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W e consider the problem of managing inventories and dynamically adjusting retailer
prices in distribution systems with geographically dispersed retailers. More specifi-

cally, we analyze the following single item, periodic review model. The distribution of de-
mand in each period, at a given retailer, depends on the item’s price according to a stochastic
demand function. These stochastic demand functions may vary by retailer and by period.
The replenishment process consists of two phases: In some or all periods, a distribution
center may place an order with an outside supplier. This order arrives at the distribution
center after an ‘‘order leadtime’’ and is then, in the second phase, allocated to the retailers.
Allocations arrive after a second ‘‘allocation leadtime.’’

We develop an approximate model that is tractable and in which an optimal policy of
simple structure exists. The approximate model thus provides analytically computable ap-
proximations for systemwide profits and other performance measures. Moreover, the ap-
proximate model allows us to prove how various components of the optimal strategy (i.e.,
prices and order-up-to levels) respond to shifts in the model parameters, e.g., to shifts in
the retailers’ demand functions. In addition, we develop combined pricing, ordering, and
allocation strategies and show that the system’s performance under these strategies is well
gauged by the above approximations. We use this model to assess the impact of different
types of geographic dispersion on systems with dynamically varying prices and how dif-
ferent system parameters (e.g., leadtimes, coefficients of variation of individual retailers’
demand, price elasticities) contribute to this impact. Similarly, we use the model to gauge
the benefits of coordinated replenishments under dynamic pricing, and how these benefits
increase as the allocation decisions of the systemwide orders to individual retailers are
postponed to a later point in the overall replenishment leadtime.

We report on a comprehensive numerical study based on data obtained from a nationwide
department store chain.
(Inventory; Pricing Strategies; Two-Echelon System)

1. Introduction
We consider the problem of managing inventories
and dynamically adjusting retailer prices in distri-
bution systems with geographically dispersed sales
locations (‘‘retailers’’). Inventories can be controlled
via the supply process, the demand process, or a
combination thereof. The supply side can be managed
by an effective replenishment strategy, placing sys-

temwide orders and determining retailer allocations
in proper amounts and at the proper points in time.
The demand process can be controlled by stimulating
(dampening) demand via price decreases (increases)
or by the use of advertising and coupon promotions.

Simultaneous and dynamic control of the demand
and the supply side, i.e., the integration of inventory
control, in the classical sense of the word, with that
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of revenue management, has been addressed by few,
and only in single-location, single-item settings. Yet,
Federgruen and Heching (1999) show in this single-
location context that the optimal integrated price and
inventory control policy can result in major profit in-
creases—by 6.5% for a specialty retailer of high-end
(private label) women’s apparel—as compared to a
two-stage procedure in which a price trajectory is de-
termined f irst, followed by a dynamic inventory pol-
icy to optimally respond to the resulting sequence of
demand distributions. These differences relate to in-
stances with weekly replenishments, while even larg-
er profit increases are observed when only a few re-
plenishments are permitted over the course of the
sales season. In the retail sector such differences may
have large impacts on the bottom line.1 Integrated
price and inventory control allows for contingent pric-
ing, i.e., the price may be varied as a function of the
prevailing inventory (or inventories) in the system.
Thus, prices may be reduced to stimulate demand
when the firm is faced with large inventories, or they
may be increased to dampen demand when faced
with low inventories or backlogs.

The dichotomy between supply- and demand-side
analytical models reflects traditional organizational
structures, where supply-side decisions are relegated
to production or operations units and demand-side
decisions to marketing departments. Decisions in
both are made in isolation or, at best, in a sequential
manner, as when prices are selected by the marketing
unit (without proper recognition of their operational
consequences), and subsequently transmitted to the
operational unit. Even when a single unit or individ-
ual makes both the pricing and operational decisions,
the trade-offs between these two areas are, as of yet,
poorly understood.

We analyze the following single item, periodic re-
view model. The distribution of demand in each pe-
riod, at a given retailer, depends on the item’s price
according to a retailer- and period-specific stochastic
demand function. The demands faced by different re-

1For a particular ski-wear manufacturer Fisher and Raman (1996)
report a cost reduction in the amount of 1% of sales results in a
60% increase in bottom-line profits. In §3, we show similar potential
for profit increases in multilocation settings.

tailers in a given period may be correlated, but de-
mands are independent across time. (Our numerical
studies confine themselves to the case of independent
retailer demands.) The price may be specified dy-
namically as a function of the state of the system. The
company thus acts in a market with imperfect com-
petition; for example, the company may be a monop-
olist or the market may allow for product differenti-
ation. The analysis lays the groundwork for more
complex game-theoretical models that can be used to
address markets with perfect or limited competition.

An important assumption is that the retailers adopt
a common price at any given point in time. This is the
practice of most retail chains over large geographic
regions (e.g., the Northeast, the West Coast, etc.); cf.
Kane (2000), including the nationwide department
store chain on which the numerical studies in this
paper are based. Common pricing is often driven by
the desire to conduct national or regional advertising
campaigns or to distribute national or regional cata-
logs. Another factor is that customers tend to react
most adversely to price differences between sales out-
lets in the same region. In a recent experiment, Am-
azon.com charged different prices for different cus-
tomers for some of its DVD movies; the price charged
depended on which browser the customer used. Sev-
eral customers, upset by what they felt was unfair
treatment, filed complaints with the FTC and the Bet-
ter Business Bureau, accusing the company of ‘‘dis-
honesty’’ and ‘‘sneakiness’’ (see Wolverton 2000 and
Newman 2000). Amazon.com stopped the practice in
response to customer complaints.2 Another factor cit-
ed by executives is the difficulty to maintain location-
dependent prices in their accounting systems, in par-
ticular when purchases may be returned to any of the
sales locations. Finally, various papers, e.g., Thisse
and Vives (1988), have shown that when multiple re-
tail chains compete, common pricing often arises as
a Nash equilibrium. In spite of these considerations,

2May, a Jupiter analyst, states: ‘‘This was a major moment in e-com-
merce, not only because it was the f irst widespread test of a pow-
erful pricing tool, but because Amazon backed off so quickly and
so definitively’’ (see Washington Post 2000). In the words of the Wash-
ington Post (2000): ‘‘Few things stir up a consumer revolt quicker
than the notion that someone else is getting a better deal.’’
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there are nevertheless cases where price differentiation
may be acceptable, allowing for even higher profits.
The associated dynamic control problem is signifi-
cantly more complex than the one addressed in this
paper. It is unknown, to date, via what type of strat-
egies the potential for price differentiation can be ex-
ploited in an effective manner.

The replenishment process consists of two phases.
At the beginning of some or all of the periods the
distribution center may place an order, of possibly
limited capacity, with an outside supplier. (Our nu-
merical studies confine themselves to the case of un-
capacitated orders.) The order arrives at the distri-
bution center after a first ‘‘order leadtime’’ and is
allocated to the retailers, requiring a second retailer-
specific ‘‘allocation leadtime.’’ The distribution center
thus acts as a transshipment or cross-docking point
only, where no inventory is kept, or it may represent
a coordination function only, without any specific
physical location. Many distribution systems employ
cross-docking to reduce the total replenishment lead-
time and to avoid costly, time consuming, and error-
prone storage and retrieval activities in intermediate
warehouses.3 The cross-docking practice has also
been implemented by the nationwide department
store chain whose data are used in our case studies.
(Goods reside no more than 48 hours in its distribu-
tion centers.) On the other hand, where applicable,
our analysis can be extended along the lines of that
in Federgruen and Zipkin (1984b) and Aviv and Fed-
ergruen (1999) to allow for central inventories. Where
storage and retrieval in the distribution center can be
undertaken rapidly and inexpensively, the storage
option further strengthens the profit potential of co-
ordinated replenishments. The literature, admittedly
confined to settings with prespecified price and de-
mand distributions, however, suggests that the ben-
efits of central inventories are relatively modest. (This
may explain why cross-docking is so prevalent.) See,
in particular, Svoronos and Zipkin (1988) and Axsater
(1993) who deal with a one-warehouse, multiretailer

3Walmart’s developing into the world’s largest and most profitable
retailer has been attributed to a number of logistical practices
among which cross-docking is prominent (see Stalk et al. 1992).

system similar to ours, and Gallego and Zipkin’s
(1999) who address serial systems.

Stockouts at each retailer are backlogged. Ordering
and allocation costs are proportional with the order
and allocation sizes. Allocation costs may be retailer
specific. Inventory carrying and stockout costs de-
pend on end-of-the-period inventory levels according
to retailer-specific rates.

We pursue several objectives. First, we develop ef-
fective combined pricing, ordering, and allocation
strategies. These are obtained from specific modifi-
cations of the optimal policy of an appropriately de-
signed approximate model that is tractable (as opposed
to the exact model). Its optimal solution provides an-
alytically computable approximations for systemwide
profits and other performance measures. Our second
objective is to show that these approximate measures
are very close to the exact ones under our proposed
strategies (computed via simulations). The analytical
and relatively efficient solution of the approximate
model can thus be used effectively in various design
studies to answer a variety of strategic questions,
which is our third objective. The strategic questions of
interest include: (i) the benefits of coordinated replen-
ishments under dynamic pricing and how these ben-
efits vary as the allocation decisions to the retailers
can be postponed to a later point in the overall re-
plenishment leadtime, or as the degree of heteroge-
neity among the retailers is increased and (ii) the im-
pact on various performance measures of several
system parameters, e.g., leadtimes, coefficients of var-
iation of individual retailer’s demand, price elastici-
ties, etc.

While the design of our combined pricing and in-
ventory strategies as well as the specification and so-
lution of the approximate model build on techniques
employed in simpler multiechelon inventory models,
we face several novel challenges intrinsic to our envi-
ronment with dynamically controllable prices. For ex-
ample, in standard models with exogenously specified
demand distributions, it is easy to handle leadtimes
by using inventory positions (�inventory levels � or-
ders in process) as opposed to inventory levels as the
state variables. A standard accounting device is used,
whereby each period is charged with the expected in-
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ventory costs one leadtime later. With dynamically
controllable prices, these future costs depend on price
decisions in future periods, and are therefore unspec-
ified. As a second example, in standard models it has
been shown that a close-to-optimal strategy can be
designed using the very ordering strategy that is op-
timal in the approximate analytical model, without
incorporating any adjustments. This strategy specifies
orders on the basis of the aggregate systemwide in-
ventory position only. Under dynamically controlla-
ble prices, increased imbalance in the inventory levels
of the retailers can be expected, requiring adjust-
ments of systemwide orders as a function of the pre-
vailing imbalances.

The following is a brief review of the relevant lit-
erature; see Federgruen and Heching (2000) for de-
tails. The majority of the inventory literature assumes
that the demand processes and pricing decisions are
exogenously determined. The seminal paper here is
Eppen and Schrage (1981). See Federgruen (1993) for
a survey and Chen and Zheng (1994) and Aviv and
Federgruen (1999) for more recent contributions.
Most of the dynamic pricing literature addresses sin-
gle-item, single-location systems. See Bitran and
Mondschein (1993, 1997) and Gallego and van Ryzin
(1994, 1997) and its references for settings where a
single order covers the selling season. See Rothschild
(1994), Grossman et al. (1977), McLennan (1984), Bal-
vers and Cosimano (1990), and Braden and Oren
(1994) for models in which no inventory can be car-
ried from one period to the next. We refer to Feder-
gruen and Heching (1999) and its references for a dis-
cussion of the more general case where inventories
may be carried and replenishment orders placed—
with zero leadtime—in some or all periods. Chen et
al. (2001a,b) appear to be the first to consider inte-
grated pricing and inventory control in a multiloca-
tion setting; however, they assume that demands oc-
cur at a constant deterministic rate that depends on the
retail price charged.

The remainder of this paper is organized as fol-
lows. In §2 we introduce the basic model. In §3 we
discuss some case studies, highlighting the benefits
of combined pricing and inventory control and those
of coordinated replenishments. In §4, we give a brief

analysis of the deterministic version of the model. We
use the results of this deterministic model to design
the approximations and heuristics for the stochastic
model. In §5 we develop a tractable model as an ap-
proximation to the original system. In §6 we derive
structural properties of the optimal policy for this ap-
proximate model. Based on the approximate analyti-
cal model, in §7 we develop efficient heuristic strat-
egies for the initial model. Finally, in §8 we describe
a second numerical study with several objectives.
First, it gauges the effectiveness of the proposed heu-
ristics and the accuracy of the approximate model.
Second, we investigate how different parameters im-
pact various performance measures. Third, the study
provides insights into several important strategic
questions.

2. Model and Notation
We first specify the model and introduce the basic
notation. The distribution system consists of a distri-
bution center, via which J retailers, indexed j � 1, . . . ,
J, are replenished. The planning horizon has T � �
periods, indexing each period as the number of pe-
riods remaining until the end of the horizon. Exten-
sions to infinite horizon settings, with total discount-
ed or long-run average profits as the objective, can be
established along the lines of the single-location case
in Federgruen and Heching (1999).

At the beginning of each period, several simulta-
neous decisions need to be made: (i) the size of a new
replenishment order (if any) to be placed by the dis-
tribution center, (ii) the price to be charged in the
current period, and (iii) the allocation to the retailers
of any order arriving at the distribution center. (Re-
call, the distribution center carries no inventories.)
The order leadtime consists of L periods, and lj ( j �
1, . . . , J) is the allocation leadtime from the distri-
bution center to retailer j. Demand at retailer j in pe-
riod t is described by the following stochastic de-
mand function:

d ( p ) � [� � � p ]� � [� � 	 p ],jt t jt jt t jt jt jt t

j � 1, . . . , J, t � 1, . . . , T, (1)

where pt denotes the price charged in period t and
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the vector �t � {�jt : j � 1, . . . , J} has a general mul-
tivariate distribution with finite mean, allowing for
arbitrary correlations between the retailers. For ex-
ample, positive correlation may be explained by the
weather, or general economic conditions, e.g., the con-
sumer confidence index, increasing or decreasing de-
mand at all retailers in that region; negative correla-
tion may be due to road construction near one
retailer, diverting traffic to a nearby store, or by store-
specific advertising. {�t : t � 1, . . . , T }, and hence de-
mands in consecutive periods, are independent. This
specification encompasses two frequently considered
special cases: (i) the additive model where �jt � 1 and
�jt � 0, i.e., djt(pt) � �jt � 	jtpt � �jt, and (ii) the mul-
tiplicative model where �jt � 	jt � 0, i.e., djt(pt) � [�jt

� �jtpt]�jt. Extensions to more general demand func-
tions can be made, as in the single-retailer case; see
Federgruen and Heching (1999), §1. We assume that
�jt, �jt � 0 and �jt, 	jt � 0, reflecting downward-slop-
ing demand curves.

The cost structure is described by the following pa-
rameters:

c0t � the ordering cost per unit ordered by the
distribution center in period t (t � 1, . . . ,
T );

cjt � the shipment cost per unit allocated by the
distribution center to retailer j in period t
( j � 1, . . . , J; t � 1, . . . , T );

h (h )� 

jt jt � the carrying (backlogging) cost per unit

stored (backlogged) at retailer j at the end
of period t ( j � 1, . . . , J; t � 1, . . . , T ).

The objective is to maximize expected infinite ho-
rizon profits, discounted with a factor � � 1. Let bt

� the order capacity in period t. General capacity
limits {bt} allow us to model limited ordering oppor-
tunities or backup agreements (i.e., bt � 0 for only a
few periods), with only a few, perhaps two, possible
ordering periods and the supplier reserving a given
quantity for the second or later ordering opportunity;
see, e.g., Eppen and Iyer (1997) and Fisher and Ra-
man (1996). The price, pt, is selected from an interval
[pt,min, pt,max], t � 1, . . . , T. In some cases only mark-
downs are permitted. Such price restrictions require
minor extensions.

At the beginning of a period, the distribution center
determines an order size. Simultaneously, any order
placed L periods earlier arrives and is allocated
among the J retailers. Immediately thereafter, each re-
tailer j receives any shipment allocated to him lj pe-
riods earlier. Demands in a period occur at the end
of the period. Let:

xjt � the inventory level at retailer j at the begin-
ning of period t, before arrival of shipments
from the distribution center, j � 1, . . . , J; t
� 1, . . . , T;

zjt � the allocation to retailer j assigned at the
beginning of period t, j � 1, . . . , J; t � 1,
. . . , T;

wt � the order placed by the distribution center at
the beginning of period t, t � 1, . . . , T.

3. Benefits of Integrated Planning
and Coordinated Ordering

In this section, we demonstrate the benefits of inte-
grated price and inventory control and those associ-
ated with coordinated replenishments, with the help
of a numerical study based on data from a national
retailer of basic and fashion items. The retailer oper-
ates several divisions, each composed of a chain of
stores. The divisions are located throughout the Unit-
ed States. Each chain uses a common price at any
point of time. Procurements are coordinated via sys-
temwide orders placed with outside vendors. Orders
arrive at regional distribution centers from where
they are allocated to the individual stores after, at
most, 48 hours in the distribution center. We focus on
a single item, a specific style of women’s underwear.
For this item, the sales data did not exhibit any sig-
nificant seasonality pattern; fluctuations in sales are
partially explained by price variations.

We have modeled the demand process as a multi-
plicative model, i.e., a special case of (1) with �jt � 	jt

� 0, �jt � �j, and �jt � �j for all j, t, i.e.,

djt(pt) � [�j � �jpt]�jt. (2)

Here, the vectors {�t} are independent and identically
distributed as the random vector �. The multiplicative
model in (2) assumes that the coefficients of variation
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Table 1 Demand Function Parameters for Initial Set of Five Retailers

Location 1 Location 2 Location 3 Location 4 Location 5

�j

	j

c.v.

212

36

0.56

100

17

0.51

72

12

0.51

81

14

0.47

31

5

0.74

(c.v.s) of the demands are independent of the prices
charged, an assumption satisfied by the sales data.
Without any loss of generality, we normalize the �
variables so that E(�j) � 1 for all j � 1, . . . , J. In our
problem sets, we alternatively assume that all of the
components of the vector of random variables � have
(i) normal (1, 
) or (ii) gamma (�, �) distribution with
density f (x) � e
�x��x�
1/�(�). The choice of the nor-
mal distribution is supported by the shape of the dis-
tributions of the standardized residuals in the regres-
sion equations used to estimate the parameters.
However, the gamma distribution provides, in most
cases, a close fit as well. (The family of gamma dis-
tributions can be used for arbitrary c.v. values. The
normal distribution, on the other hand, is ill suited
when the c.v. value is above 0.5 because the proba-
bility of the normal distribution adopting negative
values is too large, in this case.) Finally, to simplify
the specification of the problem instances, we assume
that demands are independent across different stores.
(The actual data show moderately positive correla-
tions. In such cases, the value of coordinated ordering
may be somewhat reduced because there will be few-
er instances in which large demands at one retailer
are ‘‘offset’’ by small demands at another.) The error
term process {�t} is thus characterized by the param-
eters 
j � stdev(�jt) � c.v.(djt) for all j and t when the
distribution is normal, and �j � [stdev(�j)]
2 �
[c.v.(djt)]
2 when it is gamma.

The parameters �, 	, and 
 were determined via a
generalized least squares regression analysis (to ac-
count for heteroscedasticity). Table 1 lists these for an
initial set of five locations. The weekly holding cost
rates h amount to 2% of the procurement cost rates�

j

cj. (This cost rate includes the cost of capital, main-
tenance, insurance, and handling costs.) To assure
high service levels, we have set the backlogging cost
rates equal to at least double the variable procure-

ment costs. Because the stores are located in the same
general area, they experience identical per-unit cost
rates, i.e., h� � $0.06, h
 � $6.00, and c � $3.03.

We first show that integrated price and inventory
control may result in significant profit increases when
compared to what appears to be the best one can do
in a traditional, sequential planning approach where
prices are set f irst followed by a systemwide replen-
ishment policy to respond to these prices next. To this
end, we compare the expected profits under the best
of our proposed (heuristic) strategies with �(p), those
under the best-known replenishment strategy re-
sponding to a prespecified vector of prices p � (p1,
. . . , pT ). Several strawmen could be used for the lat-
ter, e.g., the prices that maximize gross profits, exclu-
sive of inventory related costs. A better strawman is
the price vector chosen to optimize the deterministic
version of our model, which is discussed in the next
section and incorporates all inventory-related costs,
thus representing a limited form of integration of
pricing and inventory control. It seems that the opti-
mal fixed vector p̄ that maximizes �(p) can only be
found by an intractable complete enumeration of all
�P�T vectors, with �P�T as the number of possible price
levels because no structural properties of the function
�(·) are known to be exploitable. (�P� � 50 as the retail
price varies between $3.00 and $5.50 in increments of
5 cents.)

Under a fixed-price vector p̄, the problem reduces
to the two-echelon inventory problem in Eppen and
Schrage (1981) and Federgruen and Zipkin (1984a,c)
whose heuristics incur expected costs extremely close
to a lower bound of the optimal costs. The simulated
average profit under the resulting, sequentially deter-
mined strategy is referred to as SEQ. In Figure 1, we
compare the SEQ values with the profits under the
integrated strategy (denoted by INT) fitting gamma
distributions to the parameters in Table 1, as de-
scribed above. (The numbers within parentheses in
Figure 1, as well as those in Figures 2 and 3, refer to
the percentage improvement for INT as compared
with SEQ.) Note that INT outperforms SEQ by 1.20%,
a considerable improvement of gross profits for most
retailers. If the c.v.’s of the stores’ demands were 25
or 50% larger, the number goes up to 2.2 and 3.52%,
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Figure 1 Comparison of INT and SEQ Profits

respectively.4 The profit improvements in Figure 1
arise because of the following: The sequential strategy
adopts a constant price of $4.45 during the entire sea-
son, in this instance with stationary data. Our rec-
ommended integrated strategy implements a target
price of $4.55 except for the last three weeks with
target prices of $4.60, $4.80, and $5.10.5 However, un-
der our policy the target price is used only if the sys-
temwide inventory position is sufficiently low. If, due
to low sales figures, the inventory level is above a
certain threshold value, the retail price is reduced as
a function of the prevailing inventory. For example,
in our simulations (with 3,000 replicas) the average
price is $4.77 and $4.78 in the last two weeks.

Under random demands, a higher target price is

4Even when the c.v. values are increased by 50%, they range from
0.6 to 1.11. Such coefficients of variation are by no means excep-
tionally large. Some of the locations in our sample exhibited c.v.
values for single store-demand of up to 1.73. Agrawal and Smith
(1996) report on sales data for a collection of 41 SKUs of basic men’s
slacks sold in 24 different stores. Dividing the year into ‘‘peak’’ and
‘‘off-peak’’ weeks gives rise to a sample of 1,968 demand distri-
butions that the authors partition into eight categories. The average
c.v. values in the eight categories range from 0.64 to 3.
5The integrated strategy adopts, for each period t, a pair of target
values (y , p ) such that the target price p is implemented when it* * *t t t

is feasible to set the aggregate inventory position at y .*t

desirable. This reduces both the mean and the stan-
dard deviation of weekly demands and the expected
inventory costs. This cost reduction more than offsets
the loss in expected revenues. The larger the c.v.’s, the
larger the weight of the inventory-related costs in the
profit expression and the higher the target retail pric-
es, p , are set: If the c.v. values are increased by 25%*t
(50%), p is set at $4.55 ($4.60) in the first 17 weeks,*t
followed by an increase to $4.60 ($4.65), $4.70 ($4.85),
$4.95 ($5.15), and $5.20 ($5.40) in the last four weeks.
Random demands call for safety stocks. Toward the
end of the sales season, the retailers face the very sig-
nificant risk of these safety stocks remaining unsold,
with complete loss of their purchase value. The inte-
grated policy therefore calls for a reduction of the re-
plenishment quantities (order-up-to levels) in the last
few weeks of the season and a parallel reduction of
the mean and standard deviation of the demand via
a price increase. In addition, the integrated policy of-
ten deviates from the target price p when relatively*t
high inventory levels call for markdowns. For exam-
ple, if the c.v. value is 50% above the base case, the
average implemented prices in the last two weeks are
$4.84 and $4.71, while the target prices, p , are $5.15*t
and $5.40, respectively. In other words, it is essential
for prices to react to observed inventory levels as op-
posed to being fixed a priori. Moreover, the benefits
of integrated planning decrease with the length of the
season. Figure 2 displays for our base instance the
benefits for sales seasons of T � 5, 10, 15, and 21
weeks. Under T � 10 (5) the integrated approach in-
creases profits by 2.1% (4.6%)!

The integrated policy with contingent pricing, while
of a fairly simple structure, adjusts the price as a
function of the prevailing aggregate inventory posi-
tion in the system. More specifically, it adopts, for
each period t, a pair of target values (y , p ) such that* *t t

the list price p is implemented when it is feasible to*t
set the aggregate inventory position at y ; on the oth-*t
er hand, when the aggregate inventory position is
above y , a lower price may be prescribed to stimu-*t
late demand and decrease inventories. (In the pres-
ence of capacity limits, a further modification in the
structure is needed; see §6 for details.) A final ques-
tion of interest is how much would be lost if a simpler
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Figure 2 Comparison of INT and SEQ Profits for Varying Lengths of
Sales Season

Figure 3 Comparison of INT and Simplified Sequential Profits

policy with the f ixed vector of list prices {p , . . . , p }* *1 T

were adopted, complemented with the best known
systemwide replenishment policy to respond to this
price vector. For the three instances displayed in Fig-
ure 3, the profit losses resulting from the adoption of
this sequential policy with uncontingent pricing are
0.85, 1.56, and 3.84%. Note, in addition, that this ver-

sion of a sequential policy requires the solution of our
integrated model for the determination of the price
vector p*. Finally, as an additional interesting bench-
mark, in 1997 our national retailer employed an in-
tegrated though more erratic policy, starting with a
price of $4.87 for the first eight weeks, followed by a
promotion for five weeks with markdowns in excess
of 50%, several weeks with a price of $4.99, and an
end-of-season clearance sale with major markdowns.
(Price variations, while perhaps driven by consider-
ations that are distinct from those treated here, were
not based on a given generalizable policy structure.
Therefore, it is impossible to evaluate this approach
in a systematic manner.)

We complete this section with a comparison of the
performance of (I) our coordinated systems with
common but contingent pricing, (II) uncoordinated
replenishments with common and uncontingent
(scheduled) pricing, and (III) uncoordinated replen-
ishments with location-specific and contingent pric-
ing. The optimal profit values under (I) and (III) dom-
inate the optimal value under (II) because each
relaxes the strategy space of (II). The comparison be-
tween the optimal profit values under (I) and (III) is
less clear-cut: (III) enjoys the advantage of being able
to differentiate prices by location. On the other hand,
the coordinated system selects lower inventories for
any given service level (or parameters {h , h }) be-� 


j j

cause the risks associated with demand uncertainty
can be pooled, at least during the first common lead-
time stage. A second advantage of coordinated re-
plenishments comes from the limited order capacity
in each period. If retailers manage their inventories
independently, a number of retailers may request or-
ders in the same period, with the total of the orders
exceeding the capacity. This can result in a delay in
receipt of orders for at least some of the retailers or
possibly a (partial) cancellation of an order. We show
that independent retailers are sometimes more prof-
itable, in particular when the first leadtime L is small
and the retailers rather heterogeneous. The coordi-
nated system (I) is more likely to perform better when
the differences between the retailers’ attributes are
moderate or the leadtime L or the variability of de-
mands is larger.
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Table 2 Demand Function Parameters for Base Set of Retailers

Location 1 Location 2 Location 3 Location 4 Location 5

�j

	j

c.v.

183

30

0.06

67

9

0.35

245

46

0.19

66

11

0.33

81

14

0.38

Table 3 Simulated Total Profit for Cases (I), (II), and (III)

L l c.v. � � (I) � (II) � (III)

0
0
1
1
2
2
3

0
1
1
2
2
3
3

NI
NI
NI
NI
NI
NI
NI

NI
NI
NI
NI
NI
NI
NI

4348.71 � 4.09
4259.83 � 4.49
4227.03 � 5.01
4128.88 � 5.56
4132.76 � 5.68
4069.53 � 6.14
4051.46 � 6.33

4336.50
4256.86
4193.07
4142.86
4100.37
4060.67
4019.86

4525.81
4445.25
4381.24
4331.22
4292.19
4254.78
4223.12

0
0
1
1
2
2
3

0
1
1
2
2
3
3

I
I
I
I
I
I
I

NI
NI
NI
NI
NI
NI
NI

4290.04 � 6.98
4185.19 � 7.49
4144.42 � 8.15

4043.9 � 9.55
4018.90 � 10.08
3903.37 � 11.35

3846.3 � 12.40

4109.58
3965.95
3846.58
3752.49
3665.97
3598.12
3538.00

4117.35
3973.63
3860.91
3774.19
3700.84
3642.71
3604.73

0
0
1
1
2
2
3

0
1
1
2
2
3
3

NI
NI
NI
NI
NI
NI
NI

I
I
I
I
I
I
I

4309.99 � 5.11
4210.15 � 5.68
4165.85 � 6.28
4085.25 � 6.89
4073.52 � 6.97
4004.42 � 7.54
3902.95 � 8.72

4280.59
4170.07
4091.02
4025.74
3971.04
3918.90
3876.93

4284.91
4176.47
4097.83
4033.61
3988.05
3949.90
3912.40

0
0
1
1
2
2
3

0
1
1
2
2
3
3

I
I
I
I
I
I
I

I
I
I
I
I
I
I

4319.61 � 3.92
4270.60 � 4.31
4251.84 � 4.65
4191.84 � 5.28
4183.15 � 5.46
4131.93 � 5.89
4126.00 � 6.31

4358.50
4280.55
4220.30
4170.90
4132.85
4096.35
4058.30

4359.95
4280.80
4220.45
4170.90
4132.85
4096.50
4069.20

To show that coordination benefits quickly domi-
nate, we use a set of instances for the following five
locations with low c.v. values, if anything, biasing the
case against ‘‘coordination’’;

Because the c.v’s are below 0.5, we fit normal dis-
tributions to the data. We consider at one extreme the
base scenario for this set of retailers and at the other
a transformed scenario with fully identical retailers,
each with a demand function d(pt) � [� � 	pt]�t

where � � (1/J) � �j, 	 � (1/J) � 	j, and withJ J
j�1 j�1


2(�t) � (1/J) � 
 . We also consider two interme-J 2
j�1 j

diate cases. In the first, the retailers share the deter-
ministic part of their demand functions but retain
their individual 
j-values. In the second case, all re-
tailers have the same c.v., 
 � [(1/J) � 
 ]1/2, andJ 2

j�1 j

the demand functions’ deterministic parts are d̄j(p) �
wjd̄(p) with {wj} appropriately selected weights and
d̄(p) the deterministic part of the aggregate demand.
(In the latter case, the retailers differ from each other
by a scale factor only.) In Table 3, we evaluate the four
cases for seven total leadtime values � � 0, . . . , 6,
setting L � �/2, by simulation of the corresponding
policies. �(I) represents the profit value under our
(best) integrated pricing and inventory strategy, �*,
�(III) represents the sum of the retailers’ optimal prof-
it values when acting independently, and �(II) when
the retailers use the common price vector p* of �* and
each replenishes his inventory under the resulting de-
mand process, independently. An ‘‘I’’ (‘‘NT’’) in the col-
umn labeled ‘‘c.v.’’ or ‘‘�’’ denotes that the c.v.’s, or
the deterministic parts of the demand functions, are
identical (nonidentical).

For the first seven instances, with fully nonidentical
retailers, �(III) dominates �(I) for all leadtime com-
binations. For this set of instances, the retailers exhibit
a large degree of heterogeneity, so that the benefits
of location-specific pricing dominate those that result
from coordinated replenishments. On the other hand,

the relative gaps between �(I) and �(III) increase with
L because the benefits of coordinated replenishments
increase as L (the common first-order leadtime) in-
creases, for a given allocation leadtime l. The larger
L is, the longer the period of time during which de-
tailed allocations to the individual retailers can be
postponed and the demand risks faced by each re-
tailer can be pooled. For the last set of seven instances
with fully identical retailers, the coordinated system
(I) begins to outperform the system with independent
retailers (III), as soon as L is positive. Again, the rel-
ative gaps between �(I) and �(III) increase in L, for a
given allocation leadtime l. For the two intermediate
cases, �(I) is at least as large as �(III) for all leadtime
combinations. Figure 4 exhibits the average values of
�(I), �(II), and �(III) for the seven leadtime combi-
nations.
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Figure 4 Simulated Total Profit for Cases (I), (II), and (III)4. The Deterministic Model
We now discuss the deterministic version of our mod-
el. Considerably simpler than the stochastic model, it
reduces to a simple mathematical program with lin-
ear constraints and a separable concave objective to
be maximized. While interesting in its own right, we
develop this model primarily because its optimal
price path is used to design an effective approximate
model for the stochastic model. Thus, let �jt � 0 for all
j, t, almost surely so that djt(pt) � �jt � 	jtpt. Let xjst

� the part of the sales of retailer j in period t that are
procured as part of an order placed by the distribu-
tion center in period s where t � 1, . . . , T and s � L
� lj � 1, . . . , t � L � lj. One easily determines the
total (discounted) ordering, shipment, carrying, and
backlogging cost, �jst, for any unit sold at retailer j in
period t and procured as part of a systemwide order
in period s. If s � (�, �) t � L � lj, the unit is deliv-
ered just-in-time (carried in inventory, backlogged).
The deterministic problem can thus be formulated as
follows:

T

(DET)max � � 	 p p 
 � x� � � �jt jt t t jst jst� � � � � �[ ]t�1 j j j,s,t

s.t. x � d � � � 	 p ; all j, t� jst jt jt jt t
s

x � b ; all s p , x � 0.� jst s t jst
j,t

In the uncapacitated case (all bs � �), the problem
decomposes into T separate problems, one for each
period. Moreover the tth period problem reduces to
the maximization of a simple quadratic function in pt:
Let � � mins �jst ( j � 1, . . . , J; t � 1, . . . , T ). The*jt
optimal price for period t, p is thus the unique max-d

t

imizer of the quadratic function �j {�jt � 	jtpt}{pt 


� } � (�j 	jt)p 
 �j � �jt � (�j �jt 
 �j 	jt� )pt; i.e.,2* * *jt t jt jt

p � [�j (
�jt � 	jt� )]/2 �j 	jt. In the capacitated case,d *t jt

any standard convex programming method can be
invoked to solve the problem (DET). In the capacitat-
ed case with a single retailer, the problem reduces to
the flexible pricing model of Chan et al. that can be
solved by a simple greedy procedure. The numerical
study in this paper shows that the benefits of varying
the price over time increase as capacity becomes more

constrained or the variability of capacity, or that of
the demand functions, increase.

5. An Approximate Model
An exact dynamic program for the original model has
a state space of dimension J � L � � lj. We there-J

j�1

fore develop an approximate model with an optimal
policy of relatively simple structure. In models with
exogenous prices, and hence demand distributions, it
is possible to reduce the state space dimension to
(J � L) by a standard device, whereby period t is
charged with the expected inventory costs one alloca-
tion leadtime later. This reduction is possible in stan-
dard models with backlogging because the distribu-
tion of the inventory level at retailer j at the end of
period t 
 lj is determined once x̂jt � retailer j’s in-
ventory position at the beginning of period t, but after
that period’s allocations � x̃jt � zjt is known, where
x̃jt � xjt � � zjs denotes retailer j’s inventory po-t
1

s�t�l

sition at the beginning of period t before that period’s
allocation decisions, i.e., its physical inventory plus
outstanding shipments. The expected costs charged
to period t are thus given by
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l � �jG (x̂ ) � � h E[x̂ 
 d 
 d 
 · · · 
 d ]jt jt j,t
l jt jt j,t
1 j,t
lj j

l 
 �j� � h E[d � d � · · · � d 
 x̂ ] .j,t
l jt j,t
1 j,t
l jtj j

(3)

In our setting, this accounting device fails because
the leadtime demand depends on the prices selected
in future periods t 
 1, t 
 2, . . . , t 
 lj, and not just
on the price selected in period t itself. This difficulty
precludes exact evaluation, even in a single-location
setting. A simple approximation would consist of re-
placing the function Gjt by

l �˜ jG (x̂ , p ) � � h E[x̂ 
 d ( p ) 
 d ( p ) 
 · · ·jt jt t j,t
l jt jt t j,t
1 tj

�
 d ( p )]j,t
l tj

l 
j� � h E[d ( p ) � d ( p ) � · · ·j,t
l jt t j,t
1 tj

�� d ( p ) 
 x̂ ] ,j,t
l t jtj

i.e., the expected inventory costs one allocation lead-
time later, if the currently selected price is maintained
over the course of the leadtime.

This approximation may be adequate if price
changes are infrequent, as in stationary instances
with long planning horizons. When price changes are
more frequent, the approximation is too crude. In-
stead, we exploit the fact established in simpler sin-
gle-location models, that the optimal price path tends
to be closely approximated by the optimal price path
under deterministic demands; see, e.g., the numerical
results in Gallego and van Ryzin (1997) and Feder-
gruen and Heching (1999). For their setting, Gallego
and van Ryzin show that the optimal deterministic
price path is asymptotically optimal as the initial
stock level and the horizon length tend to infinity.

We thus develop an alternative approximate cost
function, Ĝjt(x̂jt, pt), assuming that prices over the
leadtime change in the same proportion as the opti-
mal deterministic prices {p }:d

t

Ĝ (x̂ , p )jt jt t

dpt
1l �j� � h E x̂ 
 d ( p ) 
 d p · 
 · · ·j,t
l jt jt t j,t
1 tj d� �[ pt

�dpt
lj

 d p ·j,t
l tj d� �]pt

dpt
1l 
j� � h E d ( p ) � d p · � · · ·j,t
l jt t j,t
1 tj d� �[ pt

�dpt
lj
� d p · 
 x̂ .j,t
l t jtj d� � ]pt

G̃jt � Ĝjt iff the deterministic price path {p } is con-d
t

stant over the course of the leadtime.
To facilitate the derivations, we first develop the ap-

proximate model for the case where L � 0. Under the
approximate cost functions Ĝjt(·, ·), the model has the
vector x̃t � (x̃1t, x̃2t, . . . , x̃Jt) as its state at the begin-
ning of period t, and the set of feasible actions in state
x̃ is given by: At(x̃) � {(x̂, p) : x̃ � x̂; � x̂j � � x̃j

J J
j�1 j�1

� bt; pt,min � p � pt,max}.
�t(x̃), the expected maximum total profit in periods

1, . . . , t when starting period t in state x̃, satisfies the
following recursion: �0(·) � 0 and

J

v (x̃) � c x̃�t jt j
j�1

J J J

� max �p Ed ( p) 
 c x̂ 
 x̃� � �jt 0t j j� � �(x̃,p)∈A (x̃) j�1 j�1 j�1t

J J

ˆ
 c x̂ 
 G (x̂ , p)� �jt j jt j
j�1 j�1

t� �Ev [x̂ 
 d ( p)] , (4)t
1 �
where dt(p) � (d1t(p), d2t(p), . . . , dJt(p)) is the vector
of demands in period t. The first term in the expres-
sion within curled brackets denotes period t’s expect-
ed revenues, assumed to be received at the end of the
period. The terms � cjt x̃j 
 � cjt x̂j 
 c0t(� x̂j 
J J J

j�1 j�1 j�1

� x̃j) account for all variable order and shipmentJ
j�1

costs in period t. The recursion can be simplified by
the following transformation: Let � (x̃) � �t(x̃) 
*t
� cjt x̃jt. Substituting � (·) for �t(·) we obtain:J *j�1 t

J J J

v*(x̃) � max �p Ed ( p) 
 c x̂ 
 x̃� � �t jt 0t j j� � �(x̃,p)∈A (x̃) j�1 j�1 j�1t

J J

ˆ
 c x̃ 
 G (x̂ , p)� �jt j t j
j�1 j�1
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J

� � c E[x̂ 
 d ( p)]� j,t
1 j jt
j�1

t� �Ev* [x̂ 
 d ( p)]t
1 �
J

� max � ( p 
 c )Ed ( p)� j,t
1 jt�(x̂,p)∈A (x̂) j�1t

J

� (�c 
 c )x̂� j,t
1 jt j
j�1

J J J

ˆ
 c x̂ 
 x̃ 
 G (x̂ , p)� � �0t j j jt j� �j�1 j�1 j�1

t� �Ev* [x̂ 
 d ( p)] . (5)t
1 �
This dynamic program’s state space is J-dimension-

al, and therefore continues to be intractable for all but
the smallest values of J. As our second and final ap-
proximation step, we relax the feasible action sets
{At(x̃)} to sets {Ât(x̃)} by aggregating the constraints x̂
� x̃ into the single constraint � x̂j � � x̃j. AnJ J

j�1 j�1

induction argument verifies that after this aggrega-
tion step, a one-dimensional dynamic program arises,
with X̃ � � x̃j, the aggregate inventory position, asJ

j�1

the single-state component. Its value-functions are de-
fined recursively via V � 0 and:*0

˜V*(X) � maxt
˜ ˜ˆX�X�X�b ; p �p�pt t,min t,max

J

ˆ ˜� ( p 
 c ))Ed ( p) 
 c (X 
 X)� j,t
1 jt 0t� j�1

J

ˆ ˆ
 R (X, p) � �EV* X 
 d ( p) ,�t t
1 jt� ��j�1

(6)

where

J

˜ ˆR (X, p) � min [G (x̂ , p) � (c 
 �c )x̂ ] (7)�t jt j jt j,t
1 j
x̂ j�1

J

ˆs.t. x̂ � X. (8)� j
j�1

In the next section we will establish that the dy-
namic program (6) can, in fact, be interpreted as the

combined inventory control and pricing problem of a
single-location periodic review system, and that the
optimal strategy has a number of important structur-
al properties.

We now turn to the general case where L � 0. It is
easily verified that after the above two approximation
steps, the following dynamic program arises:

˜V (X, w , . . . , w )t t�L t�1

J

� max �E ( p 
 c )d ( p) 
 c w� j,t
1 jt 0t�{w,x̂,p} j�1

˜
 R (X � w , p)t t
L

� �EV [x̂ 
 d ( p), w , . . . , w , w] .t
1 t t�L
1 t�1 �
(9)

This dynamic program has a state space of dimension
(L � 1), independent of J but still impractical. The
above accounting device can again be invoked, charg-
ing to period t, not R(X̃ � wt�L, p), but rather its ex-
pected value one order leadtime (L periods) later, i.e.,

L ˜� E{R [X � w � w � · · · � wt
L t t�L t�L
1 t


 D ( p) 
 D ( p ) 
 · · · 
 D ( p )]},t t
1 t
1 t
L t
L

(10)

where Dt(p) � � djt(p). As with Gjt(·), (10) dependsJ
j�1

on all prices charged over the order leadtime, which
are unknown at the start of period t. Similar to the
approximation Ĝjt(·, ·) for Gjt(·), the first of our two
approximation steps, we replace, if L � 0, (10) by:

L� E R X � w � w � · · · � w 
 D ( p)t
L t t�L t�L
1 t t� [
d dp pt
1 t
L
 D p · 
 · · · 
 D p · .t
1 t
Ld d� � � � �]p pt t

To simplify the notation let:
Ỹt � X̃t � � ws, the aggregate inventory posi-t�L

s�t�1

tion at the start of period t before a replenishment or-
der is placed, i.e., all units in stock at the retailers, on
order from the supplier or in transit between the dis-
tribution center and the retailers, minus the retailers’
backlog.

Ŷt � Ỹt � wt � X̃t � � ws, the systemwide in-t�L
s�t
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ventory position at the beginning of period t after an
order is placed by the depot.

We thus replace (10) by:

dpt
1Lˆ ˆ ˆR (Y, p) � � ER Y 
 D ( p) 
 D p · 
 · · ·t t
L t t
1 d� �[ pt

dpt
L
 D p · , p , (11)t
L d� � ]pt

which can be obtained in closed form as the one-step,
expected-cost function of a single-location model
with a specific leadtime demand distribution. This re-
sults in a one-dimensional dynamic program, similar
to (6), with Ỹt as the single-state component:

˜ ˜V (Y) � c Yt 0t

J

� max � ( p 
 c )Ed ( p)� j,t
1 jt�˜ ˜ˆ{Y�Y�Y�b ; p �p�p } j�1t t,min t,max

ˆ ˆ ˆ
 c Y 
 R (Y, p)0t t

J

ˆ� �EV Y 
 d ( p) .�t
1 jt �[ ]j�1

(12)

It is once again convenient to eliminate the first
term to the right of (12). This can be achieved via the
transformation V (Ỹ) � Vt(Ỹ) 
 c0tỸ similar to that*t
transforming (4) into (5):

˜ ˆV*(Y) � max H (Y, p),t t
˜ ˜ˆ{Y�Y�Y�b ;p �p�p }t t,min t,max

where

J

ˆH (Y, p) � � ( p 
 c 
 c )Ed ( p)�t j,t
1 0,t
1 jt
j�1

ˆ ˆ ˆ
 (�c 
 c )Y 
 R (Y, p)0,t
1 0,t t

J

ˆ� �EV* Y 
 d ( p) . (13)�t
1 jt[ ]j�1

6. Structural Properties
The structure of the approximate dynamic program
(13) is similar to that describing the combined pricing
and inventory control problem for a single-location

problem; see Federgruen and Heching (1999). We now
show that an optimizing strategy exists that is a base-
stock/list price policy, a term coined by Porteus
(1990). In each period t, there exists a pair of target
values (y , p ) such that it is optimal to increase the* *t t

aggregate systemwide inventory position Ỹ to a level
as close as possible to y , and to charge a price p if* *t t

Ŷ � y , a price pt � p if Ŷ � y , and a price pt �* * *t t t

p otherwise. More specifically: (i) If Ỹ � y 
 bt, then* *t t

Ŷ � Ỹ � bt and pt � p ; (ii) if y* 
 bt � Ỹ � y*, then*t
Ŷ � y and pt � p ; (iii) if Ỹ � y , then Ŷ � Ỹ and pt* * *t t t

� p . We need the following lemma.6*t
LEMMA 1. Fix t � 1, . . . , T. The function R t(X̂, p) is

jointly convex and supermodular.

PROOF. (a) The functions Ĝjt(x̂jt, pt) are jointly con-
vex; see, e.g., Lemma 1 in Federgruen and Heching
(1999). This implies that for all t � 1, . . . , T the func-
tion Rt(·, ·) is jointly convex as well: For any (X̂(1), p1)
and (X̂(2), p2) ∈ �2, let x̂(1) and x̂(2) achieve the mini-
mum in (6) for X̂ � X̂(1) and X̂ � X̂(2), respectively.
Observe that (x̂(1) � x̂(2))/2 satisfies constraint (8) with
right-hand side X̂ � (X̂1 � X̂2)/2 and is therefore a
feasible solution to the mathematical program {(7),
(8)}. Thus,

(1) (2)J(1) (2)ˆ ˆ x̂ � x̂X � X p � p p � pj j1 2 1 2ˆR , � G ,�t jt� � � �2 2 2 2j�1

(1) (2)J x̂ � x̂j j
� (c 
 �c )� jt j,t
1 � �2j�1

J J1 (1) (2)ˆ ˆ� G (x̂ , p ) � G (x̂ , p )� �jt j 1 jt j 2[ ]2 j�1 j�1

J J1 1(1) (2)� (c 
 �c )x̂ � (c 
 �c )x̂� �jt j,t
1 j jt j,t
1 j2 2j�1 j�1

1 ˆ ˆ� [R (X , p ) � R (X , p )],t 1 1 t 2 22

where the second inequality follows from the joint
convexity of Ĝt(·, ·). To show supermodularity, sup-
pose the random variables {�jt} are continuous with
unbounded support. (Similar proofs exist for other

6A bivariate function F(x, y) is supermodular (submodular) if, for
all x(2) � x(1), the difference function F(x(2), y) 
 F(x(1), y) is nonde-
creasing (nonincreasing) in y.
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distributional assumptions.) In this case, it is easily
verified and well known that the function Ĝjt(x̂j, p) is
differentiable with respect to x̂j ( j � 1, . . . , J), and
that R̂t(X̂, p) is differentiable with respect to X̂. By
Lemma 1 in Federgruen and Heching (1999), Ĝjt(x̂j, p)
is strictly convex in x̂j ( j � 1, . . . , J). The Kuhn-Tucker
conditions for the optimum x̂(p) in the mathematical
program {(7), (8)} are thus necessary and sufficient.
Let �(X̂, p) denote the dual price of (8). Then,

ˆ�R (X, p)t ˆ� �(X, p)ˆ�X

ˆ�G [x̂*( p), p]jt j
� � (c 
 �c ),jt j,t
1�x̂j

for all j � 1, . . . , J. (14)

It suffices to show that �Rt/�x̃ is nondecreasing in
p. Assume to the contrary that for some p(2) � p(1),
�(X̂, p(2)) � �(X̂, p(1)). It follows from a straightforward
adaptation of Theorem 2 in Federgruen and Heching
(1999) that the functions Ĝjt(x̂j, p) are supermodular
as well as strictly convex. Thus, for all xj � x̂ �(1)

j

x̂j(p(1)),

(1) (1)(2) (2) (1)ˆ ˆ�G (x , p ) �G (x̂ , p ) �G (x̂ , p )jt j jt j jt j
� � � 0,

�x �x �xj j j

so that x̂j(p(2)) � x̂j(p(1)) for all j, and hence � x̂j(p(2))J
j�1

� � p(1)) � X̂, contradicting the feasibility of x̂(p(2))J
j�1

when p � p(2) in the mathematical program {(7), (8)}.

THEOREM 1. Fix t � 1, . . . , T.
(a) The function Ht(Ŷ, p) is jointly concave in Ŷ and p

and has a finite maximizer (y , p ). The function V (Ỹ)* * *t t t

is concave in Ỹ.
(b) The optimal price pt(Ỹ), to be charged in period t, is

nonincreasing in the period’s starting systemwide inven-
tory position Ỹt.

(c) A base-stock/list-price policy, with base-stock/list-
price combinations {(y , p ) : t � 1, . . . , T } is optimal in* *t t

the dynamic program (13).

PROOF.
(a) In view of Lemma 1 and the proof of Lemma 1

in Federgruen and Heching (1999) it is easily verified
from (7) that the functions R̂t(Ŷ, p) are jointly convex.
Similarly, one can show that the first two terms to the

right of (13) are concave in p and Ŷ, respectively. The
joint concavity of the function Ĥt(·, ·) can now be
proven inductively; it has a finite unconstrained max-
imizer because lim�Ŷ�→� Ht(Ŷ, p) � � and Ht(Ŷ, p) �
O(�Ŷ�), which can be verified by induction as well.

(b) By Topkis (1978), it suffices to show that Ht is
submodular. This can be shown inductively because
all one-step expected profit terms; i.e., the first three
terms to the right in (13), are submodular. While ob-
vious for the first two terms, to verify the supermo-
dularity of R̂t(Ŷ, p), fix Ŷ(2) � Ŷ(1) and p(2) � p(1), let
Ct(�) � � [�jt�jt � �jt] and s � p /p , and substi-t
L d d�̂s�t s t

tute (1) into (11) to get:

(2) (2) (1) (2)ˆ ˆ ˆ ˆR (Y , p ) 
 R(Y , p )t

t
L
(2) (2) (2)ˆ� E R (Y � C (�) 
 (	 � � � )p �̂ , p �̂ )�{� } t t js js js s t
Ljs [ s�t

(1)ˆ
 R (Y ) � C (�)t t

t
L
(2) (2)
 (	 � � � )p �̂ , p �̂� js js js s t
L]s�t

(2)ˆ� E R Y � C (�){� } t tjs � [
t
L

(1) (2)
 (	 � � � )p �̂ , p �̂� js js js s t
L]s�t

(1)ˆ
 R Y � C (�)t t[
t
L

(1) (2)
 (	 � � � )p �̂ , p �̂� js js js s t
L �]s�t

t
L
(2) (1) (1)ˆ� E R Y � C (�) 
 (	 � � � )p �̂ , p �̂�{� } t t js js js s t
Ljs � [ ]s�t

(1)ˆ
 R Y � C (�)t t[
t
L

(1) (1)
 (	 � � � )p �̂ , p �̂ .� js js js s t
L �]s�t

In view of the supermodularity and convexity of Rt

in its first argument (see Lemma 1) both inequalities
hold for any realization of the random variables {�js}
and, hence, for their expectations.
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(c) In view of part (a), the pair (y , p ) is optimal* *t t

when feasible. This verifies (ii). In parts (i) and (iii),
we first show the identities for Ŷt: (1) Every pair
(Ŷt, pt) with Ŷt � Ỹt � bt, hence Ŷt � Ŷt � bt, is not
optimal because by the joint concavity of Ht(·, ·) the
point (Ŷt � bt, p�) on the line connecting (Ŷt, pt) with
(y , p ) is superior to (Ŷt, pt). Similarly, for (iii), when* *t t

Ỹt � y , every pair (Ŷt, pt) with Ŷt � Ỹt, hence Ŷt �*t
Ỹt, is not optimal because the point (Ỹt, p�) on the line
connecting (y , p ) with (Ŷt, pt) is superior to (Ŷt, pt).* *t t

The remainder of parts (i) and (iii) follow from part
(b).

Given the optimality of a base-stock/list-price pol-
icy in each period, the approximate dynamic pro-
gram (12) is thus fairly easily solved; see §6 in Fed-
ergruen and Heching (1999). We conclude this section
with a few structural properties of the optimizing
policy, in particular the impact of shifts in the de-
mand functions djt(·) and the variability of demands,
on the optimal prices and inventory levels. Consider,
for example, the impact of an increase in �jt in the
demand function (1), for some period t and retailer j,
i.e., a parallel outward shift of the demand curve, per-
haps due to increased market penetration and brand
recognition. The stocking level for this period at this
retailer can be expected to increase, for any starting
inventory, provided it continues to charge the same
price or, more generally, as long as it does not in-
crease the price too excessively. The same can be con-
jectured when the slope of a demand function de-
creases in absolute value (i.e., some 	 jt or � jt

increases), reflecting less price-sensitive demand, per-
haps due to reduced availability of alternative brands
or variants. We expect a similar response to an in-
crease in the magnitude of the noise terms in (1), i.e.,
when some �jt is replaced by jt � k�jt for some k ��̄
1. The following theorem, proven in Federgruen and
Heching (2000), verifies these conjectures: Let �jt �

(�jt, �jt, �jt, 	jt); j � 1, . . . , J; t � 1, . . . , T.

THEOREM 2.
(a) Fix t � 1, . . . , T. Assume for some retailer j* � 1,

. . . , J, the string �j*t is replaced with j*t � �j*t. Let�̄
pt(Ỹt � j*t) denote the optimal price to be charged when the�̄
parameter string in retailer j*’s demand function is j*t and�̄
pt(Ỹt � �j*t) if it is �j*t. Define Ŷt(Ỹt � j*t) and Ŷ(Ŷt � �j*t)�̄

in a similar way. If pt(Ỹt � �j*t) � pt(Ỹt � �j*t), then
Ŷt(Ỹt � j*t) � Ŷt(Ỹt � �j*t).�̄

(b) Fix a retailer j and period t. Assume that
(i) the demand curve for this retailer and period shifts

up, i.e., �jt or �jt increases,
(ii) the demand curve for this retailer and period flat-

tens, i.e., �jt and 	jt increases toward 0, or
(iii) the noise term in the demand curve for this re-

tailer and period is almost surely enlarged by a constant
factor k � 1 (�jt is replaced by jt � k�jt, with k � 1). The�̄
optimal response to any one of these changes in the ap-
proximate model (12) is to increase the systemwide order
size in period t, regardless of this period’s starting inven-
tory position, but provided that the same or a lower price
is charged. Conversely, the optimal response is to increase
this period’s price, provided that the same or lower orders
are placed in this period.

The impact of increased demand variability on the
optimal base-stock and list-price levels has been dis-
cussed extensively in the past, albeit for single-period
models only: Mills (1959) treats the additive demand
model, Karlin and Carr (1962) the multiplicative case,
and Young (1978) the general structure in (1). See also
Petruzzi and Dada (1990). Even for the single-period
models, the results are confined to comparisons with
the extreme case of zero variability, while Theorem 2
provides comparisons between arbitrary pairs of var-
iability levels in general multiperiod models.

7. Heuristic Strategies
Any strategy to govern our system consists of three
parts: (a) a pricing rule for each period, (b) a system-
wide ordering policy that prescribes the aggregate or-
der quantity in each period, and (c) a mechanism to
allocate incoming orders at the distribution center to
the individual retailers. The approximate model sug-
gests the following heuristic strategy:

HEURISTIC (HA). In period t, select a pair (Ŷ, p) that
achieves the maximum in (12) for the prevailing ag-
gregate inventory position Ỹ. Select p as the price for
the upcoming period, and place an order of size W
� (Ŷ 
 Ỹ) with the outside supplier. This leaves us
with the third-strategy component, i.e., the allocation
mechanism. In the approximate model, it is optimal
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to allocate any incoming order so as to minimize ex-
pected costs in the very first period in which these
allocations have an impact, i.e., one shipment lead-
time hence, assuming that the price selected in the
current period is adjusted in the same proportions as
{p }, the optimal prices of the deterministic model,d

t

throughout the leadtime. See (4) for a specification of
the approximate cost functions Ĝjt(·, ·). It is therefore
reasonable to employ the same allocation mechanism,
i.e., to minimize (7), with p replaced by the price se-
lected for this period. To ensure that the allocations
are feasible, it is necessary and sufficient that the vec-
tor x̂ satisfies (8) as well as the constraints

x̂ � x̃j, j � 1, . . . , J. (15)

The resulting set of values {(x̂j 
 x̃jt) : j � 1, . . . , J}
represents the shipment quantities in period t to the
individual retailers, under this allocation mechanism.
This allocation mechanism is easy to implement and
similar to mechanisms suggested for two-echelon
systems with predetermined prices; see, e.g., Feder-
gruen and Zipkin (1984a,c). The mathematical pro-
gram, minimizing (7) subject to the constraints (8)
and (15), is easily solvable. Note that the objective is
separable and convex; see the proof of Lemma 1(a).
Several highly efficient algorithms can be employed
to solve this problem, see, for example, Zipkin (1980).

While simple, this combined pricing, ordering, and
allocation heuristic suffers from the limitation that
both the pricing and ordering decisions are based en-
tirely on aggregate inventory information, disregard-
ing potential inventory imbalances between retailers.
For example, if the aggregate inventory position is
reasonably large, while some retailers face low inven-
tories, it may be desirable to maintain a higher price
or even to increase the price to avoid stockouts at the
exposed retailers. Heuristic HA, on the other hand,
may implement a lower price because the aggregate
inventory level is relatively high. Alternatively, the
challenge posed by inventory imbalances may be ad-
dressed by adjusting the order quantity via a proce-
dure that explicitly accounts for the needs of the in-
dividual retailers, on the basis of their individual
inventory positions.

HEURISTIC (HD). Heuristic (HD) maintains the pric-

ing rule and allocation mechanisms of the basic heu-
ristic (HA) but specifies each period’s order by the dis-
tribution center on the basis of disaggregate inventory
information. We describe the rule first when L � 0.
Assume that in period t the approximate model pre-
scribes a price pt as well as an order that increases
the systemwide inventory position to a level Ŷt. We
first disaggregate this quantity into a vector s �*t
(s , . . . , s ), with s as the optimal disaggregation of* * *1t Jt t

Ŷt in the (relaxed) allocation problem (7)–(8). More
specifically,

ˆR (Y , p )t t t

J

ˆ� [G (s*, p ) � (c 
 �c )s*]� jt jt t jt j,t
1 jt
j�1

J J

ˆ ˆ� min [G (x̂ , p ) � (c 
 �c )x̂ ] : x̂ � Y .� �jt j t jt j,t
1 j j t� �x̂ j�1 j�1

We now compare s , the ‘‘ideal’’ order-up-to level for*jt
retailer j, with the current inventory position x̃jt and
add any positive gap [s 
 x̃jt]� to the systemwide*jt
order quantity, until reaching the capacity level bt. In
other words, we set the order size w � min{bt,D

t

�j [s 
 x̃jt]�}. Clearly,*jt

D �w � min b , [s* 
 x̃ ] � min b , (s* 
 x̃ )� �t t jt jt t jt jt� � � �j j

Aˆ ˆ ˆ ˆ� min{b , Y 
 X } � Y 
 X � w ,t t t t t t

where w � w in the presence of inventory imbal-D A
t t

ances, i.e., if for one or more retailers x̃jt � s .*jt
In case L � 0, s is determined so as to allocate Ŷt*t

with the goal of minimizing total expected inventory
holding and backlogging costs a complete order lead-
time later. In other words, Ŷt is allocated so as to min-
imize total expected inventory costs in the period in
which any new order becomes available for allocation
to the retailers. s achieves the minimum in the prob-*t
lem

J Jdpt
Lˆ ˆmin G y , p · : y � Y and� �j,t
L j t j td� � � �pj�1 j�1t

J
D � D Dw � min b , [s* 
 x̂ ] 
 [w � · · · � w ]�t t jt jt t�1 t�L� �j�1
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Table 4 Demand Function Parameters for Additional Set of Retailers

Location 1 Location 2 Location 3 Location 4 Location 5

�j

	j

c.v.

80

13

0.26

67

12

0.29

47

7

0.19

70

12

0.22

33

5

0.33

with w , . . . , w the order quantities determinedD D
t�1 t�L

in the earlier periods t � L, . . . , t � 1. See Federgruen
and Heching (2000) for a discussion of an additional
heuristic, (HP).

7.1. Two-Stage Heuristics
Both heuristics (HA) and (HD) use the prices pre-
scribed by the optimal base-stock/list-price strategy
for the approximate model, without any modifica-
tions. In the case of (HA) the order quantity is iden-
tical to that prescribed by the optimal strategy in the
approximate model, and for (HD) it is sometimes ad-
justed upwards to account for inventory imbalances
among the retailers. Recall, the approximate analyti-
cal model uses approximate expected cost functions
Ĝjt(·, ·), which are accurate except when leadtimes are
long or frequent and sizeable price changes occur. To
develop effective heuristics for the latter type of prob-
lem instances, we consider the following two-stage
process.

Step 1. Solve the approximate combined inventory
control/pricing model so as to obtain the optimal list-
price sequence {p : t � T, T 
 1, . . . , 1}.*t

Step 2. Fix pt � p for all t � 1, . . . , T so that retailer*t
j’s demand distribution in period t is now given by
the random variable d � djt(p ), j � 1, . . . , J and t* *jt t

� 1, . . . , T. The problem now reduces to the ‘‘one-
warehouse, multi-retailer problem’’ with predeter-
mined demand distributions addressed by Aviv and
Federgruen (1999), among others. The approximate
analytical model suggested by these authors to solve
this problem is a special case of the approximate
model in §5, which arises when all price variables pt

are set at the level pt � p throughout. Let V** denote*t
its optimal value. Determine the (modified) base-
stock policy that optimizes this model, and let t de-ˆ̂Y
note the systemwide inventory position prescribed by
this policy in a given state in period t.

We now specify two ‘‘price-first’’ variants of heu-
ristics (HA) and (HD) that we will refer to as (HPF,A)
and (HPF,D). Both set pt � p for every period t*t
throughout, modifying all cost functions Ĝjt(·, ·),
Rt(·, ·), and R̂t(·, ·), accordingly. Both use myopic al-
locations in every period t. (HPF,A) [(HPF,D)] specifies
the order quantity in the same way (HA) [(HD)] does
except that in period t the order-up-to level of the

combined base-stock/list-price strategy is replaced
by t.ˆ̂Y

8. Numerical Study
Our numerical study has several goals. First, it gauges
the effectiveness of the four proposed heuristics using
the approximate model as the benchmark, as well as
the accuracy of the profit and cost estimates obtained
by the approximate model using the simulated per-
formance measures of the heuristic strategies as its
benchmark. (As mentioned, except for the case of zero
leadtimes, the approximate model is not guaranteed
to result in a strict upper bound for the optimal profit
value.)

Second, the study investigates how different system
parameters impact various performance measures.
These parameters include the desired service level,
the variability of weekly demands, the impact of non-
stationarities in the demand patterns arising, for ex-
ample, because of seasonalities, the magnitude of the
leadtimes, and the number of retailer locations.

Third, we use the study to provide insights into a
number of important strategic questions:

(a) What are the benefits of reduced leadtimes in
the system?

(b) What are the benefits of postponed geographic
differentiation, i.e., of extending L while maintaining
a constant total procurement leadtime � � L � l?

Questions (a) and (b) have been studied for tradi-
tional inventory systems with exogenously specified
demand distributions, but not for settings with si-
multaneous inventory and price control.

Most of our study uses the national retailer data for
the five locations described in Table 2. Where we in-
vestigate the impact of the number of retailers, we
augment this quintuplet with the five locations de-
scribed in Table 4, whose average c.v. value is similar
to that of the first quintuplet of locations. Throughout



FEDERGRUEN AND HECHING
Multilocation Combined Pricing and Inventory Control

MANUFACTURING & SERVICE OPERATIONS MANAGEMENT

Vol. 4, No. 4, Fall 2002292

this study, we assume that the error terms have a nor-
mal distribution.

For the item analyzed in this study, the total pro-
curement leadtime, � � L � l, is four weeks. The com-
pany followed the practice of allocating systemwide
orders immediately to the individual stores, i.e., L � 0
and l � 4. As discussed above, the advantages of co-
ordinated replenishments can be increased to the ex-
tent the point of geographic differentiation can be
postponed, i.e., when L can be increased and l � 4 


L decreased. We therefore systematically consider the
five possible integer partitions of the total procure-
ment leadtime �: (I) L � 0, l � 4, (II) L � 1, l � 3,
(III) L � 2, l � 2, (IV) L � 3, l � 1, and (V) L � 4, l
� 0.

We have evaluated a set of 109 instances, which
include the 28 instances in Table 4. Of the remaining
81, 45 instances arise by considering all possible
points of differentiation (I)–(V) in combination with
five values for h
 (specifically, the base value h
 � 6
and h
 � 8, 10, 12, 14) and in combination with five
vectors of c.v. values (specifically, the base c.v. values,
c.v.0, as well as 0.5c.v.0, 0.75c.v.0, 1.25c.v.0, and 1.5c.v.0).
For the five possible points of differentiation, we eval-
uate the system with all 10 locations and the system
with 5 fully identical retailers with equalized sto-
chastic demand functions, as in §3—but 50% larger
coefficients of variation—thus giving rise to another
10 instances. Fourteen instances investigate seven
possible values for the total leadtime � � 0, . . . , 6 for
the systems with 5 and 10 retailers, always assuming
L � �/2. The remaining 12 instances investigate the
impact of nonstationarities, assuming the demand
distributions follow a periodic pattern with a cycle of
four periods and seasonality factors of 1.5, 2.0, 1.25,
and 1.0 for the first, second, third, and fourth week
of each cycle, respectively. The seasonality factors ap-
ply to the intercepts {�j} only, i.e., we continue to as-
sume that the slopes of the demand functions and
hence the marginal price sensitivities remain station-
ary. Considering all 5 points of differentiation for �

� 4 and 7 possible values for �, with L � �/2, we
obtain a total of 12 instances.

For each instance, we have generated 3,000 replicas
to obtain sufficiently narrow confidence intervals. We

have observed that (HD) and (HPF,D) systematically
outperform (HA) and (HPF,A), respectively. We there-
fore confine ourselves, henceforth, to the former pair
of heuristics.

The average gap of the best heuristic vis-a-vis V*
is 1.56% and the median gap is 1.14%. Similarly, the
average gap vis-a-vis V** is 1.39% and the median
gap is 1.15%. Heuristic (HPF,D) usually outperforms or
performs as well as (HD), but in some cases (HD)
dominates. The latter instances tend to have small-
order leadtimes L. Here, (HD) has the upper hand be-
cause uncertainties about future price changes during
the order leadtime have little or no impact on the
proper specification of the order quantities, while the
specification of the order quantities wD, via the dis-
aggregation procedure described in §7, is sufficiently
powerful to adequately address any prevailing inven-
tory imbalances among the retailers. Clearly, (HD) has
the additional advantage of allowing for fully dy-
namic price setting as opposed to the price-setting
procedure under (HPF,D). On the other hand, there are
significantly more instances where (HPF,D) dominates
(HD). We therefore recommend that in each instance
the best of the two heuristics (HD) and (HPF,D) be im-
plemented, and we conclude that V* can be used as
an accurate profit approximation. The proposed com-
bined heuristic comes close to achieving the V* or V**
value. Our experience indicates that the performance
of the heuristics improves with the length of the plan-
ning horizon. In Figure 5 we show the average gap
vis-a-vis V*, for the best performing heuristic among
all instances with a given possible integer partition
of the total procurement leadtime L � l � 4. Note,
the average gaps decrease as L increases except when
L increases from zero to one. This decrease in the gap
is not surprising: The approximate model relaxes the
original system to a single-location model, and as L
increases and l decreases, the original system be-
comes increasingly similar to a single-location sys-
tem.

We now turn to the managerial questions listed at
the beginning of this section. In carrying out various
comparisons, we base these on the simulated expected
performance measures associated with our proposed
strategies, as opposed to the analytical approxima-
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Figure 5 Average Gap Between Approximate Model and Best
Performing Heuristic

Figure 6 Average Simulated Profit for Varying Values of Coefficient
of Variation

Figure 7 Average Simulated Profit for Varying Degrees of Geographic
Differentiation

tions V* or V**, their demonstrated accuracy not
withstanding.

Figure 6 exhibits how simulated profits decrease as
the demand c.v. increases. Each of the bars represents
the average profit values across all instances with the
corresponding c.v. vector. The numbers within paren-
theses in Figure 6, as well as those in Figures 7 and

8, denote the percentage improvement of the average
profit value when compared with the value associat-
ed with the bar to its left. The average percent de-
crease in profits is 2.55% when going from the lowest
to the highest c.v. levels. Most of the decrease in prof-
its results from increasing inventory-related costs due
to increased safety stocks and increasing incidences
of stockouts due to greater demand uncertainty. The
average inventory cost is $186, $199, $364, $453, and
$536 for the five c.v. levels, respectively, with an av-
erage increase from one c.v. value to the next of
33.22%.

Figure 7 shows, for systems with � � L � l � 4,
how the systemwide profits increase as the point of
geographic differentiation is extended. The figure dis-
plays the average across all five location instances
with a given leadtime combination of both total prof-
its and their percent improvements as L is increased
by one unit at a time. The average percent improve-
ment for a one-unit increase in L is 1.04%, again
largely due to reduced inventory holding and back-
logging costs.

Figure 8 exhibits the impact of total procurement
leadtimes on total systemwide profits. (Again, each
bar represents the average value across all relevant
instances.) As one would expect, total systemwide
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Figure 8 Average Simulated Profit for Varying Values of T

profits increase as the total procurement leadtime de-
creases. The average relative increase in total profits
due to a one-week decrease in total procurement
leadtime is 1.39%.
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