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W e consider multimachine scheduling problems with earliness and tardiness costs. We first 
analyze problems in which the cost of a job is given by a general nondecreasing, convex 

function F of the absolute deviation of its completion time from a (common) unrestrictive due- 
date, and the objective is to minimize the sum of the costs incurred for all N jobs. (A special case 
to which considerable attention is given is the completion time variance problem.) 

We derive an easily computable lower bound for the minimum cost value and a simple "Al- 
temating Schedule" heuristic, both of which are computable in O(N log N) time. Under mild 
technical conditions with respect to F, we show that the worst case optimality (accuracy) gap 
of the heuristic (lower bound) is bounded by a constant as well as by a simple function of a 
single measure of the dispersion among the processing times. We also show that the heuristic 
(bound) is asymptotically optimal (accurate) and characterize the convergence rate as O(N-2) 
under very general conditions with respect to the function F. In addition, we report on a nu- 
merical study showing that the average gap is less than 1% even for problems with 30 jobs, and 
that it falls below 0.1% for problems with 90 or more jobs. This study also establishes that the 
empirical gap is almost perfectly proportional with N-2, as verified by a regression analysis. 

Finally, we generalize the heuristic to settings with a possibly restrictive due date and general 
asymmetric, and possibly nonconvex, earliness and tardiness cost functions and demonstrate its 
excellent performance via a second numerical study. 
(Multimachine Scheduling; Earliness and Tardiness Costs; Heuristics; Worst Case; Asymptotic and 
Probabilistic Analysis) 

Thanks to the widespread interest in Just-in-Time pro- 
duction strategies (e.g., Hall 1983, Monden 1983, Black- 
bum 1991) much attention has been given to the prob- 
lem of scheduling jobs with the objective of completing 
them as close as possible to a common due date. Almost 
all the literature on this type of scheduling problems 
with earliness and tardiness costs confines itself to single 
machine settings. We refer to Baker and Scudder (1990) 
for a survey of the single machine literature up to 1990. 

This paper addresses Just-in-Time scheduling prob- 
lems on multiple parallel machines. With parallel ma- 
chines, only the problem of minimizing a linear function 
of the deviations of the jobs' completion times with re- 

spect to the due date has been satisfactorily solved. Sun- 
daraghavan and Ahmed (1984) and Hall (1986) pro- 
vided an O(N log N) algorithm, with N the number of 
jobs, to minimize the sum of absolute deviations pro- 
vided the due date is nonrestrictive, i.e., it is sufficiently 
large to have no impact on the optimal assignment of 
jobs to machines and their sequences on these machines. 
Emmons (1987) extended this result to the case where 
the deviations of the completion times of the tardy jobs 
and those of the early jobs are weighted with two dif- 
ferent factors and to settings with uniform machines, 
i.e., machines with different speeds. Finally, Kubiak et 
al. (1990) showed that for unrelated machines, any lin- 
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ear function of the jobs' deviations can be optimized (in 
polynomial time) by solving a transportation problem. 
(With unrelated machines, each job's processing time 
depends in a general way on its identity and the ma- 
chine to which it is assigned.) 

The restriction to linear cost structures and nonrestric- 
tive due dates is not surprising: when the due date is 
restrictive, the problem is NP-complete even in the sin- 
gle machine case, and when minimizing the sum of ab- 
solute deviations, arguably the simplest of all cost struc- 
tures, see Hall et al. (1991). No polynomial time algo- 
rithms are known for any nonlinear cost structures, even 
with a single machine and even when the due date is 
nonrestrictive. This applies even in the special case 
where the sum of squared deviations is minimized or 
equivalently (see Bagchi et al. 1987) the variance of the 
completion times. (The latter objective has been studied 
extensively, but only in the single machine case; see ?3. 
Kubiak 1993b showed that the problem is binary NP- 
hard.) In the single machine case, one has at least a num- 
ber of pseudo-polynomial methods which can be used for 
general nonlinear cost structures; see Kahlbacher (1992) 
and Federgruen and Mosheiov (1993). 

In this paper, we first address problems in which 
the cost of each job is given by a common but general 
nondecreasing and convex function F of the absolute 
deviation of its completion time from an unrestrictive 
due date. The objective is to minimize the sum of the 
costs incurred for all jobs. (Special cases include the 
problem of minimizing the sum of squared deviations 
and the completion time variance problem.) In ?1, we 
derive a lower bound for the optimum-cost value, and 
a simple "Alternating Schedule" heuristic, both of 
which can be computed in O(N log N) time. We show 
that for certain problem instances the lower bound is 
tight and that the heuristic generates an optimal so- 
lution. 

For general problem instances, we characterize in ?2 
the worst case optimality (and accuracy) gap as a simple 
function of a single measure of the dispersion among 
the processing times. Under mild conditions with re- 
spect to the function F, the optimality gap is bounded 
by a constant, independent of any of the model param- 
eters. The bound is asymptotically accurate, and the 
heuristic is asymptotically optimal, as N -+ oo. We also 
characterize the rate at which the optimality/ accuracy 

gap decreases to zero as a function of N and other model 
parameters. 

In ?3 we address the important special case where the 
completion time variance is to be minimized, and we 
report on a numerical study showing that the average 
gap between the lower bound and the heuristic is less 
than 1% even for problems with N = 30 jobs, and less 
than 0.1% when N - 90. The above results, important 
in their own right, directly suggest an effective heuristic 
for more general cost structures, in particular restrictive 
due dates and asymmetric structures described by a pair 
of general, nondecreasing and possibly distinct cost 
functions: an earliness and a tardiness cost function 
which applies to the early and tardy jobs, respectively. 
This heuristic is developed in ?4 and covers the general 
class of cost structures treated in Kahlbacher (1992) and 
Federgruen and Mosheiov (1993) for single machine 
problems. See the latter for a discussion of many im- 
portant, often asymmetric, earliness and tardiness costs. 
No efficiently computable and tight lower bounds or 
practical exact solution methods are available for this 
general class of cost structures. In the single machine 
case, we are however able to show that the heuristic 
performs excellently by comparing it against the cost of 
optimal schedules, computed with the exact method in 
Federgruen and Mosheiov. 

1. The Basic Multimachine Model: 
An O(N log N) Lower Bound and 
Heuristic 

Consider a scheduling problem with N jobs and m iden- 
tical machines. All jobs share a common nonrestrictive 
due date d. The cost incurred for job j depends on the 
absolute value of the deviation Aj of its completion time 

Cj from the due date d, according to a general, nonde- 
creasing, and convex function F(-), i.e., the cost for job 
j is given by F((A), j = 1, . . ., N. The cost structure in 
the basic model is thus symmetric and convex. For i 
= 1, ... , N, let Pi denote the integer-valued processing 
time for job i, and sj = 1i=, Pi the cumulative process- 
ing time for the j smallest jobs. The jobs are numbered 
such that P1 c c' - PN. The objective is to minimize 
EN 1 F(A1), the sum of the costs incurred for all jobs. 

We start with the derivation of a simple but accurate 
lower bound for the minimum cost value z*. To derive 
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the latter, we first need the following lemma: It is pos- 
sible, without loss of optimality, to restrict oneself to 
schedules without idle times between jobs. (This prop- 
erty is easily verified and well known for m = 1.) Let 
/(i) = the ith smallest completion time deviation 
(among all N jobs on all m machines), i = 1, . .. , N. 

LEMMA 1. For any schedule without idle times, 

A(j+l) + 'A(j+2) + + 'A(j+2m) 2 Sj+ni, 

j = 0, 1,..., N - 2m. 

PROOF. Let 0(i) denote the set of completion times 
with the i smallest deviations from the due date (on any 
machine). Let / Ik)( TMk)) denote the deviation from the 
due date of the earliest (latest) completion time in 0(i, 
on machine k. Observe that 

ftt 

E / + Akj,k) 2 Si-,, for i > m, (1) 
k=1 

since the left-hand side represents the sum of the pro- 
cessing times of all jobs in 0(i) except for the m jobs that 
initiate the schedules on the m machines, i.e., the sum 
of (i - m) processing times. Thus, by (1), 

Aq(j+l) + Aq(j+2) + + 'A(j+2m) 

2XE [')(i+2m,k) + /(j+2tn,k)] 2 Sj+m. 
k=1 

(The left-hand side of the first inequality represents the 
sum of the 2m largest A\-values in 0(j+2m), while its right- 
hand side represents the sum of 2m A\-values in 0(j+2,,1) 

as well.) D 
We now derive a lower bound for z* by relaxing the 

scheduling problem to a mathematical program of 
simple structure which allows for a closed form ex- 
pression: 

N 

(LB) z_= min , F(/\;), (2) 
j=l 

2ni 

s.t. 1: /(N-2hnt+k) 2SN-(21-1)t?i; 
k=1 

l=1,2,.., LN/2mJ, (3) 

l 2 /\(i); i = 1, 2, .. ., N - 1; LA(1) ?0. (4) 

THEOREM 2 (Lower Bound). 

LN/2n1 

z - E 2mF(sN-(21-1)n1 /2m) _ z*. (5) 
1=1 

PROOF. The A\-values satisfy (3) in view of Lemma 
1 with j = N - 21m. Constraints (4) follow from the 
definition of the A\-values. The mathematical program 
(LB) is thus a relaxation of the scheduling problem; 
hence z ? z*. The closed form expression for z is verified 
as follows: note that the vector A* with 

A(l) = = *M (N-2mLN/2nJ) = 0 

L(N-21m+1) = 'A(N-2Im+2) = 

-/ (N-21m+2m) = SN-(21-1)tn /2m 

for all I =1, .. ., LN/2mJ, (6) 

minimizes (2) subject to (3). This holds since in the latter 
optimization problem A(1), . . , A(N-2mLN/2mJ) are uncon- 
strained and since F() is nondecreasing while the re- 
maining problem decomposes into LN/ 2mJ separate single 
constraint problems, the Ith of which consists of minimiz- 
ing k=l F(/A(N-21m+k)) subject to the Ith constraint in (3). 
Since F is convex, the optimum solution for this single 
constraint problem is given by the values in (6). 

The L\*-vector thus minimizes (2) subject to (3). Since 
it satisfies (4) as well, it is optimal for the complete 
mathematical program (LB). Substitution of the A*- 
values in (2) results in the expression for z. O 

The lower bound expression in (5) can be simplified 
in the following special cases: 

(a) N = 2rm for some r ? 1: z = 2m 1' 1 F(s(21-1),1/2m). 
(b) N =(2r + 1)m for some r 2 1: z= 2m E'1 F(s21m/ 

2m). 
(c) m = 1 and N even: z = 2y 42F(s21 1/2). 
(d) m = 1 and N odd: z = 2 yLN/2J F(S2,/2). 
The bound in Theorem 2 is tight, i.e., z = z*, for the 

following "perfectly symmetric" problem instances. 
DEFINITION 1. If N = 2rm for some r 2 1, a problem 

instance is perfectly symmetric if P1 = P2 = = P,,M; P,,1+1 
= Pn,+2 = ... = P3n11; P3,,1+1 = P3=+2 = P5,,; ... 

P(2r-3)?ii+1 = P(2r-3)iin+2 =. 3 P(2r-=)t?t- 

DEFINITION 2. If N = (2r + 1)m for some r 2 1, a 
problem instance is perfectly symmetric if P1 = P2 = 

= P211n; P2t?t+1 = P2,,,+2 = = P411n; P4,,,+1 = P4,,,+2 = 

= P6,,; ... ; P2(r-1)iii+1 = P2(r-1)1iI+2 = = P2rini- 
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Tightness of the lower bound for perfectly symmetric 
instances is verified by considering the following simple 
Alternating Schedule. (This is a generalization of a sched- 
ule introduced by Eilon and Chowdhury 1977 for min- 
imizing the variance of waiting times on a single ma- 
chine. In specifying this Alternating Schedule, we as- 
sume, without loss of generality, that N is a multiple of 
m; if N fails to be a multiple of m, increase the number 
of jobs to FN/mlm, by adding (mFN/ml - N) dummy 
jobs of zero processing time.) 

DEFINITION 3. The Alternating Schedule schedules the 
jobs in consecutive batches of size m, i.e., first jobs I1, ..., 
m} are scheduled, then jobs {m + 1, ..., 2m1, etc. The ith 
job in each batch is scheduled on machine i (i = 1, ... . 
m). If N = (2r + 1)m for some r 0 O, the heuristic schedules 
the first batch to be completed at the due date. The remain- 
ing batches of jobs are scheduled altematingly at the tail 
and head of the partial schedules constructed thus far, 
starting with the second batch, which is scheduled right 
after the first one. If N = 2rm for some r 2 1, the Alter- 
nating Schedule schedules the first batch so that exactly 
half of each job in the batch is completed at the due date. 
The remaining batches of jobs are scheduled altematingly 
at the head and tail of the partial schedules constructed 
thus far, starting with the second batch which is scheduled 
in front of the first one. 

Let ZAS denote the cost of the schedules generated by 
the Alternating Schedule. 

PROPOSITION 3. zAs = z = z* for any perfectly symmet- 
ric instance. In other words, the Alternating Schedule is op- 
timal and the lower bound z tight for any perfectly symmetric 
instance. 

PROOF. Consider a perfectly symmetric instance 
with N - (2r + 1)m for some r 2 0. (The proof for the 
case N = 2rm is similar; see Federgruen and Mosheiov 
1994). Observe that all m machines have identical sched- 
ules. Since the instance is perfectly symmetric, the cost 
of the schedule for machine i is given by: 

{F(Pj) + F(P,,,+i)} + {F(P; + P2,?1+i) + F(P,?,+i + P3,n,+M)} 

+ + {F(Pi + P2mn+i + + P2(r-1),,n+i) 

+ F(Pm+i + P3mn+i + + P2(r-1)tI+nI+i)n} 

- 2F(s2,1/2m) + 2F(s41../2m) + * + 2F(s2r,,,/2m). 

The cost of all schedules is thus given by 

r 

zAS = 2m E F(s21,,,/2m) = z. D 
1=1 

Both the lower bound and the Alternating Schedule 
heuristic require no more than O(N log N) elementary 
operations. Moreover, the Alternating Schedule is in- 
dependent of the specific cost function F and is therefore 
insensitive to changes in the cost parameters (as long as 
a symmetric cost structure is maintained). Also, the job 
sequences on the m machines merely depend on the or- 
dinal ranking of the processing times rather than their 
cardinal values. 

Most problem instances are, of course, not per- 
fectly symmetric, but the tightness (optimality) of 
the lower bound (heuristic) for perfectly symmetric 
instances bodes well for the bound (heuristic)'s gen- 
eral performance. Assume, for example, that N 
= (2r + 1 )m. Any instance which fails to be perfectly 
symmetric may be approximated by a perfectly sym- 
metric instance by replacing the processing times in 
each consecutive block of 2m jobs by the average pro- 
cessing time in that block, i.e., 

1 2tti 

P21n+i 
= 2E P21? + ,i for all 

j=1,...,2m(1=O,...,r). 

(In particular, when N is large and all processing times 
belong to a bounded interval, these adjustments are rel- 
atively minor.) Note, by Proposition 3, that 

z= 2m ,F(S21,../2m), 
1=1 

the lower bound for the original instance, equals both 
the minimum cost value and the cost of the Alternating 
Schedule in the approximating (perfectly symmetric) 
instance; moreover, the job sequences generated by the 
Alternating Schedule for the original instance are iden- 
tical to those generated for the approximating instance, 
since the relative ranking of the processing times is un- 
affected by the transformation. The next two sections 
provide a rigorous foundation for the above intuition 
regarding the performance of the lower bound and Al- 
ternating Schedule. 
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2. Worst Case Performance Analysis 
of Lower Bound and Alternating 
Schedule 

In this section we show that the gap between the cost 
of the Alternating Schedule and the lower bound is 
bounded by an expression which rapidly decreases to 
zero as N increases to infinity, if the processing times 
are uniformly bounded or if they are i.i.d. with finite 
mean and variance. In other words, the Alternating 
Schedule is asymptotically optimal, and the lower 
bound is asymptotically accurate. The optimality and 
accuracy gaps depend on a, a measure of asymmetry in 
the processing times defined as follows: 

r 

a= c, where 

if N = (2r + 1)m: 

2= max P2im (S2i- n -S2U_1)?n) 2m 

S2ini S22i,1,n- - 
P2(i-1)mn+1} 

i= l, ...,r, 

if N = 2rm: a, = max(P,,, - sM1/m; s,,./m - Pll; 

ai = max{P(2iv1,,, S - 2(S(2i-1)' - SQU-1)-1); 

2 (S(2i_1),n - S(2(i_1)-1),n) - P(2i_3)n+1 } 
fori =2, ...,r. 

Note that a 2 0 and a = 0 for perfectly symmetric in- 
stances. We also obtain a worst case bound for the Al- 
ternating Schedule's optimality gap, and the lower 
bound's accuracy gap, which applies to all values of N, 
is independent of N and increases slowly with a. If the 
function F(X) Xq as X -o o for some q > 1 (see con- 
dition C2 below), and a minor additional technical con- 
dition holds, this worst case gap is in fact uniformly 
bounded in all problem parameters (including a). We 
give separate treatments to the cases where N is an odd 
or even multiple of m. Let Xi = IL a,. Clearly 0 c Xl 

CX2 C *XrJ 

LEMMA 4. (a) Let N = (2r + 1)m for some r 2 0 and 
fix or and the valuesS2,n, S42,,i, . . . S2rin 

E {F(s2i,J/2m + ar) 
zAS _ z + F(s2i,1/2m - a) - 

2F(S2i,.. /2m) 
z 2 4I=1 F(s2i,,1/2m) 

(b) Let N = 2rm for some r 2 1, and fix ar and the values 
Smi S3ml, S55n, * * S(2r-1)m 

,rO {F(s(2+1)n1 /2m + oa) 
zAS _ z + F(s(2i+l),,/2m - a) -2F(S(2i+l>../2m)J 

z 2 Ei=O F(s(2i+l),,,1/2m) 

PROOF. (a) Recall that the Alternating Schedule 
schedules jobs in batches of size m. The m smallest jobs 
are all completed at the due date and incur zero cost. 
For i = 1, . . ., r consider now the completion time de- 
viations for the 2ith and (2i + 1)st batch of jobs. Each 
of these deviations equals the sum of i processing times, 
one from the range [P1, .. ., P2,nI, one from the range 
[P2in+1, ... , P4,J, etc, with the ith processing time taken 
from the range [P2(i-1)?,+l, . . ., P2i,,.]. The cost incurred 
under the Alternating Schedule, for the 2m jobs in the 
2ith and (2i + 1)st batch can thus be represented as 

2i?1 

R F(s2,n,/2m + yl), where (7) 
1=1 

2?s1 

y, = O and IY,I C Xi foralll = 1, ...,2m. (8) 
1=1 

To obtain an upper bound for the expression in (7) we 
maximize this expression over the simplex defined by 
(8). Since F is convex, this maximum is achieved in one 
of the extreme points of the simplex. Also, since (9) is 
symmetric in (yl, ..., Y2,J,), the maximum is achieved 
by setting m of the y-variables equal to +Xi, and m of 
them equal to -Xi. The cost incurred under the Alter- 
nating Schedule for the jobs in the 2ith and (2i + 1)st 
batch is thus bounded by 

m[F(s2i,,,/2m + Xi) + F(s2i,,./2m - Xi)] 

and the total cost over all jobs by 
r 

m m[F(S2i,.. /2m + Xi) + F(S2i ... /2m - Xi)] 

r 

cm ,[F(S2in,12m + cr) + F(S2in,12m - a)], 
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where the inequality follows from the left hand side be- 
ing nondecreasing in X in view of the convexity of F( ). 

(b) The proof of part (b) is analogous to that of part 
(a). LI 

Lemma 4 allows us to prove that the Alternating 
Schedule has a worst case optimality gap which is 
bounded by a simple function of the asymmetry value 

a,, provided the function F( ) is log-concave, and con- 
tinuously differentiable, i.e., 

Condition (C1). ln F( ) is concave and F( ) is contin- 
uously differentiable with derivative F' (). 

THEOREM 5. Assume F( ) is convex and satisfies condi- 
tion (C1). 

(a) Let N = (2r + 1)m for some r 0, and fix a and the 

valuesS2ml S4tn . . . / S2rni. Then, 

zAS _ z a F'(s2,,/2m + a) 
z* 2 F(s2,1,/2m) 

(b) Let N = 2rm for some r 2 1, and fix ar and the values 
Smf S3mn, S5m, * * S(2r-1)m, Then, 

AS z _- a F'(s,?,,/2m + ar) 

z* 2 F(s,,/2m) 
(10) 

PROOF. (a) It follows from Lemma 4 that 

zAS z m m{F(s2im/2m + ar) 
i=l 

+ F(s2i,n/2m - a) - 2F(S2hn1 2m) I 

r 

= I m[F(s2hn/2m + a) - F(s2i,,/2m)] 
i=l 

r 

+ I m[F(s2i,/2m - a) - F(s2h,,,/2m)] 
i=l 

r 

c m[F(s2im/2m + a) - F(s2h,,,/2m)] 
i=l 

r 

cam r F'(s2i,,/2m + a), 
i=l (11) 

where the first inequality follows from F(*) being non- 
decreasing and the second inequality follows from F(*) 
being convex. Observe that the function 

def 
h(x) = F'(x + a)o/F(x) 

is nonincreasing in x. This may be verified by repre- 
senting h(x) = h1 (x)h2(x) where 

h1(x) def d ln F(x + a) F'(x + a) hi x) - 
dx F (x +u) 

:0 

is nonincreasing by the log-concavity of F, and 
def 

h2(x) = F(x + a)/F(x) 

is nonincreasing since 

ln[F(x + a)/F(x)] = In F(x + a) - In F(x) 

is nonincreasing, again by the log-concavity of F. We 
thus obtain: 

ZAS - z acr fF(S2ij,1/ 2m) 
z - L - F(s/2m) jh(S2it../2m) 

a ~ 07 

- max (h(s2h,J/2m)} I - h(s2,/2m) 
2 r 2 

- 2F(S2 .. /2m + cr) /F(s2,n/2m). 2 

(b) The proof of part (b) is analogous to that of part 
(a). L1 

Observe that the worst case bounds in (9)-(1O) de- 
crease to zero as oa 1 0. A constant worst case optimality 
gap (independent of a) and asymptotic optimality are 
obtained under the following condition: 

Condition (C2). F(-) is continuously differentiable, 
log-concave and F(x) _x, as x -o for some q > 1, i.e., 
there exists a constant c > 0 such that 

F(x) 
lim ( = c for some q >1. 

Under condition (C2), let 

rx 

+(x ) = f xq+ as x -oo. 

(Since F is differentiable, it is clearly integrable.) In the 
remainder of this section we assume N = (2r + 1)m for 
some r 2 1; similar proofs apply for general values 
of N. 

THEOREM 6. Assume F satisfies condition (C2). 

(a) The Alternating Schedule has a constant worst case 
optimality gap. 
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(b) Further assume o-(?PN) is uniformly bounded in N. 
Then, limN%(zAS - z) /z = 0, and the convergence rate is 
O(N-). 

PROOF. Note, from the monotonicity of the P-values, 
that s2.,,,/2m 2 is2,../2m for all i = 1, ..., r. Thus, for a 

=S2,,,/2m, 

z = 2mF(s2i,n/2m) 2 2m [F(s2rt,,/2m) + L F(ia) 

def 
Also, h(i) = F(ia) is a nondecreasing function of i. Thus, 
F(ia) 2 f11 F(ax)dx and 

r=1 

z/2m 2 F(s2r,,i/2m) + R F(ia) 
i=1 

F(s2r,,l/2m) + F(ax)dx 

- F(s2r,?n/2m) + a-14((r - 1)c). (12) 

(a) Let ,B = s2r?,,/2m. It follows from (11) that: 

zAS z z 
-_ z 

r r 

a c , F'(s2h,,1/2m + c)/2 , F(s2h,1,/2m) 
i=l i=l 

- rF'(S2rn1 /2m + a) 
2 

/[F(s2r,,1/2m) + a-(f(r - 1)ac) 

? 2-3NF'(3(2m + 1))/[F(/) + ca-r(((r -1))] 

by (12), since 2m3 = S2rn, 2 P2rin 2 a- and since F'( ) is 
nondecreasing. (Note that (11) applies whenever F is 
convex and differentiable.) By condition (C) the upper 
bound is continuous in ,B and N, converges to a constant 
as ,B - oo and to 0 as N -+ oo, and is therefore uniformly 
bounded in ,B and N. 

(b) It follows from the proof of Lemma 4 that: 
r 

zAS z m , m[F(s2i,,/2m + Xi) + F(s2i,,,/2m - X)] 

r 

- 2m , F(s2i,,,/2m) 

r 

m ,[F(S2i,,,12m + Xi) - F(S2i .../2m)]. (13) 

Recall that 0 c Xi c X2 c c Xr ca. For a fixed 
choice of a, and given these constraints with respect to 
the X-variables, the right-hand side of (13) is maximized 
for a, = X= X2= = X, = a. But in that case, 

Xi = ?1 P2m Pl P1 2n C (S2(i+1)n, - S2i,,1)/2m 

for all i = 1, 2, ..., r where the last inequality follows 
from the jobs being numbered in nondecreasing order 
of their processing times. Since F( ) is nondecreasing, 
the upper bounds for Xi may be used in conjunction 
with (13) to conclude: 

AS 

z -z 

c m[? F((s2i,ni + S2(i+1,n - s2i,n)/2m) - F(s2i,,/2m)1 

= m[F(s2(r+l),,t/2m) - F(s2,n/2m)] c mF(S2rm/2m). 

By (12), 

AS (Pa 4 

Z - Z F Pi/2m) [.(rS2bn/2m). (14) 
z 2F2. 

This implies that (zAs- z)/z - 0 as N -+ oo, with a con- 
vergence rate of 0(1). D 
Alternatively, we show that the Alternating Schedule is 
almost surely asymptotically optimal when the process- 
ing times are independent and identically distributed 
with a common general distribution, possibly with un- 
bounded support. 

COROLLARY 7. Assume F is convex and satisfies condi- 
tion (C2). Let P1, P2, ... be i.i.d. with a common distribution 
with finite mean ,t and standard deviation a. Then, 

ZAS z_ z _z 
lim ,. =lim -=0 
N-oc Z N-oc Z 

almost surely, where the rate of convergence is 0(k). 

PROOF. Fixe > 0, arbitrarily small. It follows from 
the central limit theorem that almost surely IN=, Pi 
c N(,u + c) for all N sufficiently large. It thus follows 
from (14) that almost surely 

zAS a 
c - F(N(,u + E)/2m)/4(LN/2m1s2,, /2m). 

z 2 

The remainder of the proof is identical to that of Theo- 
rem 6. D 
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REMARK 1. It follows from the proofs of Lemma 4 
and Theorem 2 that the Alternating Schedule continues 
to be asymptotically optimal and the lower bound con- 
tinues to be asymptotically accurate when the process- 
ing times are uniformly bounded from below and when 
F( ) satisfies condition (C2) and is asymptotically convex 
only, i.e., there exists a constant M > 0 such that F(x) is 
convex for x 2 M. See Federgruen and Mosheiov (1994) 
for details. 

A faster rate of convergence of the optimality accu- 
racy gaps can be shown under a slightly stronger con- 
dition than (C2): 

Condition (C2). F is twice differentiable, F' 2 0, F" 

2 0, F(x) xq for some q > 1 and F"() is asymptotically 
monotone. 

THEOREM 8. Assume F( ) satisfies condition (C2) and 
u(N)(?PN) is uniformly bounded in N. Then, 

z AS )* 
zAs~z*o(1) N -+ oo* 

PROOF. see appendix. 
REMARK 2. As with Theorem 6, it is again possible 

to extend the result in Theorem 8 to an almost sure 
O(N2) convergence rate in a probabilistic model in which 
all processing times are i.i.d. with a common distribu- 
tion with finite mean and variance. 

3. Minimizing the Completion Time 
Variance 

In this section we discuss the special case where the 
variance of the completion times is to be minimized. This 
specific objective has received a great deal of attention, 
all of which has been confined to the single machine 
problem, i.e., the case where m = 1. 

The problem was first introduced in Merten and Mul- 
ler (1972) in the context of file organization procedures 
for which it is important to provide balanced response 
times. Schrage (1975) derived a number of structural 
properties and an algorithm for scheduling up to five 
jobs. Hall and Kubiak (1991) recently proved a conjec- 
ture of Schrage regarding the position of the second and 
third largest job in an optimal schedule. Eilon and 
Chowdhury (1977) and Bagchi et al. (1987) developed 
enumeration schemes which can be comfortably used 

to find an optimal schedule when the number of jobs is 
small (say, N < 20). Heuristics, again restricted to the 
single machine case and without worst-case or proba- 
bilistic characterizations of optimality gaps, are due to 
Kanet (1981), Vani and Raghavachari (1987), and Gupta 
et al. (1990). De et al. (1993) developed an exact but 
pseudo-polynomial algorithm. Kubiak (1993a) and Joz- 
efowska and Kubiak (1993) provide alternative ap- 
proaches to the single machine variance minimization 
problem. The latter solve problems with up to 50 jobs; 
their three heuristics are fairly accurate, compared 
to earlier approaches, but their complexity is O(N4) 
or O(N3). 

Indeed, Kubiak (1993b) proved that the problem is 
binary NP-hard (even when m = 1). Ventura and Weng 
(1993) obtain an accurate lower bound by solving the La- 
grangian dual of a new mixed integer programming for- 
mulation. The required CPU-time grows quickly with 
N; a FORTRAN code run on a VAX-8550 machine re- 
quires, for instances with N = 500 jobs, an average in 
excess of 10,000 seconds. 

Ours appear to be the first lower bound and heuristic 
for the multimachine variance minimization problem. 
We first prove that the problem is equivalent to that of 
minimizing the sum of squared deviations of the jobs' 
completion times from a (sufficiently large) due date d, 
i.e., the special case where F(x) = x2. (Bagchi et al. 1987 
established this result for m = 1.) Let zd (zar) denote the 
minimum value of (2) with F(x) = x2 (the minimum 
completion time variance). 

PROPOSITION 9. An optimal schedule for problem (2) 
with F(x) = x2 is also optimal when minimizing the variance 
of the completion times. Moreover, Zd = z* 

PROOF. For any given schedule let Zd(lr)(Zvar(lr)) de- 
note the value of (2) with F(x) = x2 (the completion time 
variance) under this schedule. For both objectives, it is 
optimal to process the jobs that are assigned to a given 
machine, without intermittent idle times. Thus, for any 
given variance minimizing schedule lr*, we obtain a dif- 
ferent variance minimizing schedule by postponing the 
starting time of each of the machines' sequences by a 
constant c. (The mean completion time of the translated 
schedule is then augmented by c as well.) In other 
words, there exists a variance minimizing schedule 
1rvar for any prespecified mean completion time C suffi- 
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ciently large, e.g., C 2 SN. Thus, choose C = d? SN, 

and let 7r*) be an optimal schedule for (2) with d = d?. 
Since for a given set of completion times (Cj: j = 1, 

. N EN 1 (Cj - C)2 EN 1 (Cj - d)2 for all d, we obtain 

Zvar = Zvar(Wrvar) v Zar(1rd(W) ? Zd(W(1r)) 

= Zd() < Zd+(rvar) = Zvar(7rvar) = Zvar LI 

Observe that the function F, with F(x) = X2, satisfies 
each of the conditions (C1), (C), and (C). We thus con- 
clude: 

COROLLARY 10. Let z'sr denote the variance of the com- 
pletion times in the Alternating Schedule. Let 

LN/2mii? 
Z = (2m)-1 S 5N-(21-1)m and a = s2,,/2m. 

1=1 

(a) 

zAS _ 2+a Zvar J +acr 

z a2 

(b) Fix N. The optimality gap of ZAS and the accuracy gap 
of the lower bound z can both be bounded by a constant (which 
is independent of the processing times). 

(c) When the processing times are uniformly bounded, 

zAS- Z ) N -z 

zN 

The same limit results hold almost surely when the processing 
times are i.i.d. with finite mean and variance. 

PROOF. Let ZAS denote the value of Ej F(A1) with F(x) 
= x2 obtained by the Alternating Schedule. Clearly var 
c zAS. Also, z*ar = Z by Proposition 9. Thus, 

(ZAS * 1 AS 7~ n 
(Zvar 

- 
Zv*ar)/Zv*ar (Z - Zd and 

(Zvar - z)/z = (Zd -z)/Z-. 

Parts (a)-(c) thus follow from Theorem 5, Theorem 6, 
and Theorem 8, respectively. L 

We have gauged the empirical performance of the Al- 
ternating Schedule and lower bound by conducting a 
numerical study with 300 problem instances, parti- 
tioned into 12 sets of 25 instances each. All instances 
have m = 3 machines; see Mosheiov (1991) for instances 
with a single machine. N varies from 30 in set 1 to 3,000 
in set 12. The processing times are generated randomly 

from the uniform distribution on the integers in the in- 
terval [1, 1001. 

Table 1 exhibits for each set the average value of the 
ratios (zAs - z) /z, an upper bound for the optimality, 
and accuracy gap. Our main observation is that these 
ratios are extremely close to one, even for relatively 
small size problems. Note that even for problems with 
N = 30 jobs (i.e., an average of 10 jobs per machine) the 
gap between the cost of the Alternating Schedule and 
the lower bound is no more than 0.75% (on average); 
for N = 300, the average gap is down to 0.008%; and for 
N = 3,000 it is down to 0.0001%. These results confirm 
those of Corollary 10, in particular asymptotic optimal- 
ity with an O( 0) convergence rate: the average gap 
(GAP) is reduced by a factor of 100 (approximately), 
when the number of jobs is increased by a factor of 10. 
Indeed, regressing GAP against the variable N2 we ob- 
tain the regression equation GAP = 6.83702N-2 with an 
R2-value of 0.999991! (The standard deviation of the es- 
timate of the proportionality constant is 7 x 10-6. Ad- 
dition of a term proportional with N` does not improve 
the fit significantly.) 

Recall that the complexity of the bound and heuristic 
is O(N log N) only. (After the initial sorting of the pro- 
cessing times, all remaining work is in fact linear in N.) 
This complexity measure is confirmed by the CPU times 
observed with a FORTRAN code run on an IBM 4381 
(VM/CS): an average CPU time of 0.04 and 0.19 sec- 
onds is required for instances with N = 300 and N 
= 3,000, respectively. We conclude that for all practical 
purposes, the Alternating Schedule and lower bound 
can be used to very quickly generate a close-to-optimal 
solution and (ex post) bound for the optimality gap. 
This applies even when the number of jobs is small, or 
in the single machine case where reasonably efficient 

Table 1 The Completion Time Variance Problem 

N (ZAS - Z)/Z N (ZAS - Z)/Z 

30 0.0075981 1500 0.00000335 
90 0.0008232 1800 0.00000227 

300 0.0000820 2100 0.00000190 
600 0.0000209 2400 0.00000158 
900 0.00000915 2700 0.00000124 

1200 0.00000483 3000 0.00000104 
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solution methods can be invoked, e.g., those of Kahl- 
bacher (1992) and Federgruen and Mosheiov (1993). 

4. Asymmetric General Cost 
Structures 

The basic model treated in the previous sections as- 
sumes a symmetric and convex cost structure. In many 
settings one finds, however, that the cost structure is 
asymmetric, i.e., it is specified by two distinct, nonnega- 
tive and nondecreasing functions F() and G( ), where 
F(E) [G(T)] denotes the cost of a job being early (tardy) 
by E(T) time units (F(O) = G(O) = 0.) Moreover, F or G 
may fail to be convex. Asymmetric cost structures arise, 
e.g., when the due date is restrictive, i.e., F(x) = G(x), 
if x c d, and F(x) = c*, otherwise. More generally, one 
finds that earliness costs arise from inventory carrying 
and maintenance costs, while tardiness costs relate to 
explicit or contractually agreed upon lateness penalties 
or estimates of (implicit) goodwill losses. The shapes of 
the earliness and tardiness cost functions F are therefore 
often quite different. See Federgruen and Mosheiov 
(1993) for a more detailed discussion and specific ex- 
amples. 

The strong performance of the Alternating Schedule 
for symmetric cost structures, suggests the following 
Modified Alternating Scheduling Heuristic (MASH) for 
general asymmetric structures. As before, we assume 
that N is a multiple of m. 

(MASH) 
Case 1. N = (2r + 1)m forsomer 2 0. 
Step 1. For j = 1, . .. , m, schedule job j on machine j 

to be completed at the due date. Next, proceeding in the 
sequence in which the jobs are numbered, schedule each 
of the remaining jobs m + 1, m + 2, . ., N either directly 
preceding or directly following one of the machines' 
partially constructed schedules, wherever (among the 
2m possible choices) the resulting cost for this job is 
minimal. 

Step 2. Shift each of the machines' schedules by vary- 
ing its starting time to its optimal value. 

Case 2. N = 2rm for some r ? 1. 
Step 1. For j = i, . . ., m schedule job j on machine j, 

to be completed at time C7 with d c C7 d + Pi such 
that 

G(C7 - d) + F(d - C} + Pj) 

=minIG(x - d) + F(d - x + Pj)I. 
x 

Schedule the remaining jobs as in Case 1. 
Step 2. As in Case 1. 
Thus, in Step 1 jobs are assigned in a greedy manner. 

Observe that (MASH) generates a schedule for each 
machine which is: 

(1) of V-shape, i.e., a (possibly empty) sequence of 
jobs of decreasing length is followed by a (possibly 
empty) sequence of jobs of increasing length; 

(2) (LPTB/SPTA), i.e., the sequence of jobs com- 
pleted before (after) the due date has decreasing (increas- 
ing) processing times; 

(3) without intermittent idle times. 
All these properties are known to hold for an optimal 
schedule for each of the m machines, see, e.g., Feder- 
gruen and Mosheiov. 

Observe that (MASH) reduces to the basic Alternat- 
ing Schedule when F = G, i.e., under symmetric cost 
structures. Moreover, the complexity of the (MASH) 
heuristic continues to amount to O(N log N) elementary 
operations and O(mN) evaluations of the F- and G- 
functions in Step 1, and m minimizations of nonlinear 
functions of a single variable in Step 2. 

For multiple machines (m 2 2), no efficiently com- 
putable and tight lower bounds have been identified for 
general, asymmetric cost structures. (See, however, 
Mosheiov 1991, subsection 2.3.2 for lower bounds in 
case m = 1 and the cost structure is symmetric except 
for a restrictive due date. These bounds are based on 
the solution of a mathematical program similar to (LB), 
but fail to be tight.) We are thus unable to gauge 
(MASH')s performance except in the single machine 
case, where the dynamic programming methods in 
Kahlbacher (1992) or Federgruen and Mosheiov (1993) 
can be used. 

For the latter, we have conducted a numerical study 
with 500 (single machine) instances, partitioned into 20 
sets of 25 instances each; see Table 2. In the first ten sets, 
F and G are both convex; in the first (second) quintuple 
of sets the tardiness cost function is chosen to increase 
more (less) rapidly than the (quadratic) earliness cost 
function. Sets 10-15 have concave cost functions, and 
the last five sets represent the case of a symmetric (in 
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Table 2 Performance of MASH 

N F G d OPT MASH RATIO 

25 x2 x n.r.1) 10,014.8 10,434.0 1.0419 
50 x2 x n.r. 40,739.7 41,590.1 1.0209 
75 x2 x n.r. 90,731.4 91,705.5 1.0107 

100 x2 x n.r. 162,177.8 163,256.0 1.0067 
200 x2 x n.r. 649,964.6 651,647.7 1.0026 
25 x2 x3 n.r. 5,099,580 5,262,392 1.0319 
50 x2 x3 n.r. 45,064,448 45,309,488 1.0054 
75 x2 x3 n.r. 154,127,104 154,641,760 1.0033 

100 x2 x3 n.r. 377,999,104 378,529,024 1.0014 
200 x2 x3 n.r. 1,073,739,260 1,102,062,590 1.0009 
25 lOJx x n.r. 3,456.9 3,482.3 1.0075 
50 lO1x x n.r. 10,544.5 10,570.5 1.0025 
75 lO1x x n.r. 19,867.0 19,889.5 1.0011 

100 lOJx x n.r. 31,144.1 31.166.7 1.00072 
200 lO1x x n.r. 90,625.4 90,647.4 1.0024 
25 x2 x2 2502) 4,800,744 4,835,104 1.00716 
50 X2 X2 5002) 34,593,760 34,705,680 1.00324 
75 x2 x2 7502) 109,513,904 109,944,832 1.00393 

100 x2 x2 1 0002) 256,010,944 256,427,568 1.00163 
200 x2 x2 20002) 1,916,707,099 1,918,662,140 1.00102 

1n.r. = nonrestrictive. 
2 d = 0.2 (Makespan). 

fact, quadratic) structure except for a restrictive due 
date, chosen as 0.2 x makespan (=0.2SN). All instances 
in a set have the same value of N = 25, 50, 75, 100, or 
200. The processing times are again generated from the 
uniform distribution on the integers from 1 to 100. We 
report for each set, the average value of the minimum 
cost-value (OPT), that of (MASH)'s cost value and that 
of the ratios of the latter and the optimal cost value 
(RATIO). 

We observe that (MASH) generates close-to-optimal 
schedules across different cost structures and even for 
instances with a relatively small number of jobs N. As 
for the symmetric case, the optimality gap reduces to 
zero as the number of jobs is increased. 

Appendix 
PROOF OF THEOREM 8. It follows from Lemma 4 that 

zAS - z [F(s2i,,,/2m + o) + F(s2i,,,/2m - o) - 2F(s2i,,,/2m)] 

z 2 Y:j= 1 F(s2i,,,/2m) 

(15) 

Since F is twice differentiable, by Taylor's formula there exist numbers 

Cj and C! with 0 - (j, - < o such that 

+2m ) +F("2m 2( S2m) 

= [F( i"' + - F( j"')] + [F(2"' - - 

= TF'(j !I) + F" (s" + Cj 

(2m )2 (2m C 

-LF'(j + ? F"(" + 

2 [ 2m Ci 2m i) 

By Condition (C), there exists a constant M > 0 such that F"(x) is 
monotone for x 2 M. Assume without loss of generality that F(x) is 
nondecreasing for x 2 M. (The case where F" is nonincreasing can be 
handled similarly.) We thus rewrite (15) as 

AS 
O2r 

K + - I [F(s2i,,,/2m + Q 
z 2+i=i(/+ 

+ Pt(S2i ... / 2m - Cs )0}1 2F(S2i ... / 2m), 
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where i() = F2m(M + o) /s2,,1 and K denotes the sum of the first i( 
terms in the summation in the numerator of (15); K is uniformly 
bounded in N since all processing times are. Observe that for i 2 (M 
+ o)/(s2,,/2m), 

-i, + LT 2 
----- + Ci 2 

-2itZ - -jt 
2 22i1 - ::' 

iSld 
2m - o- 2 M. 

2m 2m 2m 2m 

Thus, 

= { 2 + - 
F"(iPIllax + (7)} / F(iP1). 

df df 

Since h(i) O F"( PPIax + (7) and h(i) - F(iPI) are nondecreasing func- 
tions for i 2 i( + 1 and i 2 1, respectively, we may replace the sum- 
mations by integrals: 

zAS -z K/2 + (2 /2) J'+ F"(XPN + o)dx 

z g1 F(xP1)dx 

K/2 + (O-2/2)/PrnaxF'((r + 1)Pmiax + 0-) 

P-1cJO((r - 1)P1) 

0 as N, asN,r--oo. 
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