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This paper addresses the simultaneous determination of pricing and inventory replenishment strategies in the face of demand
uncertainty. More specifically, we analyze the following single item, periodic review model. Demands in consecutive periods are
independent, but their distributions depend on the item’s price in accordance with general stochastic demand functions. The price
charged in any given period can be specified dynamically as a function of the state of the system. A replenishment order may be
placed at the beginning of some or all of the periods. Stockouts are fully backlogged. We address both finite and infinite horizon
models, with the objective of maximizing total expected discounted profit or its time average value, assuming that prices can either be
adjusted arbitrarily (upward or downward) or that they can only be decreased. We characterize the structure of an optimal combined
pricing and inventory strategy for all of the above types of models. We also develop an efficient value iteration method to compute
these optimal strategies. Finally, we report on an extensive numerical study that characterizes various qualitative properties of the
optimal strategies and corresponding optimal profit values.

This paper addresses an important problem area in the
interface between marketing and production/inven-

tory planning—specifically, the simultaneous determina-
tion of pricing and inventory replenishment strategies in
the face of demand uncertainty.

Recent developments in the area of yield and revenue
management have demonstrated that major benefits can
be derived by complementing a replenishment strategy
with the dynamic adjustment of a commodity’s price as a
function of its prevailing inventory and the length of its
remaining sales season. (See, e.g., Bitran and Mondschein
1993, 1995; Gallego and van Ryzin 1994, 1997; and Hech-
ing et al. 1999.) Conversely, a dynamic pricing strategy by
itself is often insufficient to manage sales. For example,
fashion items, with a short sales horizon relative to their
long procurement lead times, and with correspondingly
limited opportunities to adjust purchasing decisions, have
traditionally been managed with a single purchase order
delivered at the beginning of the season. More recently,
one however observes attempts to mitigate the retailers’
risk by the adoption of novel contractual arrangements
between retailers and their suppliers. These arrangements,
often referred to as backup arrangements, permit multiple
deliveries during the season with the option of (partial)
adjustments by the retailer after the first couple of weeks
of the sales season. (See, e.g., Eppen and Iyer 1995, 1997;
and Bassok 1994, 1995.)

More specifically, we analyze the following single item,
periodic review model. Demands in consecutive periods
are independent, but their distributions depend on the
item’s price in accordance with general stochastic demand
functions. The price charged in any given period can be
specified dynamically as a function of the state of the sys-
tem. The company thus acts as a price setter or monopo-

list. Markets with perfect or limited competition can be
analyzed only via much more complex game-theoretical
models. A replenishment order may be placed at the be-
ginning of some or all of the periods. Stockouts are fully
backlogged. Ordering costs are proportional with order
sizes, while inventory carrying and stockout costs all de-
pend on the size of the end-of-the-period inventory level
and shortfall, respectively, in accordance with given convex
functions. Similarly, we assume that expected revenues in
each period depend concavely on the item’s price. This
assumption is satisfied for many stochastic (in particular,
linear) demand functions. We address both finite and infi-
nite horizon models, with the objective of maximizing total
expected discounted profit or its time average value, as-
suming that prices can either be adjusted arbitrarily (up-
ward or downward) or that they can only be decreased.

We characterize the structure of an optimal combined
pricing and inventory strategy for all of the above types of
models. We also develop an efficient value iteration
method to compute these optimal strategies. Finally, we
report on an extensive numerical study which characterizes
various qualitative properties of the optimal strategies and
corresponding optimal profit values, e.g.:

(i) the benefits associated with a dynamic pricing strategy
compared to a statically determined price,

(ii) the profit loss that occurs when prices are upwardly
rigid, i.e., when they can only be reduced over time,
and

(iii) the impact of demand uncertainty and price elastici-
ties.

Pricing and replenishment strategies have traditionally
been determined by entirely separate units of a company’s
organization, without proper mechanisms to coordinate
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these two planning areas. Current reengineering efforts,
however, are geared towards the systematic elimination of
organizational barriers between distinct functional areas
within the same enterprise. This trend has fostered the
need for planning models such as the ones treated in this
paper, and corresponding decision support systems which
cross traditional functional boundaries.

The same traditional dichotomy has been characteristic
of the academic literature. There exists a plethora of liter-
ature on inventory planning, but it assumes, almost invari-
ably, that the demand processes are exogenously
determined, and therefore uncontrollable. In practice, a
demand process can often be controlled by varying the
price structure. The implication of an exogenous demand
process, therefore, is that the price structure is exog-
enously determined as well. The more limited literature on
pricing strategies, on the other hand, assumes by and large
that the supply processes, i.e., the timing and size of pur-
chases or production runs, are either entirely prespecified
as exogenous input parameters or at best to be determined
in a static manner.

More specifically, standard (single item) inventory mod-
els assume that the price to be charged, and hence the
demand distribution pertaining to each period, is exog-
enously specified. Since expected revenues are constant
under this assumption, these models focus on the minimi-
zation of expected operating costs. (See Porteus 1990 or
Lee and Nahmias 1993 for recent surveys of this litera-
ture.) The literature on dynamic pricing strategies assumes
by and large that one of the following situations prevails:
(i) with the exception of an initial procurement at the
beginning of the planning horizon, no subsequent replen-
ishments can occur; (ii) no inventories can be carried from
one period to the next, effectively decomposing the supply
decisions on a period by period basis. As far as the former
are concerned, we refer to Bitran and Mondschein (1993,
1995), Gallego and van Ryzin (1994 and 1997), Heching et
al. (1999), and the references mentioned therein. The lit-
erature on the latter type of models focuses on adaptive
learning regarding one or more of the parameters in the
demand function (see Rothschild 1974, Grossman et al.
1977, McLennan 1984, Balvers and Cosimano 1990, and
Braden and Oren 1994).

The need to integrate inventory control and pricing
strategies was first propagated by Whitin (1955), in the
embryonic days of inventory theory. Both Whitin (1955)
and later Mills (1959, 1962) addressed the single period
version of the model; here only a single price and supply
quantity need to be determined. Subsequent work by Kar-
lin and Carr (1962), Zabel (1970), Young (1978), Polato-
glu (1991), Hempenius (1970), and Lau and Lau (1988)
revisited the same single period model under alternative
specifications of the (stochastic) demand function. Karlin
and Carr (1962) also considered the infinite horizon ver-
sion of the model; however, they did so under the assump-
tion that a single constant price is to be specified at the
beginning of the planning horizon.

The first treatments of dynamic combined pricing and
inventory strategies (i.e., in a multiperiod setting) were
undertaken under the assumption of deterministic de-
mands. Thomas (1974) and Kunreuther and Schrage
(1973) develop variants of the Wagner-Whitin (1958) dy-
namic lot sizing algorithm for settings where the demands
can be controlled by selecting appropriate price levels. Ra-
jan et al. (1992) analyze a continuous time version of the
same model. See Eliashberg and Steinberg (1991) for a
recent survey of integrated joint marketing-production de-
cision models. Under demand uncertainty, the only exist-
ing results appear to be due to Zabel (1972) and Thowsen
(1975); the former confined himself to a special class of
stochastic demand functions where a price independent
uniform or exponential distribution is added to or multi-
plied by a deterministic demand function. Thowsen (1975)
extended Zabel’s (1972) results for the case of an additive
random term, to somewhat more general conditions that
he admits “do not have any straightforward economic in-
terpretation” and “will in some cases be difficult to verify.”
Thomas (1974) proposes a heuristic strategy for the multi-
period model. Amihud and Mendelson (1983) analyze the
optimality equation that arises in the infinite horizon dis-
counted profit model with bi-directional price changes, lin-
ear holding and backlogging costs, and additive error
terms in the demand function. The objective of this paper
is to demonstrate that price reactions to inventory changes
are milder than what might be anticipated by the shape of
the demand function. Li (1988) develops combined pricing
and inventory strategies for a continuous-time model in
which cumulative production and cumulative sales are
both represented as (nonhomogeneous) Poisson processes
with controllable intensities. The intensity of the demand
process is controlled by varying the item’s price.

The remainder of this paper is organized as follows. In
§1 we introduce the basic model and its notation. In the
remainder we systematically distinguish between the case
where prices can be adjusted arbitrarily and settings where
only markdowns are permitted. We refer to the former as
the case of “bi-directional price changes” and to the latter
as the “markdowns only” case. In §2 we characterize the
optimal policy for a general finite planning horizon. Sec-
tion 3 addresses the infinite horizon discounted profit
model and characterizes its asymptotic behavior as the dis-
count factor approaches 1. These results are used in §4 to
characterize optimal policies for the long run average
profit criterion. In §5 we discuss efficient methods to com-
pute the optimal policies in the models addressed in §§ 2
through 4. Section 6 briefly covers a number of important
extensions of the basic model. Specifically, we consider the
impact of order leadtimes and upper limits on the maxi-
mum allowable price change or order size in any given
period. In addition, we consider the case where stockouts
are filled by emergency procurements at the end of the
period in which they occur. Section 7 concludes our paper
with an extensive numerical study evaluating scenarios
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based on actual sales data obtained from a major nation-
wide women’s apparel retailer.

1. THE BASIC MODEL

In this section we specify the basic model and its notation.
We consider a single item whose inventory and selling
price are reviewed periodically. At the beginning of each
period a simultaneous decision is made regarding the size
of a new replenishment order (if any) as well as whether
the price of the item is to be modified, and if so by what
magnitude. We initially assume that replenishment orders
become available instantaneously; see §6 for a treatment
of positive lead times. Time-dependent upper limits may
apply with respect to the order size and magnitude of price
change in any given period. (Arrangements such as backup
agreements for fashion items, where inventory replenish-
ments can occur only at the beginning of the season as well
as at a limited (prespecified) set of subsequent periods,
can be modelled by setting the order size upper limits
equal to zero in all periods excluding the prespecified re-
plenishment periods.) We initially assume that no limits
prevail with respect to replenishment order sizes or price
changes; see §6 for a treatment of the model incorporating
such limits. In case demand in a given period exceeds the
available inventory, excess demand is (fully) backlogged.
See §6 for a treatment of alternative assumptions, e.g.,
where stockouts are satisfied through emergency procure-
ments at the end of the period in which they occur.

In models with a finite planning horizon, we index each
period by the number of periods remaining until the end
of the horizon.

Demands in consecutive periods are independent and
nonnegative; demand in period t depends on the prevailing
price according to a given general stochastic demand func-
tion:

D t ! d t ! p t , " t ", (1)

where

pt # price charged in period t,
"t # random term with known distribution.

The set of feasible price levels is confined to the finite
interval [ pmin, pmax] where

pmin # lowest possible unit price to be charged,
pmax # highest possible unit price to be charged.

An important special case of such stochastic demand
functions arises when Dt is of the form:

D t ! # t ! p"" t $ % t ! p" , (2)

with #! and %! nonincreasing functions. (The cases of
#t( p) # 1 and %t( p) # 0 are often referred to as the
additive and multiplicative model, respectively.) We assume
that the demand function in each period t is non-
increasing and concave in the period’s price and that ex-
pected demand is finite and strictly decreasing in the price:

Assumption 1. For all t # 1, 2, . . . (i) the function dt( p, "t)
is nonincreasing and concave in p ! [ pmin, pmax] and (ii)
expected demand Edt( p, "t) is finite and strictly decreasing
in p.

If the stochastic demand function is of the type given by
(2), Assumption 1(i) is satisfied when #t( p) and %t( p) are
concave and nonincreasing functions of p, and at least one
of these two functions is strictly decreasing in p. The latter
holds, e.g., in the important special case where #t! or %t!
are linear (decreasing) functions of p, or when #t! or %t!
are power functions of the form, i.e., #t( p) (or %t( p)) #
c $ kp&, with & % 1 for some positive constants c, k & 0.

Monotonicity of the demand functions is satisfied for all
regular items; only special luxury items exhibiting the Ve-
blen paradox are excluded. Thus, only the concavity as-
sumption comes with some more significant loss of
generality; it implies that the marginal absolute decrease in
demand volume does not decrease as the price level is
increased.

Rewards and costs in future periods are discounted with
a discount factor ' ' 1.

Let:

xt # inventory level at the beginning of period t, before
ordering,

yt # inventory level at the beginning of period t, after
ordering.

Two types of costs are incurred: end-of-the-period in-
ventory carrying (and backlogging) costs and variable or-
der costs. These are specified by:

ht(I) # inventory (or backlogging) cost incurred in a
period whose ending inventory level equals I,

ct # per unit purchase or production cost in period t.

Let

G t ! y , p" ! Eh t ! y ( D t " ! Eh t ! y ( d t ! p, " t "" (3)

denote one-period expected inventory and backlogging
costs for period t, t # 1, 2, . . . , where the expectation
here, as well as in the remainder of the paper, is taken
over the distribution of the "t variables. We make the fol-
lowing assumptions regarding the functions Gt, their
growth rate, and the finiteness of the moments of the de-
mand distribution.

Assumption 2. limy3(Gt( y, p) # limy3$([ct y ) Gt( y, p)]
# limy3([(ct $ 'ct$1)y ) Gt( y, p)] # ( for all p ! [ pmin,
pmax].

Assumption 3. 0 ' Gt( y, p) # O(!y!)) for some integer ).

Assumption 4. E[dt( p, "t)]) * ( for all p ! [ pmin, pmax].

Assumption 2 holds whenever the inventory (and back-
logging) cost function ht tends to infinity as the inventory
level (or backlog size) increases to infinity; the latter ap-
plies to any reasonable inventory cost structure in which
the loss associated with a stockout exceeds the unit’s pur-
chase price. Assumption 3 holds whenever the inventory
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cost functions {ht} are polynomially bounded, which is
satisfied under all common cost structures. Finally, As-
sumption 4 often ensures that the Gt functions are well
defined and finite. In addition, we shall assume ht is convex
and that the functions Gt( y, p) are jointly convex in y and
p:

Assumption 5. For all t # 1, . . . , T ht is convex and Gt(y, p)
is jointly convex.

The following lemma shows that Assumption 5 is satis-
fied, for example, when the functions ht are convex and the
demand functions dt are linear in p. (The former is satis-
fied under all common cost structures.)

Lemma 1. Fix t # 1, 2, . . . . Assume ht is convex and the
demand function dt is linear in p. Then Gt( y, p) is jointly
convex in y and p.

Proof. By the convexity of ht and the linearity of the de-
mand functions in p

h t !y 1 $ y 2

2 ( d t !p 1 $ p 2

2 , " t ""
! h t !

1
2 + y 1 ( d t ! p 1 , " t ", $ 1

2 + y 2 ( d t ! p 2 , " t ","

* 1
2 h t ! y 1 ( d t ! p 1 , " t "" $ 1

2 h t ! y 2 ( d t ! p 2 , " t "" ,

so that the functions ht( y, p, "t) are jointly convex in ( y, p).
We conclude that the function Gt( y, p) # E"t

ht( y, p, "t) is
jointly convex in ( y, p) as well. □

Remark. The above representation of the one step ex-
pected inventory and backlogging cost functions Gt( y, p),
via (3), assumes implicitly that the functions ht! are inde-
pendent of the sales price pt. Sometimes, the holding and
backlogging costs associated with a given end-of-the-
period inventory level may depend on the prevailing sales
price, e.g., when ht(I) # ht

)( p)I) ) ht
$( p)I$ with ht

)( p)
and ht

$( p) given, say linear functions of p (i.e., ht
)( p) #

at
) ) bt

)p and ht
$( p) # at

$ ) bt
$p). Such generalizations

are easily incorporated as long as the resulting functions
Gt( # , # ) continue to satisfy Assumptions 2, 3, and 5.
Assumptions 2 and 3 invariably continue to hold; Assump-
tion 5 is more restrictive but in the above example it con-
tinues to hold when bt

) and bt
$ are sufficiently small.

Finally, with respect to the timing of cash flows, we
assume that revenues are received at the end of the period
in which the sales occur. Further, all costs associated with
a period must be paid at its beginning. Correspondingly, we
assume that the price selected in any given period is always
at least as large as the unit’s replacement value, or variable
order cost, in the next period, i.e.,

p t + c t$1 . (4)

(In most practical settings we have ct ' pmin for all t # 1,
2, . . . so that (4) is trivially satisfied.)

2. THE FINITE HORIZON PROBLEM

In this section we characterize the structure of a strategy
maximizing expected discounted profit, under a given dis-
count factor ' * 1. The planning horizon consists of T
periods, numbered T, T $ 1, . . . , 1. For products sold
over a specific sales season (e.g., fashion items or products
with short life-cycles), T is naturally chosen to coincide
with the length of the sales season. Other products, which
are expected to be marketed over a long, indefinite length
of time, require that T be chosen large enough to ensure
that the computed optimal decisions pertaining to the first
or an initial set of periods remain optimal under longer
planning horizons.

Finite planning horizon models allow for arbitrary non-
stationarities in the cost and revenue parameters as well as
the demand functions. As mentioned above, we give sepa-
rate treatment to the case where the price can be in-
creased as well as decreased, and that where only
markdowns are permitted.

2.1. Bi-directional Price Changes

If the price can be changed arbitrarily from period to pe-
riod, the problem can be formulated as a Markov Decision
Problem (MDP) with xt as the state of the system at the
beginning of period t. Thus, S # ! represents the state
space. Let v*t(x) denote maximum expected discounted
profit for periods 1, 2, . . . , t when starting period t in state
x. The functions v*t satisfy v*0 - 0 and for t # 1, 2, . . .

v*t ! x" ! c t x $ max
. y%x, max! pmin ,ct$1 "'p'pmax /

J t ! y, p", (5)

where

J t ! y, p" ! 'pEd t ! p, " t " ( c t y ( G t ! y , p"

) 'Ev*t$1 ! y ( d t ! p, " t "" . (6)

We show that an optimal strategy employs a so-called
base stock list price policy in each period. A base stock list
price policy is characterized by a base stock level and list
price combination, ( y*t, p*t). If the inventory level is below
the base stock level, it is increased to the base stock level
and the list price is charged. If the inventory level is above
the base stock level, then nothing is ordered, and a price
discount is offered. In addition, the higher the excess in the
initial inventory level, the larger the optimal discount of-
fered. That is, the optimal price is a nonincreasing func-
tion of the initial inventory level, and no discounts are
offered unless the product is overstocked. The term “base
stock list price” policy was coined by Porteus (1990). It was
first shown to be optimal in the special models considered
by Thowsen (1975) and later by Young (1978).

First, let V*t(x) denote the second term to the right of
(5), i.e., V*t(x) # v*t(x) $ ctx and set V*0 ! 0. Rewriting (5)
and (6) in terms of the functions Jt and V*t we obtain:

V*t ! x" ! max
. y%x, max! pmin ,ct$1 "'p'pmax /

J t ! y, p", (7)
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J t ! y, p" ! 'pEd t !p , " t " ( c t y ( G t ! y , p"

) 'ct$1 !y ( dt !p, "t "" $ 'EV*t$1 !y ( dt !p, "t ""

! '! p ( c t$1 "Ed t ! p , " t " $ !'c t$1 ( c t " y

$ G t ! y, p" $ 'EV*t$1 ! y ( d t ! p, " t "" . (8)

Theorem 1. (a) Fix t # 1, . . . , T. The function Jt( y, p) is
jointly concave in y and p and the function V*t(x) is con-
cave and nonincreasing in x.

(b) Fix t # 1, . . . , T. Jt( y, p) # O(!y!)) and V*t(x) #
O(!x!)). Jt( y, p) has a finite maximizer for all t % 1, denoted
by ( y*t, p*t ). (In case of multiple maxima, select ( y*t, p*t ) to
be the lexicographically largest.)

(c) If x ' y*t it is optimal to order up to the base stock
level y*t and to charge the list price p*t; if x & y*t, it is optimal
not to order.

Proof. (a) By induction: Clearly, J1( # , # ) is jointly con-
cave: To verify joint concavity for the first term to the right
of (8), fix a value for "t. Since the function dt( p, "t) is
concave in p (see Assumption 1), it follows that it pos-
sesses first and second order right and left derivatives. By
straightforward calculus, one thus verifies that the function
( p $ ct$1)dt( p, "t) has nonpositive second order (left and
right) derivatives for p & ct$1, see (4), so that this function
is concave as well. The same therefore applies to E"t

( p $
ct$1)dt( p, "t). The second term to the right of (8) is linear
in y while the third term is jointly concave in view of
Assumption 5. Thus V*1(x) is easily verified to be concave
as well, and it is clearly non-increasing. Assume now that
Jt$1( # , # ) is jointly concave for some t # 2, . . . , T $ 1
and that V*t$1! is also concave and nonincreasing. Then,
Jt( y, p) is jointly concave: joint concavity of the first three
terms to the right of (8) is verified as for the case t # 1,
above; to verify joint concavity of the last term in (8), note
that for any given value of "t, V*t$1( y $ dt( p, "t)) is jointly
concave in y and p: For any pair of points ( y1, y2) and ( p1,
p2), note by Assumption 1 that

d t !p 1 $ p 2

2 , " t " +
1
2 d t ! p 1 , " t " $

1
2 d t ! p 2 , " t ".

Since the function V*t$1! is nonincreasing we have:

V*t$1 !y 1 $ y 2

2 ( d t !p 1 $ p 2

2 , " t ""
+ V*t$1 !y 1 $ y 2

2 (
1
2 d t ! p 1 , " t " (

1
2 d t ! p 2 , " t ""

! V*t$1 !1
2 + y 1 ( d t ! p 1 , " t ", $

1
2 + y 2 ( d t ! p 2 , " t ","

+
1
2 V*t$1 !y1 ( dt !p1 , "t "" $

1
2 V*t$1 !y2 ( dt !p2 , "t ""

by the concavity of V*t$1. This implies that EV*t$1( y $ dt( p,
"t)) is jointly concave in y and p as well. The concavity and
monotonicity of V*t is immediate from (7).

(b) By induction: J1( y, p) # O(!y!)) by Assumption 3.
Also, J1( # , # ) is jointly concave, and for all p ! [ pmin,
pmax], lim!y!3( J1( y, p) # $( by Assumption 2. This im-
plies that J1 has a finite maximizer. Assume now that for

some t # 2, . . . , T Jt$1( # , # ) # O(!y!)) and that Jt$1 has a
finite maximizer ( y*t$1, p*t$1). It is easily verified that
V*t$1(x) # O(!x!)) i.e. a constant K & 0 exists such that
V*t$1(x) ' K(!x!) ) 1) for all x. (For x ' y*t$1, the maxi-
mum in (7) is achieved in the point ( y*t$1, p*t$1) while for
x & y*t$1, y # x achieves the maximum, see the proof of
part (c).)

Thus

V*t$1 ! y ( d t ! p, " t "" * K !y ( d t ! p, " t " ! ) $ K

* K+ !y ! $ d t ! p, " t ",
) $ K, (9)

and hence employing the Binomial expansion of the right-
hand side of (9) and Assumption 4,

EV*t$1 ! y ( d t ! p, " t ""

* KE.+ !y ! $ d t ! p , " t ",
) $ 1/

* K $ K "
l#0

)

!)
l " !y ! ) max

pmin 'p'pmax

Ed t
)$l! p, " t ".

We conclude by Assumption 3 that Jt( y, pt) # O(!y!)) as
well. Since Jt$1( # , # ) has a finite maximizer, ( y*t$1, p*t$1),
we have for all y that EV*t$1(I( y, dt( p, "t))) ' V*t$1( y*t$1).
It thus follows from (8), and Assumption 2, that lim!y!3)(

Jt( y, p) # $( for all p ! [ pmin, pmax]. Combined with the
fact that Jt is jointly concave it follows that it has a finite
maximizer as well, thus completing the induction step.

(c) Fix t # 1, . . . , T. Since Jt( # , # ) is jointly concave,
( y*t, p*t) is the optimal decision pair when x ' y*t. Similarly,
for x & y*t it is optimal to choose y # x. (If for x & y*t, a
decision pair ( y, p0) is chosen with y & x, then for the pair
(x, p1) on the line connecting ( y*t, p*t) with ( y, p0), Jt(x, p1)
% Jt( y, p0).) We conclude in particular that

y! x" is nondecreasing in x. □ (10)

To prove that a base stock list price policy is optimal, it
thus suffices to show that the optimal price to be selected
in any given period is nonincreasing in the prevailing in-
ventory level. In other words, under a higher starting in-
ventory level, a price is selected that is no larger than the
optimal price under a lower starting inventory, this to stim-
ulate demand and promote a (larger) inventory reduction.

The proof of Theorem 1 shows that optimality of the
ordering rule prescribed by the base stock list price policy
depends on the joint concavity of the functions Jt( y, p), t #
1, . . . , T. Similarly, monotonicity of the optimal price level
p*(x) in the prevailing inventory level, depends on a differ-
ent property of the function Jt, namely, its submodularity.
A function f"!2 3 ! is said to be submodular (super-
modular) if it has antitone (isotone) differences, i.e., for all
y1 & y2 the difference functions f( y1, p) $ f( y2, p) are
nonincreasing (nondecreasing) in p (see Topkis 1978 or
Heyman and Sobel 1984).

Theorem 2. Fix t # 1, 2, . . . , T.

(a) The optimal price p*(x) is nonincreasing in x with
p*(x) ' p*t, the list price for period t.
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(b) A base stock list price policy with base stock y*t and
list price p*t is optimal.

Proof. (a) We first show that Jt( y, p) is submodular. Since
the sum of submodular functions is submodular, it suffices
to establish submodularity for each term to the right of (8).
The first and second terms are trivially submodular since
they depend on only one of the two variables y, p. To show
that Gt( y, p) has isotone differences, fix "t and consider an
arbitrary pair of inventory levels ( y1, y2) and any pair of
price levels ( p1, p2) with y1 & y2 and p1 & p2. Let ,1 # y1

$ dt( p1, "t), ,2 # y1 $ dt( p2, "t), ,3 # y2 $ dt( p1, "t), and
,4 # y2 $ dt( p2, "t). By the monotonicity of the demand
function dt we have:

, 3 - , 4 .

Thus, by the convexity of the ht function we have:

h t !, 1 " ( h t !, 3 " ! h t !, 3 $ ! y 1 ( y 2 "" ( h t !, 3 "

+ h t !, 4 $ y 1 ( y 2 " ( h t !, 4 "

! h t !, 2 " ( h 2 !, 4 ".

We conclude that the function ht( y $ dt( p, "t)) has isotone
differences in y and p, and the same supermodularity
therefore applies to the function Gt( y, p) # E"t

ht( y $ dt( p,
"t)). Finally, the submodularity proof for the last term in
(8) is identical to that of $Gt since V*t$1 is concave.

The decision problem in period t can be viewed as con-
sisting of two stages. In the first stage, the inventory level
(after ordering) y is chosen and in the second stage the
corresponding price p. The second stage problem thus has
S # ! as its state space and A # [max( pmin, ct$1), pmax] as
the set of feasible (price) actions in each possible state y !
S. Since Jt( y, p) is strictly concave in p in view of Assump-
tion 1(ii), we have that the optimal price p( y) is unique.
Since Jt( y, p) is submodular, it follows from Theorem 8-4
in Heyman and Sobel (1984) that the optimal price p is
nonincreasing in the “state” y, and hence in x given (10).

(b) Immediate from part (a) and Theorem 1(c). □

Monotonicity of the price p as a function of the starting
inventory x, extends the same monotonicity result ob-
tained in Zabel (1972), Thowsen (1975), Young (1978),
and Amihud and Mendelson (1983) for their special mod-
els treated.

2.2. The Model with Markdowns

When only markdowns are allowed, the state of the system
at the beginning of period t is represented by the pair (xt,
pt)1), with pt)1 the price in effect during the previous
period. Let v*t(x, p) denote the maximum expected dis-
counted profit for periods 1, . . . , t when starting in state
(x, p). The functions v*t satisfy v*0 - 0 and

v*t ! x, p" ! c t x $ max
. y%x, max! pmin ,ct$1 "'p0'p/

J t ! y , p0" , (11)

where Jt( y, p0) # 'p0Edt( p0, "t) $ cty $ Gt( y, p) )
'Ev*t$1( y $ dt( p0, "t), p0).

As before, it is convenient to rewrite the recursion (11)
in terms of the function V*t(x, p) - v*t(x, p) $ ctx:

V*t ! x, p" ! max
. y%x, max! pmin ,ct$1 "'p0'p/

J t ! y, p0" , (12)

where

J t ! y, p0" ! '! p0 ( c t$1 "Ed t ! p0, " t "

) !'c t$1 ( c t " y ( G t ! y, p"

) 'EV*t$1 ! y ( d t ! p0, " t ", p0" . (13)

In close analogy to the proofs of Theorems 1 and 2 we
establish Theorem 3.

Theorem 3. Fix t # 1, . . . , T.

(a) The functions Jt( y, p0) and V*t(x, p) are jointly con-
cave in ( y, p0) and (x, p) respectively. V*t(x, p) is nonin-
creasing in x and nondecreasing in p.

(b) Jt( y, p0) # O(!y!)) and V*t(x, p) # O(!x!)). Also, Jt( y,
p0) has a finite maximizer for all t % 1, denoted by ( y*t, p*t).
(In case of multiple maxima, select ( y*t, p*t) to be the lexi-
cographically largest.)

(c) Let ( y1, p0) and ( y2, p0) denote two pairs of inven-
tory and price levels optimally selected in period t if period
t starts in (x1, p1) and (x2, p2), respectively. If y1 & y2 then
p1 ' p2.

Proof. See the Appendix.

We now characterize the structure of an optimal strat-
egy in any given period t # 1, . . . , T. Let ŷt( pt)1) denote
the (largest) maximizer of the function Jt( # , pt)1). (A
maximizer exists since Jt is concave, see Theorem 3, and
since lim!y!3( Jt( y, pt)1) # $(, see the proof of Theorem
1(b).) Note that ŷt( pt)1) # y*t if pt)1 % p*t and that ŷt! is a
nonincreasing function, see Theorem 1(c), a property
which can be exploited in the computation of the optimal
levels { ŷt( p)"max( pmin, ct)1) ' p ' pmax}. We distinguish
between two cases:

Case I: pt)1 % p*t: Apply the base stock list price rule
described in §2.1.

Case II: pt)1 * p*t: If x ' ŷt( pt)1), choose the pair
( ŷt( pt)1), pt)1). If x & ŷt( pt)1), no order is placed, i.e.,
y # x and the price is set at a value p*(x) that satisfies
p*(x) ' pt)1 and with p*(x) nonincreasing in x.

We continue to refer to the above rule as the base stock
list price rule (with price-dependent order up to levels
{ ŷt( pt)1)}).

Theorem 4. The base stock list price policy with order up to
levels { ŷt( pt)1)} is an optimal policy in period t.

Proof. Case I: Consider the relaxation of (12) obtained by
relaxing the constraint p0 ' pt)1. Note that the base stock
list price rule described in §2.1 is optimal for this relaxed
problem and that for each inventory level x, a price p0 '
p*t ' pt)1 is chosen. In other words, the base stock list
price rule is feasible and hence is optimal for the original
problem (12) as well.
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Case II, x ' ŷ( pt)1): By the definition of ŷ( pt)1), the
pair ( ŷ( pt)1), pt)1) is best among all pairs in {( y,
pt)1)"y % x}. Assume to the contrary that some pair A #
( y, p0) with y % x and p0 * pt)1 is strictly superior to B #
( ŷ( pt)1), pt)1). Let C # ( y*t, p*t) and D # ( y0, pt)1), the
point of intersection of the line through A and C with the
horizontal line p0 # pt)1. (Since p*t & pt)1 & p0 this point
of intersection exists and y0 & 0.) By the definition of
ŷ( pt)1) and the joint concavity of Jt, Jt(B) % Jt(D) % Jt( A),
which contradicts the strict superiority of ( y, p0).

Case II, x & ŷ( pt)1): We first show that a pair (x, p0)
with p0 ' pt)1 is optimal. (See Figure 1.) Note that the
open rectangle bordered by the lines p # pt)1, p # pmin

and y % x represents the region of feasible pairs and let A
denote an optimal pair in this rectangle. Again, let C #
( y*t, p*t). Similar to the previous case, let D denote the
point of intersection of the line through A and C with the
boundary of the rectangle; by the concavity of Jt, Jt(D) %
Jt( A). By Theorem 1(c) we have that y*t ' ŷ( pt)1) * x.
Therefore D lies on the vertical line y # x or on the
horizontal line p # pt)1. In the first case, our claim is
proven; in the latter, we have again by the concavity of Jt( #
, pt)1) that Jt(x, pt)1) % Jt(D) % Jt( A), i.e., (x, pt)1) is an
optimal pair as well. It remains to be shown that the new
price p0 ' pt)1 is nonincreasing in x % ŷ( pt)1). This
can be established in close analogy to the proof of
Theorem 2. □

3. THE INFINITE HORIZON DISCOUNTED
PROBLEM

In this section, we consider an infinite planning horizon
with stationary cost and revenue parameters as well as
demand distributions. As discussed at the beginning of §2,
this model is often suitable for basic goods with relatively
long product life-cycles. In view of the stationarity of the
model, we write ct # c, Gt # G and dt # d for all t # 1,
2, . . . , while "1, "2, . . . are identically distributed as a ran-
dom variable ". In analyzing infinite horizon models, it is
often useful to have one step expected net profits that are

uniformly of the same sign. To achieve this, we subtract a
constant M # maxpmin'p'pmax

'pEd( p, ") uniformly from
the one step expected profits. (M * ( since by Assumption
1 it is the maximum of a continuous function on a compact
set.) We thus obtain shifted value functions v̂t and Ĵt with

v̂ t ! v*t (
M!1 ( ' t)1"

1 ( '
and Ĵ t ! J t (

M!1 ( ' t)1"
1 ( '

.

3.1. Bi-directional Price Changes

When prices can fluctuate in both directions, the infinite
horizon optimality equation (for the transformed model) is
given by:

v*! x" ! cx $ max
. y%x, max! pmin ,c"'p'pmax /

J! y, p" , (14)

where

J! y, p" ! 'pEd! p , "" ( cy ( M ( G! y, p" (15)
) 'Ev! y ( d! p , """ .

The following theorem describes the structure of an op-
timal policy in the infinite horizon model, and its relation-
ship to that of the finite horizon models.

Theorem 5. Assume prices can be changed in both direc-
tions.

(a) v̂ ! limt3( v̂t, v* ! limt3( v*t, Ĵ ! limt3( Ĵt and J*
! limt3( Jt all exist. Moreover, v̂ # v* $ M/(1 $ ') and Ĵ
# J* $ M/(1 $ ') and v̂ and v* equal the maximum
infinite horizon discounted profit vector in the transformed
and original models, respectively.

(b) v̂ and Ĵ (v* and J*) satisfy the infinite horizon opti-
mality equation (15) in the transformed (original ) model.

(c) J*( y, p) and v*(x) are jointly concave in y and p and
concave in x, respectively. Moreover, J*( y, p) has antitone
differences and a finite maximizer ( y*, p*). Finally, v*(x)
# O(!x!))1).

(d) A base stock list price policy with base stock level
and list price combination ( y*, p*) is optimal for the infi-
nite horizon model.

(e) The sequence {( y*t, p*t )} has at least one limit point

Figure 1. Proof of Theorem 3, Case II.
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and each such limit point ( y*, p*) is a base stock/list price
combination in an optimal base stock list price policy for
the infinite horizon model. Moreover, there exist constants y
' 0 ' y", independent of ', such that for any optimal base
stock/list price combination ( y*, p*), y* ! [y, y"] for all
' * 1.

Proof. See the Appendix.

3.2. The Model with Markdowns

If only markdowns are permitted, the infinite horizon op-
timality Equation (14), for the transformed model, is re-
placed by:

v! x , p" ! cx $ max
. x'y, max! pmin ,c"'p0'p/

J! y , p0" , (16)

where

J! y, p0" ! 'p0Ed! p0, "" ( cy ( M ( G! y , p0" (17)
) 'Ev! y ( d! p0, "", p0" .

The results of Theorem 5 easily extend to this model in
which only markdowns are permitted. We thus obtain The-
orem 6.

Theorem 6. Assume that only markdowns are permitted.
The results of Theorem 5 all hold for this model as well,
replacing in part (c) v*(x) by v*(x, p).

3.3. Asymptotic Behavior as the Discount Factor
Approaches One

We conclude this section with a brief discussion of the
behavior of the optimal policy and infinite horizon ex-
pected profit function v*, as the discount factor ' in-
creases to one. To emphasize the dependency on ', we
write ( y*', p*') and v*' for ( y*, p*) and v*, respectively.

It is known that for Markov Decision Processes with
finite state and action sets, a so-called Blackwell-optimal
policy exists, i.e., the same policy is optimal for all suffi-
ciently large discount factors ', and that the minimum cost
function v*' # O((1 $ ')$1) as '3 1. In our model, v*' #
O((1 $ ')$1) as ' 3 1 continues to apply. This follows
from the inequalities:

$w*! x" (
g"

!1 ( '"
* v*' *

M
!1 ( '"

, (18)

for a given function w*(x) and constant g" that are inde-
pendent of '. The upper bound in (18) follows from the
fact that it represents the maximum present value of prof-
its when all negative (cost) components are ignored. The
lower bound follows from v*' % v*'(x!pmin) (see the proof
of Theorem 4(c)) and for this constant price model, v*'( #
!pmin) ' $w*(x) $ g" /(1 $ ') (for appropriate choices of
w* and g" ). (See, e.g., Aviv and Federgruen 1997.)

Let ( y*', p*') denote the (lexicographically largest) max-
imizer of the function J*'( y, p). Theorem 5(d) establishes
that a base stock list price policy with base stock/list price
combination ( y*', p*') is optimal for the infinite horizon
model with discount factor ' * 1. We now show that the

points {( y*', p*')"0 ' ' * 1} are contained in a closed
rectangle.

Proposition 1. There exist constants y and y", independent
of ', such that y ' y*' ' y" for all ' sufficiently close to one.

Proof. Fix ' * 1. Since a base stock list price policy with
base stock/list price combination ( y*', p*') is optimal in the
infinite horizon discounted model with discount factor ',

v*' ! y*' " !
+!'p*' ( c"Ed! p*' , "" ( G! y*' , p*' ",

!1 ( '"
.

Thus, for ' sufficiently close to one we have, in view of
(18)

$g" * !'p*' ( c"Ed! p*' , "" ( G! y*' , p*' ",

or

G! y*' , p*' " * .

! g" $ max
max! pmin ,c"'p'pmax

! p ( c"Ed! p, "" / (,

because Ed( p, ") is concave and hence continuous in p by
Assumption 1. Note that . is independent of ', and by
Assumption 2 there exist bounds y(.) and y"(.) such that
for all ' close to one, y(.) ' y*' ' y"(.). □

We also assume without loss of generality that

v*' ! y*' " ! max
x

v*' ! x" + 0, (19)

for ' sufficiently large, to preclude the trivial case where it
is optimal to terminate the business for any starting
condition.

In the next section (Theorem 7(a)) we show in fact that
lim'31(1 $ ')v*' # g* where g* denotes the long run
average net profit. Moreover, although a Blackwell-
optimal policy may fail to exist, Theorem 5(e) (and Theo-
rem 6) shows that the optimal base stock level y* is at least
bounded in '.

4. THE AVERAGE PROFIT CRITERION

In this section we address the long-run average profit cri-
terion. As with respect to the previously discussed perfor-
mance criteria, we give separate treatment to (i) the model
with bi-directional price changes and (ii) the model in
which only markdowns are permitted. For the former, we
show that a base stock list price policy continues to be
optimal. Moreover, we show how this policy relates to
policies that are optimal under the expected total dis-
counted profit criterion. For the latter model (allowing
only markdowns) we show that a policy of even simpler
structure is optimal, i.e., a policy which adopts a constant
price and employs a simple order-up-to rule. In other
words, under the long-run average profit criterion, the
markdown model reduces to a standard inventory model
with a fixed, albeit controllable, price.
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4.1. Bi-directional Price Changes

For the model in which prices can be increased as well as
decreased at the beginning of each period, we establish the
existence of a solution to the long-run average profit opti-
mality equation. In addition, we show that a base stock list
price policy achieves this optimality equation and is opti-
mal. As in most other (applications of) Markov Decision
Problems with infinite state spaces, this is most conve-
niently achieved when the state space is countable. We
therefore discretize both the inventory level and price vari-
ables, and assume that the (demand) distribution of " is
discrete as well. The long-run average profit optimality
equation is then given by:

h! x" $ g ! max
.! y, p":y%x, pmin 'p'pmax /

(20)

# . pEd! p, "" ( c! y ( x" ( G! y, p" $ Eh! y ( d! p , """/ .

Also, let g*(x) denote maximum long run average profit
when starting in state x.

We maintain Assumptions 1, 2, 3, 4, and 5 while requir-
ing the finiteness of an additional moment of the demand
distribution.

Assumption 4*. E[d))1] * ( for all p ! [ pmin, pmax].

Theorem 7. Assume Assumptions 1, 2, 3, 4*, and 5 hold.

(a) There exists a constant g* such that g*(x) # g* for
all initial inventory levels x. Moreover there exists a se-
quence of discount factors {'n} 3 1 such that g* #
limn3((1 $ 'n)v*'n

(x) for all inventory levels x.
(b) There exists a function h*"! 3 ! with h*(x) ' 0

and h*(x) # O(!x!))1) such that (h*, g*) satisfies the opti-
mality Equation (20).

(c) There exists a sequence of discount factors {'n} 3 1
such that the sequence of corresponding base stock list
price policies converges to a limiting policy, say with base
stock/list price combination ( y*, p*), and this limiting pol-
icy is optimal for the long-run average profit criterion.
Moreover, any policy that achieves the maximum in the
optimality Equation (20) is optimal.

(d) y ' y* ' y" with y and y" defined in Proposition 1.

Proof. Parts (a)–(c) of our theorem follow from the theo-
rem in Sennott (1989) by establishing that Assumptions 1,
2, and 3* therein (here referred to as S-1, S-2, and S-3*,
respectively) are satisfied; in particular, there exists a se-
quence of discount factors {'n} 3 1, such that:

S $ 1: $( * v*'n
(x) * ( for all x and all 'n.

S $ 2: For some state y0 let h'(x) ! v*'(x) $ v*'( y0).
h'n

(x) ' 0 for all x and all n # 1, 2, . . . .
S $ 3*: There exists a nonnegative function N(x) #

O(!x!))1) such that h'n
(x) % $N(x) for all x and all n.

Moreover, EN( y $ d( p, ")) * ( for all ( y, p).
Sennott requires in addition that the action sets be fi-

nite. However, this assumption is made only to ensure that
a sequence of discount factors {'n} 3 1 exists for which
the corresponding sequence of optimal policies converges
pointwise to a stationary policy. In our model the latter

can be verified directly, in spite of the fact that the action
sets are infinite. Indeed, it follows from Proposition 1 and
the discreteness of the state space, that a base stock/list
price combination ( y0, p0) exists such that ( y*', p*') # ( y0,
p0) for a sequence of discount factors {'n} 3 1. Consider
now the inventory level x # y0 ) 1, and recall that the
prescribed optimal price p'(x) in this state satisfies pmin '
p'(x) ' p0. Thus a subsequence of {'n} can be con-
structed with a common value for p'( y0 ) 1). Similarly,
one can construct a further subsequence of {'n} with a
common value for p'( y0 ) 2) as well as p'( y0 ) 1). Con-
tinuing via this diagonalization method, we construct the
desired sequence of discount factors and hence limiting
stationary policy.

Thus, with this choice of y0 and the sequence {'n}, S-2
clearly applies. S-1 is established in Theorem 5. To verify
S-3*, let v*'(x) denote total expected discounted return of
the policy with fixed price p0, and order-up-to level y0,
when starting in state x. Let 0 denote the (random) num-
ber of periods required until the inventory level is first
increased to y0, i.e., 0 # min{t % 1"¥i#1

t di % x $ y0}
where d1, d2, . . . are independent random variables, all
distributed like d( p0, "). Thus, 0 denotes the number of
renewals by time [ x $ y0]) in the corresponding renewal
process and hence E(0) # O(!x!) (see, e.g., Heyman and
Sobel 1984, Equation 5–12). Thus,

h ' ! x" ! v*' ! x" ( v*' ! y 0"

+ v*' ! x" ( v*' ! y 0"

! E# "
t#1

0

' tp 0d! p 0, ""$
$ E# "

t#1

0

' t$1G% x ( "
i#1

t$1

d i , p 0& $
$ cE# y 0 ( x $ "

i#1

0

d i$ $ E!' 0 ( 1"v*' ! y 0"

+ $ E# "
t#1

0

G% x ( "
i#1

t$1

d i , p 0& $ ( c! y 0 ( x"

$ cE!0"Ed! p 0, "" $ E!0"!' ( 1"v*' ! y 0"

+ $ E!0"max.G! x, p 0", G! y 0, p 0"/

$ c! y 0 ( x" ( E!0"+cEd! p 0, "" $ M,

+ $ K! !x ! ))1 $ 1"

!$N! x",

for an appropriate constant K. (The second inequality fol-
lows from ' * 1, G % 0, Wald’s Lemma, and the inequal-
ities '0 $ 1 % 0(' $ 1) for ' * 1, and v*'( y0) % 0, see
(19). The third inequality follows from y0 ' x $ ¥i#1

0$1 di '
x for all t # 1, . . . , 0 and the convexity of G(#, p0), see
Assumption 5, while (' $ 1)v*'( y0) % $N follows from
the definition of M or (18). Finally, the last inequality
follows from E(0) # O(!x!) and Assumption 3.)

In addition,
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EN! y ( d! p, """ ! K!E!y ! ( d! p, "" ))1 $ 1"

* K!E!+ !y ! $ d! p , "", ))1"" / (,

by Assumption 4*, employing the binomial expansion of
[!y! ) d( p, ")]))1 ) 1. This establishes parts (a)–(c) of the
theorem. (It follows from the proof of the Theorem in
Sennott that h* # limn3( h'n

' 0.) Moreover, since y* #
limn3( y*'n

for the above constructed sequence {'n} and y
' y*' ' y" for all ' sufficiently close to one by Proposition
1, we obtain part (d). □

4.2. The Model with Markdowns

We now turn to the case where only price reductions are
permitted and show that under the long-run average profit
criterion, it is optimal to adopt a constant price and a
simple order-up-to policy.

Theorem 8. Assume Assumptions 1, 2, 3, 4*, and 5 hold
and that the system is in state (x, p). Let p* be a maximizer
on [max( pmin, c), pmax] of the concave function {( p $
c)Ed( p, ") $ miny G( y, p)}. Under the long-run average
profit criterion, it is optimal to (i) adopt the constant price
p0 # min( p*, p), and (ii) follow a simple order-up-to pol-
icy with order-up-to level y*( p0).

Proof. For all p ! [max( pmin, c), pmax] let ( g*!p) denote
the long-run average profit for the model in which the
price is kept constant at level p. Under our assumptions,
( g*!p) * ( for all p ! [max( pmin, c), pmax] (see Veinott
1966). Consider an arbitrary (possibly history dependent)
policy 1 and let { pt"t # 1, 2, . . . } denote the stochastic
price process generated by this policy. Since { pt} is nonin-
creasing and the possible price range is finite, we have with
probability one that pt is constant after finitely many peri-
ods, after which point in time it is clearly optimal to adopt
a simple order-up-to policy. This implies that the long-run
average profit under policy 1 is given by a weighted aver-
age of the values {( g*!max( pmin, c)), ( g*!max( pmin, c) )
1), . . . , ( g*!pmax)} and hence bounded from above by
maxp0![max( pmin,c),pmax]( g*!p0), a value that can be achieved
by the policy that adopts a constant price p0 achieving this
maximum, and orders up to the corresponding order-up-to
level. It remains to be shown that this maximizing constant
price p0 satisfies p0 # min( p*, p). Note that ( g*!p0) # ( p0
$ c)Ed( p0, ") $ miny G( y, p0) is a concave function of p0
in view of Assumption 1 and Assumption 5. (Since G is
jointly convex, miny G( y, p0) is convex in p0.) This implies
that ( g*!p0) is nondecreasing for p0 ' p*. □

5. COMPUTATIONAL METHODS

In this section we describe efficient methods to determine
an optimal policy for each of the models discussed in §§ 2
through 4. The base stock list price policy that is optimal
for the finite horizon models in §2 can clearly be computed
by the recursions (7)–(8) and (12)–(13) for the model with
bi-directional price changes and that with markdowns, re-
spectively. By Theorems 4 and 6, the recursive schemes

converge to the infinite horizon value functions under the
total discounted profit criterion, and the sequences of op-
timal finite horizon policies converge to an optimal policy
for the infinite horizon model as well.

This leaves us with the long-run average profit criterion.
By Theorem 8, for the model in which only markdowns are
permitted, the computational effort reduces to:

(i) Determining p* by computing a maximizer ( p*, y*)
of the jointly concave function [( p $ c)Ed( p, ") $ G( y,
p)]. For any starting price p % p*, it is optimal to adopt
the price p* and in each period to order up to the level y*.

(ii) For a starting price p * p*, it is optimal to maintain
the price p forever, and in each period to order up to a
level y*( p) which minimizes the convex function G(#, p).

For the model with bi-directional price changes, we re-
turn to the recursive scheme (5)–(6), now with ' # 1. We
now show that the sequence {v*t $ tg*} converges point-
wise to a function h* such that (h*, g*) satisfies the opti-
mality Equation (20). (By Theorem 7(c) any policy
achieving the maximum in the optimality equation for this
solution is optimal.) Note first from Theorem 7(d) that
without loss of optimality the sets of feasible actions
{A(x)} may be restricted to sets {Â(x)} as follows:

Â! x" ! .! y, p""max! x , y" * y * y"

and max! p min , c" * p * p max }, if x * y" ,

Â! x" ! .! x, p""max! p min , c" * p * p max /, if x - y" .

Assume therefore that the value iteration scheme (5)–
(6) is implemented with these restricted action sets, i.e., by
imposing an additional upper bound y ' max(x, y") and
modifying the lower bound y % x to y % max(x, y) in the
maximization problem (5). One easily verifies that these
modified bounds do not affect the validity of the structural
results in Theorem 8.

Theorem 9. Assume Assumptions 1, 2, 3, 4*, and 5 hold.
Let {v*t} denote the sequence of value functions generated
by (5)–(6) with the restricted action sets {Â(x)}. Then
{v*t $ tg*}t#1

( converges to a function h* such that (h*, g*)
is a solution to the long-run average profit criterion (20).

Proof. Theorem 1 in Aviv and Federgruen (1995) shows
that once the existence of a solution (h*, g*) of the opti-
mality Equation (20) has been established, convergence of
{v*t $ tg*} to such a solution can be guaranteed by the
verification of a single additional condition regarding the
growth rate of the function h. In particular, Theorem 7
establishes Assumption (A) in Aviv and Federgruen (1995)
since no stationary policy has null-recurrent states. (Note
that the inventory level after ordering is bounded from
below by y and that the states { x"x % y"} are all transient.
Note also that the Markov chain induced by an optimizing
base stock list price policy with base stock/list price combi-
nation ( y*, p*) is aperiodic since any of the states
( y* $ d0) with 10 # Pr[d( p*, ") # d0] & 0, repeats itself
after a single period with probability 10 & 0.)
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Recall from the proof of Theorem 7 that N(x) # K!x!))1

) K is a bounding function for the optimality equation h*,
i.e., !h*(x)! ' N(x) for all x. Let { xn}n#1

( represent the
process of (start-of-period) inventory levels before order-
ing under an arbitrary policy. The additional condition to
be verified is

!C""EN! x n !x 0 ! x" ! O!N! x"" for all n + 1.

Note that xn # yn$1 $ Dn$1 with yn$1 and Dn$1 indepen-
dent of each other. Thus

N! x n !x 0 ! x" ! K !x n ! ))1 $ K

* K !y n$1 ( D n$1 ! ))1 $ K

* max
y'y'max! x,y""

K !y ( D n$1 ! ))1 $ K

! K+1 $ max. !y ( D n$1 ! ))1,

!max! x, y" " ( D n$1 ! ))1}]

* K.1 $ + !y ! $ D n$1 $ 1, ))1

$ +max! x, y" " $ D n$1 $ 1, ))1}, (21)

where the second equality follows from the function !y $
Dn$1!))1 being convex in y and hence achieving its maxi-
mum in one of the extreme points of the interval [y,
max(x, y")]. Condition (C) is verified by taking expectations
over the distribution of Dn$1 in (21), applying binomial
expansions and invoking Assumption 4*. □

Instead of the function v*t that grows linearly with t, it is
advisable to generate the normalized value-function w*t de-
fined by w*t(x) # v*t(x) $ v*t(x0) for some reference state
x0, e.g., x0 # y*. Note that the sequence {w*t} can be
generated from the recursion

w*t ! x" ! $cx $ max
. y%x, max! pmin ,ct$1 "'p'pmax /

.'pEd t ! p , " t " ( c t y ( G t ! y , p"

) 'Ew*t$1 ! y ( d t ! p , " t ""}

) cx 0 ( max
. y%x 0, max! pmin ,ct$1 "'p'pmax /

.'pEd t ! p , " t " ( c t y ( G t ! y , p"

) 'Ew*t$1 ! y ( d t ! p , " t ""}.

6. EXTENSIONS

In this section, we briefly discuss a number of extensions of
our model.

First, we have assumed that stockouts are fully back-
logged. In many settings stockouts are satisfied at the end
of the very period in which they occur, through emergency
orders or production runs. This variant of the model can
be handled with minor adaptations. Assume, e.g., that in-
ventory carrying costs in period t are given by a function
ht

)(I) of the end-of-period inventory level I. Emergency
purchases at the end of period t involve a cost of c" t % ct

per unit. Consider, e.g., the model with bi-directional price
changes and define v*t(x), V*t(x) and Jt( y, p) as before. The
recursion (6) is modified to

J t ! y, p" ! 'pEd t ! p, " t " ( c t y ( h t
)!+ y ( d t ! p, " t ",

)"

$ c" t E+d t ! p , " t " ( y, )

) 'Ev*t$1 !+ y ( d t ! p, " t ",
)",

where x) # max(x, 0). Rewriting, as before, (22) in terms
of V*t(x) # v*t(x) $ ct(x), we obtain after some algebra:

J t ! y, p" ! '! p ( c t$1 "Ed t ! p, " t " $ !'c t$1 ( c t " y

$ G t ! y, p" $ 'EV*t$1 !+ y ( d t ! p, " t ",
)", (23)

where

G t ! y , p" ! Eh t
)!+ y ( d t ! p , " t ",

)"

) !c" t $ 'c t$1 "E+d t ! p , " t " ( y, ). (24)

Observe that the first three terms to the right of (23) are
identical to those in (8), with Gt( y, p) now defined as in
(24). Thus, maintaining Assumptions 1–5, with ht! re-
placed by ht

)!, all structural results in Theorems 1–8 con-
tinue to apply. (Note, e.g., that concavity of Jt( y, p) and
V*t$1! can be proven under these assumptions by the
same induction proof; observe that if V*t$1! is concave
and nonincreasing, for any given value "t, V*t$1([ y $ dt( p,
"t)])) is jointly concave in y and p as well, as the composi-
tion of a concave nonincreasing function with the jointly
convex function [ y $ dt( p, "t)]). This implies that
E"t

V*t([ y $ dt( p, "t)])) is jointly concave in y and p as well.)
Following the proof of Lemma 1, one verifies that joint
convexity of the function Gt( y, p) is guaranteed, for exam-
ple, when the function ht

)! is convex and the demand
functions are linear. As in the model with full backlogging,
Gt( y, p) is easily verified to be supermodular when ht

)! is
convex (as assumed in Assumption 5). This permits us (as
in Theorems 2 and 3) to show that the functions Jt( y, p)
are submodular for t # 2, 3, . . . .

Thus, immediate clearance of stockouts via emergency
orders results in a model with identical structural proper-
ties for its optimal policies as the basic model with full
backlogging (given Assumptions 1–5 as specified above).
The same cannot be said for the case where stockouts
result in lost sales, since in this case the expected revenue
term in (6) is given by 'pE min( y, dt( p, "t)) which fails to
be (jointly) concave even when the demand functions are
linear. Thus, the functions Jt( # , # ) may fail to be concave,
Theorem 1 may fail to hold, and base stock list price poli-
cies may fail to be optimal. On the other hand, the exis-
tence of a stationary optimal policy in the discounted or
long-run average profit infinite horizon model with station-
ary parameters can still be demonstrated, along with that
of solutions to the optimality equations of these models.
(The proofs are analogous to those of Theorems 5–8.)

We have also assumed that orders are received instanta-
neously. Often, a positive leadtime of L % 1 periods is
incurred between the placement of an order and its re-
ceipt. (The leadtime L may be a deterministic constant, or
a random variable in case the supplier’s delivery times are
subject to uncertainty.) In standard inventory models, with
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a given price strategy, positive leadtimes are easily incorpo-
rated, albeit only in the case of full backlogging. Here, the
inventory level at the end of period (t $ L) may be ex-
pressed as

I t$L ! y t ( !D t $ D t$1 $ · · · $ D t$L ",

with yt reinterpreted as the inventory position at the begin-
ning of period t (after ordering). Thus, in standard inven-
tory models, It$L can only be controlled via yt, enabling a
dynamic programming formulation with xt # inventory po-
sition at the beginning of period t (before ordering), as the
single state variable, and charging expected holding and
backlogging costs at the end of period (t $ L) to period t.

When the price may be varied in each period, each de-
mand component Dt, Dt$1, . . . , Dt$L is controllable
(along with yt) via the prices charged in periods t, t $
1, . . . , t $ L. An exact formulation of the problem re-
quires that the state of the system be described via an
(L ) 1)-dimensional vector consisting of the current in-
ventory level and the sizes of the orders placed in the L
preceding periods. (The same state representation is re-
quired when stockouts result in lost sales or under other
types of inventory dynamics.) Such a formulation is intrac-
table for all but the smallest values of L.

We therefore propose a heuristic treatment of the prob-
lem in which expected holding and backlogging costs at the
end of period (t $ L) are charged to period t, according to
one of the following two functions.

(I) Ĝt( y, p) # Eht$L( y $ dt( p, "t) $ dt$1( p, "t$1)
$ . . . $ dt$L( p, "t$L)); i.e., assume that the price selected
for period t is maintained over the next order leadtime of
L periods. In close analogy to Lemma 1 it is easily verified
that Gt( # , # ) is jointly convex if ht is convex and the
demand functions are linear (for example).

(II) Gt( y, p) # minimum expected holding and backlog-
ging cost at the end of period (t $ L), if period t starts
with an inventory position (after ordering) of y units, price
p is chosen for period t, and an optimal price strategy is
followed over the time interval [t $ 1, . . . , t $ L].

The complete function Gt( # , # ) may be evaluated by the
solution of an L-period horizon problem of the type dis-
cussed in §1, assuming that the order quantities in periods
t, t $ 1, . . . , t $ L are fixed at the levels ( y $ xt), 0, . . . ,
0 and that the holding and backlogging costs in periods t,
t $ 1, . . . , t $ L ) 1 are zero. Also, choosing Gt( # , # ) as
the one-step expected cost function, results in an upper
bound approximation for the entire problem. It follows
from Theorem 1 that Gt( # , # ) is again jointly convex
provided Assumptions 1–5 continue to hold. Thus, under
Assumptions 1–5 the structural results in Theorems 1–8
continue to apply to the (upper bound) approximation
model.

We conclude that the models treated in §§ 2 through 4
can be solved in the case of positive leadtimes, via the same
computational schemes and with the same structural re-
sults for the “optimal” policies, provided the one-step ex-

pected inventory/backlog cost function is chosen as Ĝt or
Gt.

Another complication often encountered but ignored by
our basic model is the imposition of specific upper limits
constraining order sizes and/or price fluctuations. Assume,
e.g., that orders in period t are bounded by an amount bt,
the period’s capacity.

All the results in §§ 2 through 4 continue to hold under
these capacity restrictions. For the long-run average profit
criterion, it is now necessary to impose an additional as-
sumption to ensure that the system is stable, i.e., that the
long-run capacity is sufficient to meet the demand. In the
stationary model, this assumption reduces to b & Ed( pmax,
"). Also, to ensure convergence of the value-iteration
method in the undiscounted model (see Theorem 9), it is
necessary to assume that E(d))2) * (, a slight strengthen-
ing of Assumption 4 (4*). The proofs of Theorems 8 and 9
are considerably more involved, see Aviv and Federgruen
(1997). Most importantly we obtain the same structural
results and computational methods as in the basic model,
with obvious adaptations for the capacity limits. For exam-
ple, in the model with bi-directional price changes, under a
base stock list price policy with parameters ( y*, p*), one
increases the inventory level to y0 # min( y*, x0 ) b), if
before ordering the inventory level equals x0 ' y* units.
Also, in this case, a price p % p* is chosen that maximizes
the function J( y0, # ).

7. NUMERICAL STUDY

In this section we report on a numerical study conducted
to assess the computational effort associated with the
value-iteration methods, and more importantly, to attain
qualitative insights into the structure of optimal policies
and their sensitivity with respect to several parameters.
Among the major questions investigated, we focus in par-
ticular on:

(i) the benefits of a dynamic pricing strategy compared
to a fixed price strategy in settings with (a) continuous
replenishment opportunities, (i.e., replenishment options
at the beginning of each period) and (b) limited replenish-
ment opportunities (e.g., one or two procurements during
the entire selling season);

(ii) the benefits derived from bi-directional price
changes, as opposed to those achievable when only mark-
downs are permitted;

(iii) the sensitivity of the optimal list price as a function
of the initial inventory level; and

(iv) the sensitivity of the optimal base stock/list price
combination with respect to the degree of variability and
the seasonality patterns in the demands, as well as the
price elasticities in the (stochastic) demand functions.

Our numerical study is based on data collected from a
specialty retailer of high-end women’s apparel. The re-
tailer sells only its own private label, predominantly
dresses, sportwear separates, and coordinated collections.
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To market its merchandise, the retailer utilizes a network
of approximately 50 stores throughout the continental
United States, all owned and managed by the parent com-
pany. For the purpose of this study, we consider only the
aggregate sales process (throughout the United States),
leaving the complications that arise due to geographic dis-
persion of these stores to a future publication.

Focusing on two of the company’s fashion items, a dress
and a skirt, we have generated for each item a total of 53
scenarios. For the basic pair of scenarios we have selected
parameters to match actual sales, cost, and revenue data
observed in the Spring 1993 selling season. The basic pair
of scenarios has stationary data and additive stochastic de-
mand functions (see (2)), i.e.,

D t ! % t ! p" $ " t , (25)

where %t( p) # %( p) is assumed to be linear. (In an alterna-
tive set of scenarios we use the firm’s actual 21 seasonality
factors, {#t}, to gauge the impact of seasonalities; see Fig-
ure 2.) The choice of an additive model is justified by the
fact that the standard deviation of weekly sales is indepen-
dent of the price charged. For both items, the slope and
intercept of the function %( p) # a ) bp were estimated as
follows. We assume that the initial price p0 (charged for
most of the season), was selected by firm managers to
maximize expected profits per week, and that the quantity
purchased for the season equaled expected season-wide
demand under this price. With Q this purchase quantity

divided by the length of the season, these assumptions give
rise to a pair of linear equations,

p 0 !
1
2 !$a

b $ c" and a $ bp 0 ! Q,

from which the values of a and b can be computed.
In the base scenarios, the variables "t are independent

and identically distributed, as the (discretized) truncation
of a normal "̂. The variables are truncated at $%( p) to
prevent negative demand realizations. The parameters 2
and 3 of the normal "̂ are specified to ensure that E("t) #
0 and std("t), its standard deviation, equals %( p) # c.v. with
c.v. a specified coefficient of variation. (Strictly speaking,
the distribution of "t therefore depends on the price p, i.e.,
"t # "t( p).) In our base scenarios we set c.v. # 1. (This
order of magnitude of the coefficient of variation is often
encountered for retail sales of fashion items.)

The variable manufacturing and distribution cost rates,
ct # c represent actual dollar values experienced in the
Spring 1993 sales season. Our base scenarios assume that
bi-directional price changes are permitted, stockouts can
be fully backlogged, and that holding and backlogging
costs are proportional with the end-of-the-week inventory
level or backlog, at rates h and 1, respectively. (The cases
of more limited pricing flexibility as well as emergency
procurements to immediately fill excess demand are as-
sessed in alternative sets of scenarios.) Because of the cost

Table I
Base Parameters for Dress and Skirt Items

Item a b " Dist’n c.v.
Order

Cost (c)
Holding
Cost (h)

Penalty
Cost (1)

Salvage
(s)

Emergency
Cost (c")

Price
Range

Max
Inv.

Fixed
Price

Dress 174 $3 Normal 1.0 22.15 0.22 21.78 17.72 221.50 25–44 400 40
Skirt 57 $1 Normal 1.0 14.05 0.17 16.83 11.24 140.50 15–44 400 37

Figure 2. Seasonality factors.
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of capital, maintenance, insurance, loss, and damage, an-
nualized holding cost rates amount to approximately 20%
of the initial retail price, while high service levels (fill
rates) are ensured by setting the backlogging cost rates at
100 times the holding cost rates. Finally, all scenarios as-
sume an emergency procurement cost rate c" # 10c and in
accordance with the firm’s experience, a salvage value s #
0.8c for any inventory remaining at the end of the horizon.

Table I summarizes all parameters for the base scenar-
ios pertaining to the dress and the skirt. Note that the
selected fixed price is the price that maximizes expected
single period profits. The remaining figures gauge the im-
pact of each of the model’s parameters on the optimal
base stock and list price. More specifically, the graphs dis-
play, as a function of the number of periods remaining
until the end of the horizon, the optimal base stock and list
price. (We report these values for each period until they
converge to their limit values.) Further, we report for two
sets of scenarios the percentage increase in profits
achieved by the dynamic price policy as opposed to a fixed
price policy, when five periods remain in the horizon, and
assuming zero starting inventory. Further, we report (in
Table II) the long-run average profit per period as well as
the number of periods and the total computational time
(in seconds) required until the optimal base stock/list price
combination and the average profit per period converge
(to less than 10$2 units from their limit values). For the
scenarios where only markdowns are permitted, long-run
average profit depends on the initial price. For these sce-
narios we choose the optimal fixed price as the initial
price. Finally, we illustrate the price monotonicity in the
initial inventory level, as proven in Theorem 2 (see Figure
3). We present only the results for the dresses; those for
the skirts follow similar patterns.

Figures 4a–4b display the results for our base scenario
as well as a range of scenarios with an alternative value for
the coefficient of variation of weekly demands (specifically,
c.v. varies between 0.12 and 1.4). Figures 5a–5b exhibit the
above results for our base scenario and a range of scenar-
ios with an alternative value for 1 (1 # 14.55, 8.55 and
4.05, corresponding with a 1/(1 ) h) ratio of 0.97, 0.95,
and 0.90, respectively).

In Figures 6a–6b we investigate the impact of different
price elasticities by modifying the slope b of the demand
functions %( p) to b # $1 and b # $5. The demand

Table II
Convergence Rates and Average Profit per Period:

“(e/s)” # Emergency Shipments, “(m/d)” #
Markdowns Only

n* t* g*
cv # 1.4 15 45 $ 901.85
cv # 1.2 10 30 $ 914.21
cv # 1.0 9 27 $ 925.54
cv # 0.75 6 18 $ 937.84
cv # 0.50 4 13 $ 947.76
cv # 0.25 3 8 $ 955.98
cv # 0.12 2 3 $ 960.10
1/(1 ) h) # 0.99 9 27 $ 925.52
1/(1 ) h) # 0.97 10 31 $ 931.65
1/(1 ) h) # 0.95 9 30 $ 934.80
1/(1 ) h) # 0.90 9 30 $ 939.52
b # $5 10 31 $ 975.64
b # $3 9 27 $ 925.52
b # $1 8 28 $1265.03
Normal 9 27 $ 925.52
Geometric 7 15 $ 910.99
Poisson 2 7 $ 959.37
cv # 1.4 (e/s) 13 36 $ 884.35
cv # 1.2 (e/s) 11 31 $ 900.92
cv # 1.0 (e/s) 8 23 $ 915.30
cv # 0.75 (e/s) 6 17 $ 931.03
cv # 1.4 (m/d) 15 45 $ 901.85
cv # 1.2 (m/d) 10 30 $ 914.21
cv # 1.0 (m/d) 9 27 $ 925.54
cv # 0.75 (m/d) 6 18 $ 937.84
cv # 0.50 (m/d) 4 13 $ 947.76

Figure 3. Price trajectory for dress base scenario, with one period remaining.
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functions continue to go through the point ( p0, Q) as dis-
cussed above. In Figures 7a–7b we illustrate the impact of
the shape of the distribution of the random terms "t, by
considering two alternative scenarios in which "t has a
Geometric and Poisson distribution, respectively. (Since
the Geometric and Poisson distributions depend on a sin-
gle parameter, we choose this parameter to match the
expectation only.)

Next, Figures 8a–8b consider the impact of requiring
excess demand to be met by an emergency procurement,
under the parameters of the base scenarios as well as (up
to) three alternative scenarios with c.v. # 1.4, 1.2, and
0.75. Figures 9a–9b consider the case where only mark-
downs are permitted, and display the impact of the coeffi-
cient of variation which is varied over the same range as in
the case of bi-directional price changes. In Figure 9b we

compare the optimal list prices for systems in which only
markdowns are permitted to those which allow for bi-
directional price changes.

Figures 10a–10b gauge the impact of seasonalities. To-
ward this end we used the actual 21 seasonality factors {#t}
used by the firm. We then consider the impact of increas-
ing the amplitude of the seasonality cycle by a factor of 3.5,
i.e., we use the factors #̂t # 1 ) 3.5(#t $ 1), see Figure 2.
Figures 11a–11b display the percentage increase in profits
achieved by a dynamic pricing policy as compared with a
fixed price policy for the set of scenarios represented by
Figures 4 and 8, respectively.

Finally, in Table III we assess the benefits of continuous
(weekly) replenishments, by comparing, for the 21-week
sales season experienced by the firm, the profits generated
by the base scenario with those generated by scenarios in
which (i) only one order can be placed at the beginning of

Figure 4a. Optimal base stock levels for varying levels of
demand uncertainty, as function of remaining
time.

Figure 4b. Optimal list prices for varying levels of demand
uncertainty, as function of remaining time.

Figure 5a. Optimal base stock levels for varying values of
1/(1 ) h) ratio as function of remaining time.

Figure 5b. Optimal list prices for varying values of 1/(1 )
h) ratio as function of remaining time.
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the season, and (ii) at most two orders can be received, in
periods 1 and 11. A full backlogging model is somewhat
unrealistic for models that assume that orders may only be
placed at limited times, since it assumes that all unfilled
demand will be filled by subsequent orders placed with the
usual associated per unit order cost, c. Instead, for these
limited ordering models we assume that all unfilled de-
mand is met by an emergency procurement in the period
in which it occurs.

The results in Figures 4a and 4b demonstrate that the
optimal base stock level decreases as one approaches the
end of the planning horizon, while the optimal list price
increases. The latter is in sharp contrast with markdown
strategies employed when a single initial procurement of
inventory is used to cover the complete season. As re-
ported in Table II, in these stationary scenarios the opti-
mal base stock/list price combinations as well as the

estimate of the long-run average profit converge rather
rapidly; convergence occurs always at a horizon length n
less than or equal to fifteen, and often already at n ' 5.
Not surprisingly, convergence occurs faster when system
randomness is reduced.

We also note that the optimal list price increases with
the degree of system uncertainty. This may be explained as
follows. For any given list price, the required safety stocks
as well as expected shortage costs increase as the coeffi-
cient of variation of weekly demands increases. Thus it is
beneficial to respond to an increase in the c.v. value by
increasing the price, thus reducing both the mean and
standard deviation of weekly demands in the same propor-
tion. For similar reasons, as exhibited in Figure 5b, the
optimal list price is increasing in 1. On the other hand, we
observe that the increases in the optimal base stocks and

Figure 6a. Optimal base stock levels for varying demand
elasticities as a function of remaining time.

Figure 6b. Optimal list prices for varying demand elastici-
ties as a function of remaining time.

Figure 7a. Optimal base stock levels for varying demand
distributions as a function of remaining time.

Figure 7b. Optimal list prices for varying demand distribu-
tions as a function of remaining time.
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list prices, as a function of c.v. or 1, is modest and van-
ishes as the length of the planning horizon increases.

Figure 11a shows that even in a stationary environment
significant benefits accrue from a dynamic pricing strategy
compared to the fixed price strategy. The variable profit
enhancements may amount to up to 2.25% when five or
fewer periods remain until the end of the planning horizon
(e.g., the end of the sales season). As observed in the
general literature on yield management, in the retail sector
these differences may have very large impacts on bottom
line profit figures. Fisher and Raman (1996) report that in
the ski wear industry, for example, a cost reduction in the
amount of 1% of sales, results in an increase of profits by

60%. Consistent with Theorem 8, showing that in the long
run a fixed price strategy is optimal among all markdown-
only strategies, the relative benefits decrease as the length
of the planning horizon increases. As can be expected, the
benefits of a dynamic pricing strategy increase as the de-
gree of uncertainty (i.e., the value of c.v.) increases. Fi-
nally, consistent with standard inventory models with a
fixed price level, we observe that the optimal base stock
level increases and expected profit values decrease as ei-
ther the value of c.v. or the value of 1 increase. Figure 3
exhibits, for the base scenario, the optimal price level as a
function of the starting inventory in the final period of the
horizon.

Figure 8a. Comparison of optimal base stock levels for
systems with no backlogging and those with full
backlogging, as a function of remaining time.

Figure 8b. Comparison of optimal list prices for systems
with no backlogging and those with full back-
logging, as a function of remaining time.

Figure 9a. Optimal base stock levels for systems with
markdown-only price policy, as a function of
remaining time.

Figure 9b. Comparison of optimal list prices for systems
with markdown-only and bi-directional price
change policies, as a function of remaining
time.
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Figures 6a–6b exhibit the impact of different price elas-
ticities in the demand functions. If the slope of the de-
mand function decreases (in absolute value) from 3 to 1,
the optimal list price converges to 58 instead of 40 (as the
length of the planning horizon increases); the lower price
sensitivity is exploited to increase the price sharply, at the
expense of incurring a relatively modest decrease in de-
mand volume. The latter does however result in a system-
atic decrease of the optimal base stock levels (from 205 to
136, when n % 9). Conversely, if the slope of the demand
functions increases from 3 to 5 (in absolute value), the
optimal response consists of a markdown from 40 to 37
(when n % 6) so as to capture a relatively large increase in
demand volume. Notice that for n % 10, the 7.5% price
markdown causes an approximately 28% increase in the

mean and standard deviation of weekly demand, and a
similar increase in the optimal base stock level. Since the
demand functions are rotated around the point whose
price component is the optimal fixed price for the original
demand curve, one observes that expected profits increase
both when the slope of the demand functions increases
and when it decreases.

Figures 7a–7b exhibit the impact of the shape of the
distribution. The scenario in which weekly demands follow
a Poisson distribution, is best compared with the corre-
sponding scenario in Figures 4a–4b where c.v. # 0.12;
under a price of 40, the mean demand per week is for 54
units in all scenarios of Figures 4a–7b. Under a Poisson
distribution this implies that the standard deviation of
weekly demand is in the amount of 7.3, hence a value of
c.v. # 0.136 (approximately). Looking at Table II, the
scenario with c.v. # 0.12 and that where demand follows
the above Poisson distribution, both exhibit exceedingly
fast convergence to the optimal steady-state parameters.

Figure 10a. Optimal base stock levels for varying levels of
demand nonstationarity as function of remain-
ing time.

Figure 10b. Optimal list prices for varying levels of de-
mand nonstationarity as function of remaining
time.

Figure 11a. Percentage difference between profit under
fixed price and dynamic price policies.

Figure 11b. Percentage difference in profits under fixed
price and dynamic price policies for systems
with no backlogging.
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Comparing Figures 4a and 4b to Figures 7a and 7b, respec-
tively, one notes that the optimal base stock levels and list
prices are almost identical in the considered pair of scenar-
ios. The same can be said for long-run average profits in
this pair of scenarios; see Table II. The scenario with geo-
metrically distributed weekly demands is comparable to
the base case since, under the price of 40, the c.v. value
equals 0.9906. Nevertheless we observe that the steady-
state optimal base stock level is 13% larger and the long-
run average profit value about 2% lower. The geometric
distribution has a considerably fatter tail than the corre-
sponding normal distribution, thus requiring additional
safety stocks to ensure comparable service, resulting in
lower expected profits.

The “emergency procurements” scenarios in Figures
8a–8b show similar convergence characteristics and similar
patterns of the optimal base stock levels and list prices
{( y*t, p*t)"t # 1, . . . , T} as a function of the value of c.v.,
as compared to the corresponding scenarios with full back-
logging. In comparing the parameter values and long run
profits themselves one notices, in Figure 8a and Table II,
that larger optimal base stock levels are needed and lower
expected profits are obtained. As can be expected, the
differences increase with the degree of uncertainty in the
system, i.e., with the value of c.v. Finally, Figure 11b dem-
onstrates that a dynamic price policy enhances profits by as
much as 6.5% for a horizon with n # 5.

Figures 9a–9b gauge the impact of a “markdowns only”
restriction on the price strategy. As observed above, in a
stationary environment a fixed price policy behaves as well
as any dynamic price policy for sufficiently large planning
horizons. This explains why for large planning horizons in
a stationary environment, the “markdowns only” restric-
tion is without significant loss of optimality. On the other
hand, when n ' 5 and c.v. # 1.0 (c.v. # 1.4), a loss in
expected profits of at least 1% (2%) is observed. We also
note that the optimal list prices are somewhat higher un-
der the “markdowns only” scenarios. This occurs because
under “markdowns only” the space of feasible future
prices is enlarged by adopting a higher current price while
in the case of bi-directional price changes the range of
future prices is unaffected by current choice. Finally, as
with the scenarios permitting bi-directional price changes,
one observes (in Figure 9b) that the optimal list price

increases as one approaches the end of the planning hori-
zon. However, in the case of “markdowns only,” future
(higher) list prices are unachievable once a (lower) current
optimal list price is implemented.

Figures 10a and 10b exhibit the impact of seasonalities
in the demand pattern on the optimal base stock levels and
list prices. As expected, one observes that the optimal base
stock levels fluctuate significantly from period to period.
Moreover, the optimal list prices are also adjusted up-
wards and downwards as one progresses over the seasonal
cycle. As with the stationary scenarios, one observes that
the loss in expected profits over the 21-week cycle under
the “markdowns only” restriction is of the order of 0.5%.
Recall that under stationary scenarios and continuously
available replenishment opportunities, the benefits of a dy-
namic pricing strategy, while significant at first, vanish as
the length of the planning horizon is increases. Under sea-
sonal fluctuations, the benefits of a dynamic price strategy
are considerably larger and persist even as the length of
the planning horizon is increased. Expected profits over
the complete season of n # 21 periods are increased by
0.5% (0.8%) for the “Firm” (“3.5 Firm”) seasonality
pattern.

We have simulated the 21 week selling season scenario
with non-stationary demand using the seasonality factors
experienced by the firm and allowing bi-directional price
changes. In a sample of 500 replicas, we observed that
price changes were implemented on average in 12.18 of
the 21 periods, while the order-up-to level is modified in
14.84 periods, on average. The average number of periods
in which the implemented and order-up-to level or price is
different from the optimal base stock or list price combina-
tion is 1.55 and 4.74, respectively. Finally, in those weeks
in which a price change is implemented, the average abso-
lute price change amounts to $1.33, and in those weeks in
which the order-up-to level deviates from the optimal base
stock level the average deviation is in the amount of 25.27
units. These simulations demonstrate the importance of a
dynamic pricing strategy and the degree of fluctuation in
order-up-to levels that are experienced under dynamic
pricing schemes.

Table III exhibits the magnitude of the benefits of
weekly replenishment opportunities as opposed to settings
where demand over a complete season must be covered by

Table III
Limited Ordering; Excess Demand Met by Emergency Procurement

Period Base Case
Bi-directional Pricing Markdowns only

One Order Two Orders One Order Two Orders
n # 10 ( y*10, p*10) (242, 41) (605, 41) (679, 45)

v*10(0) $ 8531.69 $ 7761.69 $ 6411.08
y*10 (fixed) 256 874

v*10(0) (fixed) $ 8435.83 $ 6370.60
n # 21 ( y*21, p*21) (242, 41) (1105, 41) (754, 41) (1578, 40) (8245, 44)

v*21(0) $18599.98 $15944.80 $17022.15 $12866.81 $15119.51
y*21 (fixed) 256 1571 1028

y*21(0) (fixed) $18502.42 $12766.07 $15091.93
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one or two procurements only. For example, one observes
that total expected profits decrease by 14.8% when the
entire season must be covered by a single order. Observe
that the loss in expected profits under limited replenish-
ment opportunities (i.e., one or two replenishment orders)
is significantly smaller when a dynamic pricing strategy is
adopted as compared to the case where a fixed price is
employed. In other words, the benefits of a dynamic pric-
ing strategy are remarkably large in those setting where
only a single or a limited number of replenishment oppor-
tunities can be arranged. For example, total expected prof-
its over 21 weeks can be improved by 19.9% because of the
adoption of a dynamic pricing strategy when a single re-
plenishment opportunity exists, and by 11.8% when two
replenishment orders can be placed. We also observe that
under limited replenishment opportunities, the benefits of
bi-directional price changes become extensive: compared
with the “markdowns only” case, expected profits over the
season increase by 19.3% when a single replenishment op-
portunity exists, and by 11.18% when two replenishment
orders can be placed. Note that if prices can be increased
over the course of the season, a 30% lower initial procure-
ment quantity suffices to cover the entire season as com-
pared to the “markdowns only” option.

APPENDIX

Proof of Theorem 3. To prove Theorem 3 we first need
the following lemma.

Lemma 2. Let f"! 2 [v, v"]3 !"(y, v)3 f ( y, v) denote a
jointly concave function with isotone differences. Define
g(x, u) # max{ y%x,v%u,v'v'v"} f( y, v) and assume that for all
pairs (x, u) the maximum is achieved in some point (y0, v0).
Then g is jointly concave with isotone differences.

Proof. Define F( y, u) # max{v%u,v'v'v"} f( y, v). We show
that F( y, u) is jointly concave with isotone differences.
Since g(x, u) # maxy%x F( y, u), g shares these properties
as well. (Note that in view of the existence of finite maxi-
mizers, the mapping transforming the function f into F is
identical to that transforming F into g.) For any given
value of y, the concave function f( y, # ) clearly has a max-
imizer on the bounded interval [v, v"]. Let v*( y) denote the
smallest such maximizer. Since f( # , # ) has isotone differ-
ences, it follows that v*( y) is nondecreasing in y. (See, e.g.,
Heyman and Sobel 1984, Theorem 8-4.) Thus, for any y1 &
y2 we have v*( y1) % v*( y2). Consider the difference func-
tion F( y1, u) $ F( y2, u):

F! y 1 , u" $F! y 2 , u" # '
f! y 1 , v*! y 1 "" ( f! y 2 , v*! y 2 ""

if u / v*! y 2 " * v*! y 1 ",
f! y 1 , v*! y 1 "" ( f! y 2 , u"

if v*! y 2 " * u * v*! y 1 ",
f! y 1 , u" ( f! y 2 , u"

if v*! y 1 " * u.

(26)

(26) follows from the concavity of f( y, # ). We conclude
that F( y1, u) $ F( y2, u) is constant for u ' v*( y2), and
increases from f( y1, v*( y1)) $ f( y2, v*( y2)) to f( y1,
v*( y1)) $ f( y2, v*( y1)) as u increases from v*( y2) to
v*( y1). (Note that f( y2, # ) is nonincreasing for u %
v*( y2).) Thereafter, i.e., for u & v*( y1), the difference
function F( y1, u) $ F( y2, u) # f( y1, u) $ f( y2, u) in-
creases in view of f having isotone differences. We con-
clude that F has isotone differences, while its concavity is
immediate from that of the function f. As mentioned, the
same properties thus carry over to the function g. □

Proof of Theorem 3. (a) By induction: J1 is jointly concave
since it coincides with the J1 function in the model with
bi-directional price changes. The concavity and monoto-
nicity properties of V1( # , # ) are thus straightforwardly
satisfied. Now fix t # 2, . . . , T and assume V*t$1( # , # ) has
the desired concavity and monotonicity properties. We
then show that Jt and V*t have the desired properties as
well. We first show that for any given value of "t, the
function V*t$1( y $ dt( p0, "t), p0) is jointly concave in ( y,
p0). For a fixed value of "t, let ( y1, p01) and ( y2, p02) denote
two points in !2:

V*t$1 !y 1 $ y 2

2 ( d t !p01 $ p02
2 , " t " ,

p01 $ p02
2 "

+ V*t$1 !y 1 $ y 2

2 (
1
2 d t ! p01 , " t "

$ 1
2 d t ! p02 , " t ",

p01 $ p02
2 "

+ 1
2 V*t$1 ! y 1 ( d t ! p01 , " t ", p01 "

$ 1
2 V*t$1 ! y 2 ( d t ! p02 , " t ", p02 ",

where the first inequality follows from the concavity of dt

in p and the nonincreasingness of V*t$1 in its first argu-
ment, and the second inequality follows from the concavity
of V*t$1. This implies that E"t

V*t$1( y $ dt( p0, "t), p0) is
jointly concave as well, and since the first three terms to
the right of (13) were shown to be jointly concave (see the
proof of Theorem 1), the same applies to the function Jt.
The concavity and monotonicity properties of V*t( # , # )
again follow immediately.

(b) Let Ĵt( y, p0) denote the expected total net profits in
periods t to 1 when adopting, in period t, in the model with
bi-directional price changes, an inventory level y and price
p0 and making optimal decisions thereafter. Clearly, Jt( y,
p0) ' Ĵt( y, p0) and by Theorem 1(b), Jt( y, p0) # O(!y!)),
V*t(x, p) # O(!x!)), and lim!y!3( Jt( y, p0) # $(. The exis-
tence of a finite maximizer thus follows from the concavity
of Jt.

(c) We show, by induction, that the function Jt( y, p0)
has antitone differences for all t # 1, . . . , T. The remain-
der of the proof is identical to that of Theorem 2. The
submodularity of J1 was demonstrated in the proof of The-
orem 2. Assume now that Jt$1 is submodular for some t #
2, . . . , T. Since by parts (a) and (b) of this theorem Jt$1 is
concave and the maximization problems in (12) have finite
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maximizers, it follows from Lemma 2 that V*t$1( # , # ) has
antitone differences as well. (Apply Lemma 2 with u #
$p, v # $p0 and f( y, v) # V*t$1( y, $v).) Fix a value for "t

and choose an arbitrary quadruple ( y1, y2, p1, p2) with y1 &
y2 and p1 & p2. Note that

V*t$1 ! y 1 ( d t ! p 1 , " t " , p 1 " ( V*t$1 ! y 2 ( d t ! p 1 , " t ", p 1 "

* V*t$1 ! y 1 ( d t ! p 2 , " t ", p 1 "

$ V*t$1 ! y 2 ( d t ! p 2 , " t ", p 1 "

* V*t$1 ! y 1 ( d t ! p 2 , " t ", p 2 "

$ V*t$1 ! y 2 ( d t ! p 2 , " t ", p 2 " .

The first inequality follows from the concavity of V*t$1 in
its first argument and the fact that dt( p1, "t) ' dt( p2, "t) by
Assumption 1. The second inequality follows from the fact
that V*t$1 has antitone differences. We conclude that
V*t$1( y $ dt( p0, "t), p0) has antitone differences in y and p0
and the same property therefore applies to E"t

V*t$1( y $
dt( p0, "t), p0). Since the first three terms in (13) are sub-
modular as well, it follows that Jt( y, p0) is submodular,
thus completing the induction step. □

Proof of Theorem 5. (a) The transformed model has non-
positive one-step expected profits. In particular, v̂ ' 0 for
all t # 1, 2, . . . . In view of Proposition 9.17 in Bertsekas
and Shreve (1978), it suffices to verify that for all t # 1,
2, . . . and all . the sets

U t ! x, ." ! .! y, p""y + x, max! p min , c"

* p * p max and Ĵ t ! y, p" + $.}

are compact subsets of !2. Note by the definition of M and
v̂t ' 0 that for t # 1, 2, . . .

$cy ( G! y, p" + Ĵ t ! y, p". (27)

Since G( y, p) is convex (by Assumption 5) it is continuous,
so that by Assumption 2, lim!y!3([cy ) G( y, p)] # ( uni-
formly on the bounded interval [ pmin, pmax]. This implies
the existence of constants y"(.) and y(.) such that for
y * y(.) and y & y"(.), $cy $ G( y, p) * $.. Thus by (27),
Ut(x, .) " {( y, p)"max( pmin, c) ' p ' pmax and y(.) '
y ' y"(.)} is a bounded set. By Theorem 1(a), Jt is concave
and hence continuous and so is Ĵt # Jt $ M(1 $ 't)1)/
(1 $ '), which guarantees that the sets Ut(x, .) are closed
and hence compact.

(b) It is immediate from Proposition 9.8 in Bertsekas
and Shreve (1978) that v̂ and Ĵ satisfy the optimality Equa-
tion (14) in the transformed model. Since v* # v̂ )
M/(1 $ ') and J* # Ĵ ) M/(1 $ '), v* and J* satisfy the
optimality equation in the original model.

(c) The concavity properties of J* and v* and the fact
that J* has antitone differences, follow from the corre-
sponding properties of Jt and v*t (see Theorem 1(a) and the
proof of Theorem 2) as well as the fact that J* # limt3( Jt

and v* # limt3( v*t; see part (a). Also, applying the proof
of Theorem 1(a) to the transformed model we get lim!y!3(

Ĵt( y, p) # $( for all p ! [ pmin, pmax] and Ĵ ' Ĵt ' Ĵt$1

' . . . ' Ĵ1 as can be verified by induction. Thus, lim!y!3(

J*( y, p) # lim!y!3( Ĵ( y, p) ) M/(1 $ ') # $(, which, by
the concavity of J* implies that J* has a finite maximizer.

It remains to be shown that v*(x) # O(!x!))1). Clearly,

v*! x" *
M

1 ( '
, (28)

the maximum present value of profits when all negative
(cost) components are ignored. Furthermore, let
v*(x!pmin) denote the expected maximum infinite horizon
profit when starting in state x in the basic inventory model
with static prices which arises when adopting a constant
price p # pmin over the entire planning horizon. Thus,
v*(x) % v*(x!pmin).

v*! x !p min " (
'p min Ed! p min , ""

1 ( '

! $c! y* ( x" ( !1 ( '" $1

# +G! y*, p min " $ 'cEd! p min , "", , if x * y*. (29)

Let 10 # Pr[d( pmin, ") # 0] * 1 by Assumption 1. Note
that under the optimal order-up-to policy in the model
with a fixed price pmin, the present value of the expected
order costs is bounded by the value that arises when in
each period last period’s demand is ordered. Thus, for x &
y*,

v*! x !p min " (
'p min E! p min , ""

1 ( '

+ $ c!1 ( '" $1Ed! p min , ""

$ !1 ( 1 0 " $1 "
l#y

x

G!l, p"

$ '!1 ( '" $1G! y*, p min ". (30)

We conclude from (29) and (30) that v*(x) # O(!x!))1).

(d) Immediate from the proof of Theorem 1(b).
(e) Fix t # 1, 2, . . . . Since Ĵ( y, p) ' Ĵt( y, p) ' $G( y,

p) for all ( y, p), $. ! Ĵ( y*, p*) ' Ĵt( y*t, p*t) ' $G( y*t, p*t).
By the proof of part (a), there exist two constants, y(.) and
y"(.), whose values are independent of ', such that y(.) '
y*t ' y"(.). In other words, the sequence {( y*t, p*t)} is
bounded and thus has at least one limit point ( y*, p*).
Clearly, y ' y* ' y". Recall that limt3( Jt # J (part (a))
and that ( y*t, p*t) is a maximizer of the concave function Jt,
so that the vector 0 is a subgradient of Jt in ( y*, p*). It
follows from Rockefellar (1970, Theorem 24.5) that 0 is a
subgradient of J in the point ( y*, p*) so that ( y*, p*) is a
maximizer of J. □
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