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In this paper, we investigate the equilibrium behavior of decentralized supply chains with competing retailers
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supply chains with a single supplier servicing a network of (competing) retailers, considering the following
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1. Introduction
We investigate the equilibrium behavior of decentral-
ized supply chains with competing retailers under
demand uncertainty. In such chains, it is important to
determine who controls which decisions and in which
ways the different chain members are compensated.
Of particular interest is the specification of contrac-
tual arrangements between the parties that allows the
decentralized chain to perform as well as a central-
ized one, in which all decisions are made by a single
entity maximizing chainwide expected profits. Such
contracts are referred to as (perfect) coordination mech-
anisms. In this paper, we address these questions in
the context of two-echelon supply chains with a single
supplier servicing a network of (competing) retailers.
As part of the design of coordinating contracts, it is

necessary to identify what type of contract is required
to achieve specific beneficial outcomes. For example,
when can coordination be achieved exclusively via
a linear wholesale-pricing scheme—i.e., with a con-
stant per-unit wholesale price? When does this con-
stant wholesale price need to be differentiated by
retailer, and if so, on what basis? When are nonlin-
ear wholesale-pricing schemes required, with the per-
unit wholesale price discounted on the basis of the
retailer’s order quantity or his annual sales volume?
Many supply chains routinely use a variety of trade
deals to provide incentives for retailers to reduce
their prices and increase sales; see, e.g., Blattberg and
Neslin (1990). Such trade deals include “billbacks”
and “count-recounts,” where the supplier reimburses

the retailers, in whole or in part, for discounts off its
regular retail price for all units ordered or sold dur-
ing a given period of time. The video rental industry
has recently introduced “revenue-sharing” schemes,
where the studios drastically reduce their wholesale
prices to store chains such as Blockbuster in exchange
for a given percentage of the rental revenues. Such
schemes are believed to increase supply-chain-wide
revenues by up to 30%; see, e.g., Shapiro (1998). To
implement these schemes, the chain members find it
worthwhile to retain a third party (e.g., Rentrak) and
reward it with no less than 10% of its revenues, so
as to monitor all rentals.1 Trade deals and revenue-
sharing programs can be viewed as mechanisms to
share the risk between the supplier and the retailers.
They increase in importance as the uncertainty about
the product’s sales increases. Other such risk-sharing
mechanisms include buy-back agreements where the
supplier commits to buy any unsold inventories back
from the retailers at part or all of the original cost; see
Pasternack (1985) and Padmanabhan and Png (1995,
1997).
We address the following general model: Each re-

tailer faces a random demand volume during a given
sales season, the distribution of which may depend
only on its own retail price (noncompeting retailers) or
on its own price as well as those of the other retail-
ers (competing retailers) according to general stochastic

1 Proper specification of the contract parameters continues, how-
ever, to be a challenge, threatening the continuation of these
revenue-sharing schemes; see Peers (2001).
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demand functions. All retailers order a one-time pro-
curement from the supplier at the beginning of the
season.
The simplest model has a single retailer facing de-

mand with a known, exogenously given, distribution,
as in the classical newsvendor problem, and with
a supplier incurring linear production costs. Gen-
eralizing Spengler’s (1950) seminal result on dou-
ble marginalization, Pasternack (1985) showed that
perfect coordination can be achieved with a simple
constant wholesale price only, set equal to the sup-
plier’s per-unit procurement cost, i.e., provided dou-
ble marginalization is avoided. This, of course, results
in an unsatisfactory arrangement for the supplier,
whose profits vanish. As an alternative, Pasternack
proposes a buy-back arrangement under which a con-
stant wholesale price, larger than the per-unit pro-
curement cost, is combined with a constant partial
refund for any unit that remains unsold. Coordination
can be achieved via any one of a continuum of whole-
sale price/buy-back rate combinations. See Lariviere
(1999), Cachon (1999), Tsay et al. (1999), and Taylor
(2002) for an extensive treatment of this model as well
as alternative types of coordination mechanisms.
As stated by Kandel (1996), the situation is con-

siderably more complex when the retailer chooses his
retail price and the demand distribution depends on
this price. Lariviere (1999) quotes Kandel as claim-
ing that no payment scheme with a constant per-unit
wholesale price and buy-back rate induces perfect
coordination, even though Emmons and Gilbert
(1998) showed that under such buy-back contracts,
both the supplier and the retailer may improve their
profits. (The only exception, of course, is the trivial
arrangement under which the wholesale price equals
the supplier’s per-unit procurement cost and her prof-
its are eliminated.)
After verifying formally that, under an endoge-

nously determined retail price, no payment scheme
with a constant per-unit wholesale price (larger than
the supplier’s per-unit procurement cost) and a con-
stant buy-back rate can achieve coordination for any
problem instance, we show that a so-called linear
“price-discount sharing” scheme does. This scheme is
closely related to the more commonly known “bill-
backs” and “count-recounts.” Ailawadi et al. (1999)
demonstrate the prevalence of this type of trade pro-
motions as well as its advantages over other types of
schemes. The payment scheme continues to be com-
bined with the supplier’s commitment to buy back
any of the unsold units at a constant below the per-
unit wholesale price, net of any subsidy.
We show that the same linear price discount

sharing scheme coordinates the chain when dealing
with a network of noncompeting retailers. Under retail
competition, the choices any given retailer makes for

its price and stocking quantity impact not just its own
profit, but that of each of its competitors as well.
This applies even under the simplest possible contrac-
tual arrangements with the supplier, e.g., under con-
stant per-unit wholesale prices. We characterize the
equilibrium behavior of the decentralized chain under
such payment schemes and show that coordination
can, again, be achieved with a price discount sharing
scheme, except that the supplier’s share or subsidy in
the retailer’s discount (from its reference value) now
fails to be proportional with the size of the discount.
While the price discount sharing scheme is univer-
sally applicable, we identify a second scheme, with
constant per-unit wholesale prices, that induces per-
fect coordination under a broad class of demand func-
tions and distributions.
As mentioned, the literature on coordination mech-

anisms in decentralized supply chains with price set-
ting or competing retailers, under demand uncertainty
is sparse. This is in contrast to the literature on deter-
ministic models in which, starting with the single-
retailer, single-period model in the seminal paper by
Spengler (1950), an understanding has been reached
for general infinite-horizon settings with competing
and noncompeting retailers; see Chen et al. (2001),
Bernstein and Federgruen (2003), and the many refer-
ences cited therein. (All of these assume that demands
occur at a constant deterministic rate; some allow for
more general cost structures.) Recall that almost all of
the literature on competitive stochastic systems with
endogenously determined retail prices has focused on
models with a single retailer. Other than the above
references, we mention Li and Atkins (2000), in which,
at the beginning of the period, the supplier and
the retailer simultaneously and without cooperation
choose a production capacity level and retail price,
respectively. The authors show that the decentralized
chain can be coordinated with a quantity discount
scheme combined with the retailer paying a fixed por-
tion of the cost of unused capacity.
The study of oligopoly models with uncertainty

with respect to demands (or certain cost parameters)
was initiated in the economics literature. These mod-
els ignore the problem of mismatches between supply
and demand and the associated costs of overstock-
ing and understocking. (In other words, they assume
that the retailers can make their procurement deci-
sions after observing actual demands.) On the other
hand, this stream of literature incorporates complica-
tions not addressed here, such as asymmetric infor-
mation, information sharing, and signaling. See Vives
(2000, Chapter 8) for an excellent survey.
A second related stream of papers considers com-

petitive newsvendor problems in which the distribu-
tion of the primary demand for each of the firms’
products, as well as the retailer prices, are exogenously
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given. Interdependency and competition between the
firms arise because some or all of the unmet demand
at a given firm is redirected as a secondary demand
stream towards one of the competitors offering a sub-
stitute product. Parlar (1988) and Wang and Parlar
(1994) initiated this type of model, analyzing a two-
and three-firm oligopoly, respectively. Lippman and
McCardle (1997) and Netessine and Rudi (2003) con-
sider models with an arbitrary number of firms and
various joint distributions for the primary demand as
well as various allocation rules for the substitution
or secondary demands. They establish conditions for
the existence of a unique Nash equilibrium. Anupindi
and Bassok (1999) address a model with two firms,
establishing the first (perfect) coordination result for
a decentralized supply chain with uncertain demands
and competing retailers.
Bryant (1980) appears to be the first published

paper to address the setting of our paper, i.e., a com-
petitive oligopoly model with stochastic demands,
endogenously determined prices, and with retailer
procurements and stocking levels determined in
advance of demand realizations. In this model, the
retailers simultaneously announce their prices and
stocking levels; demands arise from a finite customer
population, each with an identical stochastic demand
function. Customers are sequentially released to the
market and select the firm with the lowest price
among those whose inventory has not been exhausted
by prior customers. The author shows that no Nash
equilibrium exists unless the retailers can be par-
titioned into two groups, with the second group
of market “entrants” announcing their pricing and
stocking decisions after the decisions of the first group
are revealed, and unless the number of entrants is suf-
ficiently large. Another such model is Deneckere et al.
(1997), addressing a market with a continuum of iden-
tical retailers offering a completely homogenous prod-
uct. (See also Deneckere et al. 1996 and Deneckere and
Peck 1995 for related models.)
Most directly related to our paper are Birge et al.

(1998), Carr et al. (1999), and Van Mieghem and
Dada (1999). The former consider the special case
of our model with two competing retailers, confining
themselves to a characterization of the equilibrium
behavior in the retailer game under a given pair of
constant wholesale prices. Carr et al. (1999) charac-
terize the price equilibrium in a single-echelon set-
ting where each retailer satisfies demand up to an
exogenously given, albeit random, capacity level. Van
Mieghem and Dada (1999), as part of a larger study of
the value of various types of postponement, analyze
a similar model, except that the retailer’s capacities
are chosen endogenously by the retailers in a first-
stage game, and except that the retailers, offering a

completely homogeneous product, choose sales quan-
tities rather than retail prices (the retailers thus face
Cournot, as opposed to Bertrand, competition).
The remainder of this paper is organized as fol-

lows: Section 2 addresses the model with noncom-
peting retailers, while in §3 we analyze the case of
general competing retailers. All proofs are relegated
to the appendix.

2. Noncompeting Retailers
In this section, we analyze the (single-period) model
in which the supplier sells to N independent retailers.
Each retailer i= 1� � � � �N faces a random demand vol-
ume, the distribution of which depends on his own
price pi only. Let

Di�p� = retailer i’s (random) demand when charg-
ing a retail price p, i= 1� � � � �N .
The Di�p�-variables have a general, but known,

continuous cdf Gi�· � p�, which is differentiable with
respect to p and with inverse cumulative distribution
function (cdf) G−1

i �· � p�. Di�p� is (strictly) stochastically
decreasing in p, i.e., Gi�x � p� >Gi�x � p′� for all x and
p < p′. Moreover, limp→� pE�Di�p�� = 0, i.e., expected
revenues decrease to zero as the price increases to
infinity.
At the start of the period, each retailer i chooses

his retail price pi and yi, the quantity to order from
the supplier. For each retailer, the same uniform price
applies to all units sold. This means that the retail-
ers do not apply price discrimination by segmenting
their markets. Moreover, as, e.g., for catalog retailers,
the sales process does not allow for price adjustments
on the basis of intermediate demand and inventory
observations during the single period. Settings with
price adjustments need to be analyzed with multi-
period models as in Bernstein and Federgruen (2004).
Any unmet demand is lost, while any excess inven-
tory at retailer i can be salvaged to an outside firm at
a given per-unit salvage rate −�< vi <�. The sup-
plier has ample capacity to satisfy all retailer orders
and does so with a constant per-unit procurement cost
ci for retailer i.
Assume first that the supplier charges retailer i a

constant per-unit wholesale price wi, combined with
a commitment to buy back unsold inventory at a
per unit rate bi. To avoid trivial settings, assume
vi < bi <wi and vi < ci, i= 1� � � � �N . First, consider the
case of a single retailer, omitting all subscripts. The
integrated system has the expected profit function

�I�y�p�= �p− c�y− �p− v�E�y−D�p��+� (1)

Similarly, the retailer’s profit function under the con-
stant �w�b�-contract is given by

�R�y�p�= �p−w�y− �p− b�E�y−D�p��+� (2)
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�R is strictly concave in y. Thus, for any retail price
p > w, the retailer’s optimal order quantity is the
unique root of ��R/�y, giving rise to the well-known
newsvendor solution (note that limy→� ��R�y�p�/�y <
0< ��R�0� p�/�y)

yR�p�=G−1
(
p−w

p− b

∣∣∣ p
)
� (3)

Substituting yR�p� in (2), the retailer’s optimal prof-
its can be expressed as a continuous function of his
retail price p only. Note that profits are nonposi-
tive when p = 0 or when p → � (as �R ≤ �p − w� ·
�y − E�y − D�p��+� ≤ �p − w�E�D�p��, and using
limp→� pE�D�p��= 0). Because the profit function is
continuous in p, there exists an optimal price/order
quantity combination �p∗R�yR�p

∗
R��. (We ignore the triv-

ial situation where the retailer is unable to ensure
himself of a positive profit.) By the same arguments,
the integrated system has an optimal solution �pI � yI =
yI �p

I ��, where

yI �p�=G−1
(
p− c

p− v

∣∣∣ p
)
�

In general, it is hard to identify conditions under
which the optimal solution �pI � yI � is unique. On the
other hand, if the random variable D�p� is of the
multiplicative form D�p� = d�p�� for some random
variable �, it follows from the proof of Theorem 3
below that ���p� = ��p�yI �p�� is log concave—hence
unimodal—under the broadly satisfied conditions of
this theorem. In the next section, we characterize in a
more general setting the impact of various parameters
on the optimal retailer choices.
The decentralized system can be coordinated by

choosing w = c and b = v because in this case the
profit functions �R and �I coincide. As mentioned
in §1, this contract is hardly satisfying because it
leaves the supplier with zero profits. We now verify
that no other �w�b�-contract is capable of coordinat-
ing the system. Thus, if an optimal solution �pI � yI � for
the integrated system is to be adopted by the retailer,
it must optimize his expected profit function �R, and
hence it must satisfy the first-order conditions

��R

�y
�pI � yI �= �pI −w�− �pI − b�G�yI � pI �= 0� (4)

��R

�p
�pI � yI �= yI −E�yI −D�pI ��+

− �pI − b�
∫ yI

0

�G

�p
�u � pI � du= 0� (5)

Equations (4) and (5) are a system of two linear
equations in two unknowns �w�b� with a unique solu-
tion. The equation in (5) involves only the variable b,
whose coefficient∫ yI

0

�G

�p
�u � pI � du< 0�

because ��G/�p��u � pI � < 0 by the strict stochastic
monotonicity of D�p�. Thus, (5) has a unique solu-
tion in b which, when substituted into (4), results in a
unique solution for w.) Because the pair �c�v� satisfies
(4) and (5), no other contract with constant wholesale
price and buy-back rate coordinates the system when
the retail price p is endogenously determined. This is
in sharp contrast to the case of an exogenously spec-
ified retail price p, where Pasternack (1985) exhibited
a continuum of coordinating �w�b�-contracts.
We now show that coordination can be achieved

with a linear price-discount sharing (PDS) scheme.
Here, the wholesale price is a linear function of the
retail price, i.e., w=w�p�, and is specified as

w = w0−��p or �w= ��p�

where �p= p0− p and �w=w0−w� (6)

w0 is a constant base or gross wholesale price, p0 an
arbitrary reference value—e.g., the “list price”—and
� > 0 a constant. The PDS scheme is to be combined
with a traditional buy-back arrangement, at a buy-
back rate set at a given constant � below the (net)
wholesale price, i.e.,

b=w− �� (7)

Under the scheme (6)–(7), the supplier compensates
the retailer for every sold unit at the rate of �$
for every dollar the retailer discounts from the ref-
erence value p0. Lal et al. (1996) consider such a
shared price discount scheme—however, restricting
the retailer to one possible discount size only; they
also discuss a cooperative merchandising agreement
in the consumer packaged-goods industry, which
embodies this type of PDS scheme. In an article in
the Sloan Management Review, Ailawadi et al. (1999)
report on an increasing trend towards trade promo-
tions2 and explain that the most effective discount
schemes tie the supplier’s price directly to the retailer
price according to a given PDS scheme. For the spe-
cial case where D�p�= 4�000p−2 with probability one,
they assert that no constant wholesale price that leaves
the supplier with a positive margin will result in
optimal supply-chain-wide performance, nor will any
scheme that offers a single discounted wholesale price
value if the retailer is willing to adopt a retail price
at (or below) the chainwide optimal price level pI .
On the other hand, they propose a specific nonlin-
ear PDS scheme under which perfect coordination is

2 “In 1996, the percentage of retail sales made ‘on deal’ across
40 packaged goods categories included in the Market Fact Book
averaged about 37%, up almost 5% from 1991” (p. 83).
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achieved.3 Our results below show that the simpler,
linear PDS scheme (6) can be used for a given, con-
stant sharing fraction � across the entire price range;
moreover, the fraction � can be chosen arbitrarily
between 0 and 1, giving rise to a continuum of per-
fect coordination schemes. See, however, §3, where a
nonlinear PDS scheme is required under retailer com-
petition. The authors also report that in a series of
interviews, several retail executives in charge of trade
promotions indicate that virtually 100% of their pro-
motions involve PDS schemes instead of traditional
quantity-discount schemes.
The pricing scheme also bears close resemblance to

the traditional “billback” or “count-recount” schemes;
see Blattberg and Neslin (1990, Chapter 11). The only
difference is that in the latter, the supplier adjusts
the base wholesale price only if the retailer reduces
his price. On the other hand, if the reference value
p0 > pI and the scheme induces the retailer to adopt pI ,
this difference is immaterial. For example, it can be
shown that under a price-only contract with a con-
stant wholesale price w> c, the retailer adopts a price
p∗R > pI , an inefficiency resulting from double marginal-
ization. If this is the status quo ante, it makes sense
to choose p0 = p∗R. We will see, however, that coordi-
nation can be achieved under (6)–(7) for an arbitrary
choice of the reference value p0 and a continuum of
�-values in �0�1�. Let

w0 = �p0+ �1−��c and �= �1−���c− v�� (8)

Theorem 1. Let N = 1. (a) For any pricing scheme
with a constant per-unit wholesale price w and constant
buy-back rate b < w, the retailer has an optimal response
�p∗R�y

∗
R = yR�p

∗
R��. However, except for the “trivial” scheme

with w = c and b = v, the decentralized chain generates
expected systemwide profits that are strictly below those
achievable under centralization.
(b) The linear PDS scheme (6), combined with (7), with

base wholesale price w0 and buy-back discount � as in (8),
results in perfect coordination for any reference value p0

and any 0<�< 1.

Equation (A.1) in the proof of Theorem 1 shows that
under the scheme (6)–(7), the fraction of the supply
chain profits earned by the supplier is given by �, and
that of the retailer by �1−��. Participation constraints
for the supplier and the retailer, e.g., ensuring that
their expected profits are in excess of those achieved
prior to coordination, result in a lower bound � and

3 The retailer is fully compensated for any price discounts in the
range from $14 to $12 (�w = �p), but only 75% of retail price dis-
counts in the range from $12 to $8 are shared by the supplier
(�w= 0�75�p) and an increasingly lower percentage for retail price
discounts beyond the $8 value (�w = 0�35�p) for price discounts
below the $5 value.

upper bound ��, respectively. The exact choice of � ∈
��� ��� depends on the chain members’ bargaining
powers, but all such choices result in perfect coordina-
tion. Substituting (8) into (6)–(7), one verifies that w=
c+��p− c� and b = v+��p− v�. A larger value of �
thus results in a larger wholesale price and buy-back
rate, as well as higher profits for the supplier, confirm-
ing empirical observations that suppliers often pre-
fer more generous buy-back commitments, even when
combined with less than equal increases in the whole-
sale price (see, e.g., Padmanabhan and Png 1995).
(That is, �1 < �2 ⇔ w��2�−w��1� < b��2�− b��1� for
any retail price p, because c > v.) Clearly, the higher
wholesale price applies to all units purchased by the
retailer, but the increased buy-back rate applies only
to the unsold ones. Padmanabhan and Png (1995)
report examples of suppliers (e.g., McKesson, a major
national distributor of hospital supplies) offering a
menu of alternative returns policies, in which options
with more generous return privileges are linked to
higher wholesale prices.
The proof of Theorem 1(b) reveals that, under

(6)–(7), �R�p�y� = �1 − ���I�p�y� = �1 − ��R�p�y� −
�1 − ��cy, with R�p�y� the expected revenues (from
direct sales and salvage) earned by the retailer in the
absence of a buy-back agreement. This shows that an
alternative coordination scheme arises when charg-
ing the retailer a wholesale price w = �1 − ��c, but
requiring him to share a fraction � of his revenues
with the supplier. This alternative scheme is equiva-
lent to the PDS scheme in the sense that it generates
identical profits for both firms for any demand real-
ization.4 Recall from §1 that the introduction of such
revenue-sharing schemes in the video rental indus-
try has drastically improved the performance of the
supply chains, even though it requires an outside
party to monitor and report the revenues of the retail-
ers to the studios.5 In contrast, implementation of
the PDS scheme (6) only requires monitoring of the
retail price. This is particularly easy when the retailer
publishes his (uniform) price via publicly avail-
able media such as catalogs, newspapers, magazine
ads, or the Internet.6 In other words, the discount-

4 A third alternative coordination scheme is based on sharing the
revenues from direct sales only, where now the percentage paid to
the supplier is specified as a (nonlinear) function of the retail price;
see Cachon and Lariviere (2001).
5 Shapiro (1998, p. B1) reports: “Blockbuster recently signed a mul-
tiyear pact with the company [Rentrak], whose proprietary infor-
mation system records each and every rental at its clients’ stores
and acts as the go-between for them with the studios. In exchange,
Rentrak gets 10% of rental revenues, with the stores and studios
getting 45% each.”
6 Even in settings outside the one addressed by our model, in which
the retailers use nonuniform prices, the scheme still incents the
retailers to report all sales to which a discount off the reference
value p0 is applied, provided p0 is set sufficiently high.
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sharing scheme avoids the moral hazards associated
with alternatives such as revenue-sharing schemes.7

Finally, the compliance of PDS schemes with state
and federal trade regulations has been tested and
affirmed; see, e.g., South Carolina Revenue Ruling
#94-8 (South Carolina Department of Revenue 1994).8

It is unknown whether, in rental industries, perfect
coordination can be achieved with PDS schemes. In
any case, for rental revenues, where the same phys-
ical unit is rented many times for variable dura-
tions, as opposed to sales of consumable products,
PDS schemes lose their implementation advantages
over revenue-sharing schemes, because even under
uniform pricing transactions need to be monitored
under both types of schemes. This may explain why
revenue-sharing schemes have been implemented for
rental services, in particular the video rental industry
(which typically uses uniform pricing throughout the
season).
Remark 1. In general, scheme (6) cannot be imple-

mented as a traditional quantity-discount scheme, i.e.,
a scheme in which the wholesale price is specified as
a function of the order size or the annual sales vol-
ume. While for any given retail price p the optimal
corresponding order quantity is uniquely specified by

yR�p�= yI �p�=G−1
(
p− c

p− v

∣∣∣ p
)
�

the opposite may fail to be true: A given order quan-
tity may, optimally, correspond with several retail
prices. As an example, take D�p� = �a− !p�� with �
normally distributed with mean 1 and standard devi-
ation s. Then,

y�p�= �a−!p�+ s�a−!p�#−1
(
p− c

p− v

)

with #−1�·� the inverse cdf of a standard normal.
Observe that a lower retail price induces a largermean
and standard deviation of the demand, but it also low-
ers the need for safety stocks. That is, it lowers the
number #−1��p−c�/�p−v�� of required standard devi-
ations. Indeed, y�p� fails to be monotone, i.e., it fails to
have an inverse when, e.g., �= 20, != 1, and s = 0�5.
This implies that the retail price cannot be expressed

7 Indeed, Ailawadi et al. (1999) argue that “Linking manufacturer
price to retailer price rather than the quantity bought (or the
amount sold) by the retailer is a simple solution to the coordina-
tion problem. It is easily understood, administered, and monitored;
it also alleviates many problems and costs involved in other trade
promotions” (p. 91).
8 The ruling states: “A brewery may offer promotions involving
a beer price reduction to wholesalers contingent upon the whole-
salers passing price savings on to retailers, and a wholesaler may
offer promotions involving a beer price reduction to retailers con-
tingent upon the retailers passing price savings on to consumers.”

as a function of the order quantity, so that the PDS
scheme cannot be specified as a traditional discount
scheme.
Turning to the general N -retailer model, Theorem 1

carries over because the integrated profit function �I

is separable in all �pi� yi�-pairs. In particular, no
scheme with constant wholesale prices and buy-back
rates $�wi� bi�% induces coordination except for the
trivial scheme wi = c� bi = v, but the following gen-
eralization of (6)–(7) does. For any given reference
price p0, let �pi = pi − p0. For any 0 < �i < 1, i =
1� � � � �N , let

wi = �ip
0+ �1−�i�c+�i�pi�

bi =wi − �1−�i��c− vi��
(9)

3. General Competing Retailers
In this section, we consider the general case of N
competing retailers. Here, the demand faced by any
retailer i—i.e., the cdf of Di—depends on the entire
price vector p& �Gi�x � p1� � � � � pN � for all i = 1� � � � �N .
The analysis of the decentralized supply chain is
considerably more complex in this case because the
decisions made by any retailer i impact not just his
own expected profits, but those of all other retailers
as well. In the case of noncompeting retailers (§2),
the recommended retailer strategies are dominant, i.e.,
each retailer’s strategy is optimal irrespective of the
strategies chosen by the other retailers. The best that
can be hoped for in the case of competing retailers is
the existence of a Nash equilibrium.
We restrict ourselves to the case where the random

variables Di�p�, i= 1� � � � �N , are of the multiplicative
form Di�p� = di�p��i, with �i a general random vari-
able whose distribution is independent of the price
vector p. Equivalently,

�Gi�x � p�=Gi

(
x

di�p�

)
� (10)

with Gi�·� the cdf of �i and gi�·� its pdf. (Most of the
results in this section carry over to the case of additive
demand shocks, i.e., Di�p� = di�p�+ �i, again with �i
a random variable whose distribution is independent
of the price vector p; see Remark 2 below.) The mul-
tiplicative model implies that the coefficients of vari-
ation are independent of the price vector p. Without
loss of generality, we normalize E�i = 1, i = 1� � � � �N ,
so that EDi�p� = di�p�. Because the products offered
by the retailers are substitutes, we make the standard
assumption that the demand functions di�p� are dif-
ferentiable with

�di�p�

�pi
≤ 0 and

�di�p�

�pj
≥ 0� i �= j� (11)
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In addition, we will assume

Condition (A). For each i = 1� � � � �N , the function
logdi�p� has increasing differences9 in �pi� pj � for all j �= i.

Milgrom and Roberts (1990) identified the Linear,
Logit, Cobb-Douglas, and CES demand functions as
satisfying Condition (A). (It is easily verified that
Condition (A) is essentially weaker than the require-
ment that the expected demand functions di�p� have
increasing differences in �pi� pj �, j �= i themselves.)
Finally, we assume that each retailer i chooses his
price pi from a closed interval �pmini � pmaxi �.
We first characterize the equilibrium (i.e., the set of

retailer orders and prices) when wholesale prices and
buy-back rates are constant. Let �i�p�y� denote the
expected profits for retailer i:

�i�p�y� = �pi −wi�yi − �pi − bi�E�yi −Di�p��
+

= �pi −wi�yi − �pi − bi�E�yi − di�p��i�
+� (12)

While a retailer’s price p impacts on the profits of
all retailers, his order quantity y affects his own prof-
its only. It thus follows from (10) and (12) that for
any price pi, retailer i’s optimal corresponding order
is given by the equation �Gi�yi � p� = Gi�yi/di�p�� =
�pi −wi�/�pi − bi�, or

yi�p�= di�p�G
−1
i

(
pi −wi

pi − bi

)
� (13)

This observation permits us to reduce the noncooper-
ative game in the �p�y�-space to one in which retailers
compete with a single instrument (p) only. We refer
to this game as the reduced retailer game, as opposed
to the original retailer game, in which each retailer
competes with his price variable and order quantity.
Indeed, substituting (13) into (12), we get the retailers’
profits as a function of p only:

��i�p� = di�p�

[
�pi −wi�G

−1
i

(
pi −wi

pi − bi

)

− �pi − bi�E

[
G−1

i

(
pi −wi

pi − bi

)
− �i

]+]

= �deti �p �wi�Li�fi�pi��� where (14)

�deti �p �wi�= �pi−wi�di�p�= retailer i’s profits under
the price vector p, in the deterministic system where no
uncertainty prevails, i.e., demand for retailer i equals
di�p� with probability one so that yi�p�= di�p�,

fi�pi� = �pi −wi�/�pi − bi� = the critical fractile for
retailer i, and

9 A function f �x1� � � � � xN � has increasing differences in �xi� xj � if
f �x1� � � � � x

1
i � � � � � xN � − f �x1� � � � � x

2
i � � � � � xN � is increasing in xj for

all x2i < x1i . If the function f is twice differentiable, the property is
equivalent to �2f/�xi�xj ≥ 0.

Li�f � = G−1
i �f � − f −1E�G−1

i �f � − �i�
+ = G−1

i �f � −
f −1 ∫ G−1

i �f �

−� Gi�u�du = (∫ G−1
i �f �

−� ugi�u�du
)
/f = the factor

by which retailer i’s profits are reduced because of the
prevailing demand uncertainty.
(The second equality in the definition of Li�f � fol-

lows by integration by parts.)
In other words, under a given price vector p in

the market, each retailer i’s expected profits equal the
profit value in the deterministic system multiplied with
a loss factor that depends only on the retailer’s chosen
critical fractile fi and the shape of the cdf of �i. The
following lemma establishes an important property of
this loss factor.

Lemma 1. For all i = 1� � � � �N , the loss factor Li�f �
defined on �0�1�, increases from G−1

i �0� to one as the crit-
ical fractile f increases from zero to one.

In other words, retailer i’s profit is always less than
what would be achieved in the deterministic system,
but the extent of the profit reduction decreases with
the size of the retailer’s critical fractile fi, i.e., as the
cost of understockage �pi −wi� dominates relative to
the cost of overstockage �wi − bi�.

Theorem 2. Assume Condition (A) applies. Fix the
vectors b <w.
(a) There exists a Nash equilibrium p∗ for the reduced

retailer game that arises under the �w�b�-payment scheme,
and �p∗�y�p∗�� is a Nash equilibrium in the original game.
(b) If the reduced retailer game has multiple Nash equi-

libria, these equilibria constitute a sublattice of �N . In par-
ticular, there exists a smallest and largest equilibrium p
and �p, respectively.
(c) The equilibrium �p is preferred by all N retailers

among all Nash equilibria.

Remark 2. Theorem 2 continues to apply in the
model with additive demand shocks. Following the
analysis above, we verify that, in this model, ��i�p�=
�deti �p �wi�+ �pi −wi�Li�fi�pi��. The proof in this case
is thus analogous to the proof given in the appendix.
Because under Condition (A) the retailer game is

“log-supermodular”—see Topkis (1998)—it is well
known that both p and �p can be computed easily
by a so-called tatônnement or round-robin scheme:
Starting with an arbitrary price vector p0 ≤ p or
p0 ≥ �p, e.g., p0 = pmin = �pmin1 � � � � � pminN � or p0 = pmax =
�pmax1 � � � � � pmaxN �, in the kth iteration pk is obtained
from pk−1 by determining pki = argmaxpi ��i�pi� p

k−1
−i �;

the sequence $pk% converges to p and �p, respectively.
A unique equilibrium thus exists if and only if the
algorithm converges to the same point when starting
at pmin and at pmax.
We have not encountered any instances with mul-

tiple equilibria. Moreover, let

�pmini =max$pmini �2wi − bi%� (15)
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The following theorem guarantees that a unique Nash
equilibrium exists in the (possibly restricted) price
space

∏N
i=1��pmini � pmaxi �, provided two conditions are

satisfied. (The restriction pi ≥ �pmini is equivalent to
the cost of understockage pi − wi ≥ wi − bi, the cost
of overstockage. This assumption applies, at least in
equilibrium, to almost every industry: Virtually with-
out exception, retailers restrict their price choices
to values under which the cost of understockage
exceeds that of overstockage—i.e., under which they
are incented to provide a fill rate of at least 50%.) The
first condition is the most generally known sufficient
condition for a unique Nash equilibrium to exist in
the deterministic retailer game; see, e.g., Milgrom and
Roberts (1990) and Vives (1990):

(D) − �2 log�deti �p �wi=bi�

�p2i
≥∑

j �=i

�2 log�deti �p �wi=bi�

�pi�pj
�

i=1�����N �

Condition (D) is satisfied for all of the above stated
classes of demand functions $di�p�% with minor
parameter restrictions; see Bernstein et al. (1999).
The second condition provides a restriction for the

distributions of the random variables $�i%:

(S) ,i�x�
def=

[
−2x+

�Gi�x�

gi�x�

]∫ x

−�
ugi�u�du− �Gi�x�x

2≤0�
for all x≥mi� i=1�����N�

where mi = the median of the distribution Gi. This
condition is, e.g., satisfied for all distributions whose
hazard rate h�x�

def= g�x�/ �G�x� ≥ 1/2x for all x ≥ mi.
This class includes most of the commonly used dis-
tributions, e.g., the exponentials and all normals with
mean one and standard deviation s ≤ 1. Condition (S)
is also satisfied for all power distribution, i.e., when
Gi�x� is of the form Gi�x� = ��ki + 1�/ki�−kixk

i for any
constant ki ≥ 0 and 0≤ x≤ �ki + 1�/ki.
Theorem 3. Assume Conditions (A), (D), and (S)

apply. The retailer game that arises under any given �w�b�-
payment scheme has �p as the unique Nash equilibrium in
the (possibly restricted) price space

∏N
i=1��pmini � pmaxi �.

Recall from Theorem 2(c) that, even in the pres-
ence of multiple equilibria, �p is the equilibrium that
is preferred by all N retailers. Moreover, as explained
above, the restriction pi ≥ �pmini applies, at least in equi-
librium, to almost every industry. Thus, markets tend
to converge to �p, the unique equilibrium in the (possi-
bly restricted) price space and the one that is preferred
by all retailers.
We now investigate what impact the wholesale

prices and buy-back rates have on the equilibrium. In
the deterministic model, it is well known (see, e.g.,
Milgrom and Roberts 1990, Topkis 1998, and Vives

1990) that an increase in one of the wholesale prices
results in an increase of all equilibrium retailer prices,
provided Conditions (A) and (D) are satisfied. We
show that this result continues to apply in the general
stochastic model, under Conditions (A) and (D) and a
strengthening of Condition (S) as follows:

�Sw� ,i�x�
def=

[
−x+

�Gi�x�

gi�x�

]∫ x

−�
ugi�u�du− �Gi�x�x

2 ≤ 0
for all x≥mi� i= 1� � � � �N �

(Recall that we identified Condition (S) as a gen-
eral sufficient condition to guarantee the existence
of a unique Nash equilibrium.) Similarly, one would
expect that an increase in one of the buyback rates,
say bi, will result in a decrease of all retailers’ equilib-
rium prices: The increase in bi results in an increase of
retailer i’s profit margin under the given retailer price;
the increased profit margin allows retailer i to reduce
his price, which induces all competitors offering sub-
stitutable products to reduce their price as well.
Indeed, we prove that this conjecture holds, again
under Conditions (A), (D), and a further strengthen-
ing of (S), as follows:

�Sb� For all i= 1� � � � �N and all x≥mi�

,i�x�
def=

[
−
(
2− 1

Gi�x�

)
x+

�Gi�x�

gi�x�

]∫ x

−�
ugi�u�du

− �Gi�x�x
2+

∫ x

−� ugi�u�du

Gi�x�
≤ 0�

Clearly, (Sb) ⇒ (Sw) ⇒ (S) because Gi�x� ≤ 1. Condi-
tion (Sw) continues to hold for all exponentials, nor-
mals with mean one, and standard deviation s ≤ 1,
as well as the power distributions. Likewise, Condi-
tion (Sb) holds for all exponentials and power dis-
tributions. For normals with mean one and standard
deviation s ≤ 1, it holds for all x≥ 1�87. (For example,
when s = 1, the condition is satisfied as long as each
retailer adopts a safety stock of at least 1.8 standard
deviations.)

Theorem 4. Assume Conditions (A) and (D) apply.
(a) Under Condition (Sw), the retailer game has a

unique Nash equilibrium in which all retailer prices in p∗

increase when one or more of the wholesale prices in w
increase.
(b) Under Condition (Sb), the retailer game has a unique

Nash equilibrium in which all retailer prices in p∗ decrease
when one or more of the buy-back rates in b increase.

In the absence of retailer competition, we showed
that the chain can be coordinated with a simple linear
PDS scheme. We now show that with price compe-
tition, perfect coordination can still be induced with
a PDS scheme, albeit that this scheme now requires a
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nonlinear component. As before, let ��I�p� denote the
expected profits in the integrated system under the
price vector p and optimal corresponding order quan-
tities {yI

j �p�, j = 1� � � � �N }. Analogous to (13), one ver-
ifies that

yI
j �p�= dj�p�G

−1
j

(
pj − cj

pj − vj

)
� j = 1� � � � �N �

Analogous to the derivation of (14), it is now easily
verified that

��I�p�=
N∑
j=1

�detI� j �p�Lj

(
pj − cj

pj − vj

)
� (16)

where, for j = 1� � � � �N , �detI� j �p�
def= �pj −cj �dj�p� denotes

the profits obtained in the deterministic integrated sys-
tem for sales at retailer j , and where Lj is the factor
by which the profits arising from sales at retailer j are
reduced due to the demand uncertainty. Recall from
(13) that under a PDS scheme $wj�pj�� bj �pj �%,

yj�p�= dj�p�G
−1
j

(
pj −wj�pj�

pj − bj�pj �

)
� j = 1� � � � �N �

Thus, to induce perfect coordination, it is desirable to
ensure that under any prevailing price vector p, each
retailer j adopts an order quantity yj�p�= yI

j �p�, which
is equivalent to the equation

G−1
j

(
pj − cj

pj − vj

)
=G−1

j

(
pj −wj�pj�

pj − bj�pj �

)
�

and by the monotonicity of the inverse cdf,

pj −wj�pj�

pj − bj�pj �
= pj − cj

pj − vj

� j = 1� � � � �N � (17)

In other words, the pricing scheme must ensure that
the retailers face the same critical fractile in the decen-
tralized system as they do in the integrated system.
Under (17), it follows from (14) that for each retailer
i= 1� � � � �N ,

��i�p�= �pi −wi�di�p�Li

(
pi − ci
pi − vi

)
� (18)

Let pI denote an optimal price vector for the inte-
grated system. We now design the pricing scheme
as an application of Groves’ (1973) mechanism. This
means that we ensure for each retailer i that when all
other retailers’ prices are chosen as in pI , his profit
function in the decentralized system is a monotone
transformation of the reduced integrated profit func-
tion, i.e., ��i�pi� p

I
−i� = /i� ��I�pi� p

I
−i�� for some mono-

tone transformation /i& �→�. More specifically, we
choose /i as an affine transformation, as follows:

��i

(
pi� p

I
−i

)= �1−�i�
[ ��I

(
pi� p

I
−i

)−Ci

]
� (19)

where 0<�i < 1, and

Ci =
∑
j �=i

(
pIj − cj

)
dj�p

I �Lj

(
pIj − cj

pIj − vj

)

represents the optimal expected profits in the inte-
grated system derived from all sales excluding those
at retailer i. Substituting (18) and (16) into (19) and
rearranging the terms, we obtain

wi = �ipi + �1−�i�ci + �1−�i�

·∑
j �=i

(
pIj − cj

) [dj�p
I �− dj

(
pi� p

I
−i

)]
di

(
pi� p

I
−i

)
Lj

(
pIj − cj

pIj − vj

)

Li

(
pi − ci
pi − vi

) �

Choosing an arbitrary reference price value p0i (e.g.,
p0i = pIi , as the list price or recommended retailer
price), the wholesale-price scheme can be rewritten as

wi = w0
i +�i�pi − �1−�i�

·∑
j �=i

(
pIj − cj

) [dj

(
pi� p

I
−i

)− dj�p
I �
]

di

(
pi� p

I
−i

)
Lj

(
pIj − cj

pIj − vj

)

Li

(
pi − ci
pi − vi

) � (20)

where w0
i = �ip

0
i + �1 − �i�ci and �pi = pi − p0i . The

scheme thus generalizes the linear PDS scheme for
noncompeting retailers. The competitive dynamics
between the retailers, in particular the impact any
retailer’s price decision has on the sales of all other
retailers, induces the need for a nonlinear correction
term, the magnitude of which is directly related to
the magnitude of the cross effects �dj/�pi, j �= i, in
the demand functions, because dj�pi� p

I
−i� − dj�p

I � =∫ pi
pIi
�dj/�pi�u�p

I
−i� du. Note that when retailer i chooses

his price pi > pIi , the correction term is negative, i.e.,
the wholesale price is adjusted downwards compared
to its value in the noncompetitive model. On the
other hand, when the retailer sets his price too low,
i.e., pi < pIi , the wholesale price is adjusted upwards
compared to its value in the absence of competition.
In equilibrium, when pi = pIi , the correction term van-
ishes and the wholesale prices (buy-back rates) are
given by the same weighed averages of the retailer
price and per-unit procurement cost (salvage value)
as in the noncompetitive model. We conclude:

Theorem 5. For any vector of price discount shares �,
0 < � < 1, the pair of vectors �pI � yI � is a Nash equi-
librium in the retailer game induced by the wholesale
PDS scheme (20) (and corresponding buy-back rates deter-
mined via (17)). In particular, the scheme induces perfect
coordination, with equilibrium wholesale prices and buy-
back rates given by ci < w∗

i = �ip
I
i + �1− �i�ci < pIi and

vi < b∗i = �ip
I
i + �1−�i�vi <w∗

i .
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The question remains whether perfect coordina-
tion can be achieved with a set of constant wholesale
prices w∗ and buy-back rates b∗. Theorem 1 shows
that in the absence of competition, the only such
scheme has w∗

i = ci and b∗i = vi for all i = 1� � � � �N ,
and this scheme is hardly appealing because it elim-
inates the supplier’s profits entirely. In the pres-
ence of competition, the following theorem affirms
the existence of a coordinating scheme with con-
stant wholesale prices, provided conditions apply that
guarantee the existence of a unique price equilibrium
that increases in the vector of wholesale prices. (Recall
that Theorem 4(a) identifies a broad class of demand
distributions under which this is guaranteed.) More-
over, the coordinating vector of wholesale prices w∗

satisfies the desired inequalities ci < w∗
i < pIi for all

i = 1� � � � �N , thus invoking double marginalization as
a mechanism to induce, rather than prohibit, perfect
coordination.

Theorem 6. Assume Conditions (A), (D), and (Sw)
apply, and pI is an interior point of the feasible domain.
(a) There is a constant vector of wholesale prices w∗,

with c ≤w∗ < pI , which in combination with the buy-back
rates b∗ = v induces perfect coordination.
(b) If, in addition, �di/�pj > 0 for j �= i, ci < w∗

i < pIi
for all i= 1� � � � �N .

Remark 3. If the inequality in (Sw) is strict, one eas-
ily verifies from the above proof that the coordinating
vector of wholesale prices w∗ is unique.
We have thus identified two possible coordination

schemes. The constant wholesale-pricing scheme is
clearly simpler than the PDS scheme. For the latter, a
wholesale price table needs to be offered to the retail-
ers as opposed to a single cost value. Such wholesale
price tables directly tying the wholesale price to dif-
ferent retail price ranges are commonly used; see the
abovementioned Sloan Management Review article by
Ailawadi et al. (1999) for a discussion and concrete
examples. A table represents a step-function approxi-
mation for the general nonlinear scheme (20). As with
all such approximations, a proper balance needs to
be found between accuracy and complexity, i.e., the
number of price ranges in the table. The constant
wholesale-pricing scheme has the additional advan-
tage of ensuring that the pair of vectors �pI � yI � arises
as a unique retailer equilibrium while the PDS scheme
may give rise to alternative Nash equilibria. On the
other hand, the constant wholesale-pricing scheme
can only be applied for the broad, though somewhat
restrictive, class of demand functions and distribu-
tions implied by Conditions (A), (D), and (Sw), while
the PDS scheme is always applicable. More impor-
tantly, the constant-pricing scheme allows for only a
single vector of wholesale prices w∗ (see Remark 3)
which, as shown in the proof of Theorem 6, may result

in very small or zero margins for the supplier when
the competitive cross effects in the demand functions
(�dj/�pi, j �= i) are small or zero, respectively. The
PDS scheme allows for a continuous menu of pric-
ing schemes by varying the share parameters �i from
0 to 1. The retailers may prefer a contract with a value
of � close to one, resulting in a low gross margin but
a high buy-back rate and correspondingly small pur-
chasing risk.

Appendix. Proofs
Proof of Theorem 1. Part (a) is shown in §2. (b) Replace

in (2), w by (6) and b by (7), with w0 and � specified as in
(8):

�R�p�y� = �p−w�y− �p−w+ ��E�y−D�p��+

= �p−w0−��p− p0��y− [
p−w0−��p− p0�

+ �1−���c− v�
]
E�y−D�p��+

= �1−���p− c�y− [
�1−���p− c�

+ �1−���c− v�
]
E�y−D�p��+

= �1−���I �p�y�� (A.1)

Thus, any optimal solution �pI � yI � of �I�·� ·� optimizes �R

as well. �

Proof of Lemma 1. As a function of xi = G−1
i �fi�, an

increasing function of fi, the loss factor can be written as
Li�xi�= �

∫ xi
−� ugi�u�du�/Gi�xi�, with

L′
i�xi� =

(
xigi�xi�Gi�xi�− gi�x�

∫ xi

−�
ugi�u�du

)/
G2i �xi�

= gi�xi�E�xi − �i�
+/G2i �xi� > 0�

Moreover,

lim
f↘0

Li�f � = lim
f↘0

d
(∫ G−1

i �f �

−� ugi�u�du
)

df

= lim
f↘0

G−1
i �f �gi

(
G−1

i �f �
) 1
gi

(
G−1

i �f �
) =G−1

i �0��

while limf↗1 Li�f �=
∫ �
−� ugi�u�du= 1 because E�i = 1. �

Proof of Theorem 2. To prove parts (a) and (b), we
show that the reduced retailer game is log-supermodular;
see Milgrom and Roberts (1990). Because each of the retail-
ers competes with a single instrument chosen from a com-
pact set, it suffices to show that for all i= 1� � � � �N , log ��i�p�
has increasing differences in �pi� pj � for all j �= i. By (14),

log ��i�p�= logdi�p�+ log�pi −wi�+ logLi�fi�pi��� (A.2)

The required property follows from Condition (A) and the
fact that the second and third terms in (A.2) only depend
on the variable pi. To prove part (c), we show that retailer i
prefers the price vector �p over all p ≤ �p in general, and
hence, by part (b), over all other Nash equilibria in partic-
ular. Note from (11) and (14) that ��i�p� is increasing in pj
for all j �= i. Thus, for all p ≤ �p, ��i�pi� p−i� ≤ ��i�pi� �p−i� ≤
��i��pi� �p−i�, where the second inequality follows from the fact
that �p is a Nash equilibrium. �
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Proof of Theorem 3. Because (A) applies, the retailer
game has a Nash equilibrium, by Theorem 2. Uniqueness
follows from Milgrom and Roberts (1990) if

−�2 log ��i�p�

�p2i
≥∑

j �=i

�2 log ��i�p�

�pi�pj
�

(Note that the condition is analogous to (D).) Let �Li�pi�
def=∫ G−1

i �fi�pi��

−� ugi�u�du. By (14),

log ��i�p� = log�pi −wi�di�p�− log fi�pi�+ log �Li�pi�

= log�pi −wi�di�p�+ log
pi − bi
pi −wi

+ log �Li�pi�

= log�pi − bi�di�p�+ log �Li�pi�

= log�deti �p �wi = bi�+ log �Li�pi�� (A.3)

In view of (D) and the fact that the second term to the right
of (A.3) depends only on retailer i’s own price pi, it suffices
to show that ��2 log �Li�pi��/�p

2
i ≤ 0. One easily verifies that

� log �Li�pi�

�pi
= �wi − bi��pi − bi�

−2G−1
i �fi�pi��

�Li�pi�
� (A.4)

�2 log �Li�pi�

�p2i

= �wi − bi�

�L2i �pi�
[{

−2G
−1
i �fi�pi��

�pi − bi�
3

+ �wi − bi�

�pi − bi�
4gi

(
G−1

i �fi�pi��
)
}

· �Li�pi�−
�wi − bi�

�pi − bi�
4

[
G−1

i �fi�pi��
]2]

= �wi−bi��pi−bi�
−3

�L2i

[(
−2xi+

�G�xi�

g�xi�

)∫ xi

−�
ugi�u�du−x2i �G�xi�

]
�

substituting xi = G−1
i �fi�pi��. By Condition (S), we con-

clude that ��2 log �Li�pi��/�p
2
i ≤ 0, because xi ≥mi as fi ≥ 1/2

by (15). �

Proof of Theorem 4. (a) Because (Sw)⇒ (S), a unique
Nash equilibrium p∗ exists by Theorem 3. By Milgrom
and Roberts (1990), it suffices to show that �2 log ��i�p�/
�pi�wi ≥ 0 for all i = 1� � � � �N . By (A.3), this is equivalent
to �2 log �Li�p�/�pi�wi ≥ 0 because the first term in (A.3) does
not depend on w. Using (A.4), we obtain

�2 log �Li�pi�

�pi�wi

= �pi − bi�
−2

�L2i �pi�
[(

G−1
i �fi�pi��−

wi − bi
pi − bi

1
gi

(
G−1

i �fi�pi��
)
)
�Li�pi�

+ wi − bi
pi − bi

(
G−1

i �fi�pi��
)2]

= �pi − bi�
−2

�L2i �pi�
[(

x−
�Gi�x�

gi�x�

)∫ x

−�
ugi�u�du+ x2 �Gi�x�

]
≥ 0�

again substituting x=G−1
i �fi�≥ 1 because fi > 1/2, by (15).

(b) Because (Sb)⇒ (S), the proof is analogous to that of
part (a), and it suffices to show that

�2 log ���p�

�pi�bi
= �2�deti �p � bi�

�pi�bi
+ �2 log �Li�pi�

�pi�bi

= 1
�pi − bi�

2
+ �2 log �Li�pi�

�pi�bi
≤ 0�

Using (A.4), we obtain

�2 log �Li�pi�

�pi�bi

= �pi − bi�
−2

�L2i �pi�
[(

−G−1
i �fi�pi��+

(
wi − bi
pi − bi

)(
pi −wi

pi − bi

)

· 1
gi

(
G−1

i �fi�pi��
)
)
�Li�pi�

+ 2
(
wi − bi
pi − bi

)
G−1

i �fi�pi���Li�p�

−
(
wi − bi
pi − bi

)(
pi −wi

pi − bi

)(
G−1

i �fi�pi��
)2]

= G�x��pi − bi�
−2

�L2i �pi�
[(

−
(
2− 1

Gi�x�

)
x+

�Gi�x�

gi�x�

)

·
∫ x

−�
ugi�u�du− x2 �Gi�x�

+
∫ x

−� ugi�u�du

G�x�

]
≥ 0�

again substituting x=G−1
i �fi�. �

Proof of Theorem 5. Fix i = 1� � � � �N . Because pI max-
imizes ��I , pIi maximizes ��I�·� pI−i� as well as ��i�·� pI−i�,
its monotone transformation (19). This implies that pI is
a Nash equilibrium in the retailer game induced by the
scheme (20). �

Proof of Theorem 6. (a) Fix b∗ = v. Theorem 2 shows
that the functions log ��i�·� pI−i � w� are unimodal for all
choices of w (recall that (Sw) implies (S)). Thus, if for some
vector w∗, � log ��i�p

I
i � p

I
−i � w∗

i �/�pi = 0 for all i = 1� � � � �N ,
pI is a Nash equilibrium in the retailer game induced
by the �w∗� b∗ = v�-scheme. By Theorem 4, we know that
�� log ��i�/�pi is an increasing function of wi. It therefore suf-
fices to show that

� log ��i

(
pIi � p

I
−i �wi = ci

)
�pi

≤ 0 and (A.5)

lim
wi↘pIi

� log ��i

(
pIi � p

I
−i �wi

)
�pi

> 0� (A.6)

Recall that

��i�p�= �pi −wi�di�p�Li

(
pi −wi

pi − vi

)
�

while

��I�p�= �pi−ci�di�p�Li

(
pi − ci
pi − vi

)
+∑

j �=i

�pj−cj �dj �p�Lj

(
pj − cj

pj − vj

)
�

Therefore,

� ��i�p
I
i � p

I
−i �wi = ci�

�pi
≤ � ��I�p

I �

�pi
= 0� (A.7)

where the inequality follows from �dj/�pi ≥ 0 for all j �= i,
and the equality from the fact that pI is an interior
maximum of the function ��I . (A.5) thus follows from the
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chain rule of differentiation, while by Lemma 1,

� log ��i

(
pIi � p

I
−i �wi

)
�pi

= �di�p
I �/�pi

di�p
I �

+ 1
pIi −wi

+
L′
i

(
pIi −wi

pIi − vi

)

Li

(
pIi −wi

pIi − vi

) wi − bi(
pIi − bi

)2

≥ �di�p
I �/�pi

di�p
I �

+ 1
pIi −wi

�

thus verifying (A.6).
(b) If �dj/�pi > 0, the inequality in (A.7), and hence that

in (A.5), is strict, implying that w∗
i > ci. �
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