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W e address a fundamental two-echelon distribution system in which the sales volumes 
of the retailers are endogenously determined on the basis of known demand functions. 

Specifically, this paper studies a distribution channel where a supplier distributes a single 
product to retailers, who in turn sell the product to consumers. The demand in each retail 
market arrives continuously at a constant rate that is a general decreasing function of the 
retail price in the market. We have characterized an optimal strategy, maximizing total sys- 
temwide profits in a centralized system. We have also shown that the same optimum level 
of channelwide profits can be achieved in a decentralized system, but only if coordination is 
achieved via periodically charged, fixed fees, and a nontraditional discount pricing scheme 
under which the discount given to a retailer is the sum of three discount components based 
on the retailer's (i) annual sales volume, (ii) order quantity, and (iii) order frequency, respec- 
tively. Moreover, we show that no (traditional) discount scheme, based on order quantities 
only, suffices to optimize channelwide profits when there are multiple nonidentical retailers. 
The paper also considers a scenario where the channel members fail to coordinate their deci- 
sions and provides numerical examples that illustrate the value of coordination. We extend 
our results to settings in which the retailers' holding cost rates depend on the wholesale 

price. 
(Coordination; Pricing; Quantity Discounts; Supply Chain Management) 

1. Introduction 
A production and distribution channel often encom- 

passes independent firms or decentralized divisions 
of the same firm. The channel members typically 
optimize their own performance based on locally 
available information. Driven by competitive pres- 
sures and enabled by modern information technology, 
many supply chains have come to realize that their 
overall performance can be improved dramatically by 
employing novel mechanisms to coordinate decisions. 

Traditional mechanisms to optimize the overall 
channel performance include vertical or horizontal 
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integration, supply chain partnerships such as vendor 

managed replenishments, contracts specifying deci- 
sion rules for all channel members, and profit-sharing 
schemes. See Jeuland and Shugan (1983), Johnston 
and Lawrence (1988), Tirole (1988), and Buzzell and 

Ortmeyer (1995) for discussions of these mechanisms 
and their limitations. The preferred way to achieve 
coordination is often to maintain decentralized decision 

making but to structure the costs and rewards of all 
members so as to align their objectives with the sys- 
temwide objective, i.e., to identify a coordination mech- 
anism. If the decentralized cost and reward structure 
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results in channelwide profits equal to those under 
a centralized system, the coordination mechanism is 

perfect. 
We consider the following two-echelon system. A 

supplier distributes a single product to multiple retail- 
ers who in turn sell to consumers. The retailers serve 

geographically dispersed, heterogeneous markets, in 
which demands occur continuously at a rate that 

depends on the price charged by the retailer according 
to a general demand function. The supplier replen- 
ishes his inventory through orders (purchases, pro- 
duction runs) from a source with ample supply. If the 

system operates in a decentralized manner, the sup- 
plier charges a wholesale price (schedule) and makes 
its own replenishment decisions, each of the retailers 
determines its retail price as well as its replenishment 
policy from the supplier, and all parties maximize 
their own profit functions. (Our model applies equally 
to settings where the "supplier" and the "retailers" 

represent different divisions of the same firm, each 

operating as an independent profit center.) 
The costs consist of holding costs for the invento- 

ries at the supplier and the retailers, and fixed and 
variable costs for their orders. For each retailer order, 
the supplier incurs a fixed order-processing cost and 
the retailer incurs a setup cost. We initially assume, as 
in most standard inventory models, that the holding- 
cost rates are exogenously specified parameters. (The 
results carry over to the case where the retailer 

holding-cost rates are functions of the wholesale price, 
see ?8.) Our model permits an additional cost compo- 
nent: The supplier may incur a specific annual cost for 

managing each retailer's needs and transactions. In 
the consumer electronics industry, for example, some 

suppliers establish a "management team" of logistics 
managers and sales and production representatives 
for each of their major retailer accounts to monitor 
the retailers' needs, transactions, and forecasts, and to 

negotiate and implement sales and logistical terms, 
etc. The same management team may be devoted 

exclusively to a single retailer account or to multi- 

ple accounts. We model the "management costs" by 
a concave function of the retailer's annual sales vol- 
ume, reflecting economies of scale. 

The retailers are nonidentical, i.e., they can have 
different demand functions and cost parameters. All 

demand functions and cost parameters are stationary 
and common knowledge among the channel mem- 
bers. Extensions to settings with asymmetric informa- 
tion, as in Corbett and de Groote (2000), are worthy 
of study. 

We first characterize the solution to the centralized 

system with a central planner who makes all pric- 
ing and replenishment decisions so as to maximize 
the channelwide profits. We then show that the cen- 
tralized solution can be realized in a decentralized 

system if the supplier offers a discount from a list 

price based on the sum of three discount components; 
each is based on a single retailer characteristic, i.e., 
(1) annual sales volume, (2) order quantity, and (3) order 

frequency. The first two discount components have 
been widely studied in the marketing, operations, and 
industrial organization literature, but this appears to 
be the first model in which order-frequency-based dis- 
counts arise as an essential component in the coor- 
dination mechanism. Under this pricing scheme, the 
centralized solution emerges as a strong type of equi- 
librium in the decentralized system. 

We also show, with simple counterexamples, that 
traditional order-quantity discount schemes alone 

(pricing rules that determine discounts on an order- 

by-order basis as a function of the absolute order size, 
such that the average price per unit decreases with 
the order size) do not guarantee perfect coordina- 
tion. While virtually all of the operations management 
literature has focused on traditional order-quantity 
discounts, in practice the vast majority of discount 
schemes are based on other criteria. In a recent field 

study Munson and Rosenblatt (1998) document that 
no less than 76% of the study participants experi- 
ence discount plans that "aggregate over time," i.e., 
where the discount is based on the annual sales vol- 
ume. They also document the prevalence of schemes 
where a discount is given "for every extra week's 
worth of sales that is added to an order" (p. 360), 
as well as schemes based on multiple criteria, e.g., 
annual sales volumes as well as individual order 
sizes. The authors conclude that new models are 
needed to "suggest schedules proposing business vol- 
ume discounts aggregated over products and time 
to help suppliers appropriately parameterize sched- 
ules for these increasingly common quantity-discount 
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aggregations" (p. 365), and "to address the increas- 

ing practice of quantity-discount combinations, e.g., 
per-purchase, per-item discounts combined with time 

aggregation" (p. 365). The prevalence of discounts 
based on annual sales volumes has also been docu- 
mented in the economics literature. See, e.g., Brown 
and Medoff (1990) and Lilien et al. (1992) for a gen- 
eral discussion of different types of discount schemes. 

The discount scheme usually needs to be comple- 
mented with periodic fixed fees from each of the 
retailers to the supplier. The combined scheme is usu- 

ally referred to as a block tariff, see, e.g., Oi (1971) 
and Schmalensee (1982). The fixed fees clearly do 
not affect the total profits of the supply chain or the 

.parties' operational policies. These fees are, however, 
essential to achieve a proper allocation of the channel 

profits; see ?5 below. 
It is of interest to compare the performance of 

the supply chain under an optimal centralized strat- 

egy (or equivalently in a decentralized system with 
the above perfect coordination mechanism) with that 
of more typical decentralized chains without proper 
coordination. One important benchmark for the value 
of coordination arises when one of the parties in 
the chain, e.g., the supplier, is able to specify the 
terms (i.e., the wholesale price) unilaterally, so as to 
maximize his own profits. We consider two Stackel- 

berg games with the supplier as the leader and the 
retailers as followers. In one, the supplier sets a con- 
stant wholesale price, and in the other, the supplier 
offers an order-quantity discount scheme with one 

breakpoint. The differences between the channelwide 

profits in these Stackelberg games and those in the 
coordinated system represent two possible measures 
of the value of coordination. Numerical examples sug- 
gest that the value of coordination can be significant. 

The marketing literature on channel coordination 
focuses on pricing decisions. Jeuland and Shugan 
(1983) consider a channel with one supplier and one 
retailer, without inventory replenishment considera- 
tions. There, a simple quantity discount based on 
the annual sales volume results in perfect coordina- 
tion. Moorthy (1987) points out that perfect coordi- 
nation can also be achieved with a simple two-part 
tariff, i.e., the supplier sells the goods to the retailer 
at its marginal cost and charges a fixed franchise fee. 

These mechanisms are designed to eliminate dou- 
ble marginalization (Spengler 1950). Ingene and Parry 
(1995) generalize the above model to multiretailer 

settings. 
The operations literature on channel coordination, 

on the other hand, has until recently been confined 
to replenishment decisions, assuming that all demand 

processes are exogenously given. Except for Lal and 
Staelin (1984), this literature restricts itself to channels 
with a single retailer (or multiple identical retailers). 
Various mechanisms have been proposed to induce 
the retailer to adopt the globally optimal order quan- 
tity, effectively compensating the retailer for devi- 

ating from his locally optimal order quantity, see, 

e.g., Crowther (1964), Monahan (1984), and Lee and 
Rosenblatt (1986). Dealing with multiple noniden- 
tical retailers, Lal and Staelin (1984) and Joglekar 
and Tharthare (1990) propose different coordination 
mechanisms that are based on order-quantity dis- 
counts and do not necessarily achieve the central- 
ized optimum. See Dolan (1987), Boyaci and Gallego 
(1997), Cachon (1998), Lariviere (1998), Munson and 
Rosenblatt (1998), and Tsay et al. (1998) for further 
reviews. 

Weng (1995) represents one of the first attempts to 
combine the above two streams of research. We gen- 
eralize his model with a single retailer or multiple 
identical retailers to allow for an arbitrary number 
of nonidentical retailers. Although a scheme using an 

order-quantity discount and a periodic franchise fee 
suffices to achieve perfect coordination in the setting 
studied by Weng, we show that when the retailers 
are not identical, such a scheme is not guaranteed to 
coordinate the channel. 

The remainder of the paper is organized as follows. 
Section 2 introduces the model. Section 3 considers 
the centralized system. Section 4 shows that order- 

quantity discounts alone are insufficient to guarantee 
perfect coordination when retailers are nonidentical. 
Section 5 describes our coordination mechanism. Sec- 
tion 6 analyzes the two Stackelberg games. Section 7 
contains the numerical examples, and ?8 considers an 
alternative model of retailer holding costs. 
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2. Model 
A supplier distributes a single product to N retail- 
ers, who in turn serve geographically dispersed (thus 
independent) retail markets. The consumer demand 
in each retail market occurs continuously at a con- 
stant rate, which is determined by the retail price 
charged in the market in accordance with a general 
time-invariant (i.e., stationary) demand function. The 
retail price in each market, once determined, remains 
constant over time. All demands must be satisfied 
without backlogging. The supplier and the retailers 
are independent firms, and each firm has the objec- 
tive to maximize its long-run average profits. 

The supplier replenishes its inventory from a 
source with no capacity limit. The retailers place 
orders with the supplier. All replenishment orders 
incur fixed and variable costs. The fixed cost asso- 
ciated with a retailer order has two components: 
one incurred by the retailer and the other by 
the supplier (e.g., an order-processing cost). As 
with the consumer demand, retail orders cannot 
be backlogged. Each firm incurs inventory-carrying 
costs which at any point in time are proportional 
to its inventory level. In addition, the supplier 
incurs a specific annual cost for managing each 
retailer's account. All cost parameters are stationary. 
For i = 1,..., N, define 

pi = retail price charged by retailer i 

di(pi) = annual consumer demand in the market 
served by retailer i, a decreasing function 
of Pi 

Ko = fixed cost incurred by the supplier per order 
placed by the supplier 

Ks = fixed cost incurred by the supplier per order 

placed by retailer i 
Kr = fixed cost incurred by retailer i per order 

placed by retailer i 

Ki = Ki + Kr 

ho = annual holding cost per unit of inventory 
at the supplier 

hi = annual holding cost per unit of inventory 
at retailer i 

hi = hi- ho, incremental or echelon holding 
cost at retailer i 

co = cost per unit ordered by the supplier 

696 

ci = transportation cost per unit shipped from 
the supplier to retailer i 

T(di) = annual cost incurred by the supplier for 

managing retailer i's account, with T(.) 
nondecreasing, concave and T(0) = 0. 

Let pi(di) denote the inverse demand function 
(because di(.) is decreasing). We assume that pi(di)di 
is concave in di. We assume that hi > 0 for all i, 
which means the cost of carrying a unit at retailer 
i is at least as large as the cost of carrying it in 
the supplier's warehouse. Without loss of generality, 
we assume the transportation cost ci is borne by the 
retailer. The above specified costs do not include any 
transfer payments between the supplier and the retail- 
ers. For notational convenience, we assume that all 
orders are received instantaneously upon placement. 
Positive but deterministic leadtimes can be handled 

by a simple shift in time of all desired replenishment 
epochs. 

The supplier sets the wholesale price and deter- 
mines its own replenishment policy. The retailers set 
the retail price (or alternatively the demand rate) in 
their markets and determine their own replenishment 
policy. The objective of each firm is to maximize its 

long-run average profits. 

3. Centralized Solution 
Assume that there is a central planner who makes all 
the pricing and replenishment decisions so as to max- 
imize the systemwide profit, which is equal to the 
revenue (EN=pi(di)di) minus costs. The cost compo- 
nents are: variable costs EN (co + c)di, account man- 

agement costs E N=1 (di), and inventory-carrying and 

setup costs. 

Suppose, for a moment, that all the retail prices 
(thus demands) are given. Therefore, maximizing 
profit reduces to minimizing the inventory-carrying 
and setup costs. While a single-location model of this 
type is easily solved by the well-known EOQ formula, 
the two-stage distribution system is much more dif- 
ficult and was not well understood until the seminal 
work of Roundy (1985). Roundy shows that, while the 
truly optimal replenishment strategy is intractable, a 
near-optimal solution can be found in the class of 
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integer-ratio policies. (The optimal integer-ratio pol- 
icy is proven to come within 6% of a lower bound on 
the minimum achievable costs.) Let Ti be the replen- 
ishment interval for retailer i, i = 1,..., N, and To the 

replenishment interval for the supplier. An integer- 
ratio policy requires that either To/Ti or Ti/To be a 

positive integer. (This type of policy is widely used in 

practice to synchronize replenishment activities.) To 

synchronize, the system starts out empty (so that all 
locations place an order at Time 0), and it is easily 
verified that it is optimal for each facility to ensure 
that its inventory is down to zero at all subsequent 
replenishment epochs. This implies that each retailer 
i's order is in the amount of diTi units. 

Roundy also shows that the replenishment policies 
can be further restricted to the so-called power-of-two 
policies with virtually no loss of optimality. A power- 
of-two policy is one with 

Ti = 2mi Tb, mi integer, i = 0, 1,..., N, (1) 

where Tb is a given base time period (e.g., a day). That 
is, the reorder interval at each location is restricted to 
be an integer power-of-two multiple of Tb. Obviously, 
a power-of-two policy is also an integer-ratio policy. 
We refer the reader to Roundy (1985) for an algorithm 
that determines an optimal power-of-two policy. 

Throughout this paper, we assume that the order 
intervals at the supplier and any of the retailers are 
all chosen from the discrete set of power-of-two val- 
ues (2mTb: m = -oo,..., -1, 0,1,...}. Although the 

power-of-two grid may appear to be sparse, it in 
fact limits the cost increase due to the grid restric- 
tion to a small percentage, while maximizing the ben- 
efits of coordination of replenishment intervals. For 

example, in the basic EOQ model, restriction to the 
set of power-of-two values results in an increase of 
the cost value by no more than 6%; see Brown (1959) 
and Roundy (1985). Moreover, power-of-two policies 
are appealing for a decentralized system because they 
require less coordination than integer-ratio policies. A 

power-of-two policy requires each firm to satisfy the 

power-of-two constraint independently; they do not 
have to coordinate their reorder intervals explicitly. 

Having focused on the replenishment decisions 

given pricing/demand decisions, we now proceed to 

consider the problem of maximizing the systemwide 
profit: 

H(d, T) = Z: (pi(di) -c 
- c)di - (di)- T - di=l a T h T KTiO 

- hodimax{To, Ti }- 
1 

h 
- K 

2 To 
N= G(d, Ko 

=i (d,T T o) i=l ? 
(2) 

where d is the demand vector, T the vector of replen- 
ishment intervals, and 

Gi(di, Ti, To) = (pi(di) - c - ci)di - (di) - 
Ti 

1 1 - hodimax{To, T} - hidiTi. 2 2 

The problem is to determine a power-of-two vector 
T (satisfying (1)) and a demand vector d that maxi- 
mize l. Let (To*, T*,... , TN) and (dr,... , d) be the 

optimal solution, which we assume to be unique. Let 
TI* be the maximum channel profits. For an algo- 

rithm that determines the optimal solution, see Chen 
et al. (1998). (Multiple optimal solutions may arise if 
the functions pi(d)d- T(d) fail to be strictly concave 
or due to the rounding of replenishment intervals to 

power-of-two values. On the other hand, if the func- 
tions pi(d)d - T(d) are strictly concave, the optimal 
solution is unique almost surely when assuming that 
the cost parameters are drawn from general continu- 
ous distributions.) 

4. Order-Quantity Discounts 
The existing literature on channel coordination has 

repeatedly shown that a discount scheme based 
on the order quantity (i.e., an order-quantity dis- 
count scheme) coupled with fixed transfer payments 
achieves perfect coordination. We show, however, that 
an order-quantity discount scheme that is uniformly 
applied to all retailers does not guarantee perfect 
coordination for systems with nonidentical retailers. 
In the terminology employed by the economics liter- 
ature on vertical contracting, uniform order-quantity 
discount schemes are an insufficient set of instru- 
ments; see Mathewson and Winter (1984, 1986). While 
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this is not surprising if the supplier's costs of serving 
the retailers are themselves nonidentical, it is more 

striking when this cost structure is uniform across all 
retailers. We therefore confine ourselves to the case 
with a uniform cost structure, i.e., KS = Ks for all 
i=1,... ,N. 

THEOREM 1. Even when the cost structure is uniform, 
a uniform order-quantity discount scheme cannot be guar- 
anteed to coordinate the channel with multiple nonidentical 
retailers. 

PROOF. We prove this via a counterexample. Let 

w(Q) be the average unit wholesale price when a 
retailer orders Q units from the supplier. (Thus, 
Qw(Q) is the total price paid by the retailer for the 
lot.) For w(-) to be a discount scheme, we must have 

w(Q1) > w(Q2) for any Q1 < Q2. Suppose pi(di) = ai - 

bidi for some positive constants ai and bi, i = 1, ... , N. 
Let Q* = diTi*, i.e., the (globally) optimal order quan- 
tity at retailer i. 

Suppose w(-) induces the retailers to order the 

optimal quantity Q*. (If not, it certainly does not 
achieve maximum channel profits.) Let w* = w(Qt). 
The remaining problem for the retailers is to solve 

max{(pi(di) - ci - wi)di - diKi/Q - hi = (ai - b,d, - 

Ci - *)di - dKQ -hiQi di > 0}. It is easy to see 
that the optimal solution to the above problem is 
d? = (a, - ci - w - K /Ql)/2bi. To achieve maximum 
channel profits, we must have d? = d* or wZ = ai - ci - 

Kl/Q - 2bid[, i = 1,..., N. If there exists a pair i and 
j such that Q* < Q1 and wi < wj, then w(.) is not a 
discount scheme, i.e., there does not exist any tradi- 
tional quantity-discount scheme that achieves maxi- 
mum channel profits. This is the case when, for exam- 
ple, N = 2, Ko = 100, K' = K = 0, K = K = 10, ho = 
h = h2 = 1, c0 = 10, c = 1, P(.) = 0, al = a2 = 

100, b1 = 10, and b2 = 5. In this example, the glob- 
ally optimal solution is: d* = 4.3, d? = 8.6, To = 4, T* = 
T2 = 2. Therefore, QT = 8.6 and Q* = 17.2. However, 
w* = 11.8372 and w2 = 12.4186. O 

Finally, is the insufficiency of (traditional) order- 
quantity discounts to achieve perfect coordination 
entirely due to the fact that demands are price sen- 
sitive and that retail prices are endogenously deter- 
mined? In other words, would, under a uniform cost 
structure, an order-quantity discount scheme suffice 

698 

in Roundy's model with exogenously prespecified 
demand rates? The following proposition sheds light 
on this question. 

THEOREM 2. Assume all retailer demand rates {d*, i = 
1, ... , N} are exogenously given (or equivalently, all retail 

prices are fixed at their centralized-optimal values). Then, 
incremental, as well as all-unit, order-quantity discounts 
cannot be guaranteed to achieve perfect coordination even 
when the cost structure is uniform. 

PROOF. Consider a system with N = 2 retailers. 
Assume KI = 0 for i= 1,2, and Ko is sufficiently 
large in relationship to the other parameters that in 
the centralized solution To > max{T*, T2}. It is eas- 

ily verified from Roundy (1985) that in this case, 
T* = V2Ki/(hid*) = 2mi for i = 1,2 if Ki = 22mi-lhid* 
for some integer mi, i = 1, 2. (Assume the base period 
Tb = 1.) Let Qt = d7Ti* for i = 1, 2 denote the central- 
ized optimal order quantities. Without loss of gener- 
ality, assume Q7 < Q,, or 

dhKl dhK2 
h1 h2 h1 h2 

' (3) 

Let t(Q) denote the total price the retailers 

pay for an order of size Q under an incremen- 
tal order-quantity discount scheme. Thus, t(Q) = 

minl=l . L{kl + wlQ}, with k, < k2 < .. < kL and w, > 
2 > ... > WL. Because there are only two retailers, 

it suffices to have L = 2. Now consider the retailers' 

optimization problems (in the decentralized system 
with an incremental order-quantity discount scheme). 
Suppose retailer i chooses k, + wlQ as its whole- 
sale cost function. Then its annual cost can be writ- 
ten as diwl + (di*(Ki + k))/Q + hiQ, where Q is his 
order quantity. This is the standard EOQ cost func- 
tion, and thus the optimal order quantity for retailer 

i is Q? = /2d*(Ki +kl)/hi. To induce retailer i to use 
his optimal order quantity in the centralized solution, 
i.e., Q? = Q*, we must have kl/ho = Ki/hi. Assume 
Kl/h1 : K2/h2. Thus the intercepts k, that induce the 
retailers to choose their optimal order quantities are 
different. Because QT < Q*, it must be the case that 
retailer i chooses ki + wiQ as his wholesale cost func- 
tion, i = 1, 2. Therefore, 

Klh Kh2h k _=-- <k2 (. 
hi h2 
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However, there exist examples where (3) and (4) can- 
not be satisfied simultaneously. Here is one such 

example: d* = 1 and d* = 8, ho = h = h2 = 1, K1 = 2 
and K2 = 1. 

We proceed to consider all-unit order-quantity dis- 
counts. Let 0 < ql < q2 < . < qL-1 be the breakpoints, 
and w1 > W2> ... > W the corresponding wholesale 

prices, for some positive integer L, i.e., if a retailer's 
order quantity Q is less than ql, he pays the whole- 
sale price wl for every unit he buys, if Q is in 

[ql, q2) then the wholesale price is w2, etc. Define 

ci(Q) = dK,/Q + hiQ, i = 1, 2, i.e., retailer i's aver- 

age holding and setup costs if Q is his order quantity 
(in the decentralized system). Let Q. be the (uncon- 

strained) minimum point of ci(.), i.e., Q' = /2dlKi/hi. 
Clearly, Q' < Qt. For Q E [ql1_, ql), retailer i's total 
cost function is wld? +ci(Q). Retailer i's objective is to 
choose an order quantity that minimizes his total cost. 
Because his objective function is piecewise convex, 
retailer i's optimal order quantity can be either Q' or a 

breakpoint. To induce retailer i to choose the central- 
ized optimal order quantity Qt(>Q)), we must have 

QT as a breakpoint. Because there are only two retail- 
ers, it suffices to consider an all-unit order-quantity 
discount scheme with {Qt, Q* } as its only breakpoints. 
That is, L = 3, q1 = Q, q2 = Q*, and (wl, w2, w3) are 
the corresponding wholesale prices. 

Assume Q* = Q'. (There exist examples that sat- 

isfy this condition.) For both retailers to choose 
their centralized optimal order quantities, the follow- 

ing conditions are necessary: w3d* + c2(Q*) < w2d* + 
c2(Q2) = w2d* + C2(QT) and w2dt + c1(QT) < w3d + 
cl(Q*), where the first inequality ensures that retailer 
2 does not choose the smaller breakpoint, and the 
second inequality prevents retailer 1 from choosing a 
lower wholesale price. Combining the two inequali- 
ties, we have 

c2(Q2*) - c2(QQ1) c< (Q2) - c1 (QM) 
d* < W2 - W3 < . (5) 

2 1 

However, in an example with ho = 3 and hi = h2 = 1, 
d= = 2 and d* = 1, K1 = 1 and K2= 8, it can be eas- 

ily verified that QT = Q' and (c2(Q) - c2(Qt))/d* > 

(c1(Q*) - cl(Qt))/dl, in which case (5) cannot be sat- 
isfied. Therefore, there exist examples where it is 

impossible to find an all-unit order-quantity discount 
scheme that achieves perfect coordination. O 

Note that because any concave increasing func- 
tion t(Q) can be approximated arbitrarily closely 
by an incremental order-quantity discount scheme 

minl=l,, L{kl + wlQ), it is clear that any order-quantity 
discount scheme based on a concave t(.) function is 
still insufficient to achieve perfect coordination. Of 
course, Theorem 2 leaves open the possibility of the 
existence of an even more general order-quantity dis- 
count scheme that can achieve perfect coordination. 
However, such a scheme, even if it existed, is likely 
to have a most complex and unintuitive form, and 

might therefore be impractical. 
REMARK. The single-retailer version of our model 

(without account management costs, i.e., T = 0) was 
first introduced by Weng (1995). While it is stated 
in his paper that an order-quantity discount scheme 
results in perfect coordination, Boyaci and Gallego 
(1997) question the validity of this result. Chen et al. 

(1997) formally establish that a scheme using an 

order-quantity discount and a periodic franchise fee 
suffices to achieve perfect coordination in the single 
retailer or multiple identical retailers settings. 

5. Coordination Mechanisms 
This section specifies a perfect coordination mecha- 
nism for the model described in ?2. Every decentral- 
ized supply chain requires an upfront specification of 
a contract, i.e., a set of ground rules for the commercial 
interactions between the different parties involved. 
Such a contract may involve the specification of a 

pricing rule, the commitment to deliver in whole or 
in part (possibly within a specified lead time), return 

policies, restrictions on the times at which orders may 
be placed and delivered (e.g., daily, every Tuesday or 

Friday, etc.), among others. As explained in Tirole for 

systems with symmetric information (1988, p. 173) it 
is immaterial whether the contract is specified by one 
of the channel members, a consortium representing 
all, or a supply chain consultant, as long as all parties 
agree upon the terms. The channel members accept 
a contract only if it permits them to achieve a profit 
value at least equal to their outside opportunity or 
status quo. 
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In our model, the contract consists of the following 
provisions. The supplier commits himself to satisfy all 
retailer orders in their entirety and to deliver them 
with a fixed leadtime, which is without loss of gen- 
erality normalized to be zero. All channel members 

place their replenishment orders at epochs taken from 
the discrete set 2mTb: m = ... , -2, -1,0, 1,2,... ; 
see the discussion in ?3. (We assume, without loss 
of generality, that the system is without inventory at 
Time 0.) All parties retain the revenues they collect, 
and incur their own costs. (Recall from ?2 that the 

supplier incurs a fixed cost Ko and a per unit pur- 
chase cost c0 for every order it places, a fixed cost 
KP for processing an order from retailer i, holding 
costs at its own site, and account management costs. 
Each retailer i incurs a fixed cost of Kr and a per unit 

transportation cost ci for every order it places, and 
incurs holding costs at its own site. These costs do not 
include any transfer payments.) The following mecha- 
nism determines the wholesale price the retailers pay 
to the supplier: retailer i, i = 1,... , N 

(i) is charged K' by the supplier for every order it 
places; 

(ii) is charged by the supplier a basic per unit cost 

equal to 

1 
c+ (di) +hoA; and (6) 

di 2 

(iii) is given a per unit discount equal to 

1 
-homin{A, Ti (7) 2 

where A = T*, a contract parameter from the central- 
ized solution. 

Finally, the contract specifies a fixed annual trans- 
fer payment Fi by facility i (in the forms of fran- 
chise fees or rebates). A large variety of fee vec- 
tors F may be chosen in the contract, subject to 
the restriction that it permits all channel members 
to achieve a profit value equal to or in excees of 
their status quo profits (Il?, i = 0, 1, ... ,N}. Let 
Hi denote facility i's profit after any annual trans- 
fer payments, i.e., Hi = I* - F,. For the contract 
to be acceptable to all parties, we must have that 
HIi > I? for all i = 0,1,...,N. One such possi- 
ble profit allocation results in Hi = 1I? + V/(N + 1), 
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i = 0,1,...,N, where V = I* - EN=0? > 0. 
(This corresponds with Fi = I - ? - V/(N + 1), i = 
0, 1,... , N, and is in fact the Nash bargaining solu- 
tion of an (N + 1)-person bargaining game. See, e.g., 
Myerson (1991) for a systematic discussion of vari- 
ous allocation schemes and their properties.) Clearly, 
all fee vectors in 9 = {F : F, = 0, Fi < IH - n?, i= 
0, 1,..., N) can be employed. The actual choice 
depends on the relative market and bargaining power 
of the channel members. Even though the fixed fees 
are essential in assuring that the contract is attractive 
to all channel members, they have no impact on the 

aggregate profits in the chain or on the pricing or 
replenishment strategies to be chosen by each of its 
members. 

The above contract creates a game with the sup- 
plier and the retailers as its players. We will show that 
the retailers' demand rates and replenishment strate- 
gies that are part of the (unique) centralized solu- 
tion surface as dominant strategies for the retailers 
in the game. (A player's strategy is dominant if it is 
the player's strictly best response to any strategies the 
other players might pick.) Moreover, given the retail- 
ers' dominant strategies, we show that it is optimal 
for the supplier to choose the same replenishment 
strategy, in particular the same constant reorder inter- 
val To, as in the centralized solution. In other words, 
the centralized solution is realized in the decentral- 
ized channel as an iterated dominant strategy equi- 
librium, all while maximizing channel profits. (An 
equilibrium is iterated dominant if the players can be 
sequenced in such a way that it has the following 
properties. Player l's strategy is dominant. Knowing 
that Player 1 will therefore choose his dominant strat- 
egy, Player 2 has a strategy that is optimal regardless 
of the strategies adopted by the remaining players, 
and so forth. See Rasmusen (1990) for a definition 
of the equilibrium concept.) It will also become clear 
that the centralized solution prevails as a unique Nash 
equilibrium of the game. Finally, note that the contract 
is equally attractive when the "supplier" and "retail- 
ers" represent decentralized divisions of a single firm, 
which are organized as profit centers. 

To analyze the above game, we begin with the prob- 
lem facing retailer i. It is easily verified that it is opti- 
mal for the retailer to always place orders when his 
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inventory is down to zero. Adding Components (i)- 
(iii), the average wholesale price retailer i pays to the 

supplier is 

KP 'k(di) 1 1 
w= T +Co+ + 2hA-2ho min(A,Ti}. (8) 

Tidi d, 2 2 

The long-run average profit for retailer i is given by 

/ ~(di) 1 1 
pi(di)di- co+ci+ +di 2 hA - 

2 hmin{A,Ti}) di 

1- Ks+Kr 
-21 hidi7Ti- Ti . (9) 

Notice that this profit function is independent of 
the other players' decisions. Therefore, any unique 
solution to the above problem represents a domi- 
nant strategy for retailer i. Because A- mintA, T} = 
max{A, Ti} - Ti and A = To, (9) can be written as 

1 1 
(pi(di) - co -ci)di - (di)- hodimax{T*, Ti} - -hidiTi 

- - Gi(di, Ti, To*), T, 
which is maximized at a unique point (d*, T*) (see 
(2)). Therefore, the dominant strategy for retailer i is 
to employ the demand rate d* and the power-of-two 
replenishment strategy with interval Ti*. 

Now suppose the retailers all follow their domi- 
nant strategies. Under the above mechanism, the sup- 
plier receives the following average payments from 
the retailers: 

E c + Co+ + hoA 

- h min{A, T*})d* (10) 2 

It is again easily verified that the supplier is best off 

placing his orders when his inventory is down to zero. 
He then incurs the following average costs: 

T + E ( 
hod max{ To, Ti*- -2 hod* T ) 

+|i=+1+ )j 
(11) 

+K1+ cod* + (d) (11) 

that include fixed costs, holding costs, order- 

processing costs, variable purchase costs, and account 

management costs. Therefore, the supplier's profit 
function is 

K0 N1 - + E hodT(A-min{A, T* }-max{To, T }+ T*). 
To i=1 2 

Collecting terms related to T0, the supplier maxi- 
mizes -Ko/T o-E >N hodi*max{T, T*7} that is equal 
to n(d*, T) with T = (T0, T*, ... , T) plus a constant, 
and it is maximized at a unique point To = To*. Hence, 
the supplier's optimal strategy is to use a power- 
of-two strategy with replenishment interval To. (The 
coordination mechanism has been designed to make 
each player's profit function equal to the total profit 
plus a constant, an application of the Groves mech- 
anism; see Groves 1973.) In addition, observe that 
the centralized solution arises as an iterated domi- 
nant strategy equilibrium, considering any sequence 
of the players in which the supplier is last. More- 
over, the above analysis indicates that the centralized 
solution is a unique Nash equilibrium of the game. 
(The uniqueness follows from the fact that (d*, T*) is a 

unique solution of the centralized problem.) Note that 
the supplier makes a negative profit, -Ko/To, under 
the contract. Therefore, transfer payments from the 
retailers are necessary for the supplier to accept the 
contract. We conclude: 

THEOREM 3. Under the above described coordination 
mechanism, in particular, the wholesale pricing mechanism 

(i)-(iii) and any fee vector in ', the centralized solution 

(d*, T*) prevails as an iterated dominant strategy equilib- 
rium (and also a unique Nash equilibrium) in the decen- 
tralized channel, and the total channel profit is maximized. 

Our coordination mechanism combines three kinds 
of discounts. Consider (8), the average wholesale 

price paid by retailer i. (1) Note that diTi is the 
retailer's order quantity. The higher the order quan- 
tity, the lower the unit price (ceteris paribus). This 
is an order-quantity discount. (2) The ratio I(di)/di 
decreases with di because T(.) is concave and 
T(0) = 0. Thus, the higher the annual sales volume di, 
the lower the wholesale price. This is a volume dis- 
count. (3) As the reorder interval Ti increases, the dis- 
count increases first and stays constant after it exceeds 
A, a contract parameter. This is an order-frequency 
discount. As mentioned in the introduction, all of the 
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above three types of quantity discounts have been 
used in practice, and many schemes use combina- 
tions of the three types of discounts (see Munson and 
Rosenblatt 1998). 

The coordination mechanism is appealing because 
the differentials in the wholesale prices paid by differ- 
ent retailers are based on the underlying economics 
in the system. (1) The discount based on the order 
size is due to the order-processing costs KP the sup- 
plier incurs. (2) The discount based on the annual 
sales volume reflects the economies of scale in man- 

aging a retailer account. (3) The discount based on the 
order frequency reflects the savings in holding costs 
the supplier enjoys when the retailer orders less fre- 

quently (i. e., the retailer keeps larger inventories). To 
see this, first suppose that the retailer's reorder inter- 
val is very small. In this case, the supplier has to 
hold all the inventory for the retailer. Because the sup- 
plier's replenishment cycle is T*, the supplier incurs 
an average holding cost of h0oT/2 for every unit 
sold by the retailer. This expense becomes part of the 
basic wholesale price in (6). Now suppose the retailer 

replenishes once every Ti units of time. If Ti < To, then 
the supplier on average saves hoTj/2 of holding costs 
for every unit sold by retailer i. This explains the dis- 
count given in (7). Now if Ti exceeds To, it is easy to 
see that the supplier does not have to hold any inven- 

tory for the retailer, and therefore the discount in (7) is 

designed to cancel the holding-cost expense charged 
as part of the basic wholesale price. 

Our coordination mechanism (including the fixed 
fees) ensures compliance with fair trade laws, in par- 
ticular the Federal Robinson-Patman Act. Section 2(a) 
of this act specifies that it is unlawful "either directly 
or indirectly to discriminate in price between pur- 
chasers of commodities of like grade and quality." 
Quantity discounts are permitted under this section 
but only to the extent that they are fully justified 
by cost savings and, hence, identically applied to all 
retailers. This is precisely the case with our coor- 
dination mechanism because any discount awarded 
to a retailer is directly based on the costs incurred 
by the supplier to fill the retailer's order. McAfee 
and Schwartz (1994, p. 217) report that "courts and 
enforcement agencies (primarily the FTC) have gen- 
erally been willing to consider as a defense the fact 
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that the challenged offer, while entailing a different 

marginal price, was made available to all competing 
buyers." Depending upon what allocation mechanism 
is used to allocate systemwide profits, the franchise 
fees paid by the retailers may either be guaranteed to 
be identical or not. It is our understanding that U.S. 
fair trade regulations donot require that identical fran- 
chise fee be charged to all retailers or that differences 
between them need to be justified as a sample func- 
tion of one or more of the retailer characteristics. We 
refer to Stein and El-Ansary (1992) and Handler et al. 
(1990) for a more detailed discussion of the Robinson- 
Patman Act. 

The above described coordination mechanism is by 
no means unique. For example, in lieu of the annual 
franchise fee F, one can use a profit-sharing plan 
under which the supplier receives a predetermined 
fraction 0i of retailer i's profit, i = 1,..., N. This mod- 
ified coordination mechanism induces the same equi- 
librium strategies and is therefore perfect as well. 
(To verify the latter, note that the profit function for 
retailer i is now given by (1 - Oi)Gi(di, , ,A). The 

supplier maintains the same cost function as in (11) 
while receiving profit shares ENOiGi(d, Ti*, A) in 
addition to revenues specified in (10), both of which 
are independent of the supplier's decision variable 
To.) More generally, the coordination mechanism may 
use a combination of this type of profit sharing as 
well as annual franchise fee F or for that matter, 
any profit-sharing rule that is a fixed, predetermined 
and increasing function of the retailer's profits. In the 
remainder of this paper, we confine ourselves to the 
original coordination mechanism with franchise fees 
as the sole instrument to reallocate profits. Our choice 
is based on the simplicity and transparency of the 
scheme as well as the fact that most of the economics 
literature on vertical contracting confines itself to this 
instrument; see, e.g., Tirole (1988). 

One possible limitation of the coordinating pricing 
scheme arises when the setup costs I{K, i = 1, ..., N} 
are retailer-specific. In this case, the Pricing Scheme 
(8) has a component that fails to be uniform across all 
retailers, and it is therefore possible that a retailer i 
with a larger sales volume di and a longer replenish- 
ment interval Ti than some retailer j incurs a higher 
wholesale price, nevertheless. 
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REMARK. A critical assumption in this paper is that 
all demand functions are deterministic, i.e., demands 
are deterministically known once the retailer prices 
are selected. In practice, demands may be subject 
to a considerable amount of uncertainty, i.e., the 
demand functions are often stochastic. It is interest- 

ing to observe that the identified discount pricing 
scheme can be implemented in a stochastic setting. 
The supplier and retailers can continue to agree to 

place orders with replenishment intervals of constant 

length, possibly again chosen to be power-of-two 
multiples of a given base period. The three-part cost 
structure, specified in ?5, can continue to be imple- 
mented, except for the term in (6). The latter may be 

replaced by its expectation over the relevant stochas- 
tic demand process; alternatively, the cost component 
may be paid periodically on the basis of the real- 
ized demand volume. Most importantly the three- 

part cost structure continues to adequately reflect the 
economics of the system even when demands are 
stochastic. While we do not surmise that the coordi- 
nation mechanism is perfect in a stochastic setting, we 

conjecture that in expectation it is close to being per- 
fect. This needs to be explored in future work. 

We close this section with the following result, 
which shows how the coordination mechanism 

changes as new retailers enter the system. 

THEOREM 4. Assume that a new retailer, called retailer 
m (m Z 1,... , N), joins the system with demandfunction 
dm(Pm) and parameters Km, Cm and hm. Assume the con- 
tract is modified to accountfor the new retailer, i.e., a new 
wholesale pricing scheme and a new set of franchise fees. 
The entry of this retailer results in a lower wholesale price 
schedule for all the existing retailers. 

PROOF. Note that (8) can be rewritten as w= 

K/T,id, + Co + T(di)/di + ho max{A - T,, 01. Thus, the 
wholesale price schedule shifts down if A (=To) 
decreases. Let To (resp., To**) denote the opti- 
mal reorder interval at the supplier obtained in 
the centralized solution before (respectively, after) 
retailer m enters the system. It thus suffices to 
show that To** < T. Let Ir(To) (respectively, 7r(To)) 
denote the optimal channel profit in the absence 

(respectively, presence) of retailer m given the 

supplier's reorder interval To. For any To > To, 

T(To) = 7r(T) + maxm, Tm Gm(dm, Tm, To) < 7T(T*) + 

maxdm, T Gm(dm, Tm, To) = ri(To), where the inequal- 
ity follows because per definition 7r(To) < Ir(To), and 

Gm(dm, T,, To) < Gm(dm, Tm, To) due to max{T0, Tm} > 
max{ T, Tm}. Therefore, the To that maximizes r(To) 
must be less than or equal to To. O 

6. An Uncoordinated Channel 
As mentioned, the franchise fees are necessary to 
ensure that the contract is attractive to all parties. To 
this end, all channel members must derive a profit 
value equal to or in excess of their status quo profit. 
This section considers a status quo, where the chan- 
nel members fail to coordinate their decisions. 

Consider the following scenario. The supplier 
charges a constant wholesale price and chooses a 

replenishment strategy with the objective of maximiz- 

ing its own profits. The retailers take the wholesale 

price as given and maximize their individual profits 
by choosing an optimal retail price and replenishment 
strategy. In other words, the channel members play 
a Stackelberg game with the supplier as the leader 
and the retailers as followers. This modus operandi 
represents many traditional distribution channels in 
which the channel members fail to coordinate their 
decisions. 

Once again, we assume that all replenishment inter- 
vals have to be chosen from the discrete set of power- 
of-two values {2mTb : m = .. ,-2, -1,0,1,2,... . It 
is then easily verified that all players are best 
off employing power-of-two strategies: Each player 
places an order when his inventory is down to zero 
and adopts a constant, player-specific reorder inter- 
val. Thus, in the Stackelberg game, the supplier's 
decision variables are the wholesale price, w, and its 
reorder interval To. Given these decisions, the retailers 
then determine their own retail prices Pi (or demand 
rates di) and reorder intervals Ti to maximize their 
own profits. The supplier incurs a fixed cost (K0) 
and a per unit variable cost (Co) for every order he 

places, an order-processing cost (Ks) for each retailer 
order, holding costs at rate ho for his own invento- 
ries, as well as the account management costs (t(di)). 
The retailers incur a fixed cost (Kr) and a per unit 

transportation cost (ci) for each order they place with 
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the supplier, and holding costs at rate hi for the inven- 
tories they carry at their sites. Recall that the retail- 
ers' orders are always shipped immediately. There- 
fore, retailer i's problem is 

def Kr 
max 7ri(di, Ti w) = (Pi(di)- ci- w)di- 
di, Ti Ti 

--hidiT i= 1, .,N. (12) 

Note that the objective function depends only on a 

single parameter specified by the supplier, i.e., the 
wholesale price w. (It is independent of To.) Let di(w) 
and Ti(w) be the optimal solution to (12), i= 1,..., N. 
On the other hand, the supplier's problem is 

max 7r(w, To) f (w- o)di(w)- (di(w))- 
(w 

w, To T 

1 
hodi(w)[To - T(w)]+ }- (13) 2 T 

We have developed an efficient algorithm for solving 
the above Stackelberg game; see Chen et al. (1998) for 
details. 

A more general Stackelberg game arises when the 

supplier offers a wholesale price schedule, i.e., the 

average unit wholesale price w(Q) is a nonincreas- 

ing function of the order quantity Q. One can, for 

example, restrict w(.) to the class of incremental order- 

quantity discounts with a finite number of break- 

points. The resulting game, however, is much harder 
to solve. If there is only one breakpoint, it is possible 
to solve the resulting Stackelberg game via a complete 
search over all combinations of (i) the basic wholesale 

price, (ii) the discounted wholesale price, and (iii) the 

breakpoint. 

7. Numerical Examples 
In this section, we investigate how large the value 
of coordination, i.e., the increase in channel profits 
resulting from perfect coordination, can be. We use 
as our status quo scenario the Stackelberg games 
described in ?6. Their channel profits are compared 
with the maximum channel profits to yield a value of 
coordination. 

We consider two sets of examples, one with 
identical and one with nonidentical retailers. For 
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the former sets, N = 10 and the base case has 
the following parameters: K0 = 100; c0 = 10; Ks = 0, 
Kr = 10 and ci =1 for i = 1,... ,N; hi =1 for i= 
0, 1,..., N; pi(di) = ai -bidi with ai = 100 and bi = 20 
for i = 1,... , N; (d) = f + ed with f = 10 and e= 1. 
The other examples in this set are obtained by mod- 

ifying the base case one parameter at a time. The set 
with nonidentical retailers has a base case with the 
same parameters as the previous base case except for 

ci and bi, now varying among the retailers as follows: 

ci = 1 + i6c/N and bi = 10 + iSb/N, i = 1,... , N, with 

8c = 10 and 8b = 10. The other examples in this set 
are again obtained by modifying the base case one 

parameter at a time. 
The results are summarized in Figures 1 and 2. 

The channel profits under the two Stackelberg games 
are around 70% of the maximum, suggesting that the 
value of coordination can be significant. This sug- 
gests that a perfect coordination scheme can result in 
major performance improvements for the channel as 
a whole, thus encouraging companies and their sup- 
ply chains to engage in coordination mechanisms of 
the type discussed here. Note that when comparing 
the two Stackelberg games, it is clear that the supplier 
is always better off with a quantity-discount scheme 
because the latter provides him with a larger set of 
feasible strategies, but the same cannot be said of the 
channel profits. 

The double-marginalization phenomenon (Spengler 
1950 and Tirole 1988) recurs in our model, i.e., coor- 
dination leads to lower (average) wholesale prices, 
lower retail prices, and larger demand rates. For 
the base case with identical retailers, the coordina- 
tion mechanism requires retailer i to pay a wholesale 

price 12 + (10 + di)/di -0.5 min{4, Ti per unit ordered. 
Because d* = 2.1, and T* = 4, each retailer pays a 
wholesale price of 15.76. This is much lower than the 
wholesale price of 53 in the Stackelberg game (with a 
constant wholesale price). With this Stackelberg game 
as the status quo, Table 1 shows for the base case a 
franchise fee of 36.1 based on equal division of the 
gains from coordination. 

The same phenomenon is observed in the sec- 
ond set with nonidentical retailers. For its base case, 
the coordination mechanism uses the wholesale price 
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Figure 1 Uncoordinated Channel Profit As a Percentage of Maximum Channel Profit in Centralized Solution, when Retailers Are Identical 
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Figure 2 Uncoordinated Channel Profit As a Percentage of Maximum Channel Profit in Centralized Solution when Retailers Are Nonidentical 
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Table 1 Profit Table, Identical Retailers (Constant Wholesale Price) 

Stackelberg Coordinated Bargaining Fixed 
Game System Solution Payments 

Supplier 316.00 -25.00 336.05 -361.05 
One Retailer 19.55 75.70 39.60 36.10 
Systemwide 511.50 732.00 732.00 

InMConstant Wholesale Price EQuantity DiscountI 

11 + (10 + di)/di - 0.5 min{2, Ti}. In the coordina- 
tion system, we have, e.g., (d,, T1) = (3.86,2) and 
(d10, T10) = (1.9, 2), resulting in a wholesale price of 
13.59 for Retailer 1 and 16.26 for Retailer 10. Thus, 
Retailer 1 receives a substantial volume discount. 
In the Stackelberg game (with a constant wholesale 
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Table 2 Profit Table, Nonidentical Retailers (Constant Wholesale 
Price) 

Stackelberg Coordinated Bargaining Fixed 
Game System Solution Payments 

Supplier 405.00 -50.00 427.35 -477.35 
Retailer 1 43.09 149.20 65.44 83.77 
Retailer 2 37.19 132.00 59.53 72.47 
Retailer 3 32.23 117.48 54.58 62.91 
Retailer 4 28.02 105.07 50.36 54.71 
Retailer 5 24.40 94.35 46.74 47.61 
Retailer 6 21.27 85.00 43.61 41.39 
Retailer 7 18.74 76.78 41.08 35.70 
Retailer 8 16.51 69.50 38.86 30.64 
Retailer 9 14.55 63.01 36.90 26.12 
Retailer 10 12.81 57.20 35.16 22.04 

Total 653.81 899.60 899.60 0.00 

price), the retailers pay a price of 50. The franchise 
fees for this base case are in Table 2, using the 

Stackelberg game with a constant wholesale price as 
the status quo and equal division of gains froms 
coordination. 

8. An Alternative Holding-Cost 
Model 

So far we have assumed that the inventory holding 
costs incurred by the retailers are independent of the 
wholesale price paid. Because the holding costs typi- 
cally include both capital costs and physical holding 
such as warehousing costs, this assumption may be 
restrictive. In this section, we explicitly model hold- 
ing costs as consisting of two components: physical 
holding costs and capital costs. We show that our 
coordination mechanism can easily be modified to 
accommodate this more general model. 

Let I be the interest rate, which is identical across 
the firms. Redefine ho and hi to be the physical 
carrying-cost rates at the supplier and retailer i, 
respectively. 

From the system's perspective, it costs ho = ho + Ico 
to hold a unit at the supplier, and h' = hi + Ico + Ic, 
at retailer i. (For more accurate models based on the 
net present value of cash flows, see Porteus 1985.) 
Hence, the incremental, holding-cost rate at retailer i 
is h'=def h - h = hi -ho + Ici = hi + Ici, which is also 
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assumed to be nonnegative. The average systemwide 
inventory and setup costs can be expressed as 

T+ -E +hodimax{To, Ti} + hidiTi)? O i=1i 2 

The channel profit is thus I'(d, T) = EN1G G'(di, Ti, 
To) - Ko/To, where G;(di, i, T,) = (pi(di) - o - ci)d - 

(di) - Ki/Ti- hd max{T, T} - hdiTi. Again, let 
T* = (T*, Ti,..., T) and d* = (d,..., d*) be the 
optimal reorder intervals and the optimal demand 
rates, respectively. This optimal solution can be 
obtained by using the same algorithm outlined in ?3. 
Our objective is to identify a coordination mechanism 
that induces the decentralized system to achieve the 
maximum channel profit II'(d*, T*). 

Consider the decentralized system and suppose we 
still use the wholesale price mechanism (i)-(iii) pro- 
posed in ?5. Then retailer i incurs an interest cost of 
I(ci + w), where w is the unit wholesale price. How- 
ever, from the system's perspective, the interest cost at 
the retail level should be I(ci + Co). Because w > c0, the 
price mechanism inflates the holding costs at the retail 
level. As a result, it can no longer induce the decen- 
tralized channel to achieve the maximum total profit. 
The system again suffers from double marginaliza- 
tion. There are two ways to fix this problem. 

The first remedy is easy. Instead of paying the fol- 

lowing full wholesale price at delivery, 

co + () + 1hoA- hmin{A, Ti}, 
di 2 2 (14) 

the retailers pay only c0 at delivery and the rest when 
the goods are sold. As a result, the retailers face an 
interest cost of I(co + ci). It is easy to verify that with 
this partial consignment, the wholesale price mecha- 
nism (i)-(iii) still makes the retailer's profit function 
coincide with G(di, Ti, T ), and therefore achieves 
perfect coordination. 

The second approach does not use consignment but 
revises the wholesale price formula. Here we assume 
that the retailers pay the wholesale price upon deliv- 
ery. (In practice, there are of course many other pos- 
sible arrangements. One common arrangement is to 
pay the wholesale price after a fixed grace period, but 
this can easily be accommodated. To see this, let t be 
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the grace period. Set w' = w(1 + It), where w is the 
desired unit wholesale price with zero grace period. 
Paying w' after the grace period is equivalent to pay- 
ing w upon delivery. Interested readers are referred 
to Boyaci and Gallego 1997 for further discussions.) 
Change the wholesale price mechanism (i)-(iii) to the 

following. Retailer i, i = 1, ... , N, 
(i)' is charged KS by the supplier for every order it 

places; 
(ii)' is charged by the supplier a basic per unit cost 

equal to 

r(di)/di + hoA 
co+ + IT 

and 

(iii)' is given a per unit discount equal to 

2 h min{A,Ti) 
1 + IT 

where A = T*, the optimal reorder interval for the 

supplier in the (new) centralized system. Therefore, 
the unit wholesale price paid by retailer i is 

W(di)/di + 
1 hAA - h' min{A, Ti} 

w==co 1+ + T, 

Note that this new wholesale price is obtained by dis- 

counting part of (14). This is used to offset the addi- 
tional inventory holding costs the retailer incurs due 
to the supplier's markup. Although the new formula 
is more complex, it preserves all the features of the 

original one: Discounts are based on the order quan- 
tity, the annual sales volume, and the order frequency. 

Under the wholesale price mechanism (i)'-(iii)', 
retailer i's problem is to select di and Ti to maxi- 
mize its own profits: (pi(di) - ci - w)di - (Ki + Kr)/Ti - 

2(hi + Ici + Iw)diTi, which can be shown to equal to 
Gi(di, Ti, To). Retailer i thus chooses d* and T*, i= 
1, ... ,N. Given these decisions, now consider the 

supplier's problem. It is easy to see that the sup- 
plier's revenue stream is fixed; thus, maximizing prof- 
its reduces to minimizing costs. The costs that depend 
on the supplier's decision variable To are the fixed 
costs and the inventory holding costs at the supplier 
site: Ko/To + ENl h .max{TO, T }- 1 hdTi) that is 

equal to -I'(d*, T) with T = (T, T;, ..., TN) plus a 

constant. Thus, the supplier chooses To. The central- 
ized solution again prevails as an iterated dominant 

strategy equilibrium in the decentralized channel, and 
the channel profits continue to be maximized. 
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