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In the classical maximal flow problem, the objective is to maximize the supply to a single sink in a capacitated network. 
In this paper we consider general capacitated networks with multiple sinks: the objective is to optimize a general "concave" 
preference relation on the set of feasible supply vectors. We show that an optimal solution can be obtained by a marginal 
allocation procedure. An efficient implementation results in an adaptation of the augmenting path algorithm. We also 
discuss an application of the procedure for an investment company that deals in oil and gas ventures. 

In the classical maximal flow problem (Ford and 
Fulkerson 1962), the objective is to maximize the 

supply to a single sink in a capacitated network. In 
this paper, we consider general capacitated networks 
with multiple sinks and an objective of optimizing a 
general preference relation on the set of feasible supply 
vectors. (These preference relations are assumed to 
have certain concavity properties, to be defined sub- 
sequently.) 

We show that an optimal integer solution can be 
obtained by a (greedy) marginal allocation procedure. 
(The continuous case requires the use of different 
methods; see Groenevelt 1984, 1985.) An efficient 
implementation of this procedure results in an adap- 
tation of the classical augmenting path algorithm of 
Ford and Fulkerson. We also discuss alternative im- 
plementations that apply to special classes of net- 
works. Our results are obtained by showing that the 
set of feasible supply vectors define the independence 
polytope of a polymatroid (see, for example, Welsh 
1975) and by applying the results in Federgruen and 
Groenevelt (1986). 

This paper was motivated by a special case of our 
class of models, namely, an optimization model we 
recently developed and implemented for an invest- 
ment company that deals in oil and gas ventures. The 
model determines which (if any) of the company's 
clients should apply for a lease on land parcels offered 
by the U.S. government in bimonthly special draw- 
ings. Section 4 contains a detailed discussion of this 
application. 

Many other resource allocation problems can be 
represented as special cases of our model. Megiddo 
(1974) and Fujishige (1980) consider a general net- 
work and the special objective of lexicographic max- 
imization (in ascending order) of each of the sinks' 
supplies. Gross (1956), Fox (1966), Veinott (1964), 
Einbu (1977), Hartley (1976), Kao (1976), Mjelde 
(1975, 1976, 1983), Proll (1976), Shih (1974), Ibaraki 
(1980), Katoh, Ibaraki and Mine (1979), Galil and 
Megiddo (1979), Fredrickson and Johnson (1982), 
Tamir (1980), Galperin and Wacksman (1981), 
Brucker (1982), and Federgruen and Zipkin (1983) all 
consider resource allocation problems of the following 
type: 

maximize r(z) 

subject to E z, < N(S), S E A; 
i,s 

z integer,(1 ) 

where r(.) is a concave function, N(.) an arbitrary set 
function and A a tree-structured collection of sets, i.e., 
if S, TE A, then (i) S C T, or (ii) T5 S, or (iii) S n 
T = 0. (Zipkin 1980 discusses numerous applications 
of these models.) Such problems can be represented 
as capacitated tree-structured networks with the sinks' 
supplies denoted by the vector z. 

Luss and Gupta (1975), Danskin (1967) and Einbu 
(1978, 1983, 1984) consider bipartite networks to 
model budgeting, portfolio and marketing problems 
as well as assignments of weapons of various types to 
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a collection of targets. The objective is to maximize a 
separable concave function of supplies to the sinks: 

(P) maximize E r1(z1) (2) 
jEJ 

subject to E xij =zj; j EJ (3) 
iEl 

E xij ai; iEI(4) 
jEJ 

xij Ui; iEI, j E J (S) 

xij 0 and integer. (6) 

(Luss and Gupta, and Einbu 1978, 1983, 1984 also 
consider generalizations of (P) with (3) replaced by 
E> e1jx1j = zj with e1j > 0.) 

Our model can be viewed as a special case of the 
convex cost network flow problem, which has an 
objective that may depend on the flows on all arcs 
and which requires more complex algorithms (see, for 
example, Hu 1966 and Kennington and Helgason 
1980). Our model also bears at least some similarity 
to the polymatroidal network flow model considered 
by Lawler and Martel (1982) and Hassin (1978). The 
latter considers the problem of maximizing the supply 
to a single sink when the flows in the network are 
constrained by the capacities of sets of arcs (rather 
than capacities of individual arcs only). 

In Section 1 we derive our basic algorithm. Section 
2 discusses alternative implementations for special 
cases. Section 3 exhibits an efficient adaptation of the 
basic algorithm for problems with parametric objec- 
tive functions. This extension was needed in the oil 
and gas lease investment problem described in Section 
4. Section 4 also reports on our computational 
experience. 

1. Model and Algorithms 

Let G = (N, E) be a connected network with node set 
N and arc set E. Let S C N be the set of sources, and 
T c N\S the set of sinks. For each i E S, let bi denote 
the net capacity of source i. Also, u1j denotes the 
(integer) capacity of arc (i, j) E E. We define the 
variables 

x= flow on arc (i,j) E E; 

z= net supply to node i, i E'T; z = (Zi)ieT- 

The network flow model has constraints 

0 ? E Xjz - E X,ji bi, i E S 
1:(Us)CE 1:(I,J)EE 

E xi,- E xi, zi, i E T (7) 
1:(/1i)EE l1:(Us)E-E 

E x,, - E x =O, i E N\(SUT) 
:(Us)CE 1:(I,J)EE 

O < xij < uij; (i, j) E E; 

xij integer; z; - 0, i E T. (8) 

In the classical maximal flow model, the objective is 
to maximize EilT Zi. We consider a general objective 
expressed by a complete order 1R on NT that satisfies 
two "concavity" properties (R1) and (R2). (Let e' 
for j E T be the jth unit basis vector in NT; we write 
X <R y if x AR y and y 5R x.) For all x, y E N:. 

(R1) if y x, x :R x+ e', then y 3R Y3+ e', i e T. 

(R2) if y ? x, xi = y', and x + e' :R x + ei then 
y + el 3R Y + eJ; i,j E T. 

These properties are satisfied, for example, by order 
relations induced by separable concave functions in z, 
as well as the objectives of sink optimality and 
weighted sink optimality introduced by Megiddo and 
Fujishige, respectively. (To define the weighted sink 
optimality, let w = (Wi)IET be a given vector of positive 
weights; let T(z) denote the I T I-tuple of numbers 
tzl/wi: i E T} arranged in ascending order; z* is called 
sink-optimal with respect to the weight vector w if 
T(z*) is lexicographically larger than T(z) for all 
feasible z.) These criteria are sometimes referred to as 
"the sharing problem," see Brown (1979a, 1979b) and 
Ichimori, Ishii and Nishida (1982). Section 3 of Fed- 
ergruen and Groenevelt contains additional examples. 

We first observe that the network can be trans- 
formed into a single source network by appending a 
new node s* to N and, for each node i E S, an arc 
from s* to i with capacity bi. Hence, without loss of 
generality, the nqtwork is assumed to have a single 
source s, i.e., I-S I 1. It is also possible to show that 
an equivalent problem arises when (bi, i E S) are 
variables and (zi, i E T) are known parameters. 

Define, on 2B the set function v(.) by 

v(A) = minimize E uij: s* E X, A C N\X}, A C T; 

i.e., v(A) is the minimum capacity of a cut separating 
A from the source. In view of the max-flow, min-cut 
theorem (see, for example, Ford and Fulkerson), v(A) 
also represents the maximal flow into set A. A supply 
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vector z E NT is called feasible if (x, z) for some x = 
(xij: (i, j) E E) satisfies (7) and (8). Let Z denote the 
set of feasible supply vectors. Z is described by the 
following inequalities (see Megiddo, Lemma 4.1): 

z,t < v(A), ACT. (9) 
tEA 

Moreover, the set function v(.) is a rank function (see 
Megiddo, Lemma 3.2): 

v(0) = 0; (10) 

A C B=> v(A) < v(B) (monotonicity); (11) 

v(A UB)+ v(A nB)< v(A)+ v(B) 

(submodularity). (12) 

The set of feasible supply vectors is thus the inde- 
pendence polytope of a polymatroid (Welsh). Feder- 
gruen and Groenevelt show that, as a consequence, 
an optimum supply vector can be found by the follow- 
ing marginal allocation procedure: 

Algorithm I (Marginal Allocation Algorithm): 

1. for t E Tdo z,:= O; 
2. while EleT z, < v(T) do 

begin 
3. find t such that z + e' E Z and z + e' >'- z + e' 

for all t' with z + e" E Z. 
4. if(no such t exists) or z + e' <R z then stop; 
5. z,: = z, + 1; 

end; 

Theorem 1. (Federgruen and Groenevelt, Theorem 
2). Let R satisfy (R 1) and (R2). The Marginal Allo- 
cation Algorithm finds an optimal solution. 

We call a supply vector z E Z a local optimum if 

(i) Z >Rz - e', for allt E Twith z - e'E Z; 
(ii) z Rz+e',foralltETwithz+e'EZ; (13) 

(iii) z Rz + e' - e" for all t, t' E T with 
z + e' - e' E Z. 

Federgruen and Groenevelt show that every local op- 
timum in Z is a global optimum provided the order 
R satisfies (RI), (R2) and 

(RI') if Y X, X>Rx +e'thenY>RY+ e', i cT; 
(R2') if y > x, xi = yi, and x + ei >R x + e' then 

y+ ej>R y+ ei; i, j e T. 

Theorem 2. (Federgruen and Groenevelt, Theorem 
4). Let R satisfy (R 1), (R2), (R '), and (R2'). Every 
local optimum in Z is a global optimum. 

The computational requirements of Algorithm I 
depend almost entirely on the possibility of imple- 
menting Step 3 efficiently. For general polymatroids 

this feasibility check may be rather cumbersome and 
is related to the general polymatroid membership 
problem (Grotschel, Lovasz and Schryver 1981, Cun- 
ningham 1981 and Topkis 1983). 

In our context, however, the feasibility test is equiv- 
alent to verifying the existence of an augmenting path 
from the source to a specific sink. The following 
implementation of Algorithm I thus results in a gen- 
eralization of the well-known augmenting path algo- 
rithm: in each iteration, labels are given to nodes of 
the form i+ or i-. (Only node s has a special label -.) 
A label i* [i-] indicates that there exists a unit-size 
augmenting path from the source to node j in ques- 
tion, and that (i, j) [(j, i)] is the last arc in this path. 
For any given t E T and z E Z, z + e' E Z if and 
only if the labeling procedure succeeds in labeling 
node t E T. 

Algorithm 11 (Augmenting Path Algorithm): 

1. fort E Tdozt:=O;for(i, j) E Edoxuj:= O; 
2. while >EET Z, < v(T) do 

begin 
3. Give node s a special label -. 
4. If all labeled nodes have been scanned, go to 

Step 6. 
5. Fix a labeled but unscanned node i and scan it as 

follows: if (i, j) E E, xij < uij and j unlabeled give j 
the label i+; if (j, i) E E, xji > 0 and j unlabeled, 
give j the label i-. Go to Step 4. 

6. Find t E T such that t is labeled and z + e' 2R Z + 

e" for all labeled t' E T. 
7. if(no such t exists) or z + e' <R z then stop. 
8. Starting at node t, backtrack an augmenting path; 

for a node j on this path with label i+ (i-), increase 
(decrease) xij (xji) by one; set z,:= z, + 1; erase all 
labels. 
end; 

Assume a ranking subroutine is available to perform 
the test x -R y (for any x, y E NT) with constant 
running time. Algorithm II requires up to v(T) itera- 
tions through Steps 2-7 and each iteration requires 
scanning of no more than 2 I E I arcs as well as 0( I T I) 
calls to the ranking subroutine. The overall running 
time is thus O(v(T) I E I). 

In the next section we show how more efficient 
implementations or faster alternative procedures may 
be used in certain special cases. 

2. Special Cases 

Trees 

We first show that all resource allocation problems 
of type (1) with a tree-structured collection of sets 
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A= {{1,2I;I3,4,5j t6,7 * 3,4,5,6,71 

{1, 2 }{f 3,4,51 ,6,7} 

1'1 {I 2 { 3 tf4 } {5j j 6 } {7} 

Figure 1. Network representation of the structures. 

are special cases of the general model treated in 
Section 1. As pointed out in the introduction, problem 
(1) contains many important cases: (i) a single resource 
constraint: Al -{ E}; (ii) a single resource constraint 
with simple upper bounds: A2 = {E} U {S: SC E, I S 
= 1 1; (iii) a single resource constraint with simple and 
generalized upper bounds: there exists a partition 
{E;: k E K} of E such that A3= A2 U {E,, ..., EIKI 1; 

(iv) nested constraints: A4 = U1 Si I with SI C S2 C 
* C S,1 =E. 

Define a network (see Figure 1) in which each 
element of A and U A is represented by a node. In 
addition, append a source node s. If S E A, either no 
S' E A has S' D S or there exists a smallest set S' 
with S' D S. In the former case, introduce an arc with 
capacity N(S) connecting s with the node representing 
S. In the latter case, introduce an arc of capacity N(S), 
connecting the node representing S' with the node 
representing S. Let U A = {i E E: i E S, S E A}. For 
each i E U A, connect its corresponding node with 
the node representing the smallest S E A containing i 
(see Figure 1). This network is a tree and has U A as 
its set of sinks T. Since every t E U A is connected to 
the source s through a unique path, existence of an 
augmenting path is trivial to verify, thus simplifying 
Steps 3 and 4 in Algorithm II. For this class of models, 
our algorithm reduces to Algorithm I of Brucker. We 
also conclude that for resource allocation problems of 
type (1), with A a tree-structured collection of sets, the 
set of feasible solutions defines the independence 
polytope of a polymatroid. (See Theorem 5 in 
Federgruen and Groenevelt for an alternative proof of 
this result.) 

Bipartite Graphs 
Next consider a bipartite graph with N -s) U I U J, 
with s the unique source, J the set of sinks and arcs 

going from s to I and from I to J (only). Let ai be the 
capacity on the arc connecting s with i E I, and u0j the 
capacity on the arc connecting i E I with j E J. This 
network represents the feasible region of the optimi- 
zation problem (P) (see (3)-(6)). The set of feasible 
supply vectors z is described by 

E z, < Emin ( uij, a,), A CJ, (14) 
jeA iel jEA 

as follows from (9). (We verify the identity v(A) - 
Eic. min(jA ujj, ai) as follows: let X = Is} U I, U J, 
where I, C I, J, U (J\A). The cut separating X from 
N\X has capacity Ej>,, EjEA U,j + EieI\v ai >- Ei 
min(XjGA u1j, ai) and there exists a cut whose capacity 
equals the right-hand-side expression.) 

If ui, = ui for all i E I, j E J (a property satisfied by 
the oil and gas investment problem in Section 4) then 
(14) simplifies to Ej,, z1j - >ij min( I A I ui, a1), i.e., 
v(A) depends on A only through I A 1. A polymatroid 
whose rank function satisfies this property is called 
symmetric. For symmetric polymatroids, an efficient 
implementation of the feasibility test in Step 3 of 
Algorithm I can be achieved without using the under- 
lying network structure (see also Proposition 2 in 
Federgruen and Groenevelt): for a given flow vector 
z, let z(k) be the sum of the largest k components of 
z. Writing v(A) = v( I A I), note that z E Z if and only 
if z(k) S v(k) for all k. An index i is said to be tight 
if z(i) = v(i). Assume the indices are relabeled so that 
zi > . . zl, and for each k = 1, . J., JI 
define FIRST(k) = min(i:zi = Zk) and LAST(k)= 
max(i:zi = zk). 

Lemma 1. Consider (P) with uij = ui for all i E I, 
j E J. Let z be a feasible supply vector. 
(a) z + ei is feasible for j E J if and only if no index i 

with]j <i IJI is tight. 
(b) There exists an index j* (1 <j* < JI + 1) 

such that I j: z + eJ feasible} = .j . . , I J II. 
(ffj*- IJI + 1, ij:z + ei isfeasible =0.) 

Proof. (a) Let z' = z + ei. Note z'(i) = z(i) for i < 
FIRST(j) and z'(i) = z(i) + 1 for i , FIRST(j). Also, 
if i is tight for some i and if FIRST(j) < i < j, then 
Zi+1 =Zi =Z(i) -Z(i -1) :: v(i)- v(i 1) ,> v(i + 1) 
- v(i) by the submodularity of the v(-) function, and 
an induction shows that j is tight. 

The "if" part thus follows from z(i) < v(i), i ? 

FIRST(j) and the "only if" part is immediate from 
our first observation. Part (b) follows from part (a). 

Reordering the indices so that z1 > . .. .> ZiJi takes 
O(log I J I) steps per iteration of Algorithm I. Com- 
puting z(k) for k = 1, ..., JI takes 0( I J I ) steps. 
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The index j* defined in Lemma 1 may thus be deter- 
mined by starting with k = I J I and decreasing k by 
unit steps until the first tight index is found. If no 
such index is found, j* = 1. The search requires 
0(I J I ) steps, which implies that Step 3 of Algorithm 
I requires 0( I J I) operations and evaluations of the 
order >R. Since the algorithm clearly terminates in at 
most v(J) = >i,e min(j uij, a1) < E, ai iterations, an 
optimal supply vector z* may thus be obtained in 
O(v(J) I J I) time, which compares favorably with the 
bound 0(v(J) I I I I J I) for Algorithm II. (The number 
of arcs in the bipartite graph is I I I I J 1i.) 

Once an optimal supply vector z* is found, a cor- 
responding (optimal) vector x may be obtained by 
applying the initialization phase (Phase I) of any pri- 
mal network flow code, or more specifically, a primal 
algorithm for capacitated transportation problems 
(see, for example, Langley, Kennington and Shetty 
1974). Alternatively, exploiting the bipartite network 
structure, x may be obtained via the algorithm of 
Gusfield, Martel and Fernandez-Baca (1985) and can 
thus be solved in O(min(i I 2 I J I, I I I I J 12)) steps. 

3. Parametric Programming 

In this section we show that the marginal allocation 
procedure is ideally suited for parametric program- 
ming, provided the order R is induced by a real-valued 
objective function. The bidding model for oil and gas 
ventures, discussed in Section 4, uses parametric pro- 
gramming for a systematic trade-off analysis between 
two competing performance measures. 

Thus, suppose two real-valued objective functions 
r(.) and q(.) are specified, and assume both induce 
order relations on NT that satisfy the concavity prop- 
erties (RI), (R2), (R1') and (R2'). Also, to facilitate 
the presentation and proofs, we assume r(z) and q(z) 
are nondecreasing in z. (Extensions to the general case 
are straightforward.) For all 0 < X < 1, let s(X; z) = 
(1 - X)r(z) + Xq(z), assume s(X, *) satisfies (R1), 
(R 1'), (R2) and (R2') for all relevant X, and consider 
the family of problems 

Q(X): maximize s(X; z) 
subject to (7) and (8). 

The following procedure determines a (finite) se- 
quence of optimal solutions. At each stage, a range is 
computed on the parameter X for which the same 
solution remains optimal. The variable transition on 
the boundary of these ranges is easily determined, and 
a simple interchange of one unit determines the solu- 
tion in the adjacent range. 

Multiplier Search Algorithm (MSA) 

0. Solve Q(O) using Algorithm I or II and denote the 
optimal solution by zl?). Set X(?) = 0, n = 0. 

1. Find X(n+l) = infIX > X)(n)S(X; z(,) + el - e') > 
S(X; z(n)) and (z(n) + el - el) E Z for some i, / E T}. 
Let i*, 1* E T be the indices for which this infimum 
is attained. If X(n+l) > 1, stop. 

2. Set z(n+) '= z(n) + el* - ei*; n:= n + 1; go to 
Step 1. 

Proposition 1. Let z (n)X (n) for n 3 1 be specified by 
the MSA. z( is optimal for Q(X) with X(n) < X < 

min(l, X (n+ 1)). 

Proof. In view of Theorem 2 in Federgruen and 
Groenevelt, every local optimum of Q(X) is a global 
optimum for 0 - X < 1. It thus suffices to show that 
z( is a local optimum for , X (n+l). We do so 
by induction. Suppose z(n) is a local optimum for 
Q( Xn)). Since s(X; z) is nondecreasing in z, we have 
ZjET Zj = v(T), so there is no t E T for which z(n) + el 
is feasible or z-n) _ e' strictly better than z(n) for any X 
> 0. But then, by step (1) and (13), z(n) is a local 
optimum for ( , X ),(n+ '). By continuity of s as a 
function of X, we have S(A(nlX); z(n)) = S(X(n+1); z(n+l)) 

so z(n+ ) is an optimal solution of Q(X(n+l)). Step 0 of 
the MSA establishes the basis of the induction. 

We now specify implementations of Step 1 of the 
MSA. First we need the following lemma: 

Lemma 2. Let z be an optimal solution of Q(X) and 
let i, 1 e T, i $j. Then there isa X' > X such that 
6(X') = s(X', z + e' - e') - s(X'; z) > 0 if and only if 

dis-f q(z + e' - ei) - q(z) 

-r(z + e'-e') + r(z) > O. (15) 

Under (15), 

infix' > X: b(X') > 0O 

= -[r(z + e' - e') - r(z)J/dis. (16) 

Proof. Note that 

b(V) = r(z + e' - ei) - r(z) + 'dis. (17) 

The "if" part of the lemma follows by letting 
'-* oo in (17). 
Since z is optimal for Q(X), 6(X) < 0. Also, if 

O(X') > 0 for some ' > X, 0 < 6(X') - 6(X) - 
(X' - X)dis. Hence (15) follows from X' - X > 0. 

(16) follows immediately from (17). 

The infimum in Step 1 can thus be obtained as the 
minimum of the zeroes of at most I T I (I T I - 1) 
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known linear functions. The only remaining problem 
is the feasibility test (z + e' - e' E Z?), given z E Z. 
Assume (x, z) is a feasible solution of (7) and (8). 
Observe that for fixed i E T, {l E T: z + e' - e'E Z) 
= {l E T: there exists an augmenting path from i 
to l}. The latter set may thus be determined by the 
classical labeling procedure with node i as starting 
point (see Steps 3-5 in Algorithm II). 

For problem (P) with u1j = ui for all i E I; j E J, the 
sets {l E J:z + el - e' E Z} (for fixed i E J) can 
again be obtained without using the underlying 
network structure. 

Lemma 3. Let z E Z and assume zi 1 Z2 * 

ZIJI. Assume zi > 0. z + el - e' (with / $ i) E Z if 
and only if there is no tight index k with FIRST(l) 
,< k <, LAST(i) -1. 

Proof. Let z' = z + e' - e'. Note z' k 0 since zi> 0. 
Thus z' is feasible if and only if z'(k) < v(k) for 
all k = 1, ..., IJI. Note that for some ordering 
{jl* * *, j,IiJ of the indices zj, > zj2 > ... .,> zjljl and 

iFIRST(I) = / and ILAST(i) = i. If FIRST(/) ? LAST(i), 
all z'(k) < z(k) < v(k), and z' is feasible. Otherwise 
z'(k) = z(k) for k > LAST(i) and z'(k) > z(k) if and 
only if FIRST(/) < k < LAST(i) - 1. 

Thus assume z E Z, z ,>Z ... ZIJI In 
view of Lemma 3, we have {l E J: z + e' - e' E Z) = 
I{I*(i, . . ., I J I I for some 1 < I*(i) < I J I + 1. (1*(i) 
= I J I + 1 implies the index set is empty.) The 
values {I*(i), i E J} can be determined by the following 
procedure: 

Procedure (Determination of l*(i), i E J): 

1. i := I J I; while zi = 0 do begin I*(i) = IJI + 1; 
i:= i- 1 end; 

2. k:=i; 
repeat 

3. if z(k) < v(k) then k:= k - 1 else 
begin 
j:= k; k:= FIRST(k) 
while i > k do begin l*(i):= j; i :=i - end; 
until k = 0. 

This procedure requires 0(I J I) steps. (Note that 
the values FIRST(k) are needed only for tight indices; 
these may be computed in the course of the procedure 
and need not be stored.) 

4. A Bidding Model for Oil and Gas Ventures 

In 1960 the Federal Government ruled that every 
citizen (as well as partnership, association and corpo- 

ration) should have an equal right to share the reve- 
nues from oil and gas deposits found on federally 
owned lands. Therefore, the Federal Government 
holds simultaneous drawings every other month that 
enable the public to acquire leases on a large number 
of land parcels. Each person (partnership, association, 
and so forth) can submit only one lease application 
per parcel, with every filer having an equal chance of 
acquiring the rights. A fee of approximately $75 per 
filing is paid to the Bureau of Land Management. A 
substantial number of parcels have a direct market 
value which is at least 5-10 times the public's total 
investment in filing fees. In addition, overriding roy- 
alties often amount to a multiple of the direct market 
value, all fees are tax deductible, and income is taxed 
as capital gain. In spite of this potential for an unusu- 
ally high return on investment, very few citizens file 
for leases. Most people are unaware of the drawings, 
the filing procedures are complicated and time con- 
suming, and the general public lacks expert informa- 
tion on desirable parcels. 

An industry of professional filing services has arisen 
to assist investors in selecting parcels as well as in the 
actual filing procedure. The very best among these 
services gather geological surveys, experienced lease- 
broker reports, and statistical analyses of past drawings 
in order to select the best leases. Their clients pay a 
fixed service fee and authorize the service to file 
a given number of applications in their name. Prior 
to each drawing, the filing service faces the problem 
of determining the parcels on which to apply for each 
of its clients. 

The problem can be formally stated as follows: let I 
be the client pool and assume client i E I has paid for 
ai applications to be filed in his name. Let J denote 
the set of relevant parcels and for each j E J let Vj and 
Fj denote the estimates of the market value and num- 
ber of outside filers (exclusive of company clients), as 
obtained by geological surveys, real estate broker re- 
ports, statistical analyses, and the like. In order to 
maintain and possibly expand its future business, the 
filing service is interested in optimizing several aggre- 
gate performance measures for the entire client pool, 
in particular 

(i) the expected total market value of the parcels won 
by the client pool, and 

(ii) the expected number of winners. 

Let 

I if client i files for parcel j; 
xii = 4 i Ei I, j E J. 

lo otherwise 

zj = number of clients filing for parcel j, j E J. 
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Table I 
Characteristics of the Land Parcels 

Parcel No. 
Characteristic 

1 2 3 4 5 6 7 8 9 10 

Value Vj 8 16 18 8 20 4 16 20 10 12 

No.ofoutsidefilersFj 14 17 10 7 13 6 12 13 10 10 

Table II 
Trade-offs between Expected Returns and Expected Number of Winners 

IT E(RET) E(WIN) MULT X 1 2 3 4 5 6 7 8 9 10 

1 37.31 2.374 0.0000 0 4 7 2 7 0 6 7 3 4 
2 37.30 2.413 0.1194 0 4 7 3 7 0 5 7 3 4 
3 37.23 2.515 0.4267 0 3 7 3 7 1 5 7 3 4 
4 36.99 2.586 0.7682 0 3 6 3 7 2 5 7 3 4 
5 36.84 2.618 0.8230 1 3 6 3 6 2 5 7 3 4 
6 36.80 2.624 0.8538 1 4 6 3 6 2 5 6 3 4 
7 36.67 2.647 0.8568 1 3 6 4 6 2 5 6 3 4 
8 36.49 2.667 0.8992 1 3 6 3 6 3 5 6 3 4 
9 36.24 2.693 0.9074 1 3 6 4 5 3 5 6 3 4 

10 36.03 2.710 0.9256 1 3 6 4 5 3 5 5 4 4 
11 35.79 2.724 0.9439 2 3 6 4 5 3 4 5 4 4 
12 35.75 2.726 0.9474 2 3 5 4 5 3 5 5 4 4 
13 35.31 2.749 0.9512 2 3 5 4 5 4 4 5 4 4 
14 35.01 2.757 0.9723 2 2 5 5 5 4 4 5 4 4 
15 34.58 2.766 0.9799 3 2 5 5 4 4 4 5 4 4 
16 33.94 2.778 0.9813 3 2 5 5 4 5 4 4 4 4 
17 33.56 2.778 1.0000 3 2 4 5 4 5 4 4 5 4 
18 33.18 2.778 1.0000 3 2 4 5 3 5 4 4 5 5 

Note that objective (i) is maximized by solving (P) 
with 

rj(zj) = Vjzj(zj + Fj), j E J; 

uij = ; i CI, jGE J. 

Likewise, objective (ii) is maximized by solving (P) 
with rj(.) replaced by qj(zj) = zj(zj + Fj). Observe 
that both qJ(.) and rj(.) are concave and nondecreas- 
ing. Alternatively, the parameters Vj and Fj, j E J, 
may be treated as random variables. Let q5(.) denote 
the cdf of Fj, j E J and solve (P) with rj(*) replaced by 

00 

Tk) = EVj f z,/(zj + Fj) d >(Fj), j E J, 

and qJ(.) replaced by Q(J.) = bj(.)/(EVj). (Note Q(J.) 
and rj(.) are concave and nondecreasing as well.) 

We now illustrate the use of the MSA procedure 
with the help of a numerical example. In actual prob- 
lem instances solved for a particular filing service, we 
found that solutions based on expert judgment were 
often significantly below the efficient frontier. 

Example. Let I II = 8 with al = a2 = 8; a3 = a4 = 6; 
a5 = a6 = 4 and a7 = a8 = 2. Table I shows all input 

parameters. All Vi for i E I were chosen to be 
2*UnJ 1, 2, . . ., 10} and Fi = 1/2Vi + Unj 1, 2, . . ., 10} 
for i E I (Untl, 2, ..., lO} represents a uniformly 
drawn integer between 1 and 10.) Table II exhibits 
how the optimal solution varies as the parameter X 
increases from 0 to 1. Eighteen different solutions 
arise. The table also shows the corresponding values 
of the two objective functions, Ej rj(.) (expected re- 
turn) and >j qJ(*) (expected number of winners). 
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