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1 Introduction

Informed by principal-agent theory, corporate boards have sought to develop managerial compen-

sation packages with stronger links between pay and performance. Stock options, in particular, are

perceived as providing one such link, and have emerged as the single largest component of U.S.

executive compensation. According to Hall and Murphy (2002), �in �scal 1999, 94% of S&P 500

companies granted options to their top executives. Moreover, the grant-date value of stock options

accounted for 47% of total pay for S&P 500 CEOs in 1999.� CEOs of the largest U.S. compa-

nies frequently receive annual stock option awards that are on average larger than their salaries

and bonuses combined.1 Executive options contracts represent a particular instance of a highly

non-linear convex style contract.2

In this paper we demonstrate that convex executive pay practices, within the context of the

separation of ownership and control in the modern corporation, may have dramatic, adverse busi-

ness cycle consequences. In particular, we show that convex compensation contracts, which are

broadly typical of U.S. CEO pay practices, give rise to generic sunspot equilibria in otherwise stan-

dard dynamic stochastic general equilibrium (DSGE) modeling frameworks. Sunspot equilibria

(indeterminacy) formalize the notion that expectations not grounded in fundamentals may lead

to behavior by which they are ful�lled. These equilibria may involve arbitrarily large �uctuations

in macroeconomic variables even though production is characterized by constant returns to scale

at the social as well as private level. As such, convex managerial compensation contracts provide

an entirely new mechanism by which indeterminacy may arise in real (non-monetary) economies.

An even more disturbing observation is that convex contracts may lead, under certain parameter

con�gurations, to non-stationary behavior. Practically speaking this means that optimal contracts

may induce the self-interested manager to adopt investment policies that drive his �rm�s equilibrium

1See Jensen and Murphy (1990); also, Shleifer and Vishny (1997) and Murphy (1999).
2More recently, corporate boards have expanded the range of incentive instruments to include other forms of equity

based incentive pay (e.g., direct stock grants). This has gone hand-in-hand with a steady reduction in the salary
component of executive pay. For March 2007, Mercer Consulting reports that equity related incentive pay represents
2/3 of total compensation (average of 1000 largest U.S. �rms by sales). Cash salary compensation represents only
19%. (For both statistics see www.mercer.com, �Study of CEO Compensation Trends,�May 15th, 2008.) Taken
together, the various equity-related components remain, in value terms, highly convex functions of the standard
measures of �rm �nancial performance.
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capital stock to zero.3

Sunspot equilibria have previously been studied in one-sector dynamic equilibrium models with

external e¤ects or monopolistic competition coupled with some degree of increasing returns.4 In

one-sector models with increasing returns, if all agents simultaneously decide, based on a non-

fundamental belief shock, to increase their investment in an asset above the level associated with

the initial equilibrium, the rate of return on that asset tends to increase, justifying the higher

level of investment and validating agents�beliefs. The main objection to this literature has been

its empirical implausibility because of the relatively large increasing returns required to sustain

the sunspot equilibria. Empirical estimates, furthermore, suggest that aggregate returns to scale

seem to be constant, if not decreasing.5 In Wen�s (1998) one-sector production model with variable

capacity utilization of capital stock, indeterminacy occurs with signi�cantly lower level of increasing

returns. But the ability of the representative agent to alter capacity utilization in response to shock

realization produces counterfactually smooth, in fact almost constant, aggregate consumption.

Indeterminacy can also arise in models with multiple production sectors if returns to scale di¤er

at the social and private levels. Benhabib and Farmer (1996) demonstrate that indeterminacy occurs

in a two-sector model with small, sector-speci�c external e¤ects and very mild increasing returns at

the aggregate level, while the private returns are constant. Perli (1998) obtains similar results by

introducing home production. The argument against multi-sector models with aggregate increasing

returns is that they imply a convex-to-the-origin production possibility frontier at the social level,

which means that sectoral aggregate supply curves are negatively sloped. In Benhabib, Meng and

Nishimura (2000) multiple equilibria arise in multisector economies with constant social returns

in all sectors combined with minor external e¤ects in some sectors. To generate indeterminacy in

this latter model decreasing returns are necessary at the level of private �rms with the implication

that �rms earn positive pro�ts. Some kind of �xed cost is then needed to forestall potential new

3Financial �rms seem especially prone to lavishly convex compensation practices. We are reminded of the �nancial
crises surrounding the collapse of LTCM. In the year preceding its bankruptcy, the partners took the deliberate deci-
sion to reduce the �rm�s capital, as a device for maximizing returns. More recently (2008) highly convex managerial
compensation at various investment banks was observed in parallel with their bankruptcy. We are viewing these
compensation contracts as highly convex to either the �rm�s stock price or its dividend (or distributions to investors
in the case of hedge funds).

4Schmitt-Grohe (1997) compares four prominent models with these features.
5See Basu and Fernald (1997) and Laitner and Stolyarov (2004).
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entrants.

In multi-sector models, increasing the relative price and the output of the capital good can

also lead to an increase of its marginal product if the production of the capital good is relatively

more capital intensive. When combined with market distortions and external e¤ects, the rise in

the capital stock may not be enough to o¤set the initial increase of its marginal product. Both the

stock and the marginal product of capital rise simultaneously, mimicking the e¤ect of increasing

returns in a one-sector model.

In addition, models of endogenous �rm entry and exit decisions and models with a variable de-

gree of competition can also give rise to equilibrium indeterminacy (Jaimovich, 2007). In monetary

models, an indeterminate equilibrium can arise in the case that monetary policy is conducted by

following, e.g., an interest-rate rule not satisfying the so-called Taylor principle (see, e.g., Clarida,

Galí and Gertler, 2000; Woodford, 2003), or, alternatively, in the case that a su¢ ciently large

fraction of households do not participate in asset markets (Bilbiie, 2008).

In contrast, the model considered in this paper does not need aggregate increasing returns, a

di¤erence between social and private returns to scale, a variable degree of competition, or monetary

phenomena to generate multiple equilibria. In our economy with delegated management and a

convex executive compensation contract, the wedge between the actual return on capital and the

return on capital as experienced by the manager is at the heart of the indeterminacy result. The

power (degree of convexity) of the performance portion of the executive compensation contract

tends to magnify the e¤ective rate of return on capital from the manager�s perspective. As a result,

the expectation of a high return on capital may increase the income of the manager so much next

period that consumption smoothing considerations dictate a diminished level of investment today,

thereby ful�lling the high return expectation. Nevertheless, our analytical and numerical results

reveal that the degree of contract convexity required for indeterminacy is very low, especially so

relative to a standard call options style incentive contract.

An outline of the paper is as follows: Section 2 describes the model, and de�nes equilibrium.

Section 3 provides the theoretical basis for the analysis of convex contracts within the assumed

model context. Section 4 analyzes equilibrium and details the precise circumstances under which

indeterminacy and instability arise. Section 5 provides an overview of the procedure by which
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equilibrium is computed numerically and applies this methodology to the study of the economy�s

business cycle characteristics. Section 6 concludes.

2 A General Equilibrium Model of Delegated Management

We focus on the context of a better informed, self-interested manager and the shareholder-workers

on whose behalf he undertakes the �rm�s investment and hiring decisions in light of his compensation

contract. The total population measure is 1 + �, of which a measure � are managers (collectively

referred to as �the manager�) and a measure one are shareholder-workers.6

2.1 Agents

2.1.1 The Representative Consumer-Worker-Shareholder

The representative consumer-worker-shareholder�s objective is to maximize his expected life-time

utility over consumption and leisure by choosing the fraction of the time endowment, nst , he wishes

to work and selecting his next period�s investment in a vector of �nancial assets, zt+1 =
�
zet+1; z

b
t+1

�
,

he wishes to hold; his decision problem reads as:

V s
�
ze0; z

b
0

�
= max
fzet+1;zbt+1;nstg

E0

" 1X
t=0

�tus (cst ; 1� nst )
#
; where 0 < � < 1 (1)

subject to:

cst + q
e
t z
e
t+1 + q

b
tz
b
t+1 = (qet + dt) z

e
t + wtn

s
t + z

b
t (2)�

qet+1; q
b
t+1; wt+1; dt+1

�
� dF

�
:::; qet ; q

b
t ; wt; dt

�
: (3)

In problem (1)�(3) above, � is the subjective time discount factor, cst denotes period t per capita

shareholder-worker consumption, wt the period t competitive wage rate and us (cst ; 1� nst ) the

consumer-worker-shareholder�s period utility function. The expression zet represents his period t

equity asset holdings, chosen at time t � 1, and priced in period t at qet ; dt denotes the period t

equity security�s dividend. We choose zbt to denote the amount of one period risk free discount

6This model is a version of that found in Danthine and Donaldson (2008 a,b).
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bonds held by the agent, and qbt their period t price. Shareholders are assumed to have rational

expectations over the behavior of the economy�s asset price, wage and dividend series. These are

represented by dF ( ). The shareholder-worker�s information set, Ist , is given by

Ist =
n�
qe� ; q

b
� ; w� ; d� ; c

s
� ; n

s
� ; z

e
� ; z

b
�

�
; � � t

o
:

Note that these agents lack information concerning the economy�s capital stock; they will also be

seen to lack information regarding total factor productivity, aggregate labor supplied, etc.7

The representative shareholder�s preference ordering is given by:

us (cst ; 1� nst ) =
(cst )

1��s

1� �s
�B (n

s
t )
1+�

1 + �
(4)

where �s denotes the representative shareholder�s relative risk aversion coe¢ cient (0 < �s <1)

and � is the inverse of the Frisch elasticity of labor supply (0 � � <1) : Note that in the case

of � = 0; the utility function in (4) reduces to the indivisible labor utility speci�cation of Hansen

(1985), while we obtain the case of �xed labor supply when � !1: Each consumer-worker-investor

is endowed with one unit of time; in the special case where � = 0, the parameter B (B > 0) is

chosen to allow the economy to match the fraction of that time devoted to work that is empirically

observed.

Writing the shareholder�s problem (1) �(4) in recursive form yields

V s
�
zet ; z

b
t ; q

e
t ; q

b
t ; wt; dt

�
= max

zet+1;z
b
t+1;n

s
t

(
(cst )

1��s

1� �s
�B (n

s
t )
1+�

1 + �

+�

Z
V s
�
zet+1; z

b
t+1; q

e
t+1; q

b
t+1; wt+1; dt+1

�
dF ( )

�
7 In making these assertions, we appeal to the standard interpretation that shareholders are individually of measure

zero and do not recognize they are identical to other shareholders. They thus do not identify their own labor supply
with aggregate labor supply. Aggregate capital stock is revealed only if Tobin�s Q = 1. While this later requirement
is formally the case in the simple model to be presented here, it can be voided by incorporating a small capital
adjustment cost. Such a modi�cation does not alter the form of the optimal contract, or the presence of equilibrium
indeterminacy. Shareholders are not presumed to know the general form or speci�c parameter values of the �rm�s
production function. Our model thus incorporates elements of moral hazard.
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where

cst = (q
e
t + dt) z

e
t + wtn

s
t + z

b
t � qet zet+1 � qbtzbt+1:

The necessary and su¢ cient �rst order conditions with respect to nst ; z
e
t+1; z

b
t+1 are

(cst )
��s wt = B (nst )

� (5)

qet = Et

"�
cst+1

���s
(cst )

��s

�
qet+1 + dt+1

�#
(6)

qbt = Et

"�
cst+1

���s
(cst )

��s

#
: (7)

2.1.2 The Firm

On the production side, there is a single �rm, acting as a stand-in for a continuum of identical,

competitive �rms. The �rm produces output via a standard constant returns to scale Cobb-Douglas

function:

yt = k�t

�
nft

�1��
e�t (8)

with two inputs �capital, kt, and labor, n
f
t �and the current level of technology �t; the latter is

assumed to follow a stationary process, which we denote by �t+1 � dG (�t+1;�t) :

The evolution of the capital stock, kt, follows:

kt+1 = (1� 
) kt + it; k0 given, (9)

where it is period t investment and 
; 0 < 
 < 1; the depreciation rate.

Since shareholders lack full information by which they can evaluate the manager�s decisions,

they endow him with a convex compensation contract. As will be fully explained in Section 3,

the main purpose of the contract is to align manager�s interests with those of the investors who

hire him. The manager does not receive hourly wages and therefore the labor-leisure trade-o¤ is

irrelevant for him.
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2.1.3 The Manager

At the beginning of period t, the manager privately observes the realization of the productivity

parameter �t and a vector �t of exogenous (sunspot) shocks which he believes are relevant to

forecasting future events; he then takes his own utility maximizing decision
�
cmt ; it; n

f
t

�
in light

of his remuneration contract. Here cmt represents the manager�s period t consumption and nft the

measure of shareholder-workers hired by the manager in period t. We assume initially that the

manager�s contract has the general form gm (ht) where

ht = h
�
it; n

f
t ; kt; wt; �t; �t

�
(10)

is the measure of the �rm�s performance observed by the shareholders. Note that the shareholders

do not observe the individual arguments of h ( ). The manager�s information set, Imt , is given by

Imt = Ist [
n�
cm� ; i� ; n

f
� ; k� ; w� ; �� ; �� ; �z

e
� = 1; �z

b
� = 0

�
; � � t

o

where �zet ; �z
b
t denote, respectively, the aggregate supplies of the indicated securities. In the absence

of retained earnings, the manager�s choice of
�
it; n

f
t

�
yields dividends dt where

dt = yt � nft wt � it � �gm (ht) : (11)

Let um ( ) be the manager�s period utility of consumption function and let H (�t+1; �t+1;�t; �t)

denote the joint probability distribution of (�t+1; �t+1) conditional on its period t realization

(�t; �t) : The latter is known only to the manager.

The manager�s problem then becomes:

V m (k0; w0; �0; �0) = maxn
cmt ;it;n

f
t

oE0
" 1X
t=0

�tum (cmt )

#
(12)
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subject to (8), (9), (10), (11), and8

cmt � gm (ht) (13)

cmt ; n
f
t � 0

(�t+1; �t+1) � dH (�t+1; �t+1;�t; �t) :

Problem (12) has recursive representation

V m (kt; wt; �t; �t) = max
it;n

f
t

n
um
�
gm
�
h
�
it; n

f
t ; kt; wt; �t; �t

���
+�

Z
V m (kt+1; wt+1; �t+1; �t+1) dH (�t+1; �t+1;�t; �t)

�

with necessary and su¢ cient �rst order conditions:9

um1 (c
m
t ) g

m
1 (ht)h2

�
it; n

f
t ; kt; wt; �t; �t

�
= 0 (14)

and

�um1 (cmt ) gm1 (ht)h1
�
it; n

f
t ; kt; wt; �t; �t

�
= �

Z
V m1 (kt+1; wt+1; �t+1; �t+1) dH (�t+1; �t+1;�t; �t)

= �

Z
um1
�
cmt+1

�
gm1 (ht+1)

h
h3

�
it+1; n

f
t+1; kt+1; wt+1; �t+1; �t+1

�
�h1

�
it+1; n

f
t+1; kt+1; wt+1; �t+1; �t+1

�
(1� 
)

i
�dH (�t+1; �t+1;�t; �t) : (15)

8Absent form the manager�s decision problem is a participation constraint: in order to be induced to assume the
role of the manager voluntarily, his welfare in that role must exceed his welfare as a shareholder-worker. This will be
the case speci�cally when he is subject to an optimal contract. It is also true generically as we assume no disutility
of work for the manager.

9These equations are necessary and su¢ cient provided the standard di¤erentiability, concavity, and continuity
restrictions are placed on um ( ) ; the production function and dG ( ) : The distribution functions H ( ) and G ( ) are
related by dG (�t+1;�t) =

R �R
dH (�t+1; �t+1;�t; �t) d�t+1

�
d�t: These are detailed in Danthine and Donaldson (2008

a).
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As with the shareholder-workers we specialize

um (cmt ) =
(cmt )

1��m

1� �m
: (16)

The manager need not be risk neutral nor have the same CRRA as the shareholder workers. By

assumption, the manager does not participate in the capital markets, which are not complete. It is

realistic to presume the manager is banned from trading the equity issued by the �rm he manages.

Not only does this rule protect shareholders from insider trading, but it also prevents the manager

from using �nancial markets to mitigate the force of his contract. Restrictions on the ability of

the executives to assume short positions in the stock of their own �rms, or to adjust their long

positions, are commonplace.

It is more controversial to assume that the manager cannot take a position in the risk free

asset, although this assumption is common in the partial equilibrium contracting literature. We

note, however, that under optimal contracting it will not be welfare-enhancing for the manager to

trade risk free assets (or equity). Furthermore, in the context of non optimal contracts, suitable

convexity still gives rise to sunspot equilibria, even in the presence of bond trading.

2.2 Equilibrium

Equilibrium in this economy for a given managerial contract gm (ht ( )) is a triple of price functions

wt = w (kt; �t; �t) ; q
e
t = qe (kt; �t; �t) ; q

b
t = qb (kt; �t; �t), an aggregate investment function it =

i (kt; �t; �t), and an employment function nt = n (kt; �t; �t), such that:

1. The �rst order conditions of the representative consumer-worker-shareholder (5), (6), and

(7), of the manager (14) and (15) are satis�ed together with the constraints (2), (8), (9),

(11), the manager�s budget constraint (13) holding with equality, and the usual transversality

condition: limt!1 �tum1 (c
m
t ) kt+1 = 0, for any given initial k0:

2. The labor, goods and capital markets clear: nst = nft = nt; yt = it + cst + �cmt ; and investors

hold all outstanding equity shares, zet = 1; and all other assets (one period bonds) are in zero

net supply, zbt = 0:
10

10Equilibrium is easily shown to exist for this model.
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Note that in this economy, the shareholder-workers confront a large potential moral hazard prob-

lem vis-à-vis the manager because of the large information advantage the latter enjoys (Ist � Imt ) :

More typically, moral hazard is associated with unobservable managerial e¤ort, in a context where

e¤ort is critical to production yet provided only at a disutility to the manager.

We have chosen to omit this feature for a number of reasons. First, recent events suggest

that the e¤ects of compensation agreements largely play themselves out via the �rm�s investment

decision, something that is front and center for the entirety of our analysis. It seems likely that the

2007 �2008 Wall Street bankruptcies were not due to insu¢ cient managerial e¤ort, at least in the

narrow sense of the word, but to inappropriate investment policies. Second, if a disutility of e¤ort

term were added to the manager�s period utility function, while also augmenting the production

function with an �e¤ort factor,�the optimal contract becomes one in which the manager receives all

the �rm�s net output (wtnt + dt), and pays a fee to the shareholders for the privilege of managing

the �rm. The existence of equilibrium indeterminacy is not a¤ected by the addition of an e¤ort

decision.

3 Convex Contracting

We consider the family of contracts

gm (ht ( )) = A+ (ht ( ))
� (17)

with A, � constants, A � 0, � > 0 and the measure of �rm performance, ht ( ) described by

ht ( ) = '�wtnt + 'dt: (18)

In expression (18), ' and � are constants satisfying 0 < ' � 1; 0 � � � 1: The expression wtnt

denotes the equilibrium aggregate wage bill; � represents the relative compensation weight applied

to the wage bill vis-a-vis the dividend, and ' the overall compensation scale parameter. Given

appropriate restrictions on the values of the parameters A; �; �; '; contracts of the form (17)-(18)

are optimal within our model context. This assertion is summarized in the three theorems detailed

10



below. Note that when focusing on �rst-order approximations, as we do in the next section, the

equity price qet can be substituted for the dividend in the de�nition of ht ( ) without loss of optimality

(although the coe¢ cient ' may need to be modi�ed accordingly).

For simplicity, we assume � = 0 in this section, although this is not required for most results.

Theorem 1 Suppose that �s and �m satisfy either 0 � �s < 1; 0 � �m < 1; or 1 < �s; 1 < �m:

Then the optimal contract is of the form (17)-(18) with A = 0; � = 1��s
1��m

> 0; � = 1; and 0 < ' � 1:

If, in addition, j�m � 1j < j�s � 1j ; then the optimal contract is convex, � > 1:

Proof. See Theorem 3 of Danthine and Donaldson (2008 a) for a formal proof. Appendix A

presents an overview of the result.

The optimal contract must align the shareholders�and managers�stochastic discount factors.

The basic intuition underlying Theorem 1 may be summarized as follows: in order for the delegated

manager to select the investment and hiring plans preferred by the shareholder-workers, he must

(i) be given an income stream with the same stochastic characteristics and (ii) he must be equally

sensitive to these same income variations.11 By choosing ht ( ) = 'wtnt + 'dt, where ntwt denotes

the aggregate wage bill, the �rst of these requirements is satis�ed. By raising this quantity to the

1��s
1��m

power, the marginal rate of substitution of the manager is made equivalent to that of the

shareholder-workers in the context of the relevant intertemporal investment equation. For instance,

if 0 � �s < �m < 1; then the shareholder-works ideally o¤ers a convex compensation contract to the

relatively risk-averse manager, in order to counteract the manager�s strong concavity in preferences.

In contrast, if �m > 1, contract convexity e¤ectively induces the manager to behave in a more risk-

averse fashion (see Danthine and Donaldson (2008 b), Corollary 3) so that the shareholder-worker

o¤ers a convex optimal contract to the manager when 1 < �m < �s. The constant ' > 0 can be

chosen to satisfy the manager�s implicit participation constraint.

Theorem 2 Suppose that �s = �m. (i) Then the contract of the form (17)-(18) with A = 0; � = 1;

� = 1; and 0 < ' � 1 is optimal. (ii) There exist coe¢ cients A� > 0 and '� > 0 such that the

11The constant ' can be chosen arbitrarily since � = 0: With homogeneous utility and constant return to scale
production, the manager will choose the same investment decisions irrespective of the scale of his income stream. It
is thus not required that ' = 1: In more general formulations, � > 0; ' is determined by the welfare weights assigned
to the two agents in the Pareto formulation.
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contract in (i) can be arbitrarily well approximated by a contract of the form

gm (ht ( )) = A� + '� �d1��
�
d�

�
t ; (19)

for some �� = �� (A�) > 1: In general �� is a decreasing function of A�. Note that (19) is also a

special case of (17)-(18) where � = 0 and ' = '� �d1��
�
:12 ;13

Proof. Part (i) follows as a special case of Theorem 1. Part (ii) is discussed in Danthine and

Donaldson (2008 b).

In dynamic stochastic general equilibrium models such as the one considered here, dividends

are countercyclical. This fact induces the manager to smooth out the �rm�s investment series

much more than the shareholder-workers �nd optimal. To do otherwise would force the manager

into a circumstance of very low consumption during cyclical upturns. The convexity of the contract

overcomes the aforementioned disincentive and induces the manager to adopt a much more strongly

pro-cyclical investment plan. The upshot of these considerations is simply that Part (ii) of Theorem

2 suggests that the degree of contract convexity may serve as a substitute for a suboptimal salary

component and restore optimality.

What forms do observed managerial contracts actually have and do they resemble our theoretical

constructs? As pointed out by Bolton and Dewatripont (2005, p. 157), �in most cases a manager�s

compensation package in a listed company comprises a salary, a bonus related to the �rm�s pro�ts

in the current year, and stock options (or other related forms of compensation based on the �rm�s

share price). [...] In other words, the manager�s remuneration can broadly be divided into a �safe�

transfer (the wage), a short term incentive component (the bonus), and a long term incentive

component (the stock option).�14 In the notation of this paper, such managerial contracts can be

12 In contract (19), �d is the average free cash �ow (dividend) when �� = 1: The term '� �d1��
�
is inserted to insure

that the average manager�s remuneration is little a¤ected by the curvature parameter ��:
13By arbitrarily well approximate we mean that the log-linear decision rules and the resultant detrended time series

(business cycle) statistics are identical for properly selected �� and '�:
14One quali�cation to the general thrust of these remarks is the fact that convex contracting of the options related

sort applies only to public companies. These account for roughly 50% of aggregate business capital in the U.S. (see
McGrattan and Prescott (2007)) not the 100% our model implicitly assumes.
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generically characterized as

gm (ht ( )) = A+At + 'd
�
t ; with � � 1; (20)

with A the constant payment, At the variable �bonus,� and 'd�t the incentive component. To a

�rst-order approximation, we may again express the incentive component in terms of the stock

price instead of the dividend.

Within the context of this paper, managerial contracts precisely of form (20) do not, in general,

lead to �rst best outcomes. While such contracts resemble the optimal contract described in

Theorem 1, they are not identical as the aggregate wage bill does not enter into the quantity

subject to the convexity parameter. This is not surprising: actual contracts do not recognize that

shareholders are also workers and that their wage income must thus in�uence marginal rate of

substitution formation.

How large is the degree of convexity in the compensation contract? Gabaix and Landier (2008)

carefully study the link between �rms�total market value (debt plus equity) and total compensation

of the 1,000 highest paid CEOs in the U.S., from 1992 to 2004. Their compensation measure includes

the following components: salary, bonus, restricted stock granted and Black-Scholes values of stock

options granted. Using panel regressions, they �nd that the elasticity of CEO compensation to the

�rms�total market value is slightly above 1 (see their Table 2). While they do not formally reject

an elasticity of 1 at the 5% con�dence level, the point estimates lie above 1 in all speci�cations

and are in some cases signi�cantly larger than 1, at the 10% con�dence level. Using the more

aggregated compensation index of Jensen, Murphy, and Wruck (2004), which is based on all CEOs

included in the S&P 500, they estimate that an increase of 1% in the mean of the largest 500 �rms�

asset market values increases CEO compensation by 1.14% on average in the 1970-2003 sample

(see their Table 3). Their Figure 1 suggests that this elasticity is sensibly larger in the 1990-2000

period. While we will focus our analysis on moderate levels of contract convexity, it is important

to note that this convexity can easily be very large when the compensation involves call options.15

15To put our claim of �mild convexity�in perspective, consider a standard call options contract where the degree
of convexity is measured, using the Black-Scholes call valuation formulae, by gamma (�) : To award a manager a call
option on his �rm�s stock is directly analogous to granting him a compensation contract of the form (20). Typically,
the strike price of an options award is set equal to the then-prevailing stock price. The gamma of a long position in a
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With Theorems 1-2 in mind, we next explore the general equilibrium implications of economies

where the manager is paid according to (17)-(18). In particular, we demonstrate that contracts

of this form can easily generate sunspot equilibria by which we mean business cycle �uctuations

driven by self-ful�lling managerial expectations. While optimal contracts cannot themselves create

indeterminacy or instability (a result con�rmed in Section 4.6), contracts with positive �xed pay-

ments or slightly excessive convexity easily can. It is to this latter family of contracts that Section

4 is addressed.

4 Equilibrium Characterization

4.1 Preliminaries

Substituting the various functional forms and de�nitions into the agent optimality equations and the

market clearing conditions gives a set of equations, which the aggregate quantities it; kt; cmt ; c
s
t ; nt

etc. must satisfy in equilibrium. For the general family of contracts (17)-(18), they are as follows.

Consumption of the manager and the shareholder depend on labor income and dividends

cmt = A+ ('�wtnt + 'dt)
�

cst = wtnt + dt;

where dividends, in turn, relate to income and investment according to

dt = �yt � it � �A� � ('�wtnt + 'dt)� :

The production function yields

yt = k�t n
1��
t e�t ;

call option is always positive and reaches a maximum under this circumstance (for given volatility, time to expiration,
etc.). Furthermore, as a function of the �rm�s stock price, an award of, say, 100,000 call options yields an overall
contract convexity 100,000 times that of an individual call�s gamma. We can imagine overall contract convexity
becoming absurdly large.
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so that the real wage and the return on capital, rt; are given by

wt = (1� �) (yt=nt)

rt � � (yt=kt) + 1� 
:

The intratemporal �rst-order condition for the shareholder-worker optimal consumption-leisure

decision is

(cst )
��s wt = Bn�t :

While the above equations are all a-temporal, the equations determining the model�s intertemporal

dynamics are the capital accumulation equation

kt+1 = (1� 
) kt + it

and the Euler equation for the optimal intertemporal allocation of the manager�s consumption

(cmt )
��m = �Et

��
cmt+1

���m � 1 + �xt
1 + �xt+1

��
xt+1
xt

�
rt+1

�
;

where we de�ne

xt � @cmt =@dt = '� ('�wtnt + 'dt)
��1 :

These equations, and their log-linearized counterparts, given below, form the basis of the analysis

to follow.

4.2 Approximating the Equilibrium around the Deterministic Steady State

As we now show, the degree of convexity of the manager�s contract has �rst order e¤ects on the

equilibrium dynamics. Denoting the steady state value of a variable with an overhead bar and the

log-deviations from that steady state value with a ^, we can characterize the model�s dynamics by
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the following log-linearized equilibrium conditions:16

ĉmt = � (1�A=�cm)
�

�!

�! + 1� ! ŷt +
1� !

�! + 1� ! d̂t
�
; where ! � �w�n

�w�n+ �d
(21)

ĉst = !ŷt + (1� !) d̂t (22)

(1 + ��x)
�d

�y
d̂t =

�
�� ��x �!

1� !
�d

�y

�
ŷt � 


�k

�y
{̂t (23)

ŷt = �̂t + �k̂t + (1� �) n̂t (24)

ŵt = ŷt � n̂t (25)

r̂t = (1� � (1� 
))
�
ŷt � k̂t

�
(26)

�sĉ
s
t + �n̂t = ŵt (27)

k̂t+1 = (1� 
) k̂t +
{̂t; (28)

and the log-linearized Euler equation for the manager�s consumption

ĉmt = Etĉ
m
t+1 �  �1Etr̂t+1 (29)

where

 � �m �
� � 1
�

1

(1�A=�cm) (1 + ��x) (30)

corresponds to the manager�s coe¢ cient of relative risk aversion adjusted for features of the incentive

contract, such as its degree of convexity �; and the fraction A=�cm of the manager�s compensation

that is �xed (0 � A=�cm < 1): As we will see below,  will turn out to be a key coe¢ cient for the

model�s dynamics.

4.3 Indeterminacy: Intuition

To understand how self-ful�lling �uctuations may arise in this economy, it is important to note

that in equation (29), the coe¢ cient  �1 represents the elasticity of intertemporal substitution

in the manager�s consumption in response to changes in the manager�s personal rate of return

16The steady state in this economy is de�ned as the solution to the following set of equations: �cm = A +�
'� �w�n+ ' �d

��
; �w�n = (1� �) �y; �y = �k��n1��; 
�k = �{; �x = '�

�
'� �w�n+ ' �d

���1
; �r = ��y=�k + 1 � 
; ��1 = �r;

�cs = �w�n+ �d and (�cs)��s �w = B�n� :
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on investment, i.e., the e¤ective rate of return from the manager�s point of view. That rate of

return does not only represent the additional output generated by another unit of investment in

physical capital, but also the additional compensation distributed to the manager as a result of that

additional unit of output. As indicated in (30), the degree of convexity of the incentive contract,

�, is a key determinant of the manager�s intertemporal elasticity of substitution, and that for �

su¢ ciently larger than 1,  �1 may even be negative. As argued below, a negative  can imply an

indeterminate equilibrium, so that economic �uctuations may result from self-ful�lling manager�s

expectations.

For comparison purposes, let us �rst explore the case where � = 1, a linear contract, so that

 = �m. For these circumstances equation (29) reduces to the same log-linearized consumption

Euler equation as would be obtained for the standard representative agent problem: ĉmt = Etĉ
m
t+1�

��1m Etr̂t+1. Here date t consumption responds negatively to increases in the expected rate of

return (for given expected future consumption), and the response coe¢ cient is the elasticity of

intertemporal substitution. Assume that the manager suddenly expects a higher rate of return on

capital next period, r̂t+1, than would be justi�ed by fundamentals. In this case
�
Etĉ

m
t+1 � ĉmt

�
must

increase or ĉmt must get smaller, which can occur only if the agent saves more and so simultaneously

ĉmt+1 increases. But with the expectation of the higher return on capital the next period�s capital

stock, k̂t+1, also increases. The increase in the capital stock causes the marginal product of capital

to drop (so that r̂t+1 declines). As a result, expectations of a higher return on capital cannot be

�lled and there is no supportable equilibrium indeterminacy.

In the case of a convex compensation function (� > 1) ; a given increase in the �rm�s output

generated by an additional unit of physical investment results in a more than proportional increase

in the manager�s income. Let us consider the manager�s contract with convexity su¢ ciently larger

than 1 to guarantee that  is negative. In that case, suppose that the manager has the belief

(unrelated to fundamentals) that his own personal return will be �high�next period. The perception

of a high income next period will lead him �in the interest of consumption smoothing �to consume

more today, and thus to reduce his investment today. The lower investment leads to a higher rate

of return on capital which con�rms the manager�s belief of a high personal rate of return.

In general, the larger the convexity of the executive contract, the more likely  �1 is negative,
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and hence the more likely the manager will increase his consumption and lower investment in the

�rm in response to his belief of an increase in the rate of return. It follows that the more convex

is the executive contract, the more likely the general equilibrium is indeterminate, so that business

cycles can be driven by self-ful�lling �uctuations in manager�s expectations. In contrast, with low

convexity of the manager�s contract (� � 1) ; the increase in return on capital is smaller from the

manager�s perspective. In this case, the contract works against the manager�s �personal returns

expectations�being ful�lled.

The mechanism works similarly to the combination of constant returns to scale at the �rm level

but increasing returns at the economy-wide level, although in our case, production is generated with

constant returns to scale. The appearance of equilibrium indeterminacy when  becomes negative

relates also to Bilbiie (2008), who obtains an indeterminate equilibrium in a monetary model, when

the fraction of households who are excluded from asset markets is su¢ ciently large. In that case, the

economy-wide elasticity of intertemporal substitution in consumption similarly becomes negative.

However, in contrast to Bilbiie (2008), our mechanism does not require households to be excluded

from asset markets, and, even if we have assumed that mangers do not trade securities, the latter

assumption or the measure of managers in the economy (�) are not critical for our result.

An inspection of (30) also reveals that the lower the manager�s risk aversion, �m, the more likely

 is negative and hence equilibrium indeterminacy can arise (@ =@�m = 1 > 0) : In the extreme

case of a risk-neutral manager (�m = 0) ; any convexity of the incentive contract (� > 1) ; no matter

how small, implies a negative coe¢ cient  , and hence can result in an indeterminate equilibrium.

Similarly, for any convex contract (� > 1) ; the larger the constant salary component of the executive

contract, A, the more likely  is negative, and, again, the more likely equilibrium indeterminacy

can arise. By making the manager�s compensation less volatile, the higher �xed salary component

reduces the magnitude of the incentives part of the contract necessary to generate indeterminacy.

Below, we formalize this intuition.

18



4.4 Indeterminacy and Instability in the Case of Fixed Labor Supply: An An-

alytical Characterization

We now determine the regions of the parameter space in which the model dynamics around the

deterministic steady state yields (i) a unique bounded equilibrium, (ii) an indeterminate equilibrium

so that an in�nite number of bounded equilibria are consistent with the model�s equations, or (iii)

no bounded equilibrium so that the model�s dynamics can only result in explosive paths. To derive

analytical results, we consider a speci�cation of (2) with a �xed labor supply (� ! 1). It can be

demonstrated numerically that none the results presented here are a¤ected by this assumption. In

particular, the region of determinacy, or indeterminacy/instability is independent of the value of �:

After combining the linearized equilibrium conditions (21)�(29), the model�s local dynamics can

be summarized by the following two equations:

Etĉ
m
t+1 = ĉmt �A12k̂t+1 + exogt (31)

k̂t+1 = B21ĉ
m
t +B22k̂t + exogt (32)

where exogt denotes exogenous terms that depend on current and on expected future realizations

of the productivity shock �t; and17

A12 =  �1 (1� �) (1� � (1� 
)) (33)

B21 = �!
�1 � (1� �)

�

�cm

(�cm �A)
(1� �)
�

�
��1 � 1 + 


�
(1 + ��x) < 0 (34)

B22 =
�
��1 � (1� 
)

�
(1� �) � + (1� 
) (1� �) + ���1 > 0: (35)

Note from (33) that sign(A12) = sign( ). Note from (34) that B22 is increasing in �, and, for �

su¢ ciently small and � su¢ ciently close to 1, there exists a positive threshold

�� � 1� ��1 � 1�
��1 � 1 + 


�
(1� �)

< 1 (36)

17Equation (31) is obtained by combining (29) and (26), using (24) to substitute for ŷt, and noting from (27) that
n̂t = 0 in the case that � !1: To obtain (32), we �rst use (23) to express {̂t as a function of ĉmt ; k̂t; and �t exploiting
(21) to solve for d̂t, and (24) to eliminate ŷt, and then combine the resulting expression with (28).
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such that18

B22 < 1 if and only if � < ��:

The characterization of the regions of determinacy, indeterminacy and instability of the equi-

librium resulting from the dynamic system (31)-(32) can be summarized as follows:

Theorem 3 In the case of a �xed labor supply (� !1), the linearized model admits:

(i) an indeterminate equilibrium (i.e., a continuum of bounded solutions) if and only if the following

conditions are jointly satis�ed:

 < 0 (37)

A12B21 < 2 (B22 + 1) (38)

� < �� (39)

(ii) an unstable equilibrium (i.e., no bounded solutions) if and only if (37) and (38) hold and

� > �� (40)

(iii) a determinate equilibrium (i.e., a unique bounded solution) if and only if either (37) or (38)

or both conditions are violated.

Proof. See Appendix B.

We interpret this theorem in the context of the remarks below.

Remark 1: Indeterminacy or instability (i.e., no bounded solution) arise provided that (37)

and (38) hold. Under these conditions, the equilibrium is indeterminate for � su¢ ciently small

(� < ��) and unstable for � > ��:

Remark 2: When either (37) or (38), or both are violated, then we have a unique bounded

equilibrium. So, a su¢ cient condition for a unique bounded equilibrium is  > 0:

To have some sense of the relevance of these conditions, we calibrate the model as follows:

18Note in particular that when � = 1; B22 = ��1 > 1:

20



� = 0:99; � = 0:36;
 = 0:025: With these parameter values, the implied critical value �� = 0:55:

In addition, we assume that shareholder-workers have log utility in consumption, so that �s = 1,

and that the share of wage income, !, is 0.9. Figure 1 represents the regions of determinacy, inde-

terminacy and instability for various values of �m and the parameters characterizing the incentive

contract, i.e., �, � and A=�cm. The boundary for the region of determinacy in the (A=�cm; �) space

remains the same for the di¤erent values of � represented in the two columns of Figure ??. With

� su¢ ciently low, the model exhibits local indeterminacy when the convexity of the contract �

rises. For � = 1, even a mildly convex managerial contract (� > 1) can lead to an indeterminate or

explosive general equilibrium in the economy.

To get some intuition for this result, suppose that we start at the steady state and that there

is no fundamental shock, i.e., �t = 0 for all t. We provide intuition based on conditions (37) and

(39), avoiding a discussion of condition (38) which is likely to be satis�ed.

Case 1: determinacy ( > 0; i.e. � < 1)

Suppose agents observe an unexpected sunspot �0 shock at date 0, which leads managers to

consume more than in steady state (ĉm0 > 0) : Since the initial capital stock is �xed at �k; the

linearized equation for the capital stock, (32), implies that the capital stock in the next period will

need to decrease
�
k̂1 < 0

�
because managers now consume more and invest less in physical capital.

According to (31), high consumption by managers at date 0 and lower capital stock at date 1, leads

to even higher managerial consumption in period 1 if  > 0 because

Etĉ
m
1 = ĉm0 �  �1 (1� �) (1� � (1� 
)) k̂1: (41)

This, in turn, causes a further drop in the capital stock and an increase in consumption by managers

in period 2: Etĉm2 > Etĉ
m
1 > c0; and so on. Such path violates the transversality condition because

in the case of  > 0 the presence of a sunspot is inconsistent with a bounded equilibrium. Therefore,

if a bounded equilibrium exists, it must be unique.

Case 2: indeterminacy ( < 0 and � < ��)

Suppose instead that  < 0 and agents again observe an unexpected sunspot �0 at date 0, which
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leads managers to consume more at that time. Again, since the initial capital stock is �xed at its

steady state value, equation (32) implies that the capital stock must decrease because a higher

consumption by the executives is generated by a higher income to the executives, which means that

less is available for investment in physical capital.

But with  < 0 equation (41) implies that the increase in managerial consumption at date 0

combined with the lower capital stock at date 1, leads the manager to consume less in period 1 than

in period 0. Hence the consumption of the executive reverts back to the initial steady state and

by equation (32) so does capital stock, as k̂2 > k̂1. This process leads to a stationary path for the

manager�s consumption and for the capital stock. If  < 0, sunspot shocks are therefore consistent

with a bounded equilibrium and there exist an in�nite number of such bounded equilibria satisfying

the model�s restrictions, including some equilibria with arbitrary large �uctuations, as �t itself can

be arbitrarily large.

Case 3: instability ( < 0 and � > ��)

Suppose again that  < 0, and that � exceeds its critical value so that A12 < 0 and B22 > 1:

Consider a productivity or sunspot shock at date 0, which leads managers to consume more and

invest less. Again, the capital stock at date 1 must fall below its steady state value. According

to equation (41), if  < 0 the manager�s consumption in period 1 must be lower relative to his

consumption in period 0. According to equation (32), a decrease in the manager�s consumption

tends to bring the future capital closer to its steady state value, but the date 1 deviation of the

capital stock is ampli�ed if B22 > 1. It follows that the capital stock embarks on an explosive

(or implosive) trajectory, converging to 0 in our example. This, in turn, results in an explosive

evolution of the manager�s consumption. Hence the model admits no bounded solution.

4.5 Indeterminacy and Instability for General Labor Supply

We use a numerical solution to show that the regions of determinacy remain the same when the

labor supply is elastic although the split between indeterminacy and instability regions depends on

the value of the Frisch elasticity of labor supply ��1 as well as the fraction � of executive compen-

sation related to aggregate labor income. Figures ?? and ?? show determinacy, indeterminacy, and
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instability regions in the (A=�cm; �) space, for di¤erent values of �. In Figure ??, we set ��1 = 0:5 to

match the Frisch elasticity of labor supply often found in microeconomic studies, while in Figure ??,

��1 !1 consistently with the labor supply found in Hansen (1985). Once again, with su¢ ciently

low �, the convex executive compensation contract can easily generate an indeterminate equilib-

rium. Instead when � is su¢ ciently large, the convex contract results in an explosive equilibrium

dynamics.

4.6 General Equilibrium and Optimal Incentive Contracts

The discussions in Sections 4.1-4.5 refer to the general family of incentive contracts of the form

(17)-(18), and argue that the general equilibrium can be indeterminate or explosive if the contract

convexity, �; is excessive or if the �x payment, A; is su¢ ciently large. A natural question is how

close an optimal contract would be to these regions of equilibrium indeterminacy or instability. As

we now show, while the optimal incentive contract would result in a unique stable equilibrium,

slightly more generous incentive contracts could easily result in undesirable outcomes. This will be

apparent from the interpretation of Figure 4.

By Theorem 1, contract optimalilty requires that A = 0 and � = 1��s
1��m

: In Figure 4, the

two asymptotic-to-the-vertical and boldfaced curves capture this latter relationship in the (�m; �)

plane, for two di¤erent choices of �s on either side of 1.
19 In the special case that �m = �s 6= 1; the

convexity of the optimal contract is � = 1: Instead, if �m = �s = 1; so that both agents have log

preferences, Appendix A informs us that the optimal contract convexity can be any value � � 0; as

represented by the vertical line. Conditional on shareholder risk aversion, �s; these lines e¤ectively

determine the optimal contract convexity given the manager�s coe¢ cient of relative risk aversion,

�m:

In contrast, the shaded regions in Figure 4 present the parameter combinations for which in-

determinacy or instability will arise. Essentially, these are parameter con�gurations which sat-

isfy  < 0; where  is again de�ned in (30). In particular, the dark-shaded region, de�ned byn
(�m; �) :  � �m � ��1

�
1

(1�A=�cm)(1+��x) < 0;A = 0; � = 0
o
is the region of indeterminacy or insta-

19More speci�cally, the set-theoretic representations of the left and right boldfaced curves are respectively:n
(�m; �) : � =

1��s
1��m

; �s = 0:5
o
and

n
(�m; �) : � =

1��s
1��m

; �s = 2
o
:
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bility in the case that the �xed payment is set at the value of the optimal contract, A = 0: As

mentioned above, indeterminacy or instability may arise provided that the contract is su¢ ciently

convex and the manager�s risk aversion is su¢ ciently low. Notice that this region does not in-

tersect with either of the boldfaced curve representing the optimal contracts, nor would it for

any other choice of �s: While the optimal contract does not per se lead to equilibrium indetermi-

nacy or instability, a slightly more generous compensation in terms of higher contract convexity

would could easily result in such bad outcomes. This could arise, for instance, in the case that

shareholder-workers, who determine the contract forms and parameters, know their own coe¢ cient

of relative risk aversion but mistakenly over-estimate the manager�s true degree of risk aversion.

For example, suppose that the true �s and �m satisfy �s = �m = 0:5; so that the optimal contract

parameters are A = 0 and � = 1: If the shareholders counterfactually estimate �m = 0:8; then

they will choose contract parameters A = 0 and � = 1��s
1��m

= 2:5: Relative to the true �m which

guides the manager�s actions, this choice of � leads to indeterminacy or explosive equilibria as

 = �m � ��1
� = 0:5� 1:5

2:5 < 0:

The larger shaded region (comprising the dark and light gray regions) similarly represents the

region of indeterminacy or instability, but assuming a positive fraction of the manager�s compen-

sation in the form of a �xed payment. Speci�cally, it assumes A=�cm = 0:5: As Figure 4 makes

clear, for any �m; the minimal magnitude of � necessary for indeterminacy is strictly less than

in the A=�cm = 0 case. Note also that for a wide range of manager risk aversion, �m; the choice

of convexity � in the optimal contract leads to indeterminacy or instability when A=�cm = 0:5: A

larger positive �xed payment thus allows indeterminacy to arise for a much larger set of parameter

con�gurations. We are also reminded that the presence or absence of indeterminacy is related only

to the manager and the terms of his contract: nowhere does �s enter into the de�nition of the

region of indeterminacy. This observation follows from the fact that the manager alone determines

the �rm�s investment decision in the delegated management economy.

In light of these observations, we �nd intriguing the recent decision of some �nancial institutions

to alter the compensation structure for their managing directors by increasing the share of �xed

compensation while retaining some of the contract convexity. For instance on May 23, 2009, the

Wall-Street Journal reported: �Morgan Stanley Boosts Salaries as Its Bonuses Are Limited [...]
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Under the changes, managing directors will see about 25% to 30% of their overall compensation

come from their base salary, up from about 15% to 20%.�Within the context of our model, and

without a corresponding reduction in the convexity of the bonus portion of their compensation,

such actions increase the likelihood of sunspot equilibria, if other �rms act similarly.

5 Computing Equilibria

Our numerical work is guided by three questions: (1) Is it possible to generate a business cycle

with the observed properties on the basis of sunspot shocks alone? Less extreme versions of this

query are the following: (2) In conjunction with a standard technology shock, does the addition of

a sunspot shock enhance the explanatory power of the model in the context, e.g., of labor market

volatility? Lastly and minimally, (3) we may ask if the sunspot shock is, at least, fully harmonious

with a productivity shock in the sense of the addition of the former not compromising the overall

model�s performance. If this is the case it becomes di¢ cult to separate out the sources of business

cycle �uctuations. For those skeptical of the notion of a productivity disturbance as an economic

driver, such a result diminishes their signi�cance, at least in our neoclassical context. It has the

less attractive implication, however, of suggesting that future macroeconomic volatility may not be

forecastable since it may in part be determined by pure belief shocks.

5.1 Numerical Strategy

The linearized rational expectations model presented in Section 4, can be rewritten in the canonical

form:

�0 (#) st = �1 (#) st�1 +	(#) "t +�(#) � t (42)

where the model parameters are collected in the vector # = [�; �s; B; �m; �; �; '; �; A; �;
; �; �] ;

with � and � denoting, respectively, the persistence and the standard deviation of the exogenous

shock, and st representing the vector of the model�s endogenous variables:

st =
h
ĉst ; ĉ

m
t ; k̂t; n̂t; {̂t; d̂t; ŷt; ŵt; �t; Etn̂t+1; Etĉ

m
t+1; Etd̂t+1; Et�t+1

i0
:
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Finally, � t denotes the vector of rational expectations forecast errors:

� t =
h
(n̂t � Et�1n̂t) ; (ĉmt � Et�1ĉmt ) ;

�
d̂t � Et�1d̂t

�
; (�t � Et�1�t)

i0
:

The model is solved using the solution algorithm developed by Sims (2000) as adapted to

sunspot equilibria by Lubik and Schorfheide (2003). In the case of indeterminacy, in addition to

the fundamental technology shock, the manager observes an exogenous sunspot shock, �t, which

in�uences dynamics of the key macroeconomic variables. Consistency with rational expectations

requires that the sunspot is i.i.d. with Et�1�t = 0.

Because of the linear structure of the model, the forecast errors for the next period labor, level

of technology, dividend, and manager�s consumption can be expressed as function of two sources of

uncertainty: the technology shock and the sunspot

� t = �1"t +�2�t

where �1 and �2 have dimension 4�1. The solution algorithm of Sims (2000) explicitly constructs a

mapping from shocks to the expectation errors in (42). As shown above, when � is su¢ ciently small,

our model has at least one stable solution. If �1 is uniquely determined by the parameters # and

�2 = 0, the model has a unique solution. This is the case of determinacy in which the propagation

mechanism of the technology shocks is uniquely determined. Thus, neither do sunspots a¤ect

equilibrium allocations nor do they induce �uctuations. If �1 is not uniquely determined by the

parameters # and �2 is di¤erent from zero, the equilibrium is indeterminate. In this case, sunspot

shocks can be interpreted as shocks to endogenous forecast errors. Detailed technical conditions

for indeterminacy are developed in Lubik and Schorfheide (2003). In our model, it is the subset of

# related to the manager�s compensation and risk aversion that is critical for indeterminacy; this

is given by #� = [�m; �; �; A].
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5.2 Numerical Results

We solve for the model�s optimal policy functions in the manner described above, and generate

arti�cial time series accordingly. These series are then detrended using the Hodrick-Prescott �lter,

and the standard business cycle statistics are computed from their detrended components. In all

cases the parameters �; �;
 are calibrated as in Section 4 (� = 0:36; 
 = 0:025; � = 0:99). We �x

the shareholder-worker�s coe¢ cient of relative risk aversion at �s = 1 and the inverse of the Frisch

elasticity of labor supply at � = 0. Following the business cycle literature, we choose B (2.85) so

that the steady state value of n is 1=3.20 The delegated manager�s utility function is of the form

(16), with 0 < �m < 1. His measure is � = 0:20:

We focus exclusively on contracts of the form (17)-(18) with ' = 0:01. The technology shock

process is of the form �t = ��t�1 + ~"t with � = 0:95 and with �" chosen so that �y matches the

data. The i.i.d. sunspot shock, if present, is distributed N (0; ��), with �� a choice variable.

Averages of statistical quantities computed repeatedly for 500 sample paths each of 200 periods

length are presented. Summarizing model performance in this way is customary in the business

cycle literature. It does, however, tend to mask the sort of extreme behavior we might expect to

be associated with sunspot equilibria.

Table 1 considers a pair of benchmark cases. In panel B, both technology and sunspot shocks

are present, with the indicated volatilities, �" = 1:04%; and �� = 4:81%. In Panel C only the

i.i.d. sunspot shock is present (albeit with a higher volatility), while in Panel A, U.S. data is

provided where available. Panel B easily respects the most basic stylized facts of the business

cycle: investment is more volatile than output which is in turn more volatile than shareholder (and

aggregate) consumption. Hours are somewhat too smooth, however.

Being a convex function of the dividend, which is itself a highly variable residual series, man-

agerial consumption volatility dramatically exceeds that of the shareholder-workers. Comparing

the volatilities presented in Panel A with U.S. data, it would appear that sunspot shocks, when

introduced into this production model setting, are largely consistent with the stylized business cycle

facts (question 1). For all the major aggregates the same can be said of the cross-correlations with

output. In fact, the case with indeterminacy arguably does a better job of replicating the data than

20With this comparison, the model is directly analogous to the representative agent construct of Hansen (1985).
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does the seminal paradigm of Hansen (1985) (Panel D). in particular, consumption volatility much

more closely matches the data. The negative correlation of managerial consumption with output

simply re�ects the like correlation of its dividend base.

Sunspot shocks alone (Panel B) give rise to a number of data inconsistencies. First hours and

investment are excessively volatile. Note that the volatility of the sunspot shock must exactly

double in order to compensate for the absence of technological uncertainty (Panel B vs. Panel

A), if the required volatility of output is to be maintained. This fact is not entirely surprising

since sunspot shocks do not a¤ect output directly, and thus must induce large responses in hours

and investment in order to replicate �y at the empirically observed �y = 1:81%: As a result, �i

and �n are high relative to their empirical counterparts. For the parameterization of Table 1,

� = 0:10, dividends give rise to most of the variation in managerial compensation and these are

countercyclical. As a result, managerial consumption is countercyclical as well. Being a residual

after the wage bill and investment, dividend �and thus managerial consumption �are also highly

volatile.

The second major inconsistency is re�ected in the negative correlation of shareholder-worker

consumption with output. By implication, total consumption is negatively correlated with output as

well. Sunspot equilibria, per se, seem to have manifestations that violate the notion of consumption

as a normal good, at least in this case. Recall that a sunspot shock is essentially a rate of return

on capital stock, and that it induces very large procyclical responses in investment without output

being itself simultaneously increased. In equilibrium, consumption must be countercyclical. Note

that for both these cases contract convexity is a modest � = 2:

Table 2 explores the consequences of greater contract convexity, a larger salary component,

and higher managerial risk aversion in the context of the Benchmark case of Table 1, Panel A.

The Table 2 cases illustrate indeterminate equilibria that all provide reasonable replications of the

basic business cycle stylized facts. It re�ects the fact that indeterminacy is robust to a wide class of

contract parameters and risk aversion levels for the manager. In Panel B (higher contract convexity

with � = 3), the volatility of hours and investment is lower than in the benchmark case (Panel A).

Higher contract convexity allows the manager to take advantage of favorable shock without altering

hours or investment as in the case of lower convexity. But by and large, the degree of contract
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convexity has only a modest in�uence on the basic volatility and correlation structure of the various

series.

Panel C in Table 2 explores the consequences of altering the level of the salary component. For

the underlying parameters of �m = 0:25 and � = 2, sensitivity analysis reveals that a minimum value

of salary component share in the manager�s compensation A=�cm = 0:32 appears to be necessary

for indeterminate equilibria to arise.

Increasing the magnitude of the �xed salary component appears to slightly increase the overall

volatility in the economy once indeterminate equilibria are achieved. The e¤ect is more pronounced

in case of hours and investment volatility. Increasing the weight of the �xed salary in the overall

compensation package of the manager makes him e¤ectively more risk tolerant and more willing

to alter production plans in response to shocks. While emphasizing the importance of the salary

component, this latter observation ampli�es the essential harmony of sunspot and technology shocks

in promoting superior model performance.

Finally, Panel D in Table 2 concerns the consequences of enhanced managerial risk aversion.

Sensitivity analysis shows that the model economy exhibits local indeterminacy if the manager�s risk

aversion coe¢ cient does not exceed 0.359 with other parameters held at their Benchmark values.

As is evident, the in�uence of the increase in managerial risk aversion is very modest provided the

equilibria are indeterminate. Indeed, for Panel D, not only are the stylized business cycle facts quite

well replicated but the results seem relatively una¤ected by the degree of managerial risk aversion

(i.e., provided �m < 0:359). In none of these cases furthermore (as well as all previous cases) is

managerial consumption volatility particularly excessive, ranging only to roughly three times that

of the average shareholder-worker.

With regard to the three questions posed at the start of this section, the preceding cases inform

us along a number of dimensions. First, within the realm of the simple construct we provide, it

does not appear that convex-contract-induced sunspot equilibria, alone, can replicate the stylized

facts of the business cycle. Shareholder consumption in these cases is negatively correlated with

output. Such is our tentative response to the �rst question posed. With regard to the third

question, not only the benchmark case with technology and sunspot shocks (Table 1, Panel B) but

also many of the other cases suggest that these sources of uncertainty are fully compatible with
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one another, at least for this model framework. It suggests that one source of uncertainty can

e¤ectively be traded o¤ against the other (with regard to the relative magnitudes of �� and �"), a

direct consequence being that a large increase in future sunspot volatility would not be inconsistent

with past business cycle history as it is currently understood and measured. With regard to our

second question, standard business cycle models (e.g., Hansen (1985)) have di¢ culty replicating the

relative volatility of hours. The addition of sunspot equilibria appears to resolve this shortcoming.

6 Conclusion

The message of this paper is clear and direct: low risk aversion CEOs, when confronted with

compensation contracts which are mildly convex to the �rm�s stock price or free cash �ow may well

�nd it in their self-interest to adopt investment policies that lead to equilibrium indeterminacy or

instability. As a result, the time path of the economy�s macroeconomic aggregates, as well as the

executives� compensation, at least with respect to their volatility, may bear little association to

fundamentals. In this sense, convex CEO compensation contracts may substitute for technological

increasing returns, a typical requirement of the earlier indeterminacy literature. Within a standard

dynamic macroeconomic setup, these results appear to hold for a wide class of model parameters,

at least for the compensation contracts studied here.

These results suggest that the early twenty-�rst century explosion in the incentive compensation

among �nancial �rms may have unforeseen consequences. We are only now beginning to see what

these consequences are.
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A Appendix A: Proof of Theorem 1

We present here only an overview of the result stated in Theorem 1. The formal proof is detailed
in Danthine and Donaldson (2008 b). We consider the economy presented in Section 2, with a
continuum of shareholder-worker-investors of measure one and a measure � = 0 of managers. We
�rst describe the Pareto optimal competitive equilibrium conditions in the case that shareholder-
workers run the �rm themselves so as to maximize its share price. We then demonstrate that the
delegated management economy where the manager is given a contract of the form described in
Theorem 1 yields the same equilibrium.

In the Pareto optimal competitive economy, the necessary �rst-order condition for optimal
employment and investment can be expressed respectively as follows:

wt = (1� �) k�t n��t e�t (43)

(yt � it)��s = �

Z
(yt+1 � it+1)��s

h
�k��1t+1 n

1��
t+1 e

�t+1 + 1� 

i
dF ( ) ; (44)

where we recognize the fact that in equilibrium the representative agent�s consumption satis�es
ct = yt � it:

Instead, in the delegated management economy described in Section 2, the necessary �rst-
order condition for optimal employment and investment are respectively (14) and (15). With a
compensation contract of the form (17)-(18), and recognizing that dividends are given by dt =
yt � wtn

f
t � it when � = 0; we can express the manager�s performance as ht ( ) = '(�wtnt +

k�t

�
nft

�1��
e�t �wtnft � it) and his consumption as cmt = gm1 (ht ( )) = A+(ht ( ))

� : The condition

for optimal employment (14) thus reduces to

(cmt )
��m � (ht)

��1
�
(1� �) k�t

�
nft

���
e�t � wt

�
= 0: (45)

Note that in equilibrium, the �rm�s optimal choice of employment nft = nt so that the �rst-order
condition (45) reduces to (43) for any contract convexity � > 0:

The condition for optimal investment (15) similarly reduces to

(cmt )
��m � (ht)

��1 ' = �

Z �
cmt+1

���m � (ht+1)��1 �'�k��1t+1

�
nft+1

�1��
e�t+1 � (�') (1� 
)

�
dH ( ) ;

or equivalently, if ' > 0;�
A+ h�t

���m
(ht)

��1 = �

Z �
A+ h�t+1

���m
(ht+1)

��1
�
�k��1t+1

�
nft+1

�1��
e�t+1 + 1� 


�
dH ( ) :

Setting the �xed payment A = 0; noting again that nft = nt in equilibrium, and replacing ht with
' ((� � 1)wtnt + yt � it) ; we can rewrite this condition as

(' ((� � 1)wtnt + yt � it))�(1��m)�1 = �

Z
(' ((� � 1)wt+1nt+1 + yt+1 � it+1))�(1��m)�1

�
h
�k��1t+1 n

1��
t+1 e

�t+1 + 1� 

i
dH ( ) : (46)
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The �rst-order conditions for optimal employment and investment decisions in the delegated
management economy (45) and (46) are thus identical to the ones in the Pareto optimal competitive
economy (43) and (44) if and only if A = 0; ' > 0; � = 1; and � (1� �m)� 1 = ��s: If �m 6= 1 and
�s 6= 1; the latter condition is satis�ed when the convexity parameter is given by

� =
1� �s
1� �m

:

Instead, if �m = �s = 1 (so that the manager and the shareholder-worker have both log preferences),
then any convexity parameter � > 0 is optimal.

B Appendix B: Proof of Theorem 3

To characterize the regions of determinacy, indeterminacy and instability, we rewrite the dynamic
equations (31)�(32) in matrix form:

A

�
Etĉ

m
t+1

k̂t+1

�
= B

�
ĉmt
k̂t

�
+ C�t

where

A �
�
1 A12
0 1

�
; B �

�
1 0
B21 B22

�
and

A12 =  �1 (1� �) (1� � (1� 
))

B21 = �!
�1 � (1� �)

�

�cm

(�cm �A)
(1� �)
�

�
��1 � 1 + 


�
(1 + ��x) < 0

B22 = (1� 
) (1� �) (1� �) + ��1 (�+ � (1� �))
=

�
��1 � (1� 
)

�
(1� �) � + (1� 
) (1� �) + ���1 > 0:

Note that sign(A12) = sign( ); and that B22 is increasing in �: For � su¢ ciently small and �
su¢ ciently close to 1, when � = 0; we have

0 < B22 = (1� 
) (1� �) + ���1 < 1:

If � = 1; then B22 = ��1 > 1:
Given that k̂t is a predetermined variable and ĉmt is a nonpredetermined variable, the system

admits a single bounded solution if and only if the eigenvalues �1 and �2 of the matrix M � A�1B
satisfy

0 � j�1j < 1 < j�2j :

The equilibrium is indeterminate if

0 � j�1j < 1 and 0 � j�2j < 1:

There exists no bounded solution (and so there exist only explosive solutions) if

1 < j�1j and 1 < j�2j :
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It will be useful to appeal to the following proposition:

Proposition 4 (Proposition C1 of Woodford (2003, p. 670)). Both eigenvalues of a 2� 2 matrix
N lie outside the unit circle if and only if:
either (Case I):

det (N) > 1 (47)

det (N)� tr (N) + 1 > 0 (48)

det (N) + tr (N) + 1 > 0 (49)

or (Case II):

det (N)� tr (N) + 1 < 0 (50)

det (N) + tr (N) + 1 < 0: (51)

B.1 Indeterminacy

Note that the system has an indeterminate equilibrium if and only if 1 < j1=�1j and 1 < j1=�2j ; or
equivalently if both eigenvalues of

M�1 =

�
1 A12

�B21
B22

1
B22

(1�A12B21)

�
lie outside the unit circle. Note that

det
�
M�1� =

1

B22

tr
�
M�1� = 1 +

1

B22
(1�A12B21)

and

det
�
M�1�� tr �M�1�+ 1 =

1

B22
�
�
1 +

1

B22
(1�A12B21)

�
+ 1 = A12

B21
B22

det
�
M�1�+ tr �M�1�+ 1 =

1

B22
+

�
1 +

1

B22
(1�A12B21)

�
+ 1 = 2

�
B22 + 1

B22

�
�A12

B21
B22

:

First suppose that det
�
M�1� � tr

�
M�1� + 1 = A12

B21
B22

< 0: Since B22 > 0; we must have

det
�
M�1� + tr

�
M�1� + 1 = 2

�
B22+1
B22

�
� A12

B21
B22

> 0: So we cannot simultaneously satisfy both

conditions (50)�(51) of Case II.
We thus have an indeterminate equilibrium if and only if all three conditions (47)�(49) of Case
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I are satis�ed, i.e., if and only if

0 < B22 < 1

A12
B21
B22

> 0

2

�
B22 + 1

B22

�
�A12

B21
B22

> 0:

The �rst condition is satis�ed for � su¢ ciently small�
��1 � (1� 
)

�
(1� �) � + (1� 
) (1� �) + ���1 < 1

or equivalently

� < �� � 1� (1� 
) (1� �)� ���1�
��1 � (1� 
)

�
(1� �)

: (52)

Given B22 > 0 and B21 < 0; the second condition is satis�ed if and only if A12 < 0; or equivalently
if and only if

 < 0: (53)

The third condition is in turn satis�ed if and only if

A12B21 < 2 (B22 + 1) : (54)

To summarize, the model admits an indeterminate equilibrium if and only if (52)�(54) are
jointly satis�ed.

B.2 Instability

The system admits no bounded solution if and only if both eigenvalues of M lie outside the unit
circle. Note that

det (M) = B22

tr (M) = 1 +B22 �A12B21

and

det (M)� tr (M) + 1 = B22 � (1 +B22 �A12B21) + 1 = A12B21

det (M) + tr (M) + 1 = B22 + (1 +B22 �A12B21) + 1 = 2 (B22 + 1)�A12B21:

First suppose that det (M)� tr (M)+ 1 = A12B21 < 0: Since B22 > 0; we must have det (M)+
tr (M) + 1 = 2 (B22 + 1)�A12B21 > 0: So we cannot simultaneously satisfy both conditions (50)�
(51) of Case II. Thus we have explosive solutions if and only if all three conditions (47)�(49) of
Case I are satis�ed, that is:

1 < B22

A12B21 > 0

2 (B22 + 1)�A12B21 > 0:
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The �rst condition is satis�ed for � su¢ ciently large

� > ��: (55)

Given B21 < 0; the second condition is satis�ed if and only if A12 < 0; or equivalently if and only
if (53) holds. The third condition is in turn satis�ed if and only if (54) holds.

To summarize, the model admits no bounded solution if and only if (53) and (54) as well as
(55) are jointly satis�ed. �
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Table 1 � Business Cycle Statistics(i)

Panel A Panel B Panel C Panel D

U.S. data(ii)
Sunspot and
technology
shocks

Sunspot
shocks only

Hansen (1985)
divisible labor
economy

Standard Deviations (in percent)(iii)

�y 1.81 1.81 1.81 1.76
�k 0.63 0.54 0.95 0.47
�n 1.79 1.42 2.77 1.35
�i 5.30 5.62 9.90 5.71
�cs 1.35 1.39 1.09 0.51
�cm NA 6.41 12.87 NA
�" (tech. shock) NA 1.04 0 0.71
�� (sunspot shock) NA 4.81 9.62 NA

Contemporaneous Correlations with Output
�k;y 0.06 0.23 0.37 0.05
�n;y 0.88 0.65 0.98 0.98
�i;y 0.80 0.83 0.99 0.99
�cs;y 0.88 0.64 -0.87 0.87
�cm;y NA -0.48 -0.98 NA

(i) The manager�s contract is given by (17)-(18), with a share of �xed salary A=�cm= 0:5;
and a weight of aggregate wage bill in the manager�s compensation � = 0:1: The convexity
of the contract is � = 2: The coe¢ cient of the manager�s risk aversion is �m= 0:25:

(ii) Source: Stock and Watson (1999).
(iii) Models�statistics are based on 500 simulations of sample size 200. Variables are expressed

in log-deviations from the steady state and have been de-trended with the HP �lter.

38



Table 2 � Simulations with Alternative Parameterizations
of the Managerial Contract(i)

Panel A Panel B Panel C Panel D

Baseline
High contract
convexity
� = 3

Large salary
component
A=�cm = 0:7

High manager�s
risk aversion
�m = 0:35

Standard Deviations (in percent)(ii)

�y 1.81 1.69 2.17 1.81
�k 0.54 0.39 0.82 0.54
�n 1.42 0.97 2.34 1.42
�i 5.62 4.26 8.66 5.64
�cs 1.39 1.33 1.56 1.38
�cm 6.41 6.42 6.46 6.45
�" (tech. shock) 1.04 1.04 1.04 1.04
�� (sunspot shock) 4.81 4.81 4.81 4.81

Contemporaneous Correlations with Output
�k;y 0.23 0.22 0.28 0.17
�n;y 0.65 0.62 0.76 0.72
�i;y 0.83 0.85 0.87 0.94
�cs;y 0.64 0.82 0.24 0.96
�cm;y -0.48 -0.34 -0.67 -0.15

(i) The manager�s contract is given by (17)-(18). In Baseline parameterization,
the share of �xed salary is A=�cm= 0:5; the weight of aggregate wage bill in the manager�s
compensation is � = 0:1: The convexity of the contract is � = 2: The coe¢ cient of the
manager�s risk aversion is �m= 0:25:

(ii) Models�statistics are based on 500 simulations of sample size 200. Variables are expressed
in log-deviations from the steady state and have been de-trended with the HP �lter.
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Figure 1: Regions of determinacy (white), indeterminacy (light gray) and instability (dark gray)
in case of �xed labor supply (Frisch elasticity ��1 = 0)
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Figure 2: Regions of determinacy (white), indeterminacy (light gray) and instability (dark gray)
in case of variable labor supply (Frisch elasticity ��1 = 0:5)
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Figure 3: Regions of determinacy (white), indeterminacy (light gray) and instability (dark gray)
with Hansen (1985) labor supply (Frisch elasticity ��1 !1)
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Figure 4: Regions of indeterminacy and instability, and optimal contract parameter combinations
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