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In this paper we consider single machine scheduling problems with a common due-date for all jobs, arbitrary monotone earliness and 
tardiness costs and arbitrary breakdown and repair processes. We show that the problem is equivalent to a deterministic one without 
breakdowns and repairs and with an equivalent cost function of a job's completion time. A V-shaped schedule without idle times is 
shown to be optimal, if this equivalent cost function is quasi-convex. 

Conversely, we show that a V-shaped schedule may fail to be optimal if the property does not apply. We derive general conditions 
for the earliness and tardiness cost structure and repair and breakdown processes under which the equivalent cost function is 
quasi-convex. When a V-shaped schedule is optimal, an efficient (though pseudo-polynomial) algorithm can be used to compute an 
optimal schedule. 

M achine scheduling problems have traditionally been 
analyzed under fully deterministic assumptions. 

Over the last decade, significant attention has been given 
to the generally harder case where the jobs' processing 
times are random; see, e.g., Pinedo (1984). In practice, 
most of the uncertainty centers around the availability of 
the machine(s) which may well be subject to lengthy and 
unpredictable breakdowns. In many manufacturing lines, 
for example, there is little or no uncertainty with respect to 
the actual processing times of the different production lots 
or orders, but lengthy and poorly predictable breakdowns 
and repair times present major challenges to the produc- 
tion scheduler trying to meet deadlines with "minimal" 
inventories. Similarly, machine operations need to be in- 
terrupted when their performance violates quality control 
standards and the process of interruptions and the times 
required to restore the machine to acceptable performance 
are often of a highly stochastic nature. 

To account for possible breakdowns and repair times, it 
is advisable to start a significant number of jobs well in 
advance of the times at which they would otherwise be 
started. To determine which jobs should be scheduled 
early on, in what sequence and at what specific times, one 
faces a fundamental tradeoff between so-called tardiness 
and earliness costs. An appropriate model should thus in- 
corporate an accurate description of the breakdown and 
repair time processes, and schedules should be determined 
to minimize an appropriate, combined earliness and tardi- 
ness (E/T) cost objective. 

In parallel to the above development of stochastic sched- 
uling models (all with tardiness costs only, except for Forst 
(1993)), a significant literature on scheduling with E/T 

costs has arisen in the last decade, but it confines itself 
almost invariably to fully deterministic settings; see, e.g., 
Baker and Scudder (1990). 

Under stochastic breakdowns, several assumptions may 
be made regarding the impact of a breakdown on the job 
in process. In the preempt-resume case, the breakdown merely 
acts as an interruption, i.e., the job in process can be re- 
sumed without loss of prior work as soon as the machine is 
back in operation. At the other extreme, the preempt- 
repeat case, all prior work on an interrupted job is lost. 
Another important distinction is whether the scheduler has 
general or simple recourse, i.e., whether the schedule can 
be dynamically adjusted in a general, nonanticipative way 
(see, e.g., Rockefellar and Wets (1976)) or a fixed permu- 
tation of jobs is to be chosen and only the jobs' starting 
times can be adjusted in response to breakdowns and re- 
pairs. General recourse models result in Markov Decision 
Processes which in general are too large to be solved to 
optimality. (See, however, Glazebrook (1984, 1987), 
Pinedo and Rammouz (1988) and Browne and Glazebrook 
(1992) for a number of models, with tardiness costs only.) 
In this paper we confine ourselves to preempt-resume and 
simple recourse settings. 

Mittenthal and Raghavachari (1993) are the first to ad- 
dress a (preempt-resume, simple recourse) single machine 
model with E/T costs and breakdowns, building on Birge 
et al. (1991) who focused on tardiness costs only. They 
prove that a schedule of V-shape is optimal if the sum of 
squared deviations from a common due-date is to be min- 
imized, the breakdown process is Poisson and the repair 
times are independent and identically distributed (i.i.d.). 
(A sequence is of V-shape if the corresponding sequence 
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of processing times has a single local minimum, disregard- 
ing ties.) 

In this paper we consider single machine scheduling 
problems with a common due-date for all jobs and (i) 
arbitrary monotone E/T cost functions and (ii) arbitrary 
breakdown and repair processes. We show that the prob- 
lem is equivalent to a deterministic one without break- 
downs and repairs and with an equivalent cost function of a 
job's completion time. A V-shaped schedule without idle 
times is shown to be optimal, if this equivalent cost func- 
tion is quasi-convex. Conversely, we show that a V-shaped 
schedule may fail to be optimal if this property does not 
apply by giving examples of breakdown processes under 
which this occurs, even when the original E/T cost struc- 
ture is quadratic (and in particular convex). As a special 
case, our results resolve the question raised in Mittenthal 
and Raghavachari whether a V-shaped schedule is optimal 
under nonhomogeneous Poisson breakdown processes. We 
derive general conditions for the E/T cost structure and 
repair and breakdown processes under which the equiva- 
lent cost function is quasi-convex. More generally, quasi- 
convexity can, however, be verified for any specific model 
by a one-time inspection of the equivalent cost function, 
either via standard calculus, or other numerical methods. 

The significance of our results follows from the follow- 
ing observations: A large variety of earliness cost functions 
arise depending, e.g., on what types of inventory and job 
maintenance costs are incurred, or whether the jobs are 
perishable and if so, according to what pattern they decay. 
Many types of nonlinear tardiness costs arise depending, 
e.g., on the type of contractual penalties, expected goodwill 
or future revenue losses involved. We refer to Baker and 
Scudder and Federgruen and Mosheiov (1993a) for a dis- 
cussion of many combined E/T cost structures. When a 
V-shaped schedule is optimal, a simple dynamic program- 
ming algorithm in Kahlbacher (1992) or Federgruen and 
Mosheiov (1993a) can be used to compute a schedule 
which is optimal among all schedules whose starting time 
is restricted to the points of any prespecified grid. Its run- 
ning time is O(NP2OtA1) where N denotes the number of 
jobs, Ptot the total processing time of the jobs and A the 
width of the chosen grid. Finally, the model and solution 
methods may be used to efficiently assess the impact of 
quality improvements. 

1. THE GENERAL MODEL: OPTIMALITY OF A V- 
SHAPED SEQUENCE 

Consider a (single machine) scheduling problem with N 
jobs, a common due date d and processing times {P1, . . .. 
PN}- Let Ptot = Ij 1 Pj. Breakdowns are generated by a 
point process {N(t): t - O} with nondecreasing sample 
paths, where N(t) = the number of breakdowns after t 
time units of work. Once the machine breaks down, it is 
repaired. Let Y1 = the duration of the ith repair time, i > 1. 

The sequence of {Yi} is generated by an arbitrary 
(discrete-time) process. In particular we allow the sequence 

to be nonstationary (to reflect that repairs may be progres- 
sively easier or harder, or that they follow a more general 
learning curve), or correlated (so as to represent interde- 
pendencies between consecutive repairs). The repair and 
breakdown processes may even be dependent on each 
other. 

For a given schedule of jobs ar, with starting time s, let 

Cj(,w)= the completion time of job j if no interruptions 
occur, and 

Cj = the actual completion time of job j under the 
schedule ir. 

In view of the preempt-resume assumption: 

N(CJ (rr)-s) 

Cj (7T) = Cj (r + E Ye. (1) 
E=t 

The earliness (tardiness) cost of job j (j = 1, . . . , N) is 
given by a common function F( * ) (G( * )) of the amount 
of time the job is completed before (after) the due date, 
i.e., by F(d - C1j(iu)) and G(C1j(n) - d). We assume with- 
out loss of generality that F( * ) and G( * ) are nondecreas- 
ing and strictly increasing on some interval, with F(x) 
G(x) = 0 for x - 0. Many scheduling models have focused 
on special choices, e.g., F(x) - G(x) = x or F(x) = G(x) 
= Xr for some r > 1, i.e., the objective is to minimize the 
sum of the rth power of the deviations of the jobs' comple- 
tion times from the due-date, for some r : 1. As dis- 
cussed, many other types of nonlinear cost functions may 
arise; in particular, F( * ) and G( * ) are often different, i.e., 
the cost structure is asymmetric. Our objective is to mini- 
mize the expected total cost: 

N 

min E E[F(d - Cj + G(j - d)]. (2) 
X j=1 

The scheduling problem with stochastic breakdowns and 
repairs is thus equivalent to a deterministic problem with- 
out breakdowns, in which the cost of a job depends both 
on its completion time C and the starting time s of the 
entire schedule, and is given by: 

N(C-s) 

(D (C) def EF d'-C- YeJ 
f=1 

N(C-s) 

+EGKC+ Ye-d). (3) 
e=1 

We now obtain our main result: 

Theorem 1. Assume the cost function 5(Ds) is quasi- 
convex for all s > 0, i.e., maxf >D(C1), 4Ps(C2)} : b5(C) 
for all Cl < C < C2. There exists an optimal schedule 
without idle times which is of V-shape. 

Proof It suffices to prove that for any fixed starting time 
s = s*, an optimal schedule exists which is of V-shape and 
inserts no idle times between consecutive jobs. Under the 
fixed starting time, the cost of a job is given by P*(C) = 

t4>*C), i.e., it is a function of its completion time only. 
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Since this function is quasi-convex, the result follows from 
Krieger and Raghavachari (1988) and Federgruen and 
Mosheiov (1993a, Theorem 1). D 

Thus, if (D,( * ) is quasi-convex for all s > 0, the sched- 
uling problem reduces to (i) finding an optimal starting 
time s and (ii) selecting one of the 2N- 1 V-shaped job 
sequences. To determine an optimal schedule for a given 
starting time s, we need to distinguish between two cases: 

Case 1. (Ds( ) is nondecreasing on the entire positive half 
line. 

Case 2. (Ds() has a (possibly nonstrict) global minimum 
8, i.e., 'Is(C) is nonincreasing for C < 8 and FDs(C) is 
nondecreasing for C > 8. (We call the smallest such global 
minimum 8 the due-date in the equivalent deterministic 
problem, since in the latter a job incurs minimal cost when 
completed at the due-date.) 

The remaining case, where Ds(C) is nonincreasing for 
all C > 0, cannot occur as shown in the following lemma: 

Lemma 2. Fix s > 0. The function ?s(C) is nondecreasing 
for C a d. 

Proof. Note that for C a d, the first term in (3) vanishes. 
The family of random variables X(C) d f C + N C-s) Ye - 

d is stochastically increasing, since N(C2 - s) a N(C1 - s) 
almost surely for all C1 < C2. This implies that Eh(X(C)) 
is nondecreasing in C for any nondecreasing function 
h( * ), in particular for the function h(x) = G(x), see, e.g., 
Whitt (1981). D2 

In Case 1 it is optimal to start the schedule at time s and 
schedule the jobs in nondecreasing order of their process- 
ing times. In Case 2, the existence of a V-shaped schedule 
implies that for any k = 2, . .. , N the subsequence of jobs 
{1, . .. , k - 1} is contiguous and that job k is placed either 
immediately before or after the subsequence. Thus, for all 
k 1,...,N, let Sk = 417k_ Pj and Vs(k, t) = minimum 
cost incurred for jobs 1, . .. , k, given that the first of these 
jobs (in the equivalent deterministic model) is to start at 
time t while the entire sequence is to start at time s (t = s, 
s + 1,..., s + SN - Sk). The function Vs(k, t) clearly 
satisfies the recursion: 

Vs(k, t) = min{f(s(t + Pk) + Vs(k - 1, t + Pk); 

(Ds(t + Sk) + Vs(k - 1, t)}, 

k= 2, ... , N; 

Vs(1, t) = Pt)s(t + P1). 

The optimal schedule and its cost are obtained by comput- 
ing Vs(N, s). 

This dynamic program, which is a variant of that in 
Kahlbacher, has complexity O(NPt0t). Given the nonlinear- 
ity of the functions (Ds( * ) the exact optimal value of s can, 
in general, not be determined. Thus, restricting s to the 
points of an arbitrary discrete grid with width /, the dy- 
namic program has to be repeated A\- min(d; Pt0t) times 

and the overall complexity is O(NP,O, min(d; Ptot)A') 
Alternatively, one can use the dynamic programming 
method of Federgruen and Mosheiov (1993a) which has 
significantly lower complexity when the cost function ID( * ) 
is independent of the starting time s. Kahlbacher does not 
report any computational experience; Federgruen and 
Mosheiov show that problems with several hundreds of 
jobs, integer processing times between 1 and 100 and a 
grid of width A = 0.01 can be solved in about one minute 
of CPU time on an IBM 4381 (VM/CMS). 

Thus, to verify whether an optimal schedule exists which 
is of V-shape and avoids idle times, it suffices to determine 
whether for any s > 0, the function FD,( ) has a strict 
(positive) local maximum or not. There are broad classes 
of functions F and G, combined with general types of 
breakdown and repair processes under which quasi- 
convexity of the expected tardiness costs, earliness costs or 
both can be proved; see, e.g., Theorem 4 below. In other 
settings, (e.g., Examples 1 and 2 below) one can obtain ID, 
as a closed form analytical and twice differentiable func- 
tion, thus establishing quasi-convexity by inspecting the 
sign of its second derivative. 

Example 1. Assume F(x) = G(x) = xr, for some even 
integer r. Let breakdowns be generated by a nonhomoge- 
neous Poisson process with rate A(t), t > 0. Assume repair 
times are i.i.d. with kth moment pf(k), k - r. Conditioning 
on N(C - s), a Poisson random variable with mean A(C - 
S) d f 7S A(t) dt one obtains for r = 2, Fs(C) = (C + 

gA(C - s) - d)2 + ,u(2)A(C - s) (see, e.g., Mittenthal 
and Raghavachari) and, in general, 

r m 

= ()(C- d)r-m f 
[(,k)ak] 

m=O 
s (C) 

i 
d 

=mk= 

(A(C- S)) al + + a., 

(see, e.g., Proposition 2 in Federgruen and Katalan 
(1994)). Thus, whenever A( * ) is differentiable and integra- 
ble in closed form, IDs(C) is available as a closed form, 
twice differentiable function; e.g., when A( * ) is a polyno- 
mial, (Ds( * ) is a polynomial as well where (local) minima 
can be found by computing the roots of the polynomial 
(D'( * ) via a standard method. 

Example 2. Consider example 1, however, with A(t) = A, 
i.e., breakdowns generated by an ordinary Poisson process. 
On the other hand, let (Y1, Y2, ...) be a general multivar- 
iate Normal vector (possibly with nonidentical or corre- 
lated repair times). Let 4n( ) denote the (Normal) pdf of 

Sn = e=i Ye, n > 1. Then 

= E[c+N(C-s) r 

n=O n! [C+o-d]p()d 
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where each of the integrals can be obtained in closed form 
as a linear combination of the first r moments of the (nor- 
mally distributed) variables (Sn). Thus 'F,(C) is available in 
closed form as a so-called generalized exponential in C 
(and s). 

Finally, if no closed form expression can be derived, one 
needs to search for local optima until more than one is 
found or it is verified that at most a single local minimum 
exists. This can be done by a variety of global optimization 
methods (see, e.g., Section 6 in Rinnooy Kan and Timmer 
(1989)) many of which operate without derivative informa- 
tion. In the worst case, quasi-convexity can be verified, 
under integer processing times and starting times restricted 
to the above mentioned grid, by (full) evaluation of the 
values {F (C)} on finitely many grid points. 

To derive general conditions for quasi-convexity, we first 
need the following definitions: For a general point process 
{N(t): t 3 O} one defines the stochastic intensity by 
ttef lim O 0 E' Prob[N(t + E) - N(t) = l|N(s), 0 - s - t] 
and the conditional intensity A(t, n) by E[CJN(t) = n], see, 
e.g., Bremaud (1981). (The stochastic intensity does not al- 
ways exist; it exists, however, for most processes used in prac- 
tical modelling, e.g. (nonhomogeneous) Poisson, renewal or 
Markov modulated Poisson processes, see Walrand (1988).) 
A family of random variables {X(C)} is SICX (stochastically 
increasing convex), if E4)(X(C)) is increasing (increasing 
convex) in C for every increasing (increasing, convex) 
function 4. The family is SIL (stochastically increasing lin- 
ear) if it is SICX and in addition E4)(X(C)) is increasing 
concave for every increasing, concave function 4. 

Lemma 3. Assume that the breakdown process {N(t)} has 
a conditional intensity A(t, n) which is nondecreasing in t 
and in n, and that repair times are i.i.d. and independent of 
the breakdown process. Fix s > 0. 

N(C-s) 

Xs (C) -e C + EY 
4=1 

- d is SICX in C, and SIL in C if {N(t)} is Poisson. 

Proof. The family {N(C)} is SICX (SIL in the Poisson 
case) since the conditional intensity A is monotone (con- 
stant), see Theorem 5.11 in Shanthikumar and Yao (1992). 
Also R(n) = In1 Yt is SIL in n, see, e.g., Example 6.A.3 
in Shaked and Shanthikumar (1994), so that R(N(C - s)) 
is SICX in C (and SIL in the Poisson case) by Theorem 
6.A.13 there. El 

Theorem 4. Assume repair times are i.i.d. and independent 
of the breakdown process {N(t)}. 

(a) Let {N(t)} be Poisson. If F and G are convex, then so 
are the cost functions I ( * ) for all s > 0. In particu- 
lar, there exists an optimal schedule without idle times 
which is of V-shape. 

(b) Assume the conditional intensity X(t, n) is nondecreas- 
ing in t and n. If G( *) is convex, then the expected 
tardiness cost is convex in C for every s. 

Proof. By Lemma 3 the expected tardiness cost is convex 
in C while E{ -F(-X,(C)} is concave in C since +(x) = 

-F(-x) is increasing concave in x; hence, the expected 
earliness cost is convex in C as well. Part (b) is again 
immediate from Lemma 3. 0 

Remark. Convexity of the expected earliness costs cannot 
be established for general breakdown processes with mono- 
tone conditional intensities; since for the latter {X'(C)} is 
only SICX, convex decreasing functions of X,(C) may fail 
to be convex in C. 

We now discuss a number of important breakdown pro- 
cesses to which Theorem 4 is easily applied: (Bi) The 
breakdown process is Poisson or a nonstationary Poisson 
process with nondecreasing rate A(b). (B2) Breakdowns 
are generated by a mixed Poisson process, i.e., N(t) d 

P(WA(t)) where P(t), t , 0 is a standard Poisson process 
with unit rate, A( ) is a nonincreasing function with 
A(O) = 0, and W an independent positive-valued random 
variable with cdf H( * ). (B3) Breakdowns arise according 
to a Markov modulated Poisson process, i.e., a Poisson 
process whose rate is an increasing function of the state of 
an underlying Markov chain, where the state is stochasti- 
cally increasing in N(t) = n. 

Regular nonstationary Poisson processes (Bi) arise as a 
special case of (B2) with W a constant. (B2) is frequently 
used to model self-exciting failures or breakdowns, see, 
e.g., Browne and Glazebrook (1992). Special cases include 
the Polya processes where A(t) -t and W has a gamma (a, 
b) distribution, i.e., H'(w) = wa-le-w/b[baF(a)]-l and A(t, 
n) = b(n + a) (1 + bt)-1. The time homogeneous Yule 
process has a conditional stochastic intensity which grows 
linearly with the number of failures experienced to date 
and independently of the time elapsed, i.e., A(t, n) = 

A(n + a) for some a, A > O. This case arises when A(t) = 
eA - 1 and W is a gamma (a, 1). In all these cases, A(t, n) 
is linear in n, and the distribution of N(t) is negative bino- 
mial (t > 0). This fits many settings that cannot be mod- 
eled by regular nonstationary Poisson processes in which 
N(t) is always Poisson (t > 0). 

The centrality of the mixed Poisson processes follows 
from its characterization, due to Feigin (1979), as the class 
of counting processes with the order statistic property, i.e., 
conditional upon N(t) = n, the first n breakdown times are 
distributed as the order statistics of n i.i.d. random vari- 
ables with a general distribution on the interval (0, t). If 
A(t) is twice differentiable, Browne and Glazebrook show 
that A(t, n) = A"(t)qi(n + 1, t)/tp(n, t) where qi(n, t) = 

E[Wne`A(t)], (n - 1, 2, ... ; t 3 0), that A(t, n) is always 
increasing in n, and that it is increasing in t, if A"(t) > 

qf(n + 2, t)/4i(n + 1, t) - qf(n + 1, t)l4i(n, t). Based on 
this simple characterization of the conditional intensity, 
there are established methods to fit an appropriate mixed 
Poisson process to empirically observed failure rates, see, 
e.g., Gerber (1981). 
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Theorem 4 generalizes the results in Mittenthal and 
Raghavachari who showed that a V-shaped schedule is op- 
timal for the special case of F(x) = G(x) = x2, s = 0 and 
breakdowns generated by a pure Poisson process. These 
authors also consider generalized or compound Poisson 
breakdown processes. However, with i.i.d. repair times that 
are independent of the breakdowns, this is equivalent to pure 
Poisson breakdowns and the total time required to resolve 
all breakdowns occurring simultaneously, as the repair 
time. Example 1 also provides a negative answer to the 
authors' open question whether a V-shaped schedule is 
necessarily optimal when the breakdowns are generated 
by a nonhomogeneous Poisson process. In this example, 
let r = 2, d = 5 and A(t) = e-2(t-5), t > 0. With ,u and a- 
the mean and standard deviation of the repair times, we 
have: 

(o (C)= (C + , A(t) dt - d 2 

rc 
+ (t2 + a2) { A(t) dt. 

As ,u tends to zero, we have FD' (C) = 2(C - 5) + 
O.Ole-2(C-5), C > 0. (Do is increasing for C < 1.76, has a 
local maximum in 8 1.76, a local minimum in 5 - 4.975 
and it is increasing for C > 8. In other words, the function 
fails to be quasi-convex. Consider now a problem instance 
with N = 3 and P1 = 0.5, P2 = 2.5 and P3 = 6. Let s = 0 
be the starting time. The schedule with non-V-shaped se- 
quence q - (1, 3, 2) and no idle times is cheaper than any 
V-shaped sequence: see Federgruen and Mosheiov (1993b) 
for details. 

The following provides an intuitive explanation for the 
peculiar shape of (Do( * ). Clearly for small values of C, (Do 
(C) increases since the increase in expected tardiness costs 
exceeds the decrease in expected earliness costs and this in 
spite of C < d. However, because the failure rate de- 
creases with time there exists a local maximum 8 < d 
such that for C > 8 sufficiently small, i.e., 6 < C < 8, 
(Do( * ) decreases; the increase in expected tardiness 
costs over this interval is smaller than the decrease in 
expected earliness costs. 

Federgruen and Mosheiov (1993b) show that the opti- 
mal cost and optimal schedule can be significantly different 
from those arising (i) in the absence of breakdowns, and 
(ii) when each processing time is replaced by the expected 
total time in process including all repair times, a common 
practice in scheduling systems. 

Finally, quality control focuses on improving the reliabil- 
ity of manufacturing processes, e.g., by improved training, 
by expediting repairs, or by more reliable technologies. 
The model and solution methods above are well suited to 
quantify the impact of such quality improvements. We il- 
lustrate this with the special case of Example 1 with r = 2, 
and Poisson breakdowns with rate A. The analysis of the 
example shows that iPs(C) and hence the cost of any 
schedule is a simple quadratic function of d and the three 

dimensions of reliability A, ,, and i. It follows that the 
minimum cost z* is increasing in A, , and o, decreasing in 
d, and piecewise quadratic in all four parameters, see 
Federgruen and Mosheiov (1993b, Proposition 2.1). Fig- 
ures 1-4 there, exhibit, for a specific 100 job problem, how 
z* varies with each of the parameters. The ability to gen- 
erate such optimal cost curves efficiently is important in 
design and quality studies. 
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