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In many resource allocation problems, the objective is to allocate discrete resource units to a set of activities so as to 
maximize a concave objective function subject to upper bounds on the total amounts allotted to certain groups of 
activities. If the constraints determine a polymatroid and the objective is linear, it is well known that the greedy procedure 
results in an optimal solution. In this paper we extend this result to objectives that are "weakly concave," a property 
generalizing separable concavity. We exhibit large classes of models for which the set of feasible solutions is a polymatroid 
and for which efficient implementations of the greedy procedure can be given. 

In many resource allocation problems, the objective 
is to allocate discrete resource units to a set of 

activities so as to maximize a concave objective func- 
tion subject to upper bounds on the total amount 
allotted to certain groups of activities. These problems 
can be formulated as integer programs of the following 
type: 

maximize r(z) 

subject to E zi V S(S), (P) 
iE=S 

S E A and zi ? 0 and integer. 

In this model, A is a class of subsets of a finite set 
E and V(.) is a given function defined on subsets 
S of E. 

The greedy or marginal allocation procedure assigns 
available units sequentially to the activity that benefits 
most from an additional allocation among all activi- 
ties whose allotment can be increased without creating 
infeasibilities. It terminates as soon as no such activity 
can be found. 

In the simplest case, r(.) is separable and A = {E} 
(so the model contains a single budget constraint), 
and as is well known, the greedy procedure results in 
an optimal solution (Gross 1956 and the references 
cited later in this section). Tamir (1980) extended this 
result to models with a nested set of constraints 
(A = S for i = 1) c ...( , n) with Sa f S2 C ..g C 
Sn E). Brucker (1982) established a further general- 

ization to tree-structured models that are structured 
so that, for each pair S, T E A, either S C T or T C S 
or S U T= 0. (see also Mjelde 1983). 

We recently developed an optimization model for 
an investment company that deals in oil and gas 
ventures (Federgruen and Groenevelt 1986). The 
model determines which of the company's clients 
should apply for a lease on each of the parcels offered 
by the U.S. government in its bimonthly special draw- 
ings. The model can be formulated as a special in- 
stance of the class P and the greedy procedure can be 
shown to result in an optimal solution in spite of its 
failing to have a tree-structure. On the other hand, the 
transportation problem with non-positive cost coeffi- 
cients is a special case of the problem class P; yet here, 
the greedy procedure may fail to generate an optimal 
solution. Also, the set-covering problem can be for- 
mulated as a special case of our class of models, and 
this problem is known to be notoriously hard; in fact, 
it is strongly NP-complete (Karp 1972, Garey and 
Johnson 1979 and Section 6). 

For linear objectives, as is well known (see Edmonds 
1970) the greedy procedure results in an optimal 
solution if and only if the constraints determine (the 
independence polytope of) a polymatroid. The intent 
of this paper is to extend this result to objectives that 
are specified by a so-called weakly concave complete 
order on RE. This class of objectives includes all orders 
generated by separable concave functions, as well as 
other important nonseparable cases. (Megiddo 1974 
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and Fujishige 1980, for example, consider the problem 
of constructing a maximal flow in a capacitated net- 
work with multiple sinks while (in ascending order) 
lexicographically maximizing each of the amounts 
supplied to individual sinks. Such an objective corre- 
sponds with a weakly concave order; the set of possible 
supply vectors is a polymatroid, and an optimal flow 
can be found by the greedy procedure.) 

We also identify a set of local optimality conditions 
that imply global optimality, provided the set of fea- 
sible solutions is a polymatroid and the objective 
satisfies a second, slightly stronger concavity property. 

There are two problems associated with the practi- 
cality of these optimality results: 

(a) it is often difficult to verify whether a feasible 
region is a polymatroid, and 

(b) each iteration of the greedy procedure involves 
multiple checks as to whether a particular component 
of the current solution can feasibly be incremented 
by one unit. This feasibility test can be extremely 
complicated for general polymatroids and is related 
to the well-known "membership problem" (Bixby, 
Cunningham and Topkis 1985, Topkis 1983b and 
Grotschel, Lovasz and Schrijver 1981). 

A second major purpose of this paper is, therefore, 
to enumerate important and easily verifiable cases 
that satisfy the polymatroid condition and for which 
an efficient implementation of the feasibility test can 
be given. 

Gross' (1956) initial optimality result for models 
with a single budget constraint was refined by Fox 
(1966) and Veinott (1964). The result was later re- 
discovered by many others, e.g., Einbu (1977), 
Hartley (1976), Kao (1976), Mjelde (1975), Proll 
(1976) and Shih (1974); see also Ibaraki (1980). This 
single constraint model (or its continuous version) 
has numerous applications (see, for example, Zipkin 
1980). Asymptotically more efficient algorithms 
were proposed by Katoh, Ibaraki and Mine (1979), 
Galil and Megiddo (1979), Ibaraki, and Frederickson 
and Johnson (1982). As mentioned previously, 
researchers also extended the optimality result to 
nested models (Tamir, and Galperin and Wacksman 
1981) and then to tree-structured models (Brucker, 
and Section 6). Federgruen and Zipkin (1983) deal 
with models that include generalized upper bounds 
in addition to the budget constraint, which is a model 
with a tree-structure as described in Section 4. 

Polymatroids, a generalization of matroids, are as- 
sociated with a special class of polyhedra introduced 
by Edmonds (1970). They, as well as the associated 
submodular set functions (see Section 1), play a cen- 
tral role in the modern theory of combinatorial opti- 

mization (see, for example, Lovasz 1982). Important 
applications are mentioned in Edmonds and Giles 
(1977), Frank (1982) and Schrijver (1982); see also 
Bixby, Cunningham and Topkis, and Topkis (1983b) 
and the references they cite. Edmonds and Giles, 
Hassin (1978) and Lawler and Martel (1982) intro- 
duced generalizations of the network flow problem in 
which restrictions on net flows into individual vertices 
or capacities on individual arcs are generalized to 
polymatroidal restrictions on net flows into subsets of 
vertices and capacities on subsets of arcs respectively. 
An application of this model to machine scheduling 
problems can be found in Martel (1982). 

We start (Section 1) with some notation and pre- 
liminary results, such as necessary and sufficient 
conditions for the feasible region of P to be (the 
independence polytope of) a polymatroid. Section 2 
introduces and discusses concavity notions, and 
Section 3 analyses the behavior of the greedy proce- 
dure as well as equivalence between local and global 
optimality. The next two sections enumerate a num- 
ber of classes of models for which the feasible region 
of P is easily verified to be a polymatroid (Section 4) 
and for which an efficient implementation of the 
feasibility test can be given (Section 5). Section 6, 
finally, makes some concluding remarks with respect 
to related problems. 

1. Notation and Preliminaries 

Let N denote the set of nonnegative integers and let 
e' for i E E be the ith unit basis vector of NE. For 
x,ye NE, we writex<yifxy and x y. 

For a finite set A, let I A I denote the number of 
elements of A, and let 2A = IS: S C Al be its power 
set. For z E NE S C E we will write z(S) = liEs zi; 
for B C 2E, we write z[B] = ESEB z(S). Likewise, for 
B C A C 2E and V a set function defined on A, we 
write V(B) = ESEB V(S). 

For A C 2E with U A = USEA S = E, and V a 
nonnegative set function defined on A, let F(A, V) = 
Iz E NE: z(S) < V(S) for all S E A[. Let 3R denote a 
complete order on NE. We write x >R y if x >R y and 
Y 4R X. Some orders on NE are induced by a real- 
valued function f In this case, X >R y if and only if 
f(x) >f (y) (x, y E NE). 

Let F C NE and R a complete order on NE. In this 
paper we consider certain types of integer problems. 

Find z E F C NE which is maximal P (R, F) 
with respect to R. 

The set F is called the feasible region of P(R, F). 
A point z E F is a (global) optimum for P(R, F) if 
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Z 'R Z' for all z' C F. A point z E F will be called 
a local optimum if 

(LI) Z3Rz+e' (icE:z+ecEF), 
(L2) z Rz -e' (jE E:z-ei EF), and 
(L3) Z3Rz+ e- ei (i, jc E:z+ e'- ei e F). 

Of particular interest in this paper are certain spe- 
cial sets F, the so-called independence polytopes of 
polymatroids. We first define a rank function (with 
groundset E) as a set function V, defined on 2E 
with the properties: 

(V 1) V is normalized: V(O) = 0, 
(V2) V is nondecreasing: V(S) - V(T) (S C T C E), 

and 
(V3) V is submodular: V(S) + V(T) > V(S U T) + 

V(Sn T) forall S, T C E. 

Let G C NE. We call G a polymatroid (with ground 
set E) if G = F(2E, V) for some rank function V 
with groundset E. (In the standard literature, G is 
usually referred to as the independence polytope of 
a polymatroid.) Several equivalent definitions for 
polymatroids can be found in the literature; see, 
e.g., Edmonds, and Dunstan and Welsh (1973) and 
Welsh (1976). In this paper we need the following 
"properties": 

Lemma 1. Let F be a polymatroid with groundset E 
and rankfunction V, i.e., F= {z C NE:z(S) < V(S), 
S c El. Then F satisfies 

(Fl) 0 c F; 
(F2) ifz EF, yc NE andy< zthenyc F; 
(F3) ifzcF,yENE andj c Esatisfy 

(i) y<z, 
(ii) yj = zj and 

(iii) y+ ei EF, 
then there exists some I # i such that z + ei - e 
e F and z, > y,. 

Proof. (Fl) and (F2) are well-known and immediate 
properties (see, for example, Welsh p. 336). To show 
(F3), let B = IS c E L z(S) = V(S) and j c S}. If 
B = 0, then z + ei E F, and (i) and (ii) imply that 
there exists an 1 0 j with z, > y'. So z + ei - e' C F, 
in view of (F2). If B $ 0, we first show that B is closed 
under intersection. Let S, T C B. Then j c S n T and 
z(S n T) = z(S) + z(T) - z(S U T) = V(S) + V(T) 
-z(S U T) > V(S) + V(T)- V(S U T) > V(S n T). 
So z(S n T) = V(S n T) and S n T C B. Let 
H = n B. Then y(H) < V(H) by (iii) and V(H) = 
z(H). So there exists an I C H\{j I satisfying y, < z,. 
But then z + ei - e' E F and z, > y,. 

Remark. The fact that B in this proof is closed under 
intersection is well known; see, e.g., Lemma 2.3 in 
Fujishige. 

Later on, we will see that (Fl), (F2) and (F3) are 
indeed sufficient as well as necessary for F C NE to be 
a polymatroid. 

Lemma 2. Assume F C NE satisfies (Fl), (F2) and 
(F3) and suppose x E F. Define Fx = Iz E NE: 
z + x E Ft. Then Fx satisfies (Fl), (F2) and (F3). 

Proof. OEFxsinceO+x=xEF. IfzEFx,yENE 
and y s z, then y + x s z + x. Since z + x E F, y + 
x E F in view of F satisfying (F2). Thus y E Fx, 
showing Fx satisfies (F2). If z E Fx, y E NE and k E 
E satisfy (i), (ii) and (iii) of (F3) with respect to Fx, 
then z' = z + x E F and y' = y + x E NE satisfy (i), 
(ii), and (iii) of (F3) with respect to F. Hence there 
exists l/# k such that z' + ek - e' CF, z/ > y' and 
z` + e e >y. But then z + e '-el C Fx. 

Federgruen and Groenevelt (1984) specify conven- 
ient ways to check if a set F(A, V) (feasible region 
of P) is a polymatroid by extending the set function 
V from A to 2E. 

In Section 3 we characterize the behavior of the 
following greedy algorithm to solve P(R, F). 

Greedy or Marginal Allocation Algorithm 

Step 0. z: = 0; 
Step 1. find i E E with z + e' E F, z + e' R z and 

z + ei3 Rz + ei (j F E:z + ei F F), 
Step 2. if no such i E E exists, stop, 
Step 3. z: = z + e' and go to Step 1. 

2. Concave Orders 

In this section we introduce and discuss three increas- 
ingly stronger concavity properties. A complete order 
R is called concave if it satisfies 

(R1) if y3x,x eRx?+ e', theny3Ry+ e', iEE; 
(R2) if y x, x>Rx+ e', theny>Ry+ e', iF E; 
(R3) if y > x, xi = yi and x + e' >R x + ei, then 

y + e' 3R Y + ei, i,j E E; 
(R4) if y > x, xi = yi and x + e' >R x + ei, then 

y + e' >R y + ei, , j F E. 

A complete order is called weakly concave if it satisfies 
(R1) and (R3). Similarly, it is called strongly concave 
if it is concave and satisfies 

(R5) if y ? x, x, = Yi, x <R x + ei, then 
Y SR y + e', 

(R6) if y ? x, x, = y,, x <R X + e', then 
Y <R Y + e'. 
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Observe first that the order induced by any separa- 
ble concave (real-valued) function is strongly concave. 
In addition, various nonseparable optimization prob- 
lems can be handled by an appropriate choice of a 
concave order; see the examples given later in this 
section. The following three lemmas show that con- 
cavity is maintained through translation over a given 
vector, through lexicographic combinations of several 
concave orders, as well as through extensions of 
strongly concave orders to a larger groundset. 

Lemma 3 (Translation). Let R be a complete order on 
N'. For b E NE, define Rb by x 3Rb y if and only 
if x + b 3-R y + b. If R satisfies (Ri) (i = 1, . . . , 6), 
then so does Rb. 

Proof. The proof is trivial. 

Lemma 4 (Lexicographic combinations). Let RI, R2 
be complete orders on NE. Define the order R on 
NE by x >R v if and only if x >RI y, or x =R, y and 
X ;R2 Y. 

(a) If RI is concave and R2 satisfies property (Ri), 
then so does R(i= 1, 2, 3,4). 

(b) If R1 is strongly concave and R2 satisfies prop- 
erty (Ri) (i = 1, ..., 6), then so does R. 

Proof 
(a) Assume R2 satisfies (RI): Let y > x, x + e' -R, x, 

i E E. 

Case 1: x + e' <R1 x. Then y + e' <R, y by (R2) of 
RI, soy+ ei <R y. 

Case 2: x + e =RI x, (x + e') <R2 Rx. Then y + e' SR, 
y and y + e' <R2 y by (RI) of R, and RJ2. So, 
y + e' <R y. 

Assume R2 satisfies (R2): verified as in the proof 
for (RI). 

Assume R2 satisfies (R3): Let y > x, yi = xi and 
x + e' iR x+ eifor i, jE E. 

Case 1: x + e' >RI x + ei. Then y +- e' >RI y + ei by 
(R4) of R, andy + e' >Ry + e . 

Case 2: x + e' =RI x + ei, x + e' R2 X+ ei. Then 
y + e' BRj y + ei and y + e' BR2 Y + eJ by 
(R3) of R, and R2, so y + e' BR y + e'. 

Assume R2 satisfies (R4): verified as in the previous 
proofs. 

(b) Assume R2 satisfies (R5): Let y > x, yi = xi and 
x + e' iR X, i E E. 

Case 1: x + ei>Rlx. Then y + ei >RI y by (R6) of Rl, 
so y + e >R Y- 

Case 2: x + ei R, x and x + ei :R2 x. Then y + 
ei R, y andy + e' >-R2y by (R5) of RI and 
R2and so y + e' iR y- 

Assume R2 satisfies (R6): verified as in the previous 
proofs. 

Lemma 5 (Extension of the groundset). Let RI be 
a strongly concave order on NE' with El C E. For 
x E NE, write xl = (Xi)ieE,. The order R, defined 
on NE by x 3R y if and only if xl 

'R, yl, is strongly 
concave. 

Proof. Immediate. 

Remark. Lemma 5 fails to hold when we replace 
strong concavity by concavity. 

Example 1. The following class of nonseparable ob- 
jectives was considered by, for example, Megiddo 
(1974), Fujishige, and Ichimori, Ishii and Nishida 
( 1982): For a given w E RE, let T(x) denote the vector 
(WiXi)iEE ranked in ascending order of its components 
(x E NE). Define the order R on NE by x >R y if and 
only if T(x) is lexicographically larger than T( y). It is 
easy to verify that R is a strongly concave order if 
w > 0. More generally, R remains strongly concave if 
T(x) denotes the vector (f (xi))iE, ranked in ascending 
order, whenf(-) for i E E are arbitrary nondecreasing 
functions. These criteria are sometimes referred to 
as "the sharing problem," see Brown (1979a,b) and 
Ichimori, Ishii and Nishida. 

An ingenious proof in Fujishige shows that when 
Tx is the vector (WiXi)iEE, the order may, for purposes 
of optimization over polymatroids, be replaced by 
another separable objective (i.e., an order induced by 
a separable function). As in Fujishige, the results in 
this paper apply to concave nonseparable objectives 
directly; in other words, there is no need to identify 
and prove a potential equivalency with a separable 
objective. 

Note also that the order R induced by the simpler 
criterion minhEE(xi) fails to be concave, since (R3) 
fails to hold. (Let x = (0, 1, 2) and y = (2, 1, 2); 
(0, 1, 3) BR (0, 2, 2) but (2, 1, 3) R(2, 2, 2).) 

Example 2. Let c E N, and let R be the com- 
plete order on NE defined by x R y if and only if 
y(E) - x(E) S c or minIy(E), x(E)} > c. It is easy 
to verify that R is concave, though not strongly con- 
cave. Also, if c > 0, R cannot be induced by a sepa- 
rable function. The concavity of R has important 
implications for optimization problems for which a 
(strongly) concave order RI is to be optimized over 
a region F = F n Iz E NE: z(E) > c}, with F a poly- 
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matrold. Let R be defined by x 1R y if and only 
if x y, or x = y and x BR, y. In view of the con- 
cavity of R and Lemma 4, the problem is equivalent 
to the maximization of R over F, with R concave. 

3. Optimizing a Concave Order Over 
a Polymatroid 

We first characterize the behavior of the Marginal 
Allocation Algorithm (MAA): 

Theorem 1. Let R be a complete order satisfying (R3) 
and let F C NE satisfy (Fl) and (F2). Then the MAA 
results in a local optimum for P(R, F). 

Proof. Let y be the solution obtained by the MAA. In 
view of (Fl), 0 C F. Hence, y E F, by induction and 
in view of Step 1. Step 1 and Step 2 also imply (LI). 
Fix i E E with yi > 0. Let x be the last point generated 
by the algorithm with x1 = yi - 1, and let y - ei be 
the next to last point generated. Hence, y - ei : xi 
or y ? x + e-' and in view of (F2), x + e3 E F. Since 
x + e' 3R x + ei, we have by (R3) and Step 1, 

Y kR y - ei = (y - ei - e') + e' 

?;R (y - ei - ei) + ei = y - e'. 

This result proves (L2). To show (L3), let j C E with 
y + e' - e' C F. Since x + e-' - y - e' + e1, we 
have x + e' c F in view of (F2). Thus, x + e' >R 

x + e1 which implies, by (R3), y = (y - e') + e' >R 

y - e' + e'. 

Lemma 6. Let R be a complete order on NE satisfying 
(RI), and let F satisJV (F1) and (F2). If 0 is a local 
optimum of P(R, F), then 0 is a global optimum. 

Proof. Let z C F with zi > 0 for some i E E. In view 
of (F2), e' E F and hence 0 - e' by (L2). Applying 
(R1) with x = 0 and y = z - e' then gives z - e' R z. 

The lemma follows by repeated application of this 
argument. 

Theorem 2. (Sufficient condition for optimality of 
MAA). Let R be a weakly concave order on NE, and 
let F C NE satisfy (Fl), (F2) and (F3). The VAA solves 
P(R, F). 

Proof. By induction on m(F) = max{z(E): z E F). 
Let x be the solution found by the MAA. If m(F) = 
0, the theorem is true, so assume it holds whenever 
m() k - 1 with k , 1 and let m(F) = k. If the 
algorithm terminates at the first iteration, x = 0 is a 
local optimum by Theorem 1 and hence x is optimal 
by Lemma 6. In the remaining case, let i E E be the 

index found during the first pass through Step 1. By 
Lemma 3, the order Rei is weakly concave and by 
Lemma 2, Fe' satisfies (Fl), (F2) and (F3). 

Since x - e'is a solution that the MAA could attain 
for the problem P(Re', Fe') and m(Fe') < k, we have 
x 3R z (z e F: z > 0), by the induction assumption. 
To complete the optimality proof of x, let z E F with 
z #0 and = 0. By (F3) withy = 0, there isa j E E 
with z' +e e' EF and z > 0. Bv (R3) and 
ei 3R ei, we have z' :R Z. Since z' > 0, we have 
X BR z' and hence x >R Z. T his result concludes the 
induction proof. 

Theorem 2 generalizes Edmonds' classical result for 
linear objectives. For the special case of separable 
objective functions, Theorem 2 may be established by 
exhibiting an equivalence between P(R, F) and a 
linear optimization problem with a matroid as its 
feasible region, invoking Edmonds' classical results. 
For the general case (with nonseparable functions), no 
such transformation is possible (see also Girlich and 
Kowaljow 198 1, remark 2.66, p. 181). 

Corollary 1 (Main result). Let A c 2 E, let V be a 
nonnegative, integer-valued set function on A, and let 
F = F(A, V). The MAA results in an optimal solution 
for every weakly concave order R. The following state- 
ments are equivalent: 

(i) F is a polymatroid. 
(ii) F satisfies (Fl), (F2), and (F3). 
(iii) MAA results in an optimal solution for every 

weakly concave order R. 

Proof. (i) = (ii) (iii) follows from Lemma 1 and 
Theorem 2. If F is not a polymatroid, a linear objective 
exists for which MAA fails to generate an optimal 
solution (see Edmionds, showing (iii) =* (i)). 

Remark. If the feasible region F is not a polymatroid, 
MAA may fail to generate an optimal solution for 
separable and strictly concave, as well as nonseparable, 
concave objectives (see Federgruen and Groenevelt 
1984). 

Problems P(R, F) with R concave and F a poly- 
matroid have the additional property that every local 
optimum is a global optimum. This property will be 
established by Theorem 3. (Note that the property 
may fail to hold for weakly concave orders.) We first 
prove the following lemma: 

Lemma 7. Consider P(R, F) with R concave and F a 
polvmatroid. Let z #0 be a local optimum. For some 
iE E with zi > 0, a global optimum z* can be found 
with z* > 0. 
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Proof. Let / E E with e' E F and e' >R ek (k E E: 
ek E 1). If z1 > 0, choose i = 1. Otherwise, by (F3) 
with y = 0, there is a j E E satisfying z + e' - ei E F 
and zj > 0; in this case, choose 1= j. By (L3), z R 

z + e'- e. So by (R4) with x = 0 andy= z- e- , 
we have ej >R e'. Hence, in either case, e' E F, and 
e'i 3 eRk((kIE E: ekE F). Since z>0, Z ?:R Z- e' by 
(L2) and hence by (R2) with x = 0 and y = z -e, 
we have e' BR 0. Thus i E E could be chosen in 
Step 1 of the first pass of the MAA, and in view 
of Theorem 2 there exists a global optimum z* with 

* > 0. 

Theorem 3. Consider P(R, F) with R concave and 
F a polymatroid. Every local optimum is a global 
optimum. 

Proof. By induction on m(F) = max{z(E): z E Fl. 
The theorem is trivially true if m(F) = 0, so assume it 
holds whenever m(F) < k with k ? 1. Let m(F) = k. 
If 0 is a local optimum, it is a global optimum by 
Lemma 6. Thus, let z # 0 be a local optimum and 
let i E E satisfy the requirements of Lemma 7. By 
Lemma 2, Fe' is a polymatroid and by Lemma 3, 
Re' is a concave order. Then z - e' is a local opti- 
mum for P(Re', Fe') and m(Fei) < k, so by the 
induction assumption, z - e' is a global optimum of 
P(Re', Fe"). By Lemma 7, there is a global optimum 
z* of P(R, F) with z* > 0. Hence z* -e E Fe' 
and z - eRei z*-e'. But this conclusion implies 
Z 'R Z*, so z is a global optimum. 

4. Polymatroid Feasible Regions 

In this section we enumerate several classes of models 
for which the feasible region is a polymatroid. 

4.1. Feasible Regions Specified by Upper Bounds 
on Sets of Variables 

Let F = {z E NE: z(S) S V(S), S E Al with A C 2 

4.1.1. Ring families 

If S, T E A then (S n T) E A and (S U T) E A and 
V(.) is submodular on A (see Edmonds). 

4.1.2. Intersecting families 

If S, Te A and (S n T)s 0, then (Sn T) E A 
and (S U T) E A and V(.) is submodular on S and T 
(see Lawler 1982). 

An important subclass is the class of tree-structured 
models: A has a tree-structure if for all S, T E A, 
S n T $ 0 implies T C j or S C T. Note that tree- 

structured models are intersecting families for all set 
functions V(.) on A. 

As pointed out in the introduction, the class of 
tree-structured models contains many important 
cases: (1) a single resource constraint: Al = {EJ; 
(2) a single resource constraint with simple upper 
bounds: A2 = {E} U {S:S C E, ISI = Il; (3) a 
single resource constraint with simple and general- 
ized upper bounds: for some partition {Ek: k E K} of 
E, A3 = A2 U IEI, . . ., EIKI 1, (4) nested constraints: 
A4 = Ui=l 4Si4 with SI C S2 C ?1. . C S = E. 

4.1.3. Crossing families 

If S, TE A and (S n T) # 0, and (S U T) # E, 
then (S n T) E A and (S U T) E A and V(-) is 
submodular on S and T (see Lawler). 

4.1.4. Generalized symmetric models 

A = 2E and V(S) = f(w(S)), S C E with f(0) = 0 
and f(-) a nondecreasing concave function, w E NE 
and w > 0. It is easy to verify that V(.) is a rank 
function. Researchers refer to the special case with 
w, = 1 for i E E as the symmetric case, (see, for 
example, Lawler and Martel, and Topkis (1983a,b). 

Generalized symmetric models arise, for example, 
in the analysis of dynamic priority scheduling rules 
for multiclass queueing systems (Kleinrock 1976, 
Wood and Sargent 1984, Gelenbe and Mitrani, Chap- 
ter 6, 1980; and the references they cite). Each priority 
rule implies an average waiting time for each customer 
class, and the feasible region of waiting time vectors 
is a generalized symmetric polymatroid with f(t) = 

t/(1 + t - w(E)) and an appropriate choice of W. 

Designing a dynamic priority rule often amounts to 
optimizing an aggregate performance measure stated 
as a concave order on this feasible region of waiting 
time vectors; see the previous references. 

We note that the classes 4.1.1, 4.1.2 and 4.1.3 are 
nested in increasing order of generality. 

4.2. Network-based Models 

Let G = (N, E) be a connected network with node set 
N and arc set E. Let S C N be the set of sources, and 
T C N\S the set of sinks. For each i E S, let bi denote 
the net capacity of source i. Also, uij denotes the 
(integer) capacity of arc (i, j) E E. We define the 
variables 

Xij = flow on arc (i, j) E E; 

Zi= net supply to node i, i E T; z = (Zi)iCT. 
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The network flow model has constraints: 

o > l:(i,/)-EXi- >l:(,i)-EX/i i bi, i eS 

/1:(i/)CEXi El- E:(,i)CExi1 = Zi, i E T (*) 

Z :(i,/)CEXi 1/: (/, i)E Xli = 0, i E N\S\T 

O < xi, < uij; (i, j) E E; xij integer; 

ziO, > E T. 

The set {z E N T: (Z, X) satisfies (*) for some x} is a 
polymatroid (Megiddo). We refer to Federgruen and 
Groenevelt (1984) for a survey of applications of this 
model. 

5. Efficient Implementations of the MAA 

The computational requirements of the MAA depend 
almost entirely on the possibility of implementing 
Step 1 efficiently. For general polymatroids, the fea- 
sibility check (z + e' E F) is a special form of the 
general polymatroid membership problem. Grotschel, 
Lovasz and Schrijver's ellipsoid method performs the 
feasibility test in a polynomial amount of time, assum- 
ing V can be evaluated in polynomial time. Efficient 
combinatorial algorithms have been established only 
for matroids (Cunningham 1981) and for testing 
membership in the case of a structured convex game 
(Topkins 1983a,b). In this section, we describe effi- 
cient implementations of the MAA for several of the 
polymatroid classes enumerated in Section 4. 

5.1. Tree-structured Models 

The feasibility tests are simple, since each i E E can 
be contained in at most I E I sets in A. Brucker pre- 
sents a greedy procedure for tree-structured models 
and nondecreasing, separable concave objective func- 
tions. The procedure requires 0( I E I V(E)) steps and 
is an immediate implementation of the MAA. In 
addition, he gives a polynomial 0(1 E I 2log (V(E)) 
algorithm. This algorithm uses as a subroutine an 
0( I E I log (V(E))) procedure by Galil and Megiddo 
for the single constraint problem. For problems 
with a nested set of constraints (i.e., A = 
U7=1 Sil with SI C S2 C ... C S =E) an 0(1E12 
log(V(E)/ I El)) algorithm is given by Galperin and 
Waksman and Tamir. 

5.2. Network-based Models 

The feasibility check of Step 1 of MAA is easily 
performed by an augmenting path algorithm (Feder- 
gruen and Groenevelt 1986). 

5.3. Generalized Symmetric Models 

The following lemma implies an efficient membership 
test. 

Lemma 9. Let V be a generalized symmetric rank 
function with V(S) = f(w(S)). Let x E NE and 
E {il, ..., IJE I and assume xi/wi, xi2/wi2 

*- XilEl/Wi1EI Let En = {i, . ., in4 n = 1, .... 
E l. x E F if and only if x(En) 6 V(En) for n = 

1,..., IEl. 

Proof. Consider the collection W = {(w(S), x(S)): S 
C El of points in R x R. Then x E F if and only if 
the region {(s, t): t < f(s), s 2 0 contains W or, more 
precisely, the set of vertices Von the "upper-left" part 
of the convex hull of W. 

For fixed x, consider the parametric programming 
problem 

maximize E i bi(xi - Xwi) 
P(A) 

subjectto O<bi 1, iEE forall X>O. 

Note that the largest solution b(X) to P(X) has b(X)i = 

1 if x, >, Xw, and b(X), = 0, otherwise (i E E). Define 
the scalars x(X) Ei b(X)ixi and w(X) = E> b(X)ix, 
and note that V- {(w(X), x(X)):X >X 01 ={(w(E,) 
x(EJ): n = 1, . . I E l }. The lemma follows from 
the properties off 

The following proposition facilities the feasibility 
test of Step 1 of MAA. 

Proposition 2. Let V(S) = f(w(S)) be a generalized 
symmetric rank function. Let x E F, E = li,. . , il E 

and assume xi,wi 2/w2 , *. ** Xi1/Wi1. Let 
En= lil,...inl, n = I,.., I El. Then x +ein EF if 
and only ifx(Em) < V(Em) (m = n, n + 1, . . ., I E l ). 

Proof. Assume x(Em) = V(Em) for some m > n. Then 
(x + ein)(Em) = X(Em) + 1 > V(Em) so x + ein M F. 
This conclusion proves the "only if" part of the prop- 
osition. Next, assume x(Em) < V(Em) for all m = 

n, ..., IEl. Let k = 0 if [(xin + 1)/win] > [xi,/w, 1; 
otherwise, let k = max{l:x,l/wi, >- (Xin + l)/win. In 
view of Lemma 9, verification of (x + e'n) E F requires 
merely showing that x(E, U {in}) < V(E1 U {in}) for 
I = k, ..., n - 2. Now assume that x(E, U {inl) = 

V(E, U {in) for some / with k < / < n - 1. We will 
show that this assumption leads to a contradiction. 
Since x(E,) < V(E,), we have 

x(e',) = x(E, U {14) - x(El) > V(E, U {in)- V(E,) 

= f(w(E, U {in)) - f(w(E,)). 
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Hence, 

x(En,_,I\ El)/W(En- I\E1) 

> Xij/win 

? [f(w(El U Ii4J)) -f(w(E,))]/wi1 

[.f(w(E,)) -f(w(El U 1i,}))]/w(En_1\E,). 

Multiplying both sides of this inequality by w(En-,\El) 
yields 

x(E,,- \E,) ? f(w(En)) - f(w(E, U {i4J)) 

= V(En) - V(E, U {ii) 

and hence 

x(En) = x(Fn,\E,) + x(E, U {i4) 

? V(E,) - V(EI U Ii11) 

+ V(E, U i1) = V(En) 
a contradiction. 

The following efficient implementation of the MAA 
follows from Proposition 2. 

Algorithm (Marginal Allocation for Generalized Sym- 
metric Polymatroids) 

Step 0. z: = 0; 
Step la. n: = I E I; y:=z; let E = il, ..,ill}where 

Zi,/Wil Zi2/Wi2 3 ... ? ZilEl/wi zE 
and Em = 

{il I... i, l (m = 1, ..., I El); 
Step lb. While z(E,) < N(En) and n > 0 do 

Begin 
if z + en >Ry then y: = z + ein; 

n:=n- 1 
End; 

Step 2. if y = z, then stop; 
Step 3. z: = y; go to Step la. 

6. Concluding Remarks and Related Problems 

Problem P, considered in the Introduction, may be 
viewed as a general integer problem with constraint 
set Az - b, 0 < z < u, defined by a binary matrix A. 
If the objective function is linear, the problem is 
equivalent to the multiple set covering problem (Van 
Slyke 1982). 

Minimize > cizi 
iEE (MSC) 

subject to E zi > V'(S), 
iEs 

SeA and O<zi< ui, 
i E F; z integer. 

(Transform MSC into P as follows: write zi = 

ui - z/, 0 < zz' < ui and substitute z-' for z; in all 
constraints. The same substitution transforms P into 
MSC provided the objective function is linear.) 
Thus the multiple set covering problem can be 
solved exactly by the greedy procedure if and only 
if the feasible region of the transformed problem is 
a polymatroid. 

The multiple set covering problem was introduced 
as a generalization of the well-known (unit) set cov- 
ering problem specified by the data ui = 1 for i E E 
and V'(S) = 1 for S E A. In general this problem is 
notoriously hard; in fact, it is strongly NP-complete 
since the minimum cover problem is NP-complete 
(Karp, and Garey and Johnson). Consequently, the 
class P is strongly NP-complete even for linear objec- 
tive functions, V'(.) symmetric on A, i.e., V'(S) = 
V'(T) for all S, TE A with 1S51 = I Tl, and even if 
for every i E E there are at most 3 sets S E A that 
contain i (Garey and Johnson p. 222). Chvatal (1979) 
has shown that a similar greedy procedure may, 
at worst, result in a solution whose value is inferior 
to the optimal value by a factor that is logarithmic 
in d = maxiEdi defined by di = I IS E A: i C S}I . 
This worst case behavior applies to the multiple set 
covering problem as well (Dobson 1982), and the 
worst case bound has been shown to be tight. 

We note that, in general, our results cannot be 
extended to objective functions that can be viewed as 
restrictions to NE of a concave function on RE. In 
fact, the problem is strongly NP-complete for such 
objective functions, even if A = {i} : iE E}. To verify 
this statement, consider the "exact cover by 3-sets 
problem" which is known to be NP-complete (Karp, 
and Garey and Johnson, p. 222). The problem is to 
determine whether the set of equalities 

n 

E aijzj= 1, 
j=, 

i1 . ..,n with aij= O, I and Eaij =3, 

for all j = 1, . . ., n has a zero-one solution. Note that 
this problem is equivalent to 

n n 2 

minimize r(z) E E a1mzj - 1 
i=l j=l 

subject to zi = 0, 1, 

where r(-) is concave (as a function on RE). The same 
reduction shows that our results cannot be extended 
to general supermodular functions (Topkis 1978). 
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