-Mart developing into the largest and
highest profit retailer in the world. This success story was
attributed by Stalk et al. to a relentless focus on satisfying
retailer needs by efficient logistical design and planning.
“The key to achieving these goals was to make the way the
company replenished inventory the centerpiece of its compet-
itive strategy.” Stalk et al. identify a number of major com-
ponents in this strategic vision, most importantly, a
logistics technique referred to as “cross-docking.” This re-
fers to a distribution strategy in which the stores are sup-
plied by central warehouses which act as coordinators of
the supply process, and as transshipment points for

incoming orders from outside vendors, but which do not
keep stock themselves.

The distribution planning problem associated with a
cross-docking strategy can be modeled as follows: a single
warehouse serves many retailers which are geographically
dispersed in a given area. Stock for a single item is deliv-
ered to the retailers by a fleet of vehicles of limited capac-
ity. Each retailer faces a deterministic, retailer specific,
demand rate. Inventory holding costs are accrued at a con-
stant rate, which is assumed to be identical for all retailers.
No inventory is kept at the warehouse. Each time a vehicle
is sent out to replenish inventory, it incurs a fixed cost
(independent of the specific route driven) plus a cost pro-
portional to the total distance traveled by the vehicle. The
objective is to determine an inventory policy and a routing
strategy such that each retailer can meet its demands and
the long-run average transportation and inventory costs
are minimized.

In a distribution system of this type, one may have an
additional constraint limiting the frequency with which
each retailer is visited. Such a constraint may, for example,
be due to limited material handling capacity and/or due to
the set-up time required for unloading deliveries at the
retailers.

It is highly improbable that an optimal strategy will ever
be identified for this model; such attempts have long been
abandoned even for far simpler models, e.g., the special
case where the cost of dispatching a vehicle to a group of
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retailers consists only of the fixed component and is inde-
pendent of the distance traveled. Models, with joint re-
plenishment costs of this type, are often referred to as
Joint Replenishment Problems, see Jackson et al. (1985)
and Federgruen and Zheng (1992). Most importantly, the
structure of a (fully) optimal strategy is so complex that it
would fail to be implementable even if it could be deter-
mined in a reasonable amount of time. As a consequence,
various authors have restricted themselves up front to spe-
cific classes of strategies and developed methods to iden-
tify optimal or asymptotically optimal rules within the
chosen class.

To date, nothing appears to be known on how much is
lost by restricting oneself to any of these classes of strate-
gies. It is noteworthy that all of the proposed classes of
policies are subsets of the class of Zero Inventory Order-
ing (ZIO) policies, under which a retailer is replenished if
and only if its inventory is down to zero. In the absence of
constraints on the vehicle capacity or the frequency with
which retailers can be served, it is easily verified that a
ZIO policy is optimal. However, in the presence of these
constraints, ZIO policies may fail to be optimal, as we shall
demonstrate shortly.

Even the structure of an optimal ZIO policy is too com-
plex to permit implementation or identification by a rea-
sonable algorithm; this is why all the literature on this
model has restricted itself to specific subclasses of the ZIO
policies. One attractive such class are the Fixed Partition
Policies (FP) introduced by Bramel and Simchi-Levi
(1992). A FP strategy partitions the set of retailers into a
number of regions such that each region is served sepa-
rately and independently from all other regions. Moreover,
whenever a retailer in a set is visited by a vehicle, all other
retailers in the set are visited as well. FP policies are easy
to implement: they allow for an easy integration of the
distribution, marketing, and customer service functions.

The main objective of this paper is to characterize the
asymptotic effectiveness of the class of ZIO and the class
of FP policies. Interestingly enough, the cost of solutions
produced by an optimal ZIO policy is directly related to
the optimal solution of an associated bin-packing problem
in which the retailers need to be packed into unit size bins
and their “sizes” are proportional to their relative demand
rates. Indeed, we demonstrate that as the number of retail-
ers grows, the cost of an optimal FP policy as well as that
of an optimal ZIO policy exceeds a lower bound for the
minimum cost value under any strategy by no more than a
factor =a: here a denotes the so-called packing constant
in the associated bin packing problem. The packing con-
stant a Ä 1 is defined as the asymptotic reciprocal of the
average utilization of a bin in an optimal solution. Since
for any sequence of the retailers demand rates, 1 ¶ a ¶ 2,
0.41 5 =2 2 1 represents a worst case bound for the
(asymptotic) optimality gap for FP (ZIO) policies. In par-
ticular, when demand rates are generated independently
from a common distribution, we have for many distribu-
tions of the demand rates allowing for so-called “perfect”

packing, that a 5 1, in which case an FP (ZIO) strategy is
asymptotically optimal while for other common distribu-
tions a is close to one, see Coffman and Lueker (1991) and
Rhee (1988) for a more detailed discussion and character-
ization of the packing constant.

To put these results in perspective we now review the
different existing approaches developed for the model con-
sidered here. This model was first introduced by Anily and
Federgruen (1990). These authors, restricted their analysis
to a class of replenishment strategies C with the following
properties: a replenishment strategy in C specifies a collec-
tion of regions (subset of retailers); if a retailer belongs to
several regions a specific fraction of its sales is assigned
to each of these. Each time one of the outlets in a given
region gets a delivery, this delivery is made by a vehicle
which visits all other outlets in the region as well. Observe
that a large amount of flexibility is preserved by allowing
for overlapping regions of retailers but this may overesti-
mate inventory costs for split retailers. The generated par-
titions have an asymptotically insignificant number of split
retailers; see Hall (1991) and Anily and Federgruen (1991)
for details. With n retailers, Anily and Federgruen show
that regions can be formed by a simple regional partition-
ing scheme and a combined inventory and routing strategy
can thus be computed in O(n log n) time, which is asymp-
totically optimal within the class C.

Subsequent work considers restrictions to other classes
of strategies. Gallego and Simchi-Levi (1990) show that
Direct Shipping policies, i.e., policies in which each vehicle
visits a single retailer, are within 6% of optimality under
certain restricted parameter settings. Herer and Roundy
(1997) and Viswanathan and Mathur (1997) show good
empirical performance for the so-called power-of-two
strategies under which each retailer is replenished at con-
stant intervals which are power-of-two multiples of a com-
mon base planning period. Power-of-two policies have
been shown (See Federgruen et al. 1992) to be within 2%
of optimality for general submodular joint replenishment
cost structures, but vehicle routing costs may fail to be
submodular, as shown in Anily and Federgruen (1990).
Finally, as mentioned above, Bramel and Simchi-Levi
(1992) analyzed the class of Fixed Partition strategies.
They show good empirical performance for medium size
problems in the absence of frequency constraints. For a
more detailed literature review on inventory-routing prob-
lems see Federgruen and Simchi-Levi (1992a and 1992b).

The remainder of this paper is organized as follows. In
Section 1 we specify the model assumptions, introduce the
notation and provide an example in which ZIO policies
may fail to be optimal (even in an asymptotic sense). In
Section 2 we develop a lower bound B* for the cost under
any feasible policy. In Section 3 we construct a close-to-
optimal Fixed Partition Policy and develop worst-case
bounds for the gap between its cost and the lower bound
B* derived in Section 2. Section 4 is devoted to probabilis-
tic analyses of this optimality gap and of the optimal cost
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value Z*. A by-product of our analysis is a practical algo-
rithm for the combined inventory routing problem. For
this purpose we describe, in Section 5, an alternative,
mathematical programming based heuristic for identifying
close-to-optimal FP policies which is of superior perfor-
mance. A numerical study reported in Section 6, demon-
strates that this heuristic comes close to the lower bound
B* even for problems with a moderate number of retailers,
n. Finally, in Section 7, we discuss generalizations and
variations of our model.

1. NOTATION AND MODEL ASSUMPTIONS

Consider a distribution system with a set N 5 {1, 2, . . . ,
n} of geographically dispersed retailers. A central ware-
house with an unlimited supply of a given product serves
the retailers using vehicles of limited capacity, Q. Retailer
i, located at a distance di from the warehouse, faces a
deterministic demand rate Di per unit of time and accrues
a linear holding cost at a constant rate, h, per unit of
product stored there per unit of time. Demand at each
retailer must be met over an infinite horizon without short-
ages or backlogging. The frequency with which a given
retailer can be visited is bounded from above by f, i.e., the
time that elapses between two consecutive deliveries to a
retailer should be at least 1/f. This upper bound on the
delivery frequency to each retailer may be due to the set-up
time required for unloading at the retailers or may be due
to other material handling constraints.

Following Anily and Federgruen (1990), we assume that
the demand rates are rational, i.e., for all i 5 1, . . . , n, Di

is an integer multiple of some common quantity D, or
Di 5 kiD with ki a positive integer. We refer to the quan-
tity ki as the multiplier of retailer i, i [ N. Assuming that
Q and f are rational as well we choose D sufficiently small
that the vehicle capacity Q is an integer multiple of q 5
D/f, the smallest possible delivery quantity for any retailer.
As a consequence, b# 5 Qf/D is integer.

Each time a vehicle is sent out to replenish inventory to
a set of retailers S, it incurs a fixed cost c plus a cost
proportional to the total distance traveled by the vehicle,
i.e., a cost proportional to L(S), the length of the optimal
traveling salesman tour through the warehouse and the
retailers in the set S. Without loss of generality, we set
the cost per mile equal to one. We seek a combined inven-
tory control and routing strategy that procures retailers in
time to meet their demands and minimizes the long-run
average total inventory holding and transportation cost per
unit of time. As in traditional joint replenishment inven-
tory models, it is not clear that an “optimal” policy always
exists. So, let Z* denote the infimum of the long-run average
cost values over all feasible policies. Similarly, let Z*zi de-
note the infimum of the long-run average cost over all Zero-
Inventory Ordering policies. The following example shows
that Z* may be strictly smaller than Z*zi even in an asymp-
totic sense, i.e., in a sequence of problem instances in
which n 3 `, we may have limn3` Z*/n , limn3` Z*zi/n.

An Example

Consider an inventory routing problem in which there are
3n retailers, each one with demand rate 2, located at the
same point, at a distance d 5 1 from the warehouse. Let
f 5 1 and Q 5 3. The fixed cost of sending out a vehicle,
c, equals 1 and similarly the holding cost rate, h, is 1.

Lemma 1. There exists a feasible policy with long-run aver-
age cost Z 5 Z*zi 2 0.5n.

Proof. Consider policies which satisfy the Zero-Inventory
property. Let w be the size of a single delivery to a retailer
in a policy of this type. The frequency constraint implies
that w Ä 2/f 5 2, and hence each delivery to a retailer
must be made by a separate vehicle. Since 2(2di 1 c) D/
h 5 12 . 9 5 Q2, the optimal ZIO policy delivers a full
truck load (three units) to each retailer every 1.5 units of
time. The long-run average transportation cost of this pol-
icy is (3n)(2d 1 c)/1.5 5 6n while the long-run average
holding cost is 3n(1.5) 5 4.5n.

Consider now a different policy which fails to satisfy the
Zero-Inventory Ordering property. Under this policy, each
retailer receives a delivery every unit of time. The fre-
quency constraint is clearly satisfied. Without loss of gen-
erality, assume the system starts with zero-inventory at
each retailer. Partition the retailers into groups of three
retailers each. For each such group of three retailers, let
the delivery sizes be (2, 2, 3) at time 0, (2, 3, 1) at time
2t 2 1 and (2, 1, 3) at time 2t for each t 5 1, 2, 3, . . . .
Hence, for each t 5 1, 2, 3, . . . , only two fully loaded
vehicles are needed to visit each group of three retailers. It
is easy to see that the long run average transportation cost
of this policy is (2d 1 c)2n 5 6n while the long run
average holding cost is n[1 1 1.5 1 1.5] 5 4n. □

2. A LOWER BOUND FOR THE COST OF ANY
FEASIBLE POLICY

In this section we develop a lower bound for the minimum
long run average cost of every policy.

Lemma 2.

B* 5 O
i51

n F k i D~2d i 1 c!

Q
1

hk i q

2
G ,

is a lower bound for the minimum long-run average cost
among all feasible policies.

Proof. Let Ii Ä 0 be the initial inventory level at retailer i
for every i. Consider an arbitrary policy 3 over an infinite
horizon. Let #(3, t) be the average cost per unit of time
incurred by this policy over the interval [0, t). It suffices to
show that #(3, t) Ä (t/(t 1 1/f )) B* 2 c9/t for some
constant c9 for all t . maxi Ii/kiD.

Assume the retailers are ordered such that d1 Ä d2

Ä . . . Ä dn. Let M be the number of vehicles sent out from
the warehouse during the interval [0, t); Sj be the set of
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retailers visited by vehicle j, j 5 1, 2, . . . , M; and w i
j the

number of units of product received by retailer i from
vehicle j during [0, t). Let Qj be the amount of product
delivered by the jth vehicle during the interval [0, t), i.e.,
Qj 5 ¥i51

n w i
j.

We first construct a lower bound for the total transpor-
tation cost incurred by policy 3. Consider the jth vehicle
and a retailer i [ Sj. Clearly, L(Sj) 1 c Ä 2di 1 c and
hence

Q j @L~S j ! 1 c# 5 O
i[Sj

w i
j@L~S j ! 1 c# > O

i [ S j

w i
j~2d i 1 c!.

Since Qj ¶ Q,

L~S j ! 1 c > O
i[Sj

w i
j

Q
~2d i 1 c! .

Hence the total transportation cost is no smaller than

O
j51

M

@L~S j ! 1 c# > O
j51

M O
i[Sj

w i
j

Q
~2d i 1 c!

5 O
i51

n O
j: i[Sj

w i
j

Q ~2d i 1 c!

> O
i51

n k i Dt 2 I i

Q ~2d i 1 c! .

Consider now the holding cost for each retailer i. Let ri

be the number of deliveries received by retailer i over the
interval [0, t). Due to the upper bound for the frequency
with which each retailer receives deliveries, ri ¶ (t 1 1/f ) f.
Hence, the holding cost incurred by retailer i is no smaller
than when the total delivery quantity to retailer i in [0, t)
is the minimum required, i.e., kiDt 2 Ii, and the quantity is
delivered at ri equidistant epoches when inventories are
down to zero (see Carr and Howe 1962 for a rigorous
proof). In this case the average inventory level equals
(kiDt 2 Ii)/2ri. The total holding costs incurred by retailer
i in [0, t) are thus bounded from below by

th
k i Dt 2 I i

2r i
>

hk i t
2

tD
~t 1 1/f ! f

2
k i Dt 2 I i

2r i

5
hk i t 2q

2~t 1 1/f !
2

k i Dt 2 I i

2r i
.

Let

c9 5 O
j51

M I i

Q
~2d i 1 c! .

Combining the lower bounds on the transportation and the
holding costs, we have

#~3, t! >
t

t 1 1/f
O
i51

n F k i D~2d i 1 c!

Q
1

hk i q

2
G

2
c9
t 2

hO i I i

2f
1

~t 1 1/f !

5 S t
t 1 1/f

D B* 2
c9

t
2

h O i I i

2f
1

~t 1 1/f !
. □

3. A CLOSE-TO-OPTIMAL FIXED PARTITION
POLICY

In this section we construct a FP policy which comes close
to being optimal. In particular, we show that the cost of
this FP policy asymptotically (as n 3 `) exceeds the lower
bound B* by no more than a factor =a, where 1 Ä a Ä 2
denotes the so-called packing constant associated with
packing customers of “size” {ki: i 5 1, 2, . . . , n} into bins
of size b# 5 Q/q 5 Qf/D (see below as well as the introduc-
tion for precise definitions.)

We construct the FP policy using the following two-step
procedure. In the first step, we partition the given area A
where the retailers are distributed into subregions. The
retailers in each such subregion are then partitioned into
sets of retailers by solving the bin-packing problem defined
by the multipliers of the retailers and bins of size b# . Each
such set is then served in an efficient way.

The Region Partitioning Scheme

Let G(u) be an infinite grid of squares with edges parallel
to the coordinate axes and side length u/=2. Intersecting
each of these squares with A, let {A1, A2, . . . , Am} denote
the resulting collection of nonempty intersections. Accord-
ingly, each subregion Aj, j 5 1, 2, . . . , m, is either a square
of side u/=2 or the intersection of such a square with A.

Let Nj, be the set of retailers in subregion Aj with nj 5
uNju, j 5 1, 2, . . . , m. Given subregion Aj, let d j be the
distance from the warehouse to its closest point in Aj, j 5
1, 2, . . . , m.

To construct the fixed partition policy, we group all the
retailers in subregion Aj, j 5 1, 2 . . . , m, into sets by
solving the bin-packing problem defined by the multipliers
(the numbers ki) of the retailers in Nj and bins of capacity
b# . Each such set S of retailers is served together and is
visited using a reorder interval that depends on k(S) [
¥i[S ki and the subregion where the retailers in S are
located. If S is in the subregion Aj for some j 5 1, 2, . . . ,
m, then the reorder interval is

tS

5 5
1
f , if Î2k~S! D~2d j 1 c!/h < k~S!q

Î 2~2d j 1 c!

k~S! Dh
, if k~S!q , Î2k~S! D~2d j 1 c/h < Q,

Q
k~S!D

, otherwise.

That is, the reorder interval is chosen so that qS 5 k(S) DtS

is the value of q achieving

min
k~S!q¶q¶Q

H k~S! D~2d j 1 c!

q 1
hq
2
J . (1)

Consequently, these reorder intervals satisfy the capacity
as well as the frequency constraints.

For any set of retailers S, S # Nj, we use the following
routing strategy. The vehicle travels from the warehouse to
its closest point in Aj, visits the retailers in S in any order,
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and then returns to the warehouse. It is clear that the total
distance traveled is no more than 2d j 1 (uSu 1 1)u.

Analysis of the Upper Bound

For each subregion Aj, let b(Nj) be the optimal solution to
the bin-packing problem defined by the multipliers of the
retailers in Nj, j 5 1, 2, . . . , m. Let Sj(l ), l 5 1, 2, . . . ,
b(Nj) be the lth set of retailers assigned to one bin in this
optimal solution.

We first need the following technical lemma.

Lemma 3. (a) The function

F~b, d! 5 min
bq¶q¶Q

F bD~2d 1 c!
q 1

hq
2
G ,

is concave in b for all b [ [1, b# ].
(b) F(b, d) ¶ F(b# , d)=b /b#5=b /b# [ f(2d 1 c) 1 hQ/2]

for all b [ [1, b# ].

Proof. (a) We consider two cases:

Case (i): 2D(2d 1 c)/h Ä Qq. This implies that for any
1 ¶ b ¶ b# , 2bD(2d 1 c)/h Ä (bq)2 and hence we have

F~b, d! 5 5
bD~2d 1 c!

Q 1
hQ
2 ,

Î2bD~2d 1 c!h,

for
2bD~2d 1 c!

h . Q2,

i.e. b . b0 5
Q2h

2D~2d 1 c!
,

otherwise.

Thus, F(b, d) is piecewise concave and since its left deriv-
ative in the breakpoint b 5 b0 equals its right derivative,
we conclude that F(b, d) is concave in b.

Case (ii): 2D(2d 1 c)/h , Qq. Since 2bD(2d 1 c)/h ,
Q2 for any 1 ¶ b ¶ b# , we have

F~b, d!

5 5
D~2d 1 c!

q 1
hbq

2 ,

Î2bD~2d 1 c!h,

for
2bD~2d 1 c!

h
, ~bq! 2,

i.e. b . b 0 5
2D~2d 1 c!

hq 2 ,

otherwise.

The concavity proof of F(b, d) is analogous to that in the
first case.

(b) We consider three cases depending on the quantity
=2bD(2d 1 c)/h, the unconstrained minimizer of the
function bD(2d 1 c)/q 1 hq/2.

Case 1: bq ¶ =2bD(2d 1 c)/h ¶ Q.

F~b, d! 5 Î2bD~2d 1 c!h 5 Îb
b#

Î2b# D~2d 1 c!h

< Îb
b#

F~b# , d! ,

since b ¶ b# and =2b# D~2d 1 c!h represents the uncon-
strained minimum of the function b#D(2d 1 c)/q 1 hq/2.

Case 2: bq . =2bD(2d 1 c)/h.

F(b, d) 5 x 1 ab, where x 5 D(2d 1 c)/q and a 5 hq/2.
Note that

b# q .
b#
b

Î2bD~2d 1 c!
h > Îb#

b
Î2bD~2d 1 c!

h

5 Î2b# D~2d 1 c!
h ,

and F(b# , d) 5 x 1 ab# . Thus

F~b, d!

F~b# , d!
5 f~ x! 5

x 1 ab
x 1 ab#

.

Observe that f(x) achieves its maximum subject to the
constraint x ¶ ab (implied by case 2) at x 5 ab. Thus,

F~b, d!

F~b# , d!
<

2ab
a~b 1 b# !

5
2

1 1 b# /b
5

2 Îb/b#

Îb/b# 1 Îb# /b
< Îb/b# ,

since ~1 2 =b /b# !2 Ä 0.

Case 3: =2bD(2d 1 c)/h . Q.
F(b, d) 5 x 1 ab, where x 5 hQ/2 and a 5 D(2d 1 c)/Q.
Note that

Q < Îb#
b Q , Î2b# D~2d 1 c!

h ,

and F(b# , d) 5 x 1 ab# with x ¶ ab (implied by case 3).
Thus

F~b, d!

F~b# , d!
5 f~ x! 5

x 1 ab
x 1 ab#

< Îb
b#

,

by the argument used in Case 2. □

We are now able to derive an upper bound for the cost
of the above defined FP policy and hence for ZFPP, the
infimum of the cost values among all FP policies. This
bound depends on the number of routes b(Nj) into which
each of the customer sets {Nj; j 5 1, 2, . . . , m} in the
collection of subregions {Aj: j 5 1, 2, . . . , m} is parti-
tioned. For each subregion j 5 1, 2, . . . , m, we express
the number of routes generated in the subregion relative
to the minimum possible number of routes, i.e., the num-
ber of routes required if the demand multipliers {ki: i [
Nj} allow for perfect packing; in other words, we express
the number of routes employed by the FP policy in terms of

b j 5
b~N j !

O l51
b~Nj ! k~S j ~l !!/b#

> 1.

Theorem 1.

Z FPP < O
j51

m
Îb j O

i[Nj

F k i D~2d i 1 c!

Q
1

hk i q

2
G 1 2nuf .

Proof. We bound ZFPP by the cost value of the above
described FP policy. Under this policy, the reorder interval
for every subset of retailers Sj(l ), l 5 1, 2, . . . , b(Nj), is
tSj(l ) Ä 1/f. Hence, ZFPP is bounded by
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Z FPP < O
j51

m O
l51

b~Nj !

$@2d j 1 c 1 u~ uS j ~l ! u 1 1!#/t S j ~l !

1 hk~S j ~l !! Dt S j ~l ! / 2}

< O
j51

m O
l51

b~Nj ! H 2d j 1 c

t S j ~l !

1
hk~S j ~l !! Dt S j ~l !

2 J 1 2nuf

5 O
j51

m O
l51

b~Nj !

min
k~Sj ~l !!q¶q¶Q

H k~S j ~l !! D~2d j 1 c!

q
1

hq
2
J

1 2nuf

5 O
j51

m O
l51

b~Nj !

F~k~S j ~l !! , d j ! 1 2nuf .

By Lemma 3 (a), F(b, dj) is a concave function of b for
every j 5 1, 2, . . . , m, and therefore we have for every j,

O
l51

b~Nj !

F~k~S j ~l !! , d j ! < b~N j ! FS O
l51

b~Nj ! k~S j ~l !!

b~N j !
, d j D

5 b~N j ! FS b#
b j

, d j D .

Hence, we have by Lemma 3 (b),

Z FPP < O
j51

m

b~N j !~b# /b j !

FS b#

b j
, d j D

b# /b j

1 2nuf

5 O
j51

m O
l51

b~Nj !

k~S j ~l !!

FS b#

b j
, d j D

b# /b j

1 2nuf

< O
j51

m O
i[Nj

k i Îb j

F~b# , d j !

b#
1 2nuf

< O
j51

m O
i[Nj

k i Îb j

F~b# , d i !

b#
1 2nuf

5 O
j51

m
Îb j O

i[Nj

F k i D~2d i 1 c!

Q
1

hk i q

2
G 1 2nuf . □

We now relate the upper bound for ZFPP to the lower
bound for Z* obtained in Section 2. Note that, in case all
bj 5 1, j 5 1, 2, . . . , m, the two bounds coincide except
for the term 2nuf which can be made arbitrarily small by
employing a small enough grid size u. The upper bound in
Theorem 2 also exhibits the fundamental tradeoff to be
considered in implementing the above regional partition-
ing scheme: the second term in the upper bound (2nuf )
can be reduced to zero by adopting an increasingly small
grid size u in the first step of the procedure and hence by
dividing the total retailer population into an increasingly
large set of subregions {Aj : j 5 1, 2, . . . , m}. On the
other hand, the larger the subregions {Aj: j 5 1, 2, . . . ,
m} are, the more efficient solutions can be obtained for
the bin packing problem to be solved in the second step
of the procedure, thus reducing the values of {bj}.

By comparing the upper bound in Theorem 1 and the
lower bound in Section 2, we immediately obtain the fol-
lowing asymptotic worst-case bound for the optimality gap
of ZFPP and hence for Z*zi.

Theorem 2. Consider an arbitrary sequence of retailer loca-
tions { x1, x2, . . .} and associated retailer multipliers {k1,
k2, . . .}. Let Z*(n), Z*zi(n) and ZFPP(n) denote the infi-
mum of the costs incurred to serve the first n retailers
among all possible strategies, all zero-inventory strategies
and all FP policies, respectively. Then

lim
n3`

Z*zi ~n!

Z*~n!
< lim

n3`

Z FPP~n!

Z*~n!
< Î2 5 1.41.

Proof. Consider the FP policy obtained by the above two-
step procedure with a given grid size u. Let J1 5 { j:
limn3` uNju 5 `} and J0 5 {1, 2, . . . , m}\J1 5 { j: limn3`

uNju , `} so that

Z 0~n! ; O
j[J 0

Îb j O
i[Nj

F k i D~2d i 1 c!

Q
1

hk i q

2
G ,

is bounded in n. Observe from Lemma 2 that Z* ¶ n
[Dc/Q 1 hq/2]. Thus,

lim
n3`

Z FPP~n!

Z*~n!
< lim

n3`

Z 0~n!

n@Dc/Q 1 hq/ 2#

1 lim
n3`

O j[J 1 Îb j O i[Nj @k i D~2d i 1 c!/Q 1 hk i q/ 2#

O j51
m O i[Nj @k i D~2d i 1 c!/Q 1 hk i q/ 2#

1
2uf

Dc/Q 1 hq/ 2

< lim
n3`

$max
j[J 1

Îb j % 1
2uf

Dc/Q 1 hq/ 2 (2)

< Î2 1
2uf

Dc/Q 1 hq/ 2 ,

since bj ¶ 2 (the latter follows from the well-known fact
that the optimal solution to the bin-packing problem is no
more than twice the sum of the fraction of the bin capacity
taken by each item). Since ZFPP denotes the infimum over
all fixed partition policies, the theorem follows by consid-
ering a sequence of FP policies generated by the two-step
procedure corresponding to a sequence of grid sizes {ul}
with liml3` ul 5 0. □

4. PROBABILISTIC ANALYSIS OF OPTIMALITY
GAPS AND OPTIMAL COST VALUES

Significantly sharper bounds for the asymptotic optimality
gap may be obtained if the sequence of retailer locations
and sizes (multipliers) can be assumed to arise from a
specific probabilistic pattern. A basic probabilistic model
assumes that the sequences of retailer locations { x1,
x2, . . .} and retailer multipliers {k1, k2, . . .} are both inde-
pendent and identically distributed, and independent of
each other.
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In this probabilistic model we have for all subregions j
with limn3` uNju 5 `, i.e., for all j [ J1, that the bin-
packing problem to be solved in the second of the two-step
construction procedure for the FP policy, deals with a se-
quence of retailer sizes {ki} which is i.i.d. and with the
same common multiplier distribution in all subregions. It is
well known from the theory of subadditive processes by
Kingman (1976) (see also Rhee and Talagrand (1987))
that for all j [ J1,

lim
n3`

b~N j !/ uN j u 5 g (a.s.),

while by the strong law of large numbers,

lim
n3`

1
uN j u

O
i[Nj

k i

b#
5

E~k!

b#
(a.s.).

We conclude that for all j 5 J1,

lim
n3`

b j 5 a ; gb# /E~k! , (3)

and obtain the following corollary from Theorem 2.

Corollary 1. Consider a sequence of retailer locations { x1,
x2, . . .} and retailer multipliers of {k1, k2, . . .} which are
both i.i.d and independent of each other. Let Z*(n), Z*zi(n)
and ZFPP(n) be defined as in Theorem 2. Then

~a! lim
n3`

Z*zi ~n!

Z*~n!
< lim

n3`

Z FPP~n!

Z*~n!
< Îa (a.s.).

~b!
DE~k!@2E~d! 1 c#

Q 1
hE~k!q

2 < lim
n3`

Z*~n!
n

< Îa FDE~k!@2E~d! 1 c#

Q 1
hE~k!q

2
G (a.s.).

(c) If a 5 1, i.e., if the distribution of retailer multipli-
ers allows for perfect packing:

lim
n3`

Z*zi ~n!

Z*~n!
5 lim

n3`

Z FPP~n!

Z*~n!
5 1 (a.s.),

i.e., Fixed Partition policies are (a.s.) asymptotically opti-
mal, and

lim
n3`

Z*~n!
n 5

DE~k!@2E~d! 1 c#

Q 1
hE~k!q

2 .

Proof. Parts (a) and (c) are immediate from Lemma 2,
(2), and (3); the existence of limn3` Z*(n)/n follows from
Z*(n1 1 n2) ¶ Z*(n1) 1 Z*(n2) and the fact that the
minimum cost to cover a group of retailers { xn11, . . . ,
xn1n} is identically distributed for all n Ä 1, see Kingman
(1973). The upper and lower bound for limn3` Z*(n)/n
follow again from Lemma 2, (2), and (3). □

Remarks. Part (c) of the corollary deals with the case
where the distribution of retailer multipliers allows for
perfect packing, i.e., the wasted space in the bins is asymp-
totically insignificant. Karmarkar (1982) first proved that
any nonincreasing probability density function (with some
mild regularity conditions) allows for perfect packing.

Rhee completely characterizes the class of distributions
which allow for perfect packing, see also Coffman and
Lueker.

More generally, in many distribution problems we en-
counter significant correlations between the retailer loca-
tions and their sales volumes, e.g., retailers in urban areas
or in specific states or regions may have larger demands.
We may thus wish to generalize the above probabilistic
model to one in which the sequence of pairs {(xi, ki)} is
i.i.d with a common joint distribution, characterized by the
marginal distribution of the locations m[ and the condi-
tional multiplier distributions (kux 5 x0). Let g(x) denote
the asymptotic average number of bins (routes) required
for retailers with multipliers independently distributed as
(kux) and let a(x) 5 g(x)b# /E(kux). Following, once again,
the proof of Theorem 2 we obtain:

Corollary 2. Consider a sequence of pairs of retailer loca-
tions and multipliers {(x1, k1,); (x2, k2,); . . .} which are
independent and identically distributed with a common
joint distribution, characterized by m[, the marginal cdf of
the retailer locations, and the conditional distributions
(kux 5 x0). Let Z*(n), Z*zi(n), ZFPP(n) be defined as in
Theorem 2. Then, almost surely

~a! lim
n3`

Z*zi ~n!

Z*~n!
< lim

n3`

Z FPP~n!

Z*~n!
< # Îa~ x! dm~ x!.

~b!
D@2E~kd! 1 cE~k!#

Q 1
hE~k!q

2 < lim
n3`

Z*~n!
n

< # Îa~ x! dm~ x!FD@2E~kd! 1 cE~k!#

Q 1
hE~k!q

2
G .

(c) If all conditional multiplier distributions (kux) allow
for perfect packing:

lim
n3`

Z*zi ~n!

Z*~n!
5 lim

n3`

Z FPP~n!

Z*~n!
5 1 (a.s.), and

lim
n3`

Z*~n!
n 5

D@2E~kd! 1 cE~k!#

Q 1
hE~k!q

2 (a.s.).

We observe that the above probabilistic analysis is based
on the sequence of retailer multipliers satisfying two ele-
mentary limit results:

(i) in each subregion j, the sequence of multipliers sat-
isfies the strong law of large numbers;

(ii) in each subregion, the bin-packing problem associ-
ated with the sequence of multipliers, has an asymptotic
almost sure average value, i.e., for all j [ J1, limn3`

b(Nj)/uNju 5 gj(a.s.) for some gj.

Both limit results can be established under conditions far
more general than those of Corollaries 1 and 2. Both limit
results apply, e.g., when the sequence of retailer attributes
{ xi, ki)} is stationary, i.e., the joint distribution of any
m-tuple {(xn, kn); (xn11, kn11), . . . , (xn1m, kn1m)} is in-
dependent of n; see Kingman (1976).
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The above probabilistic models are suitable to charac-
terize the relative performance of FP and ZIO policies for
sequences of progressively expanding retailer chains, with
each additional retailer acquiring an incremental clientele.
A different model is needed when a fixed customer market
is covered by a progressively larger and denser retailer
chain, e.g., one with a given customer demand rate density
w[ in the plane. If n retailers with i.i.d. locations offer
identical service and merchandise, it is reasonable to as-
sume that any particular retailer attracts the customers in
the region of those locations for which this retailer is the
closest among all of the n available retailers. Alternatively,
in an expanding market with n i.i.d. customer locations
{ y1, . . . , yn} and associated i.i.d. demand rates each re-
tailer i attracts the subset of customers to which it is clos-
est. The problem in analyzing this model is that the retailer
size (multiplier) ki of any given retailer i (1 ¶ i ¶ n) has a
distribution which varies as n is increased, i.e., the retailer
sizes need to be described by a tableau of random variables
{kin; 1 ¶ i ¶ n} rather than a single sequence. The asymp-
totic behavior of the packing constants {bj} appears to be
unknown under this type of probabilistic model.

5. AN EFFICIENT ALGORITHM FOR INVENTORY
ROUTING MODELS

The effectiveness of the Fixed Partition Policies suggests a
new algorithm for general inventory-routing problems sim-
ilar to the one developed by Bramel and Simchi-Levi for
the Capacitated Vehicle Routing Problem with Unsplit
Demands. The algorithm is based on formulating the
inventory-routing model as a Capacitated Concentrator
Location Problem (CCLP), for the purpose of generating a
partition of regions. Each of these regions is assigned a vehi-
cle which visits all retailers in the region at equidistant
epoches. The CCLP is subsequently solved, and its solu-
tion provides a policy whose cost is, asymptotically, no
larger than ZFPP.

5.1. The Capacitated Concentrator Location
Problem

The Capacitated Concentrator Location Problem (CCLP)
can be described as follows: given m possible sites for concen-
trators of fixed capacity C, we would like to locate con-
centrators at a subset of these m sites and connect n
terminals, where terminal i uses wi units of a concentra-
tor’s capacity, in such a way that each terminal is con-
nected to exactly one concentrator, the concentrator
capacity is not exceeded and the total cost is minimized. A
site-dependent cost is incurred for locating each concen-
trator; that is, if a concentrator is located at site j, the
set-up cost is vj, for j 5 1, 2, . . . , m. The cost of connect-
ing terminal i to concentrator j is cij (the connection cost),
for i 5 1, 2, . . . , n and j 5 1, 2, . . . , m. No assumptions
need to be made on the costs {cij} and {vj}. We assume
that there is enough capacity so that a feasible solution
exists.

The CCLP can be formulated as the following integer
linear program. Let

y j 5 $1,
0,

if a concentrator is located at site j,
otherwise,

and let

x ij 5 $1,
0,

if terminal i is connected to concentrator j,
otherwise.

Problem P: Min O
i51

n O
j51

m

c ij x ij 1 O
j51

m

v j y j

s.t. O
j51

m

x ij 5 1 ; i , (4)

O
i51

n

w i x ij < C ; j, (5)

x ij < y j ; i, j, (6)

x ij [ $0, 1% ; i, j, (7)

y j [ $0, 1% ; j. (8)

Constraints (4) ensure that each terminal is connected
to exactly one concentrator, and constraints (5) ensure that
the concentrator’s capacity constraint is not violated. Con-
straints (6) guarantee that if a terminal is connected to site
j, then a concentrator is located at that site. Constraints
(7) and (8) ensure the integrality of the variables.

5.2. Formulation

To formulate the region partitioning part of the inventory-
routing problem as an instance of the Capacitated Concen-
trator Location Problem, we refer to each retailer as a
terminal whose weight is ki, i.e., we set wi 5 ki. Each
retailer is also a possible site for a concentrator with ca-
pacity b# , i.e., C 5 b# . Thus, in our formulation of the
inventory-routing problem as a CCLP, m 5 n. The set-up
cost for installing a concentrator at site j, (where site j
corresponds to retailer j) is 2dj. Similar to Bramel and
Simchi-Levi, we have used two possible connection costs,
cij:

direct cost: c ij 5 2d ij ,

nearest insertion cost: c ij 5 d i 1 d ij 2 d j .

The solution to the CCLP provides the grouping of the
retailers into subsets. Each such subset is served together.

We have implemented two versions of the algorithm
corresponding to this pair of connection cost specifications
which we refer respectively as the Star-Connection Heuris-
tic (ST) and the Nearest Insertion Heuristic (NI).

The next Theorem shows that asymptotically, the cost of
the solution produced by the ST heuristic approaches the
value of ZFPP.

Theorem 3. Under the assumptions of Corollary 1 and for
any distribution F of the retailer multipliers which allows
for perfect packing, we have

lim
n3`

Z ST/Z FPP 5 1(a.s.).
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Proof. We omit the details of the proof since it is similar
to the proof of the upper bound from Section 3. See Chan
(1995) for details. □

6. A NUMERICAL STUDY

In this section we report our computational experience
with the Location Based Heuristic using randomly gener-
ated problems. Clearly, computing the optimal cost for
even small size problems is intractable. We therefore re-
port the heuristic’s performance relative to the two lower
bounds developed in the previous sections: B*zi and B*.

We have generated 80 problem instances, partitioned
into eight different sets. All the instances in a set share the

same combination of retailer and warehouse locations and
the same retailer multipliers and value of b#. In each set, the
retailer and warehouse locations are independently and
uniformly located in a square of size [100, 100]. Across
each set, the number of retailers varies from 30 to 200. In
all cases b# 5 14, and the retailer multipliers are uniformly
distributed on the integers {1, 2, . . . , 14}. For every set,
we have generated 10 different problem instances differing
in the values of the parameters q, Q, c, h, and D only. The
characteristics of each problem are reported in Table I.

The instances in each set can be subdivided into three
categories. In the first category (instances 1–3), we investi-
gate the impact of an increase in c, the fixed set-up cost. In
the second category (instances 4–6), we investigate the
impact of increasing the holding cost h. In the third cate-
gory (instances 7–10), we investigate the impact of increas-
ing the demand rate D.

Table II reports the ratios between the heuristic cost
and the lower bound on the cost of every policy (i.e.,
ZH/B*).

We observe that the algorithm produces solutions rela-
tively close to the lower bound; the Optimality gap with
respect to the lower bound B* is always less than 16% and
in most cases no more than 10%. The results also show
that increasing the fixed set-up cost, c, tends to improve
the performance of the algorithm; in category I the rela-
tive error decreases as c increases. A similar behavior is

Table I
List of Parameter Values for Each Instance

Parameter
Set Category q Q c h D

[1] I 5 74 2 6 10
[2] I 5 74 10 6 10
[3] I 5 74 100 6 10
[4] II 5 74 2 1 10
[5] II 5 74 2 10 10
[6] II 5 74 2 100 10
[7] III 5 74 2 6 5
[8] III 5 74 2 6 20
[9] III 5 74 2 6 50

[10] III 5 74 2 6 500

Table II
Heuristic Cost Over Lower Bound on the Cost of Every Policy

Parameter
Set 30 50 80 100 120 150 180 200

[1] 1.140 1.111 1.110 1.100 1.096 1.094 1.086 1.090
[2] 1.137 1.098 1.109 1.099 1.096 1.094 1.085 1.089
[3] 1.103 1.089 1.086 1.079 1.079 1.076 1.067 1.070
[4] 1.153 1.111 1.115 1.120 1.105 1.100 1.090 1.093
[5] 1.112 1.089 1.088 1.080 1.078 1.075 1.070 1.072
[6] 1.017 1.013 1.013 1.012 1.011 1.011 1.010 1.010
[7] 1.100 1.080 1.078 1.071 1.069 1.067 1.062 1.064
[8] 1.150 1.112 1.118 1.114 1.106 1.103 1.092 1.096
[9] 1.153 1.112 1.116 1.119 1.105 1.100 1.091 1.093

[10] 1.154 1.104 1.111 1.122 1.101 1.096 1.088 1.089

Table III
Heuristic Cost Over Lower Bound on the Cost of Every Zero-Inventory Ordering Poicy

Parameter
Set 30 50 80 100 120 150 180 200

[1] 1.113 1.085 1.085 1.075 1.071 1.070 1.061 1.065
[2] 1.110 1.084 1.083 1.074 1.070 1.069 1.060 1.064
[3] 1.081 1.068 1.064 1.057 1.057 1.054 1.045 1.049
[4] 1.143 1.101 1.105 1.110 1.095 1.090 1.081 1.083
[5] 1.090 1.068 1.067 1.059 1.057 1.055 1.049 1.051
[6] 1.014 1.010 1.010 1.009 1.008 1.008 1.007 1.008
[7] 1.080 1.060 1.060 1.052 1.050 1.049 1.043 1.045
[8] 1.129 1.096 1.097 1.093 1.085 1.082 1.072 1.075
[9] 1.140 1.101 1.104 1.108 1.094 1.089 1.080 1.082

[10] 1.153 1.103 1.109 1.120 1.100 1.094 1.086 1.088
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observed in category II; increasing the holding cost h tends
to decrease the relative error.

We have also compared the lower bound B* which ap-
plies to all strategies and the bound B*zi which applies to
the ZIO policies only. B*zi is extremely close to B*; the
ratio between these two values is no more than Q/b#q. In
our problem sets B*zi/B* is no more than 1.025. Table III
reports the ratios 2H/B*zi for all problem sets.

The next set of experiments is designed to estimate the
effect of multipliers distributions that do not allow for per-
fect packing on the performance of the location based
heuristic. For this purpose, Table IV reports the results of
the eight instances when b# 5 10 and the retailer multipli-
ers are uniformly distributed on the integers {3, 4, 5, 6, 7,
8}. The values of the parameters are q 5 5, Q 5 54, c 5 2,
h 5 6 and D 5 10.

Finally, we investigate the impact of the frequency con-
straints on our algorithm. Since the frequency constraint
plays a role only through q, we have changed this parame-
ter, and hence the value of b# in the last set of parameters.
The next two tables reports our computational experience
with this set of problems. Observe, that the results are
similar to the previous ones; the error decreases as the
number of retailer increases and for problems with at least
80 retailers the optimality gap between the solution pro-
duced by our algorithm and the lower bound B* is no
more than 19% and the gap with respect to B*zi is no more
than 15%.

7. FURTHER RESULTS AND ALTERNATIVE
MODELS

The analysis performed in this paper can be carried over
to more general versions of our model. For instance, a
somewhat restrictive assumption in the model analyzed in

Sections 2–4 is the assumption that the common quantity
D used to measure the retailer demand rates {di 5 kiD:
i 5 1, . . . , n} is chosen small enough that Q, the vehicle
capacity, is an integer multiple of D/f. Such a choice con-
siderably simplifies the analysis. However, tighter bounds
and tighter characterizations of optimality gaps may be
obtained under a larger (and often more natural) common
quantity D; see Chan.

We now extend our model to include discounted costs.
For this purpose observe that the model introduced in the
introduction, considers the average cost criterion, capturing
the capital costs associated with system-wide inventories as
part of the holding costs. An alternative model, perhaps
more directly reflecting the company’s cash flows, consid-
ers the total, continuously discounted, value of all out-of-
pocket expenses (i.e., the routing costs and inventory
carrying charges beyond the cost of capital, if any).

The model with the discounted cost criterion is signifi-
cantly more complex to analyze. This applies even for the
simple EOQ model which corresponds with the special
case of a single retailer (n 5 1), and even when the con-
straints on vehicle capacities and delivery frequencies are
ignored. For this basic, discounted EOQ-model, it is possi-
ble to show, see, e.g., Jesse et al. (1983), Porteus (1985), or
Lee and Nahmias (1993), that analogous to the classical
EOQ-model with the average cost criterion, a stationary
ZIO policy is optimal with a constant delivery quantity q.
The optimal value of q is the (unique) cost of a nonlinear
equation, which cannot be obtained in closed form. How-
ever, by ignoring third and higher degree terms in the
Taylor series expansion of the nonlinear components of
the cost expression, we obtain an approximation for the
optimal value of q which is identical to the well-known
(Harris-Wilson) EOQ-formula in the average cost case,

Table IV
Computational Result for Nonperfect Packing Instances

30 50 80 100 120 150 180 200

ZH/B*zi 1.151 1.126 1.115 1.107 1.100 1.091 1.094 1.091
ZH/B* 1.188 1.161 1.149 1.142 1.134 1.125 1.128 1.125

Table V
ZH/B*zi for Different Values of q

b# 30 50 80 100 120 150 180 200

8 1.104 1.073 1.078 1.070 1.063 1.062 1.066 1.067
10 1.151 1.126 1.115 1.107 1.100 1.091 1.094 1.091
12 1.140 1.132 1.119 1.116 1.117 1.108 1.099 1.096

Table VI
ZH/B* for Different Values of q

b# 30 50 80 100 120 150 180 200

8 1.142 1.108 1.113 1.105 1.098 1.096 1.101 1.102
10 1.188 1.161 1.149 1.142 1.134 1.125 1.128 1.125
12 1.174 1.165 1.151 1.149 1.150 1.141 1.131 1.129
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with the capital cost component in the unit carrying cost
rate h, replaced by the product of the (continuous) dis-
count factor and the item’s unit dollar value. Moreover, it
has been substantiated that this approximation comes very
close to being optimal.

To our knowledge, all continuous time models for multi-
item or multi-location systems have confined themselves to
the average cost case, and it has not been possible to adapt
to the discounted cost model, any of the numerous charac-
terizations of optimality and accuracy gaps for heuristics
and bounds, respectively. This applies even for the special
case of our model in which the cost of a vehicle route does
not depend on the number of miles driven, i.e., where all
vehicle routes have an identical cost value, c. On the other
hand, the analysis in this paper suggests a natural strategy
for the discounted cost model: compute a (close-to) opti-
mal FPP for the average cost model (e.g., via the methods
described in Section 5): then, for each of the routes gener-
ated by the FPP, determine the (constant) delivery quan-
tity q as the value achieving the minimum in (1) with the
average cost expression replaced by its discounted cost
analogue.
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